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The magnetohydrodynamic (MHD) turbulence appears in engineering laboratory flows
and is a common phenomenon in natural systems, e.g. stellar and planetary interiors
and atmospheres and the interstellar medium. The applications in engineering are
particularly interesting due to the recent advancement of tokamak devices, reaching very
high plasma temperatures, thus giving hope for the production of thermonuclear fusion
power. In the case of astrophysical applications, perhaps the main feature of the MHD
turbulence is its ability to generate and sustain large-scale and small-scale magnetic fields.
However, a crucial effect of the MHD turbulence is also the enhancement of large-scale
diffusion via interactions of small-scale pulsations, i.e. the generation of the so-called
turbulent viscosity and turbulent magnetic diffusivity, which typically exceed by orders of
magnitude their molecular counterparts. The enhanced resistivity plays an important role
in the turbulent dynamo process. Estimates of the turbulent electromotive force (EMF),
including the so-called α-effect responsible for amplification of the magnetic energy and
the turbulent magnetic diffusion are desired. Here, we apply the renormalization group
technique to extract the final expression for the turbulent EMF from the fully nonlinear
dynamical equations (Navier–Stokes, induction equation). The simplified renormalized set
of dynamical equations, including the equations for the means and fluctuations, is derived
and the effective turbulent coefficients such as the viscosity, resistivity, the α-coefficient
and the Lorentz-force coefficients are explicitly calculated. The results are also used to
demonstrate the influence of magnetic fields on energy and helicity spectra of strongly
turbulent flows, in particular the magnetic energy spectrum.

Key words: MHD turbulence, turbulence theory, dynamo theory

1. Introduction

The study of the dynamics and description of the magnetohydrodynamic (MHD)
turbulence is of interest from the point of view of engineering and astrophysics.
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The majority of astrophysical magnetic fields, including the terrestrial field, are generated
by turbulent flow of a conducting liquid, such as plasma or liquid metal in the interiors of
planets, stars, accretion discs, etc. The flow is typically driven thermally, compositionally
(cf. e.g. Roberts & Soward 1972; Brandenburg & Subramanian 2005; Dormy & Soward
2007; Roberts & King 2013) or by the development of violent instabilities such as e.g.
the magneto-rotational instability (cf.Balbus & Hawley 1991a,b). The investigation of
turbulent magnetized flows involves the description of a very complicated dynamics of
small-scale fluctuations (cf. Zeldovich et al. 1987; Zeldovich, Ruzmaikin & Sokoloff
1990) and hence it is extremely difficult and requires sophisticated mathematical tools; see
Tobias, Cattaneo & Boldyrev (2013) and Tobias (2021) for a review of different approaches
and results. To simplify the problem, various assumptions have been put forward and,
in particular, a common simplification in the theoretical approaches is the assumption
of the so-called weak turbulence, which corresponds to a weak amplitude of turbulent
pulsations and linearization of their evolution. Such an approach allows us to calculate the
electromotive force, i.e. the α-effect responsible for magnetic energy amplification and the
turbulent diffusion (cf. e.g. Steenbeck, Krause & Radler 1966; Roberts 1994; Moffatt &
Dormy 2019), but lacks the crucial effect of the nonlinear dynamics of the fluctuations.
As argued in Tobias et al. (2013), in some cases the regime of weak turbulence can be
sustained for long times, nevertheless, it is much more common for natural systems to
develop into the strong-turbulence regime, where the evolution of turbulent fluctuations
becomes nonlinear. This difficulty is resolved here, by application of the renormalization
technique, a statistical closure approximation which is based on systematic, subsequent
(iterative) elimination of thin wavenumber bands from the Fourier spectrum of rapidly
evolving variables (cf. e.g. Ma & Mazenko 1975). The first to apply this technique in
fluid mechanics were Wyld (1961) and Forster, Nelson & Stephen (1977), to study the
statistical properties of stationary, homogeneous and isotropic turbulence. However, the
first to apply the renormalization group method in magnetohydrodynamics was Moffatt
(1981, 1983), who calculated the kinematic α coefficient, in a simplified case of a given
stationary, homogeneous and isotropic turbulence flow field, unaffected by the Lorentz
force; other interesting numerical and analytic studies of the kinematic dynamo problem
by Vincenzi (2002) and Arponen & Horvai (2007) involved the incompressible, stochastic
Kraichnan–Kazantsev model of turbulence and focused on determination of the magnetic
Prandtl number dependence of the mean field growth rate for that model. A few years
after the pioneering works of Moffatt, a comprehensive work on renormalization of the
hydrodynamic equations in the absence of the magnetic field was published by Yakhot &
Orszag (1986). A number of works on renormalization in non-magnetic stirred, stationary
turbulence followed, such as e.g. McComb & Watt (1990, 1992), McComb, Roberts & Watt
(1992), Rubinstein & Barton (1991, 1992), Smith & Reynolds (1992), Lam (1992) and
Eyink (1994) with seminal reviews by Smith & Woodruff (1998) and McComb (2014).
A notable contribution came from Kleeorin & Rogachevskii (1994), who calculated the
renormalized Lorentz force for non-helical, stationary, homogeneous and isotropic MHD
turbulence, in the absence of dynamo action; the effect of chirality in natural turbulence
which leads to the α-effect and the effect of gradients of the mean fields on the dynamics of
fluctuations have been excluded from their analysis. A couple of years earlier Adzhemyan,
Vasiliev & Gnatich (1987) utilized the renormalization techniques from quantum field
theory to comment on the full dynamo problem, with the inclusion of the velocity
evolution affected by the Lorentz force, and concluded that the spectral scalings for the
turbulent kinetic and magnetic energies are necessarily different. Barbi & Münster (2013)
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used similar techniques and developed a numerical algorithm to compute renormalized
flows, which reproduced standard theoretical scalings. Reviews of approaches to
the description of turbulence and MHD turbulence based on the renormalization
group technique can be found in Adzhemyan, Antonov & Vasiliev (1999) and
Zhou (2010).

A powerful method which allows us to relate the mean electromotive force and turbulent
magnetic diffusion to the turbulent energy and helicity tensors is the so-called two-scale
direct-interaction approximation dating back to Kraichnan (1959, 1965) and developed e.g.
by Yoshizawa (1990) and Yokoi (2013, 2018); see Yoshizawa (1998) and Yokoi (2020) for
a review. It is based on the idea of the introduction of the Green’s function of turbulence,
that is, a tensorial response function to an infinitesimal impulse force and an ad hoc
introduction of two scales of turbulence in space and time related by the same parameter
of expansion. Despite its limitations, it allows us to describe the mean electromotive force
in strong turbulence once the statistical properties of the underlying small-scale chaotic
flow are known.

Recent investigations of Mizerski (2020, 2021) involved applications of the
renormalization group method to study the effect of non-stationarity and anisotropy on
the MHD turbulence in what could be called an intermediate regime (cf. also Mizerski
(2018a,b) for the effect of non-stationarity in weak turbulence). Due to the high complexity
of the mathematical approach in the case of non-stationary and non-isotropic turbulence,
the effect of nonlinear evolution of the fluctuations has been included only at leading order
at each step of the renormalization procedure. As a result, although reliable estimates of
the electromotive force (EMF) could be made, the wavenumber dependence of all the
turbulent coefficients, likewise of the energy and helicity spectra, was not fully resolved.
Moreover, the effect of gradients of the mean fields on the dynamics of turbulent pulsations
has been neglected.

In this work the renormalization group method is applied to the full system of MHD
equations, including the back reaction of the Lorentz force on the flow. Moreover, the
effect of gradients of the mean fields on the evolution of turbulent fluctuations is included,
which allows us to calculate turbulent diffusivities. The large-scale EMF is calculated for
the dynamic nonlinear problem of strong, stationary turbulence, i.e. full renormalization
of nonlinear terms is performed including the influence of the turbulent fluctuational
diffusivities and of the fluctuational α-effect at each step of the renormalization procedure.
Renormalized dynamical equations for the mean and fluctuating fields are obtained, which
contain turbulent coefficients describing the net nonlinear effect of short-wavelength
fluctuations, such as the turbulent viscosity, EMF (including the turbulent magnetic
diffusivity and the α-coefficient) and turbulent coefficients describing the effective
Lorentz force at large scales. In numerical approaches to the MHD turbulence there are
serious issues with resolution sensitivity, thus an explicit form of the turbulent coefficients
is very desirable, however, they are often inserted into the dynamics of mean fields in
an arbitrary way, estimated from observations but entirely unrelated to the dynamics of
the fluctuations, which is then lost. Here, by application of the renormalization method
we derive explicit recursion differential equations for all the turbulent coefficients (mean
and fluctuational ones). Analytic solutions are provided for the two cases of non-helical
turbulence (which effectively reproduces the results of Kleeorin & Rogachevskii 1994)
and helical turbulence. The case of weak turbulence is also presented for comparison with
the fully nonlinear case of strong turbulence and the former is used in § 3 to introduce the
reader to the undertaken analytic approach.
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2. MHD equations and the mean-field dynamo problem

To study the MHD turbulence in an incompressible conducting fluid (plasma) we consider
the following dynamical equations describing the evolution of the velocity field of the fluid
flow U(x, t) and the magnetic field B(x.t)

∂U
∂t

+ (U · ∇)U = f − ∇Π + 1
μ0ρ

(B · ∇)B + ν∇2U, (2.1a)

∂B
∂t

+ (U · ∇)B = (B · ∇)U + η∇2B, (2.1b)

∇ · U = 0 ∇ · B = 0, (2.1c)

where ν is the fluid’s viscosity, η the magnetic diffusivity and

Π = p
ρ

+ B2

2μ0ρ
, (2.2)

is the total pressure, with p denoting the thermodynamic pressure, ρ the density and μ0
the vacuum permeability. Without loss of generality we may assume that the forcing is
solenoidal

∇ · f = 0. (2.3)

The first (2.1a) is the well-known Navier–Stokes equation with the Lorentz force, whereas
the second one is the induction equation derived from Maxwell’s laws and the material
Ohm’s law (the latter also utilizes the assumption that the time scale associated with
electromagnetic waves L/c is much shorter than any time scale in the fluid flow). The
solenoidal constraints for the dynamical fields (2.1c) simply express the law of mass
conservation and Gauss’ law for magnetism. For the purpose of simplicity we rescale the
magnetic field in the following way:

B√
μ0ρ

→ B, (2.4)

so that the prefactor 1/μ0ρ in the Lorentz-force term in the Navier–Stokes equation is lost.
Next, denoting by angular brackets the ensemble mean,

〈·〉 − ensemble mean, (2.5)

let us assume

〈 f 〉 = 0, (2.6)

U = 〈U〉 + u, B = 〈B〉 + b, p = 〈p〉 + p′, (2.7a–c)

and write down separately the equations for the mean fields 〈U〉 and 〈B〉 and the turbulent
fluctuations u and b; this yields

∂〈U〉
∂t

+ (〈U〉 · ∇)〈U〉 = −∇〈Π〉 + (〈B〉 · ∇)〈B〉 + ν∇2〈U〉
−∇ · (〈uu〉 − 〈bb〉), (2.8a)

∂〈B〉
∂t

= ∇ × (〈U〉 × 〈B〉) + ∇ × 〈u × b〉 + η∇2〈B〉, (2.8b)

∇ · 〈B〉 = 0, ∇ · 〈U〉 = 0, (2.8c)
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where E = 〈u × b〉 is the large-scale EMF and

∂u
∂t

− ν∇2u + (〈U〉 · ∇)u + (u · ∇)〈U〉 − (〈B〉 · ∇)b − (b · ∇)〈B〉 + ∇Π ′

= f − ∇ · (uu − bb) + ∇ · (〈uu〉 − 〈bb〉), (2.9a)

∂b
∂t

− η∇2b + (〈U〉 · ∇)b − (〈B〉 · ∇)u + (u · ∇)〈B〉 − (b · ∇)〈U〉
= ∇ × (u × b − 〈u × b〉), (2.9b)

∇ · b = 0, ∇ · u = 0. (2.9c)

Furthermore, we assume scale separation between the means and the fluctuations, and
express the dynamical fields using a Fourier transform defined in the following way:

ui(x, t) =
∫ Λν

ΛL

d3k
∫ ∞

−∞
dωûi(k, ω) ei(k·x−ωt), (2.10a)

bi(x, t), =
∫ Λη

ΛL

d3k
∫ ∞

−∞
dωb̂i(k, ω) ei(k·x−ωt), (2.10b)

〈U〉i(x, t) =
∫ κm

0
d3κ

∫ ∞

−∞
dω〈̂U〉i(κ, ω) ei(κ·x−ωt), (2.10c)

〈B〉i(x, t) =
∫ κm

0
d3κ

∫ ∞

−∞
dω〈̂B〉i(κ, ω) ei(κ·x−ωt), (2.10d)

where the upper cutoff for the mean-field Fourier modes κm and the lower cutoff for the
fluctuations ΛL satisfy

κm 	 ΛL. (2.11)

In the above we have also introduced upper cutoffs for the Fourier modes in the velocity
fluctuations Λν and in the magnetic fluctuations Λη, which in natural systems appear
due to viscous kinetic energy dissipation and resistive dissipation of magnetic energy;
for generality the magnetic and kinetic cutoffs are assumed unequal, Λv /=Λη. The
assumption of separation of spatial scales is standard in mean-field theories, put forward
in order to allow for analytic formulation of the dynamics of large-scale fields. Such a
clear separation is often absent in natural systems and energy is present at all scales.
Still, there are many cases when scale separation is very apparent. Hughes & Tobias
(2010) have estimated that a reasonable scale separation of approximately a decade
between domain size and the size of the most energetic turbulent eddy, is achieved in
numerical simulations with 10003 spectral modes, which accurately describe the dynamics
at magnetic Reynolds numbers of the order O(103). Even more importantly, natural
scale separation is introduced by rapid background rotation in convective flows, such
as e.g. in the Earth’s liquid core, where the large length scale is defined by E−1/3L,
with E 	 1 being the Ekman number and L the thickness of the convection zone. There
are numerous examples of studies which utilize the multiple-scale approach for MHD
turbulent convection, such as, Childress & Soward (1972) and Soward (1974), or more
recently Mizerski & Tobias (2013), Calkins et al. (2015) and Calkins (2018). In the
mean-field theory a fluctuational wave vector k = 2π/L is associated with the length
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scale L, which is regarded as the typical size of the energetic eddies and ΛL = 2π/LL
is defined by the size of the largest, most energetic turbulent eddies, LL.

The aim of this analysis is to study the effect of the statistically homogeneous, stationary
and isotropic MHD turbulence. However, the MHD turbulence may in particular involve
the very important process of the generation of large-scale magnetic fields by the complex
flow (cf. Moffatt & Dormy 2019). This requires a lack of reflectional symmetry in the
flow, thus, for the sake of generality, we will study the general case of helical turbulence.
In other words, we consider an MHD system driven by a non-reflectionally symmetric
(helical) forcing f in the Navier–Stokes equation. The forcing is assumed Gaussian with
zero mean (cf. (2.6)) and is fully defined by the following correlation function:

〈 f̂i(k, ω)f̂j(k′, ω′)〉 =
[

D0

kσ0
Pij(k) + i

D1

kσ1
εijkkk

]
δ(k + k′)δ(ω + ω′), (2.12)

where

Pij(k) = δij − kikj

k2 , (2.13)

is the projection operator and D0, D1 and σ0, σ1 are real constants; the correlations
function satisfies kj〈f̂i(k, ω)f̂j(k′, ω′)〉 = 0 and ki〈f̂i(k, ω)f̂j(k′, ω′)〉 = 0. The term
proportional to D1 introduces lack of reflectional symmetry (for which helicity can be
used as a measure), thus it is crucial for the large-scale dynamo process. The value of
σ0 = −2 (at D1 = 0) corresponds to fluid in thermal equilibrium (cf. Landau & Lifshitz
1987) whereas σ0 = 3 was shown by Yakhot & Orszag (1986) to correspond to the
Kolmogorov-type turbulence in the absence of a magnetic field. We will, therefore, assume
σ0 > −2 and consider non-equilibrium flows. The σ1 exponent will turn out to influence
the turbulent magnetic energy and helicity spectra and we will demonstrate that the value
of σ1 = 5 corresponds to k−5/3 spectral scaling for turbulent helicity, reported for the
inertial range of helical isotropic turbulence in a number of works, e.g. Brissaud et al.
(1973) and Chen et al. (2003). Furthermore, we assume that the turbulence is forced only
at small scales, i.e. within the wavenumber band k > ΛL.

We can calculate a positive definite quantity

F2(k, ω) =
∫

k2 d
◦

Ωk

∫
d4q′〈 f̂i(k, ω)f̂i(k′, ω′)〉 = 8πD0

kσ0−2 > 0, (2.14)

where
◦

Ωk denotes a solid angle associated with the vector k and to simplify notation we
have introduced a four-component vector notation

q′ = (k′, ω′),
∫

d3k′
∫ ∞

−∞
dω′(·) =

∫
d4q′(·). (2.15a,b)

This implies
D0 > 0. (2.16)

The renormalization group technique is an iterative procedure based on successive
elimination of thin wavenumber bands from the Fourier spectrum of the fluctuating
fields. In this way, the effect of thin bands of modes with the shortest wavelengths on
the remaining modes is calculated at each step of the procedure. The final aim of this
approach is to obtain recursion equations for coefficients describing the effective mean
Reynolds stress, the mean EMF and the mean Lorentz force (see (4.30a,b)) as functions
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of the wavenumber at each step of the procedure. The Reynolds stresses are responsible
for the creation of the turbulent viscosity, and the mean EMF for the creation of the
turbulent magnetic diffusivity and what is traditionally called the α-effect, which involves
the part of the EMF that is linear in the mean magnetic field. The recursion equations
(provided in (A91a–e)) are then solved for k → ΛL in order to obtain the final forms
of the large-scale viscosity, EMF and the Lorentz force which appear in the renormalized
mean-field equations and include the effect of nonlinear evolution of turbulent fluctuations.
However, for the sake of clarity, we start by considering the simplified limit of weak
turbulence, with linearized evolution equations for fluctuations, rather common in the
literature on mean-field dynamo theory. This does not involve renormalization, however,
it will set the grounds for § 4, where the renormalization method is applied. Moreover,
the linear regime, considered in the next section, demonstrates at a simple level the basic
ideas of the mathematical approach undertaken to provide a comprehensive picture of
the isotropic, homogeneous and stationary MHD turbulence, which may amplify mean
magnetic fields.

3. Introductory problem of forced system with very weak turbulent fluctuations –
linearization

Utilizing the scale separation assumption and introducing

ε = κm

ΛL
, X = εx, (3.1a,b)

one can write

〈U〉i ≈ 〈U〉0i + εxjGij, 〈B〉i ≈ 〈B〉0i + εxjΓij, (3.2a,b)

where

〈U〉0 = 〈U〉(ε = 0) = O(1), Gij = ∂〈U〉i

∂Xj
= O(1), (3.3a,b)

〈B〉0 = 〈B〉(ε = 0) = O(1), Γij = ∂〈B〉i

∂Xj
= O(1). (3.4a,b)

Of course, formally, the gradient matrices are defined at ε = 0 in the expansions, however,
we neglect terms of the order O(ε2), which allows us to substitute for Gij(ε = 0) and
Γij(ε = 0) with Gij and Γij; note that, 〈U〉0 and 〈B〉0 are still allowed to vary on length
scales significantly larger than ε−1. The latter expansion allows us to express the terms
(〈U〉 · ∇)u and (〈U〉 · ∇)b in the following way:

(〈U〉 · ∇)u = i
∫ Λν

d4q(〈U〉0m + εGmjxj)kmûi(q) ei(k·x−ωt)

= i
∫ Λν

d4q
[
〈U〉0m + U sin

(
ε

Gmj

U xj

)]
kmûi(q) ei(k·x−ωt) + O

(
ε3 U2

L

)
= i

∫ Λν

d4q〈U〉0mkmûi(q) ei(k·x−ωt)

+ U
2

∫ Λν

d4qkmûi(q) e−iωt[ei(kj+ε(Gmj/U))xj − ei(kj−ε(Gmj/U))xj ] + O
(

ε3 U2

L

)
926 A13-7
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=
∫ Λν

d4q
{
(i〈U〉0mkm − εGmm)ûi(q)

+U
2

km

[
ûi

(
k − ε

Gm

U , ω

)
− ûi

(
k + ε

Gm

U , ω

)]}
ei(k·x−ωt) + O

(
ε2 U2

L

)
,

(3.5)

where U is the velocity scale and L is the length scale of variation of turbulent fluctuations
and we have defined the vector (Gm)j = Gmj for j = 1, 2, 3, composed of rows of the
matrix Gmj; of course, Gmm = ∇̄ · 〈U〉 = 0. For the purpose of this section, to simplify
the notation we will put U = 1.

As explained above, for the sake of clarity, we start by considering the simple problem
of weak turbulent fluctuations and the dynamical equations linearized about the means

(−iω + νk2)ûi(q) − ik · 〈B〉0b̂i(q) + ikiΠ̂ + R(u)
i = f̂i(q), (3.6a)

(−iω + ηk2)b̂i(q) − ik · 〈B〉0ûi(q) + R(b)
i = 0, (3.6b)

where

R(u)
i = εGijûj(q) − εΓijb̂j(q) + 1

2 km[ûi(k − εGm, ω) − ûi(k + εGm, ω)]

− 1
2 km[b̂i(k − εΓ m, ω) − b̂i(k + εΓ m, ω)] = O(ε), (3.7a)

R(b)
i = εΓijûj(q) − εGijb̂j(q) + 1

2 km[b̂i(k − εGm, ω) − b̂i(k + εGm, ω)]

− 1
2 km[ûi(k − εΓ m, ω) − ûi(k + εΓ m, ω)] = O(ε). (3.7b)

Since the mean velocity 〈U〉0 only creates a shift of the frequency ω → ω − k · 〈U〉0, we
simply absorb it into the frequency. This is allowed here, since we do not introduce into
the problem the time-scale separation and the Fourier frequencies take all real values from
−∞ to ∞, whereas the norm of the wave vectors is bounded from above. For the velocity
and magnetic fields, likewise the forcings are solenoidal

k · û = 0, k · b̂ = 0, k · f̂ = 0. (3.8a–c)

Thus, by applying the projection operator to both sides of the equation (2.13) and after
some simple algebra we get

ûi(q) = if̂i(q)

σ (q)
− i

σ(q)
PijR(u)

j + ik · 〈B〉
(ω + iηk2)σ (q)

R(b)
i , (3.9a)

b̂i(q) = − ik · 〈B〉0

(ω + iηk2)σ (q)
f̂i(q) − i

ω + iηk2

[
1 + (k · 〈B〉)2

(ω + iηk2)σ (q)

]
R(b)

i

+ ik · 〈B〉
(ω + iηk2)σ (q)

PijR(u)
j , (3.9b)

with

σ(q) = ω + iνk2 − (k · 〈B〉)2

ω + iηk2 . (3.10)
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Renormalization group analysis of the MHD turbulence

Of course the problem, although linearized in fluctuations, remains nonlinear because
of the presence of the forcing f , which allows us to calculate the turbulent transport
coefficients and the α-effect.

We consider the simplest case of a statistically stationary, helical forcing defined by
(2.12). The small corrections from the gradients of means R(u) and R(b) will be treated in
a perturbational manner within the asymptotic limit ε 	 1. A similar linearized problem
that can be easily compared with the one studied here, has been solved in chapter 12.4.1 of
Moffatt & Dormy (2019), although the authors’ interests lie predominantly in the α-effect
(see also the rest of chapter 12.4 in that book, for other interesting aspects of the linearized
regime in stationary turbulence).

In addition, let us also assume that the mean magnetic field is weak enough, so that terms
of the order (k · 〈B〉)2 can be neglected. By the use of (3.9a,b) and (3.10) and neglecting
terms of the order O(ε2, (k · 〈B〉)2, εk · 〈B〉) we can calculate the mean EMF and the
mean Reynolds and Maxwell stresses in the following way:

Ei = εijk〈ujbk〉 ≈ εijk

∫
d4q

∫
d4q′ k′ · 〈B〉〈 f̂j(q)f̂k(q′)〉

(ω′ + iηk′2)σ (q′)σ (q)
ei[(k+k′)·x−(ω+ω′)t]

+ εijk

∫
d4q

∫
d4q′ 〈 f̂j(q)R(b)

k (q′)〉
(ω′ + iηk′2)(ω + iνk2)

ei[(k+k′)·x−(ω+ω′)t]

≈ ηD1〈B〉pεijkεjkm

∫
d4q

kσ1−2
kpkm

(ω2 + η2k4)|σ(q)|2

+ εijk

∫
d4q

∫
d4q′ ei[(k+k′)·x−(ω+ω′)t]

(ω′ + iηk′2)(ω + iνk2)

{
εΓkn〈 f̂j(q)ûn(q′)〉

− εGkn〈 f̂j(q)b̂n(q′)〉
+ 1

2 k′
m[〈 f̂j(q)b̂k(k′ − εGm, ω′)〉 − 〈 f̂j(q)b̂k(k′ + εGm, ω′)〉]

−1
2 k′

m[〈 f̂j(q)ûk(k′ − εΓ m, ω′)〉 − 〈 f̂j(q)ûk(k′ + εΓ m, ω′)〉]
}

, (3.11)

−〈uiuj〉 ≈
∫

d4q
∫

d4q′ ei[(k+k′)·x−(ω+ω′)t]

σ(q′)σ (q)

{
〈 f̂i(q)f̂j(q′)〉

−Pjk(k′)〈 f̂i(q)R(u)
k (q′)〉 + Pik(k)〈 f̂j(q′)R(u)

k (q)〉
σ(q′)σ (q)

}

≈ −1
2 D0

∫
d4q
kσ0

Pij(k)

ω2 + ν2k4

− εGkn

∫
d4q

∫
d4q′ Pjk(k′)〈 f̂i(q)ûn(q′)〉

(ω′ + iνk′2)(ω + iνk2)
ei[(k+k′)·x−(ω+ω′)t]

−
∫

d4q
∫

d4q′ e
i[(k+k′)·x−(ω+ω′)t]Pjk(k′)k′

m

2(ω′ + iνk′2)(ω + iνk2)
[〈 f̂i(q)ûk(k′ − εGm, ω′)〉

− 〈 f̂i(q)ûk(k′ + εGm, ω′)〉] + (i ↔ j), (3.12)

〈bibj〉 ≈ 0, (3.13)
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K.A. Mizerski

where (i ↔ j) in (3.12) denotes terms of the same structure as all the three previous ones
but with exchanged indices i and j. Now we substitute for û and b̂ the leading-order terms
from (3.9a,b) and make use of (2.12) and εijkPjk = 0 to obtain

Ei = 2ηD1〈B〉p

∫
d4q

kσ1−2
kpki

(ω2 + η2k4)(ω2 + ν2k4)

− ηD0εijk
∂〈B〉k

∂xn

∫
d4q

kσ0−2
Pjn(k)

(ω2 + η2k4)(ω2 + ν2k4)

− D1

∫
d4q

kikm

kσ1

1
(ω2 + ν2k4)

×
[

1 + iεΓ m · x
ω − iη(k2 − 2εk · Γ m)

− 1 − iεΓ m · x
ω − iη(k2 + 2εk · Γ m)

]
, (3.14)

−〈uiuj〉 ≈ −1
2 D0

∫
d4q
kσ0

Pij(k)

ω2 + ν2k4

+ νD0
∂〈U〉k

∂xn

∫
d4q

kσ0−2
Pjk(k)Pin(k)

(ω2 + ν2k4)2

+ i 1
2

∫
d4q

km

ω2 + ν2k4

[
D0

kσ0
Pik(k) + i

D1

kσ1
εiklkl

]
×
{

Pjk(k − εGm)(1 + iεGm · x)

ω − iν(k2 − 2εk · Gm)
− Pjk(k + εGm)(1 − iεGm · x)

ω − iν(k2 + 2εk · Gm)

}
+ (i ↔ j), (3.15)

where we have also made use of the fact that ω2 + η2k4 and ω2 + ν2k4 are both even
functions of ω, which implies∫ ∞

−∞
dω

ω

(ω2 + ν2k4)(ω2 + η2k4)
= 0,

∫ ∞

−∞
dω

ω

(ω2 + ν2k4)2 = 0. (3.16a,b)

The last line of (3.14) and the last two lines of (3.15), obtained by integration of the
Dirac functions of the type δ(k + k′ − εGm) over the k′ domain have a non-symmetric
integration domain for the wave vector k. Therefore, to simplify the calculation we make
a substitution k 
→ k + 1

2εGm. Hence, making use of∫
d

◦
Ωkm . . . knkk︸ ︷︷ ︸

N

= 0, for any odd N and all m, . . . , n, k, (3.17a)

∫
k2 d

◦
Ω

kmki

k4 = 4π

3
δmi, (3.17b)∫

k2 d
◦

Ω
kmknkpkq

k6 = 4π

15
(δmnδpq + δmpδnq + δmqδnp), (3.17c)∫ +∞

−∞
dω

1
(ω′2 + ν2k′4)(ω′2 + η2k′4)

= π

νη(ν + η)k′6 , (3.17d)∫ ∞

−∞
dω′

(ω′2 + ν2k′4)2 = π

2ν3k′6 , (3.17e)
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Renormalization group analysis of the MHD turbulence

1
(k′2 + ε k′· Gm)σ0/2 = 1

k′σ0
− σ0ε k′· Gm

2k′σ0+2 , (3.17f )

1
ω2 + η2k4 − 2εη2k2k · Γ m

≈ 1
ω2 + η2k4 + 2εη2k2k · Γ m

(ω2 + η2k4)2 , (3.17g)

where
◦

Ω denotes a solid angle and neglecting terms of order O(ε2) we get

E = 8π2D1

3ν(ν + η)
[〈B〉0 + (x · ∇)〈B〉]

∫ Λ

ΛL

dk
kσ1

− 8π2D0

3ν(ν + η)
∇ × 〈B〉

∫ Λ

ΛL

dk
kσ0+2

= 8π2D1

3ν(ν + η)
〈B〉

∫ Λ

ΛL

dk
kσ1

− 8π2D0

3ν(ν + η)
∇ × 〈B〉

∫ Λ

ΛL

dk
kσ0+2

= 8π2D1

3(σ1 − 1)ν(ν + η)

(
1

Λ
σ1−1
L

− 1
Λσ1−1

)
〈B〉

− 8π2D0

3(σ0 + 1)ν(ν + η)

(
1

Λ
σ0+1
L

− 1
Λσ0+1

)
∇ × 〈B〉

ΛL	Λ≈ 8π2D1

3(σ1 − 1)ν(ν + η)Λ
σ1−1
L

〈B〉 − 8π2D0

3(σ0 + 1)ν(ν + η)Λ
σ0+1
L

∇ × 〈B〉,
(3.18)

−〈uiuj〉 ≈ 14π2D0

15ν2

(
∂〈U〉j

∂xi
+ ∂〈U〉i

∂xj

)∫ Λν

ΛL

dk
kσ0+2

− 2π2D0

15ν2 (2 + σ0)

(
∂〈U〉i

∂xj
+ ∂〈U〉j

∂xi

)∫ Λν

ΛL

dk
kσ0+2 + const.

+ 2π2D1

3ν2 (εijm + εjim)xj
∂〈U〉m

∂xj

∫
dk
kσ1

≈ 2π2(5 − σ0)

15ν2(σ0 + 1)
D0

(
1

Λ
σ0+1
L

− 1

Λ
σ0+1
ν

)(
∂〈U〉i

∂xj
+ ∂〈U〉j

∂xi

)
+ const.

ΛL	Λ≈ 2π2(5 − σ0)

15ν2(σ0 + 1)

D0

Λ
σ0+1
L

(
∂〈U〉i

∂xj
+ ∂〈U〉j

∂xi

)
+ const. (3.19)

In the above we have also used

Pjk

(
k − 1

2εGm

)
= Pjk(k) − ε

(
Gmpkpkjkk

k4 − kjGmk + kkGmj

2k2

)
, (3.20)

and Λ = min(Λν, Λη); in principle, both cutoffs can be infinite. Therefore, in a weak
turbulence with a weak mean magnetic field and in the limit ΛL 	 Λ the turbulent
magnetic diffusivity and viscosity and the so-called ᾱ-coefficient defined as

E = ᾱ〈B〉 − (η̄ − η)∇ × 〈B〉, (3.21)
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K.A. Mizerski

take the form

η̄ = η

[
1 + 8π2D0

3(σ0 + 1)νη(ν + η)Λ
σ0+1
L

]
≈ 8π2D0

3(σ0 + 1)ν(ν + η)Λ
σ0+1
L

, (3.22)

ν̄ = ν

[
1 + 2π2(5 − σ0)D0

15ν3(σ0 + 1)Λ
σ0+1
L

]
≈ 2π2(5 − σ0)D0

15ν2(σ0 + 1)Λ
σ0+1
L

, (3.23)

ᾱ = 8π2D1

3(σ1 − 1)ν(ν + η)Λ
σ1−1
L

. (3.24)

It follows that models of weak turbulence with a forcing for which the correlations are
defined with σ0 > 5 are unphysical, since they lead to negative turbulent diffusion.

4. Renormalization procedure of the MHD equations

Let us introduce the non-dimensional variables

f 
→ F f , U 
→ UU, b 
→ Bb, 〈B〉 
→ B0〈B〉, Π 
→ LFΠ, (4.1a)

x 
→ Lx, t 
→ U
F t, (4.1b)

D0 
→ FU
Lσ0−3 D0, D1 
→ FU

Lσ1−4 D1, (4.1c)

where L is some length scale of variation of the fluctuations,

2π

ΛL
≤ L ≤ 2π

Λ
, Λ = min(Λν,Λη), (4.2)

and the scales U and B are defined by the norm of the initial velocity fluctuation, i.e.
B ∼ U = ‖u(t = 0)‖L2 ; in an analogous way we define B0 = ‖〈B〉(t = 0)‖L2 and the
characteristic length scale of variation of the mean fields will be denoted by

L � 2π

κm
. (4.3)

Physically, we can associate the scale of the stirring force F =
√

ωsD0Lσ0−3, where ωs
is the scale of the fluctuational frequencies, with the magnitude of the driving force, thus,
for example, the buoyancy force. On the other hand, the helical part proportional to D1 can
be associated with the Coriolis force, which in natural systems is typically responsible for
introducing a lack of reflectional symmetry, thus 2ΩU =

√
ωsD1Lσ1−4, where Ω denotes

the magnitude of the background rotation. The aim is to try to mimic in the simplest way
the turbulence in astrophysical systems. Of course, this is a great simplification, because
the Coriolis force introduces anisotropy (one distinguished axis of rotation), which is
neglected here in order to obtain analytic results for strong isotropic turbulence. A study
of the α-effect in non-isotropic rapidly rotating turbulence via the renormalization theory
has been done in Mizerski (2021), in an effectively weakly nonlinear limit.
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Renormalization group analysis of the MHD turbulence

We introduce the following non-dimensional parameters:

Ro = U2

LF , Ev = νU
L2F , Eη = ηU

L2F , β = B0

B , (4.4a–d)

and

H = B2

U2 , ε = L

L
. (4.5a,b)

Defining

X = εx, ∇̄ = ∇X , (4.6a,b)

and assuming

∇̄〈U〉 ∼ ε
U
L

, ∇̄〈B〉 ∼ ε
B
L

= ε

β

B0

L
, (4.7a,b)

we can rewrite the dynamical equations in non-dimensional form

∂〈U〉
∂t

+ εRo(〈U〉 · ∇̄)〈U〉 = −ε∇̄〈Π〉 + εRoβH(〈B〉 · ∇̄)〈B〉 + ε2Eν∇̄2〈U〉
− εRo∇̄ · (〈uu〉 − H〈bb〉), (4.8a)

∂〈B〉
∂t

= εRo(〈B〉 · ∇̄)〈U〉 − ε
Ro
β

(〈U〉 · ∇̄)〈B〉 + εRoβ−1∇̄ × 〈u × b〉 + ε2

β
Eη∇̄2〈B〉,

(4.8b)

∂u
∂t

− Eν∇2u + Ro(〈U〉 · ∇)u − RoβH(〈B〉 · ∇)b + ∇Π ′ = f − Ro∇ · (uu − Hbb)

+ Roε∇̄ · (〈uu〉 − H〈bb〉) − Roε(u · ∇̄)〈U〉 + RoHε(b · ∇̄)〈B〉, (4.8c)

∂b
∂t

− Eη∇2b + Ro(〈U〉 · ∇)b = Roβ(〈B〉 · ∇)u + Ro∇ × (u × b) − Roε∇̄ × 〈u × b〉
+ Roε(b · ∇̄)〈U〉 − Roε(u · ∇̄)〈B〉, (4.8d)

∇ · 〈B〉 = 0, ∇ · 〈U〉 = 0, ∇ · b = 0, ∇ · u = 0. (4.8e)

Note that H /= 0 is associated with the presence of the Lorentz force, i.e. when H = 0
the dynamo problem becomes kinematic. We stress here that the turbulent fluctuations are
defined in such a way that they do not depend on the slow variable X since spatial scale
separation has been assumed. Of course, the Reynolds and Maxwell stresses as nonlinear
quantities do depend on the slow variable. For the formal two-scale direct-interaction
approach see Yoshizawa (1998) and Yokoi (2020), where the dependencies on slow and
fast variables are formally treated with the multiple-scale asymptotic method. We now
introduce the following assumptions:

Ro 	 1, 1 	 β 	 Ro−1, (4.9a)
κm

ΛL
= O(Ro2), ⇒ ε = O(Ro2), (4.9b)
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K.A. Mizerski

and
H = O(1), (4.10)

where the assumption (4.9b) allows us to retain the effect of weak gradients of means
∇〈U〉 and ∇〈B〉 on the fluctuations at the highest order. Introducing a new shorter notation

q = (k, ω),

∫ Λi

ΛL

d3k
∫ ∞

−∞
dω(·) =

∫ Λi

d4q(·), (4.11a,b)

so that e.g.

ui(x, t) =
∫ Λν

d4qûi(q) ei(k·x−ωt), (4.12)

and utilizing ((3.2a,b)–(3.5)) the equations for the fluctuations take the form

(−iω + Eνk2)ûi(q) − iRoβH(k · 〈B〉0)b̂i(q) + ikiΠ̂ = f̂i(q) − iRokj[I
(u)
ij − HI

(b)
ij ]

+ iRokj[〈I(u)
ij 〉 − H〈I(b)

ij 〉] − RoεGijûj(q) + RoHεΓijb̂j(q)

− Ro
2

km[ûi(k − εGm, ω) − ûi(k + εGm, ω)]

+ Ro
2

km[b̂i(k − εΓ m, ω) − b̂i(k + εΓ m, ω)], (4.13a)

(−iω + Eηk2)b̂i(q) = iRoβ(k · 〈B〉0)ûi(q) + iRokjI
(ub)
ij − iRokj〈I(ub)

ij 〉
+ RoεGijb̂j(q) − RoεΓijûj(q)

− Ro
2

km[b̂i(k − εGm, ω) − b̂i(k + εGm, ω)]

+ Ro
2

km[ûi(k − εΓ m, ω) − ûi(k + εΓ m, ω)], (4.13b)

k · û(q) = 0, k · b̂(q) = 0, k · f̂ (q) = 0, (4.13c)

where the constant term −Rok · 〈U〉0 has been absorbed into the frequency ω (as in the
previous section) and

I
(u)
ij = θΛν

∫ Λν

d4q′ûi(q − q′)ûj(q′), I
(b)
ij = θΛη

∫ Λη

d4q′b̂i(q − q′)b̂j(q′), (4.14a,b)

I
(ub)
ij = θΛεijkεkmn

∫ Λ

d4q′ûm(q − q′)b̂n(q′), (4.15)

with
Λ = min(Λν,Λη), θΛi = θ(Λi − k). (4.16a,b)

The convolution integrals possess the following symmetry properties:

I
(u)
ij = I

(u)
ji , I

(b)
ij = I

(b)
ji , I

(ub)
ij = −I

(ub)
ji . (4.17a–c)

Factors θ were added for clarity in the following calculations. It should be noted at this
stage that the convolution integrals, which represent the nonlinear interactions between

926 A13-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.707


Renormalization group analysis of the MHD turbulence

fluctuating turbulent fields, are not neglected in the evolution equations for the fluctuations
(4.13a,b), and their role is crucial. In fact, it is the aim of the entire renormalization
procedure to go beyond the weak turbulence regime and quantitatively express the effect of
those nonlinearities on the dynamics of the mean fields. Therefore, contrary to the findings
of the previous section, where the MHD turbulence was studied in the weak regime (i.e.
under neglection of I

(u)
ij , I

(b)
ij and I

(ub)
ij in (4.13a,b)), we will now investigate the nonlinear

evolution of the turbulent fluctuations and its effect on the dynamics of mean fields. This
corresponds to a regime when the turbulence is no longer weak and, although we have
assumed Ro 	 1, we will refer to the studied regime as the ‘strong-turbulence’ regime, to
clearly distinguish from the simplest case of a weak, linear turbulence.

In order to eliminate pressure we apply the projection operator (2.13) to both sides of
the Navier–Stokes equation (4.13a) and, after some simple algebra, we get more explicit
expressions for ûi(q) and b̂i(q)

ûi(q) = 1
γu

f̂i(q) − 1
2 iRo

Pimn(k)

γu
[I(u)

mn − HI
(b)
mn − 〈I(u)

mn〉 + H〈I(b)
mn〉]

− Ro(Roβ)H
k · 〈B〉0

γuγη

kj[I
(ub)
ij − 〈I(ub)

ij 〉]

− Roε
Pij(k)

γu
Gjkûk(q) + RoHε

Pij(k)

γu
Γjkb̂k(q)

+ iRo(Roβ)Hε
k · 〈B〉0

γuγη

Gijb̂j(q) − iRo(Roβ)Hε
k · 〈B〉0

γuγη

Γijûj(q)

− Ro
2γu

kmPij(k)[ûj(k − εGm, ω) − ûj(k + εGm, ω)]

+ Ro
2γu

kmPij(k)[b̂j(k − εΓ m, ω) − b̂j(k + εΓ m, ω)]

− iRo(Roβ)H
k · 〈B〉0

2γuγη

km[b̂i(k − εGm, ω) − b̂i(k + εGm, ω)]

+ iRo(Roβ)H
k · 〈B〉0

2γuγη

km[ûi(k − εΓ m, ω) − ûi(k + εΓ m, ω)], (4.18a)

b̂i(q) = iRoβ
k · 〈B〉0

γη

ûi(q) + i
Ro
γη

kj[I
(ub)
ij − 〈I(ub)

ij 〉]

+ Ro
γη

εGijb̂j(q) − Ro
γη

εΓijûj(q)

− Ro
2γη

km[b̂i(k − εGm, ω) − b̂i(k + εGm, ω)]

+ Ro
2γη

km[ûi(k − εΓ m, ω) − ûi(k + εΓ m, ω)], (4.18b)

where

Pimn(k) = kmPin(k) + knPim(k), (4.19)
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γu = γν + H(Roβ)2 (k · 〈B〉)2

γη

, γν = −iω + Eνk2, γη = −iω + Eηk2. (4.20)

The following simple transformation allows us to return to original dimensional variables

Eν → ν, Eη → η, H → 1, Ro → 1, β → 1. (4.21a–e)

In the non-dimensional variables the isotropic, homogeneous and stationary forcing is still
defined by the same formula

〈f̂i(k, ω)f̂j(k′, ω′)〉 =
[

D0

kσ0
Pij(k) + i

D1

kσ1
εijkkk

]
δ(k + k′)δ(ω + ω′). (4.22)

(Of course when we return to dimensional variables D0 → D0, D1 → D1.)
We can now comment on the second assumption in (4.9a), which states that the mean

field is much stronger than the fluctuating one, but Roβ 	 1. The former allows for proper
formulation of the problem, since, for a strong mean field, the fluctuating magnetic field
(4.18b) is expressed at leading order by the stirring force and the nonlinearities, which are
of the order O(Ro), and can be treated in a perturbational sense. The iterational procedure
of renormalization is then applicable. On the other hand, the assumption Roβ 	 1
allows for expansion of factors such as γ −1

u and therefore explicit calculation of Fourier
integrals in the nonlinear I-terms. In turn, the final recursion differential relations for the
coefficients describing the renormalized EMF, the Reynolds stresses and the Lorentz force
can be solved analytically; thus, in particular, the full leading-order form of the turbulent
diffusivities and the α-coefficient can be determined.

We now start the renormalization procedure of taking successive little bites off the
Fourier spectrum from the short-wavelength side in order to obtain the final nonlinear
effect of the fluctuations on the means. At the first step of the procedure we introduce a
parameter λ1, which satisfies

δλ = Λmax − λ1 	 1, where Λmax = max(Λν, Λη), (4.23)

and divide the Fourier spectrum into two parts

û>
i (k, ω) = θ(k − λ1)ûi(k, ω), or û>

i (k, ω) = ûi(k>, ω), λ1 < |k>| < Λmax, (4.24)

û<
i (k, ω) = θ(λ1 − k)ûi(k, ω), or û<

i (k, ω) = ûi(k<, ω), |k<| < λ1, (4.25)

and the same for b̂ and f̂ . The equations for the fields û<
i (k, ω) and b̂<

i (k, ω) are obtained
by projecting (4.13a) onto the direction perpendicular to k (with the use of (2.13)), and
averaging both P(k)· (4.13a) and (4.13b) over the first shell (λ1 < k < Λmax)

(−iω + Eνk2)û<
i (q) = f̂ <

i (q) + iRoβH(k · 〈B〉0)b̂<
i (q)

− 1
2 iRoPimn(k)[I(u<)

mn − HI
(b<)
mn − 〈I(u<)

mn 〉 + H〈I(b<)
mn 〉]

− 1
2 iRoPimn(k)

{
θΛν

∫ Λν

d4q′[〈û>
m(q′)û>

n (q − q′)〉c

−〈û>
m(q′)û>

n (q − q′)〉]

− HθΛη

∫ Λη

d4q′[〈b̂>
m(q′)b̂>

n (q − q′)〉c − 〈b̂>
m(q′)b̂>

n (q − q′)〉]
}
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Renormalization group analysis of the MHD turbulence

− RoεPij(k)Gjkû<
k (q) + RoHεPij(k)Γjkb̂<

k (q)

− Ro
2

Pij(k)km[ûj(k< − εGm, ω) − ûj(k< + εGm, ω)]

+ Ro
2

Pij(k)km[b̂j(k< − εΓ m, ω) − b̂j(k< + εΓ m, ω)] (4.26a)

(−iω + Eηk2)b̂<
i (q) = iRoβ(k · 〈B〉0)û<

i (q) + iRokj[I
(u<b<)
ij − 〈I(u<b<)

ij 〉]

+ iRokjεijkεkmn

∫ Λ

d4q′[〈û>
m(q′)b̂>

n (q − q′)〉c

− 〈û>
m(q′)b̂>

n (q − q′)〉] + RoεGijb̂<
j (q) − RoεΓijû<

j (q)

− Ro
2

km[b̂i(k< − εGm, ω) − b̂i(k< + εGm, ω)]

+ Ro
2

km[ûi(k< − εΓ m, ω) − ûi(k< + εΓ m, ω)]. (4.26b)

On the other hand, to get equations for û>
i (k, ω) and b̂>

i (k, ω) we utilize (4.18a,b),
however, we substitute explicitly for ûi(q) from (4.18a) into the equation for the fluctuating
magnetic field (4.18b) but neglect terms of the order o(Ro3) and O(Ro2(Roβ)2)

û>
i (q) = 1

γu
f̂ >
i (q) − 1

2 iRo
Pimn(k)

γu
[I(u<)

mn − HI
(b<)
mn − 〈I(u<)

mn 〉 + H〈I(b<)
mn 〉]

− HRo(Roβ)
k · 〈B〉0

γuγη

kj[I
(u<b<)
ij − 〈I(u<b<)

ij 〉]

− Roε
Pij(k)

γ 2
u

Gjkf̂ >
k (q)

− Ro
2γu

kmPij(k)

[
f̂j(k> − εGm, ω)

γu(k> − εGm, ω)
− f̂j(k> + εGm, ω)

γu(k> + εGm, ω)

]

− i
Ro
γu

Pimn[J(u)
mn − HJ

(b)
mn] − HRo(Roβ)

k · 〈B〉0

γuγη

kjJ
(ub)
ij + R(u)

i , (4.27a)

b̂>
i (q) = iRoβ

k · 〈B〉0

γuγη

f̂ >
i (q) + i

Ro
γη

kj[I
(u<b<)
ij − 〈I(u<b<)

ij 〉]

+ 1
2 Ro(Roβ)

k · 〈B〉0

γuγη

Pimn(k)[I(u<)
mn − HI

(b<)
mn − 〈I(u<)

mn 〉 + H〈I(b<)
mn 〉]

− Ro
γuγη

εΓijf̂ >
j (q) + Ro

2γη

km

[
f̂i(k> − εΓ m, ω)

γu(k> − εΓ m, ω)
− f̂i(k> + εΓ m, ω)

γu(k> + εΓ m, ω)

]

+ i
Ro
γη

kjJ
(ub)
ij + Ro(Roβ)

k · 〈B〉0

γuγη

Pimn[J(u)
mn − HJ

(b)
mn] + R(b)

i , (4.27b)

where 〈·〉c denotes the conditional average over the first shell (λ1 < k < Λmax) statistical
subensemble, described at the beginning of Appendix A (cf. McComb et al. 1992 and
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McComb & Watt 1990, 1992); furthermore, we have defined

J
(u)
mn(q) = θΛν

∫ Λν

d4q′û<
m(q′)û>

n (q − q′), (4.28a)

J
(b)
mn(q) = θΛη

∫ Λη

d4q′b̂<
m(q′)b̂>

n (q − q′), (4.28b)

J
(ub)
ij (q) = εijkεkmn

∫ Λ

d4q′[û<
m(q′)b̂>

n (q − q′) + û>
m(q′)b̂<

n (q − q′)], (4.28c)

and the rests in (4.27a,b) are given by

R(u)
i = −Ro

γu

{
1
2 iPimn[I(u>)

mn − HI
(b>)
mn ] + HRoβ

k · 〈B〉
γη

kjI
(u>b>)
ij

}
+ Ro

γu

{
1
2 iPimn[〈I(u>)

mn 〉 − H〈I(b>)
mn 〉] + HRoβ

k · 〈B〉
γη

kj〈I(u>b>)
ij 〉

}
, (4.29a)

R(b)
i = i

Ro
γη

kj[I
(u>b>)
ij − 〈I(u>b>)

ij 〉]

+ 1
2 Ro(Roβ)

k · 〈B〉0

γuγη

Pimn[I(u>)
mn − HI

(b>)
mn − 〈I(u>)

mn 〉 + H〈I(b>)
mn 〉]

− iHRo(Roβ)2 (k · 〈B〉)2

γuγ 2
η

kj[I
(u<b<)
ij + J

(ub)
ij + I

(u>b>)
ij − 〈I(u<b<)

ij 〉 − 〈I(u>b>)
ij 〉].

(4.29b)

The rests will be neglected either on the basis of generating only third-order statistical
correlations, as in the case of all the terms of second order in u> or b>, or because
of the kept order of accuracy in the asymptotic limit Ro 	 Roβ 	 1, which will
allow us to neglect terms of order O(Ro(Roβ)2). For details the reader is referred to
Appendix A.

In what follows we provide a short description of the asymptotic renormalization
procedure, described in detail in Appendix A. First, we introduce (4.27a,b) into (4.26a,b)
and calculate the dynamical effect of short-wavelength components û>

i (k, ω) and
b̂>

i (k, ω) on the evolution of û<
i (k, ω) and b̂<

i (k, ω) (long-wavelength modes). This
results in corrections to some of the terms in (4.26a,b), but also generates terms with a
new structure. Therefore, a next step is necessary, involving calculation of the effect of
the next shell λ2 = λ1 − δλ < k < λ1 (new short-wavelength modes) on the modes with
k < λ1 − δλ (new long-wavelength modes). We can then take the limit of infinitesimally
narrow wavenumber bands δλ→ 0, which leads to differential recursion relations for
all the coupling constants introduced into the equations for long-wavelength modes by
couplings of the short-wavelength ones. Moffatt (1983) obtained such equations but in the
kinematic case with the turbulence flow given beforehand, unaffected by the Lorentz force.
In the non-magnetic case, Yakhot & Orszag (1986) calculated the leading-order correction
from short-wavelength modes in the Navier–Stokes equation which was proportional to
k2û<

i δλ, thus creating a viscosity correction; the turbulent viscosity was then obtained
from an equation of the form dνturb/dλ = f (λ) with an ‘ initial’ condition νeff (λ = Λ) =
ν. In the case at hand under the assumptions Ro 	 Roβ 	 1, the explicit calculation of
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Renormalization group analysis of the MHD turbulence

two initial steps of the renormalization procedure is enough to derive the final differential
recursion relations with satisfactory accuracy. The details of the procedure are provided in
Appendix A.

4.1. Dynamics of mean fields
The renormalized mean-field equations take the following form:

∂〈U〉
∂t

+ (〈U〉 · ∇)〈U〉 = −∇
( 〈p〉

ρ
+ Q̄p

〈B〉2

2

)
+ Q̄(〈B〉 · ∇)〈B〉 + ν̄∇2〈U〉, (4.30a)

∂〈B〉
∂t

= ∇ × (ᾱ〈B〉) + ∇ × (〈U〉 × 〈B〉) + η̄∇2〈B〉, (4.30b)

where the coefficients ν̄, η̄, ᾱ, Q̄ and Q̄p include the effect of the turbulent fluctuations on
the means. We note that, in the absence of chirality (in non-helical turbulence), D1 = 0,
the α-effect vanishes, i.e. ᾱ = 0. In such a case, unless the mean flow is capable of
generating the mean magnetic field through advection and stretching, that is via the term
∇ × (〈U〉 × 〈B〉), the mean magnetic field can only decay from some initial state through
the effective diffusivity η̄ and the transfer of the magnetic energy to the kinetic one via the
Lorentz force. In other words, unless the energy transfer through ∇ × (〈U〉 × 〈B〉) and
the Lorentz force can account for magnetic energy gain, in the reflectionally symmetric
case we are dealing with the problem of magnetic energy relaxation. On the other hand,
in chiral turbulence, the α-effect can account for rapid amplification of the energy of the
mean magnetic field. The saturation of the energy occurs via the effect of the turbulent
magnetic diffusivity and the effect of the Lorentz force present in the ᾱ coefficient.
The two coefficients Q̄ and Q̄P in the mean-field Navier–Stokes equation describe
the renormalized Lorentz force. The general differential recursion relations for all the
renormalized coefficients ν̄, η̄, ᾱ, Q̄ and Q̄P are solved in Appendix A, see (A91a–d) and
below.

4.2. Dynamics of turbulent fluctuations in the limit k → ΛL

The evolution of the fluctuating fields in the limit k → ΛL is governed by the following
set of equations in the Fourier space:

[−iω + ν̆(k)k2]ûi(q) = f̂i(q) + i(k · 〈B〉0)b̂i(q)

− 1
2 iPimn(k)[I(u)

mn − I
(b)
mn − 〈I(u)

mn〉 + 〈I(b)
mn〉]

− Pij(k)
∂〈U〉j

∂xk
ûk(q) + Pij(k)

∂〈B〉j

∂xk
b̂k(q)

− 1
2 Pij(k)km[ûj(k − ∇〈U〉m, ω) − ûj(k + ∇〈U〉m, ω)]

+ 1
2 Pij(k)km[b̂j(k − ∇〈B〉m, ω) − b̂j(k + ∇〈B〉m, ω)], (4.31a)

[−iω + η̆(k)k2]b̂i(q) − iᾰ(k)εijkkjb̂k(q)

= i(k · 〈B〉0)ûi(q) + iRokj[I
(ub)
ij − 〈I(ub)

ij 〉]

+ ∂〈U〉i

∂xj
b̂j(q) − ∂〈B〉i

∂xj
ûj(q)
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− 1
2 km[b̂i(k − ∇〈U〉m, ω) − b̂i(k + ∇〈U〉m, ω)]

+ 1
2 km[ûi(k − ∇〈B〉m, ω) − ûi(k + ∇〈B〉m, ω)]. (4.31b)

The general formulae for all the renormalized coefficients ν̆(k), η̆(k) and ᾰ(k) are provided
in Appendix A, see (A54a,b) and below. We now turn to the problem of turbulent energy
and helicity spectra and their scaling laws with respect to the wavenumber.

4.2.1. Energy and helicity spectra in the limit k → ΛL
It is of interest to determine the scaling exponents of the energy and helicity spectra and
show how the scaling laws change when the turbulence shifts from the weak regime to
the strong one; the former is characterized by weak fluctuations and thus the dynamical
equations for fluctuations are linearized about the means as in (3.6a,b), whereas, in the
strong regime, defined by (4.8c,d), the dynamics is predominantly determined by the
nonlinearities ∇ · (uu − bb) and ∇ × (u × b) in the fluctuational equations. Naturally,
the spectral scaling laws for energies and helicity will be determined by the exponents σ0
and σ1, which define the correlation function of the stirring force, cf. (2.12). Unfortunately,
those are not well-established quantities. The only clue is provided by comparison with
the Kolmogorov-like spectral scaling laws in the non-magnetic case. Such a comparison
allows us to determine the spectral structure of the forcing correlations (i.e. the values of
the exponents σ0 and σ1) which lead to the expected kinetic energy and helicity spectra
in the absence of a magnetic field. Yakhot & Orszag (1986) have demonstrated that
the purely hydrodynamic (non-MHD), viscously controlled renormalized scaling of the
kinetic energy spectrum agrees with the Kolmogorov k−5/3 law for σ0 = 3. Below, we will
demonstrate that the value of σ1 = 5 corresponds to k−5/3 spectral scaling for turbulent
helicity (expected in helical isotropic turbulence, cf. Brissaud et al. 1973 or Chen et al.
2003).

Within the considered asymptotic limit Ro 	 Roβ 	 1 the fluctuating velocity and
magnetic fields at each step of the renormalization procedure at the leading order are given
by

ûi(q) ≈ 1
γν(q)

f̂i(q), b̂i(q) ≈ ik · 〈B〉Kij

γν

f̂j(q), (4.32a,b)

Kik = 1
γ 2
α

(γηδik + iᾰεijkkj), γ 2
α = γ 2

η − k2ᾰ2, (4.33)

where the γ -factors are now defined using the renormalized fluctuational diffusivities for
small wavenumbers

γν = −iω + ν̆(k)k2, γη = −iω + η̆(k)k2. (4.34a,b)

It follows that the fluctuating vorticity at the leading order takes the simple form

ŵi(q) = iεijkkjûk(q) = i
γν(q)

εijkkjf̂k(q). (4.35)

With the aid of (2.12) and (3.17a,b), it is now possible to write down explicit general
formulae for the turbulent spectra of the fluctuating kinetic and magnetic energies and
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Renormalization group analysis of the MHD turbulence

helicity in the following way:

〈ek〉 = 1
2 〈ui(x, t)ui(x, t)〉 = 1

2

∫
d4q

∫
d4q′ ei[(k+k′)·x−(ω+ω′)t]

γν(q′)γν(q)
〈 f̂i(q)f̂i(q′)〉

= 4πD0

∫ Λ

ΛL

dk
kσ0−2

∫ ∞

−∞
dω

ω2 + ν̆(k)2k4

= 4π2D0

∫ Λ

ΛL

dk
ν̆(k)kσ0

, (4.36a)

〈em〉 = 1
2 〈bi(x, t)bi(x, t)〉

= −1
2 〈B〉m〈B〉n

∫
d4q

∫
d4q′ kmk′

nKij(q)Kik(q′)
γν(q)γν(q′)

〈 f̂j(q)f̂k(q′)〉 ei[(k+k′)·x−(ω+ω′)t]

= 1
2 〈B〉m〈B〉n

∫
d4q

kmkn

(ω2 + ν̆2k4)γ 2
α (q)γ 2

α (−q)

[
|γη(q)|2 D0

kσ0
Pjk(k)δjk

+ ᾰ2k2 D0

kσ0
Pjk(k)Pjk(k) + ᾰ

D1

kσ1
εjklεjtkklkt(γη(q) + γη(−q))

]

= 4π

3
〈B〉2

∫ Λ

ΛL

dk
[
Ie1(k)

D0

kσ0−4 − 2ᾰη̆Ie2(k)
D1

kσ1−8

]
, (4.36b)

〈hk〉 = 〈ui(x, t)wi(x, t)〉 = iεijk

∫
d4q

∫
d4q′ k

′
j ei[(k+k′)·x−(ω+ω′)t]

γν(q)γν(q′)
〈 f̂i(q)f̂k(q′)〉

= −8πD1

∫ Λ

ΛL

dk
kσ1−4

∫ ∞

−∞
dω

ω2 + ν̆(k)2k4

= −8π2D1

∫ Λ

ΛL

dk
1

ν̆(k)kσ1−2 , (4.36c)

where

Ie1(k) =
∫ ∞

−∞
dω

η̆2k4 + ᾰ2k2 + ω2

(ω2 + ν̆2k4)[(η̆2k4 − ᾰ2k2 − ω2)2 + 4η̆2k4ω2]
, (4.37a)

Ie2(k) =
∫ ∞

−∞
dω

1
(ω2 + ν̆2k4)[(η̆2k4 − ᾰ2k2 − ω2)2 + 4η̆2k4ω2]

. (4.37b)

Note that hk denotes the kinetic helicity (in contrast to the magnetic one). Thus the spectral
densities are given by the integrands in the final expressions for each quantity

êk(k) = 4π2D0

ν̆(k)kσ0
, êm(k) = 4π

3
〈B〉2

[
Ie1(k)

D0

kσ0−4 − 2ᾰη̆Ie2(k)
D1

kσ1−8

]
, (4.38a)

ĥk(k) = − 8π2D1

ν̆(k)kσ1−2 . (4.38b)

Recall that, in non-dimensional units, the total magnetic energy is 〈B〉2 + β−2〈b2〉
where by assumption β � 1. Furthermore, since by the use of (4.18b) the fluctuating
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magnetic field satisfies b = O(Roβ), the fluctuating magnetic energy constitutes a
O(Ro2) correction to the total magnetic energy. Note also that the fluctuating magnetic
energy spectrum is in general strongly influenced by the helical component of the
forcing.

In the following sections the results for all the renormalized coefficients ν̄, η̄, ᾱ, Q̄ and
Q̄p, ν̆(k), η̆(k), ᾰ(k) and the spectral densities êk(k), êm(k), ĥk(k) will be provided. We
start with the simplest case of reflectionally symmetric turbulence, D1 = 0, when the
α-effect is eliminated. This will allow for a smooth introduction to the more complicated
problem of helical turbulence considered in § 6. Moreover, in the next section we will
explicitly consider two distinguished regimes of the MHD turbulence – the strong and
weak regimes.

5. Non-helical MHD turbulence

The MHD turbulence in the absence of the flow chirality has been studied via the
renormalization group method by Kleeorin & Rogachevskii (1994). They have concluded
that the MHD turbulence creates a strong negative contribution to the effective mean
Lorentz force so that, in particular, the effective magnetic pressure can in fact become
negative. Here, we will recall some of the results of Kleeorin & Rogachevskii (1994),
at least in a qualitative way, and study the reflectionally symmetric MHD turbulence in
two distinguished regimes: weak and strong. Moreover, by inclusion of the gradients of
the means in the evolution equations for the fluctuations, the correspondence between the
renormalized fluctuation diffusivities ν̆(ΛL), η̆(ΛL) and the mean transport coefficients ν̄

and η̄ will be clearly demonstrated.

5.1. Strong turbulence
In strong turbulence the evolution of pulsations is nonlinear and to take proper account
of the nonlinearities ∇ · (uu − bb) and ∇ × (u × b) we apply the renormalization group
technique. The details of the procedure are postponed until Appendix A and, here, we only
provide the final results. First, the recursions for the fluctuational diffusivities (A57) and
(A61) have to be resolved; the general solution of the latter is obtained via the method
of characteristics in (A63a,b) and also (A67), (A68). Including the dominant terms in the
limit ΛL ≤ k 	 Λ yields

ν̆(k) = 1
a
η̆(k) =

[
2π2D0(5 − σ0)

5(σ0 + 1)

]1/3 1
k(σ0+1)/3 , where a = 1

2

(√
1 + 240

3(5 − σ0)
− 1

)
.

(5.1)

Let us first examine the Fourier spectra of turbulent kinetic energy and helicity and the
magnetic energy which are obtained from (4.38a,b) by substitution for ν̆(k) and η̆(k) from
(5.1) and D1 = 0 ⇒ ᾰ = 0,

êk(k) = 4
[

5(σ0 + 1)

2(5 − σ0)

]1/3
(π2D0)

2/3

k2σ0/3−1/3 , (5.2a)

êm(k) = 4π

3
〈B〉2 D0

kσ0−4
π

ν̆η̆(ν̆ + η̆)k6 = 10(σ0 + 1)

3a(1 + a)(5 − σ0)

〈B〉2

k
, (5.2b)
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Renormalization group analysis of the MHD turbulence

where we have used

Ie1(k) =
∫ ∞

−∞
dω

1
(ω2 + ν̆2k4)(ω2 + η̆2k4)

= π

ν̆η̆(ν̆ + η̆)k6 . (5.3)

Observe that we have reproduced the result of Yakhot & Orszag (1986) for the kinetic
energy spectral scaling law, namely, that it corresponds to the Kolmogorov spectral law
k−5/3 for σ0 = 3. The k−1 spectrum for the magnetic energy, independent of the value of
σ0, is in agreement with the findings of Kleeorin & Rogachevskii (1994) and an earlier
dimensional analysis of Ruzmaikin & Shukurov (1982). Since the parameter σ0 describes
the forcing which generates the turbulence and we have determined that, in the non-helical
case, σ0 = 3 is consistent with the expected turbulent energy spectrum, in the following
we will only consider the case with σ0 = 3. The strong-turbulence energy spectra in the
non-helical case are therefore given by

êk(k) = 4(
√

5π2D0)
2/3

k5/3 , êm(k) = 2
3

〈B〉2

k
. (5.4a,b)

and the fluctuational diffusivities take the form

ν̆(k) =
(

π2D0

5

)1/3 1
k4/3 , η̆(k) = a

(
π2D0

5

)1/3 1
k4/3 , ΛL ≤ k 	 Λ, (5.5a,b)

where

a =
√

41 − 1
2

≈ 2.7. (5.6)

Having found ν̆(k) and η̆(k) we can introduce them into the recursion relations (A81)
and (A91a–c) for the mean-field coefficients, which can be solved to obtain in the limit
k → ΛL 	 Λ

Q̄p ≈ −4(4a − 1)

15
ln

Λ

ΛL
≈ −2.6 ln

Λ

ΛL
(5.7a)

Q̄ ≈ − 8
3a

ln
Λ

ΛL
≈ − ln

Λ

ΛL
(5.7b)

ν̄ = 1
a
η̄ =

(
π2D0

5

)1/3 1

Λ
4/3
L

=
(

D0

80π2

)1/3

L
4/3
L , (5.7c)

where LL is the largest fluctuational length scale and thus could be interpreted as the size
of the largest eddies in the system. It follows that

ν̄ = ν̆(ΛL), η̄ = η̆(ΛL), (5.8a,b)

i.e. the fluctuational diffusivities at the largest turbulent scales and the mean diffusivities
are equal. Note that, in agreement with the results of Kleeorin & Rogachevskii (1994)
in the strong-turbulence limit, the contribution to the Lorentz force from interactions of
turbulent pulsations, which becomes dominant when ΛL 	 Λ, is negative, cf. (5.7a,b).
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K.A. Mizerski

5.2. Weak turbulence
The weak turbulence corresponds to the simplest case when the amplitude of the turbulent
pulsations is small enough so that their evolution can be considered linear, as in (3.6a,b);
this means that the terms ∇ · (uu − bb) and ∇ × (u × b) are neglected in the evolution
equations for the fluctuations. Tobias et al. (2013) argued that, under certain conditions, the
state of weak turbulence can survive for long periods of time without being destroyed by
nonlinear interactions of wave packets, which nevertheless eventually still lead to transition
into the strong-turbulence regime.

The case at hand in fact does not require renormalization, since the nonlinearities are
neglected. The turbulent diffusivities can be taken from the introductory § 3 with D1 = 0
and the coefficients Q̄ and Q̄p can be calculated in a similar way. However, we can
alternatively utilize the recursion differential equations for the turbulent diffusivities and
the Lorentz force coefficients obtained via the renormalization, which can be found in
(A81) and (A81a–c) and, for the current case of weak turbulence, replace the fluctuational
diffusivities ν̆(k) and η̆(k) by the molecular ones, ν and η. The solutions in the limit
k → ΛL 	 Λ are provided only for the case σ0 = 3

Q̄p = 1 − 2π2(4η − ν)

15ν2η(ν + η)

D0

Λ4
L
, (5.9a)

Q̄ = 1 − 2π2

15ν2η

D0

Λ4
L
, (5.9b)

ν̄ = ν + π2D0

15ν2Λ4
L

≈ π2D0

15ν2Λ4
L
, (5.9c)

η̄ = η + 2π2D0

3ν(ν + η)Λ4
L

≈ 2π2D0

3ν(ν + η)Λ4
L
. (5.9d)

The Fourier spectra of turbulent kinetic energy and helicity and the magnetic energy are
obtained from (4.38a,b) by substitution ν̆ = ν and η̆ = η and D1 = 0, which yields

êk(k) = 4π2D0

νk3 , êm(k) = 4π2D0

3νη(ν + η)
〈B〉2 1

k5 . (5.10a,b)

6. Helical MHD turbulence

We now turn to the more complicated problem of MHD turbulence with chirality. In
natural systems such as e.g. stellar and planetary interiors, chirality is typically introduced
into the flow by rotation of the system; the latter creates the Coriolis force in the
rotating frame which breaks the reflectional symmetry. However, since it also introduces
significant complexity through anisotropy, we get around this difficulty by considering a
non-reflectionally symmetric but statistically isotropic forcing; this allows us to perform
the renormalization of the MHD equations in the strong-turbulence regime.

6.1. Strong turbulence
The case of strong turbulence is nonlinear and thus we apply the renormalization
technique. As remarked below (A45d), at the leading order, the turbulent fluctuational
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Renormalization group analysis of the MHD turbulence

viscosity remains unchanged with respect to the non-helical case (cf. (5.5a,b)), and thus
takes the form

ν̆(k) =
(

π2D0

5

)1/3 1
k4/3 , ΛL ≤ k 	 Λ, (6.1)

and we recall that this result is obtained for σ0 = 3.
Let us also recall that, in helical, isotropic, homogeneous and stationary turbulence, the

magnitude of the helicity spectrum (4.38b) is bounded by the energy spectrum (cf. e.g.
Moffatt & Dormy 2019, p. 198, (7.54))

|ĥk(k)| ≤ 2kêk(k), for all k. (6.2)

This implies D1 ≤ kσ1−σ0−1D0. The recursion differential equations for the turbulent
fluctuating magnetic diffusivity (A54a) and the turbulent fluctuating EMF (ᾰ coefficient)
(A54b) can be solved explicitly in the limit

D0Λ
σ1−1−σ0
L
D1

� 1, (6.3)

which, for σ1 − σ0 − 1 > 0, determines that the helical component of the driving force is
weaker than the non-helical one at all fluctuating wavelengths ΛL ≤ k ≤ Λ (cf. (2.12)),
consistently with (6.2). In other words, in such a limit the non-helical driving dominates
the helical one and, roughly speaking, this could correspond to a situation expected
in many natural systems where thermal/compositional buoyancy is stronger than the
Coriolis force. Of course, the total effect of the helical driving remains non-negligible
and significantly affects the dynamics of the mean fields through creation of the α-effect.
The solutions for η̆ and ᾰ in this limit take the form

η̆(k) = aν̆(k) = a
(

π2D0

5

)1/3 1
k4/3 , ΛL ≤ k 	 Λ, (6.4a)

ᾰ(k) = 10D1

(2a + 1)D0
ν̆(k) = 10D1

(2a + 1)D0

(
π2D0

5

)1/3 1
k4/3 , ΛL ≤ k 	 Λ, (6.4b)

with the constant a ≈ 2.7 given in (5.6).
Substitution of ν̆(k), η̆(k) and ᾰ(k) from (6.1) and (6.4a,b) into the formulae (4.38a,b)

leads to the following form of the energy spectra in helical MHD turbulence, in the limit
(6.3):

êk(k) ≈ 4π2D0

ν̆(k)k3 ≈ 4(
√

5π2D0)
2/3

k5/3 , (6.5a)

êm(k) ≈ 4π2

3
〈B〉2

[
D0

ν̆η̆(ν̆ + η̆)k5 − D1(ν̆ + 2η̆)ᾰ

ν̆η̆2(ν̆ + η̆)2kσ1+2

]

≈ 2
3
〈B〉2

(
1
k

− D2
1

D2
0kσ1−2

)
, (6.5b)

ĥk(k) ≈ −
(

5π

D0

)1/3 8D1

kσ1−10/3 , (6.5c)
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K.A. Mizerski

where we have used

Ie1(k) ≈ π

ν̆η̆(ν̆ + η̆)k6 , Ie2(k) ≈ π(ν̆ + 2η̆)

2ν̆η̆3(ν̆ + η̆)2k10 . (6.6a,b)

Similarly to what we have done for the exponent σ0, we can now compare the obtained
helicity spectrum (6.5c) with the Kolmogorov-type scaling for an isotropic, homogeneous
and stationary turbulence ĥk(k) ∼ k−5/3 (cf. Brissaud et al. 1973; Chen et al. 2003) which
leads to

σ1 − 10
3 = 5

3 ⇒ σ1 = 5. (6.7)

The parameters σ0 and σ1 describe the statistical properties of the forcing which generates
the turbulence and since the values of σ0 = 3 and σ1 = 5 correspond to the expected
turbulent energy and helicity spectra, in the following we will only consider the case with
σ0 = 3 and σ1 = 5. Finally, the turbulent energy and helicity spectra are given by

êk(k) ≈ 4(
√

5π2D0)
2/3

k5/3 , êm(k) ≈ 2
3
〈B〉2 1

k
, ĥk(k) ≈ −

(
5π

D0

)1/3 8D1

k5/3 . (6.8a–c)

Furthermore, in the currently considered limit

D0ΛL � D1, (6.9)

(cf. (6.3) with σ0 = 3 and σ1 = 5) the mean renormalized coefficients ν̄, η̄, Q̄, Q̄p at
leading order remain unaltered with respect to the non-helical case (cf. equations (A91a–c)
and the discussion below)

ν̄ = ν̆(ΛL) =
(

π2D0

5

)1/3 1

Λ
4/3
L

, η̄ = η̆(ΛL) = a
(

π2D0

5

)1/3 1

Λ
4/3
L

, (6.10a,b)

Q̄(ΛL) ≈ −8π2D0

15a

∫ Λ

ΛL

dλ
λ5

1
ν̆3 ≈ − 8

3a
ln

Λ

ΛL
, (6.11)

Q̄p(ΛL) = −8(4a − 1)π2D0

150

∫ Λ

ΛL

dλ
λ5

1
ν̆3 ≈ −4(4a − 1)

15
ln

Λ

ΛL
, (6.12)

and the effect of chirality is expressed by the α-effect

ᾱ = ᾰ(ΛL) = 10D1

(2a + 1)D0

(
π2D0

5

)1/3 1

Λ
4/3
L

+ O(Ro2(Roβ)4U) + o(Ro4U), (6.13)

Note that, in the latter expression, the quenching effect of the Lorentz force vanishes at
the order Ro2(Roβ)2〈B〉2 (cf. the expansion of the γ −1 factors (A8)) and thus saturation
effects for the mean magnetic field evolution can only be present at the unexplored order
Ro2(Roβ)4〈B〉4.

It is also of interest to point out that, in strongly helical strong turbulence, when the
helical component of the driving force (2.12) is of comparable magnitude to the non-helical
one at all wavelengths (and (6.3) is not satisfied), the k-dependencies of the fluctuation
coefficients η̆(k) and ᾰ(k) and hence also of the magnetic energy and helicity spectra are
likely not to take the form of simple scaling laws. The general system of equations for the
turbulent renormalized fluctuational coefficients η̆(k) and ᾰ(k) obtained in the asymptotic
limit Ro 	 Roβ 	 1 is provided in (A54a,b) with the integrals I1(k) and I2(k) defined

926 A13-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.707


Renormalization group analysis of the MHD turbulence

in (A50a,b); at the leading order of the limit Ro 	 Roβ 	 1, the turbulent fluctuational
viscosity ν̆(k) is still given by (A58) in the general strongly helical case, which reduces to
(6.1) for ΛL ≤ k 	 Λ. Once ν̆(k) , η̆(k) and ᾰ(k) are known, the mean coefficients η̄, ᾱ, Q̄
and Q̄p can be computed from (A91a–d), with ν̄ unaltered with respect to (6.10a,b). In
principle, this general case which consists of (A54a,b) and (A91a–d) with the aid of (A58),
(A50a,b) and (A85a–d) and the ‘boundary’ conditions

η̆(Λ) = η, ᾰ(Λ) = 0, η̄(Λ) = η, ᾱ(Λ) = 0, Q̄(λ) = 1, Q̄(Λ) = 1,

(6.14a–f )
can be solved numerically.

6.2. Weak turbulence
The case of weak turbulence is fairly simple and, as already remarked, does not
require renormalization, because the nonlinearities ∇ · (uu − bb) and ∇ × (u × b) in the
equations for the fluctuations are neglected. Therefore, the evolution of the fluctuations is
not influenced by the effects of nonlinearities and thus there is no effect of turbulence
in the fluctuational turbulent coefficients, i.e. ν̆ = ν, η̆ = η and ᾰ = 0. It follows that
the mean turbulent diffusivities ν̄ and η̄ can be taken from the introductory § 3. The
Lorentz-force coefficients Q̄p, Q̄ and ᾱ can be calculated with the use of the recursion
differential equations (A91a,b,d) obtained via the renormalization, where for the current
case of weak turbulence we replace the fluctuational diffusivities ν̆(k) and η̆(k) by the
molecular ones ν and η and substitute ᾰ(k) = 0. The solutions in the limit k → ΛL 	 Λ

are provided for σ0 = 3 and σ1 = 5

Q̄p = 1 − 2π2(4η − ν)

15ν2η(ν + η)

D0

Λ4
L
, Q̄ = 1 − 2π2

15ν2η

D0

Λ4
L
, (6.15a)

ν̄ = π2D0

15ν2Λ4
L
, η̄ = 2π2D0

3ν(ν + η)Λ4
L
, ᾱ = 2π2D1

3ν(ν + η)Λ4
L

− 4π2D1〈B〉2

15ν2η(ν + η)Λ6
L
. (6.15b)

It is also notable that the effect of the Lorentz force is now present in the EMF at the
order 〈B〉2, contrary to (6.13); hence, strong turbulence tends to suppress the saturation
effects for the mean magnetic field, and the magnetic energy 〈B〉2 can saturate only above
a certain threshold, when the saturation effects can enter the dynamics. We also emphasize
that, in the current case of weak turbulence, there is no need to invoke the asymptotic
limit (6.9) and the results are valid for D0ΛL/D1 ≤ 1. Furthermore, although it may seem
obvious it is perhaps worth mentioning that the role of turbulent magnetic diffusivity in
the large-scale dynamo process is non-trivial and naive substitution for ν and η of their
turbulent counterparts in the expression for ᾱ in (6.15b) does not lead to anything similar
in form to the strong-turbulence value (6.13).

The Fourier spectra of the turbulent kinetic and magnetic energies and the helicity can
be obtained from (4.38a,b) again, by substitution ν̆ = ν and η̆ = η and ᾰ = 0, which
yields

êk(k) = 4π2D0

νk3 , êm(k) = 4π2D0

3νη(ν + η)
〈B〉2 1

k5 , ĥk(k) = −8π2D1

νk3 . (6.16a–c)

Note that the energy spectra are the same as in the case of non-helical weak turbulence
(5.10a,b).
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Summarizing, the physical pictures of the helical weak and strong turbulence considered
here are rather simple, i.e. the pictures differ from their relevant non-helical cases only by
the presence of helicity and non-zero EMF: ᾱ in the case of weak turbulence and both ᾰ

and ᾱ in the case of weakly helical strong turbulence. Note, however, that, as remarked
at the end of the previous subsection, the helical turbulence outside the asymptotic limit
D0ΛL � D1 is much more complex than the non-helical case even in the isotropic case.

7. Role of diffusivities

It is very important to understand the role of viscosity and magnetic diffusivity in the
presented approach. First of all we recall that the assumption

Roβ 	 1, (7.1)

is utilized to facilitate the Fourier integrals by expanding the integrands in Taylor series in
Roβ, such as e.g. in (A8). One must realize that this implies we assume (cf. (4.20))

| − iω + Eνk2| � H(Roβ)2(k · 〈B〉)2

| − iω + Eηk2| , (7.2)

for all admissible values of ω, thus, in particular, for ω close (and equal to) zero.
Consequently, we require

EνEηΛ
2
L � H(Roβ)2

(
ΛL

ΛL
· 〈B〉

)2

∼ (Roβ)2, (7.3)

hence, the approach is valid only when both the diffusivities are non-zero, thus for
example the limit Eν 	 1 and/or Eη 	 1 must be taken with care, incorporating (7.3).
In other words, setting ν = 0 makes the problem ill posed, because the ω-integrals cease
to converge. The case of η = 0 is similar and at least some of the ω-integrals diverge in
this limit. Hence, we must require

ν /= 0, and η /= 0, (7.4a,b)

for soundness and consistency of the mathematical approach. However, we can easily
see from the analysis in § 3 that, for weak turbulence, setting η = 0 leads to a vanishing
α-effect (vanishing of the part of the EMF which is not proportional to ∇〈B〉) for all values
of Roβ, despite irregularity of the ω-integral in the perturbation expansion for Roβ 	 1. It
is clear from the first line in (3.11) and 〈f̂j(q)f̂k(q′)〉 ∼ δ(ω + ω′) that, since the integrand
is an odd function of ω, the entire integral over −∞ < ω < ∞ must vanish, even without
expanding in Taylor series in Roβ. Consequently, we arrive at the well-known result that, in
a weak turbulence, the mean-field dynamo does not operate when the magnetic diffusivity
is too weak and negligible (cf. Moffatt & Dormy 2019).

Equation (7.3) involves non-dimensional ΛL and 〈B〉, which by definition are order-unity
quantities. It follows that the validity of the current approach can be expressed in a more
straightforward manner

νη

U2L2 � β2, or equivalently
Pm

Rm2
Lε2

� β2, (7.5)

where RmL = UL/η is the magnetic Reynolds number based on the global length scale L, a
useful parameter in the description of the MHD turbulence in natural systems, in particular
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Renormalization group analysis of the MHD turbulence

the theory of natural dynamos. From the point of view of applications to real astrophysical
systems, the condition (7.5) is quite restrictive, since the astrophysical length scales are
very large and the condition (7.5) demands that the magnetic Reynolds number RmL, which
is proportional to L, is ‘not too large.’ Nevertheless, the upper bound for RmL can be very
large in particular for high-Pm systems, and then the magnetic Reynolds number is allowed
to be very high.

8. Estimates of the turbulent coefficients in natural systems

For the sake of providing sensible estimates of the turbulent coefficients ν̆, η̆, ᾰ ν̄, η̄ and ᾱ

we associate the non-helical part of the forcing ∼ D0 with the turbulence driving which,
e.g. in natural systems, could be realized by thermal/compositional buoyancy and the
helical part ∼ D1 with the Coriolis force, which in natural systems is typically responsible
for lack of reflexional symmetry in turbulence (cf. discussion below (4.3)). We recall here
the expression for force correlations

〈 f̂i(k, ω)f̂j(k′, ω′)〉 =
[

D0

k3 Pij(k) + i
D1

k4 εijk
kk

k

]
δ(k + k′)δ(ω + ω′). (8.1)

Since

〈 f̂i(k, ω)f̂j(k′, ω′)〉 ∼ F2L6

ω2
s

, (8.2)

in accordance with the above statement we assume the following for the non-helical
driving and the helical part of the forcing:

F2 = D0ωs, 4Ω2U2 = F2
helical = D1ωsL, (8.3a,b)

where the latter has been estimated with the magnitude of the Coriolis force F = 2ΩU .
Taking ωs = Ω and fixing the length scale at the maximal fluctuational length scale LL
one obtains

D1 = 4ΩU2

LL
, D0 = F2

Ω
= 16Ω3L2

LR̃a2E4, (8.4a,b)

where

R̃a = FL3
L

ν2 , E = ν

2ΩL2
L
. (8.5a,b)

Hence, for example for thermal buoyancy driving F = gβΔT , where β denotes the
thermal expansion coefficient and ΔT the temperature jump across the fluid layer, the
parameter R̃a = gβΔTL3

L/ν2 is proportional to the standard Rayleigh number; E is
the Ekman number based on the maximal fluctuational length scale and molecular
viscosity. Let us also introduce the new Rossby number

R̃o = U
2ΩLL

. (8.6)

Note that, if we assume the magnitudes of the driving F and the Coriolis force 2ΩU to be
comparable, then R̃aE2 = O(Ro) and R̃o = O(Ro).

926 A13-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.707


K.A. Mizerski

8.1. Estimates for strong turbulence in the limit F � 2ΩU
When driving (say thermal) is strong and its magnitude significantly exceeds the
magnitude of the Coriolis force the situation corresponds to that defined by (6.9); the latter
is equivalent to F � 2ΩU by (8.4a,b). Thus, in the current case, the turbulent coefficients
can be estimated using (6.10a,b) and (6.13), which yields

ν̄ = ν̆(ΛL) =
(

π2D0

5

)1/3 1

Λ
4/3
L

≈
(

F2L4
L

80π2Ω

)1/3

≈ 0.11ΩL2
L

( F
Ω2LL

)2/3

≈ 0.27ΩL2
L(R̃aE2)2/3, (8.7a)

η̄ = η̆(ΛL) = aν̄ ≈ 0.74ΩL2
L(R̃aE2)2/3, (8.7b)

ᾱ = ᾰ(ΛL) = 10D1

(2a + 1)D0
ν̄ ≈ 1.56

4Ω2U2

LL

(
L4

L
80π2ΩF4

)1/3

≈ ΩLL
5.8
π2/3 R̃o2

(
Ω2LL

F
)4/3

= 0.43ΩLLR̃o2
(R̃aE2)−4/3. (8.7c)

Such expressions may be useful in particular applications of the theory to the MHD
turbulence. For example, in natural systems such as stellar and planetary interiors or
accretion disks, the observational data allow us to estimate the parameters Ω, LL, R̃o, R̃a
and E for a particular system and in turn obtain estimates of the turbulent diffusivities and
the magnitude of the α-effect with the use of (8.7a–c).

It is also of interest to point out that similar estimates can be made for the case
of weak turbulence under the assumptions Ro 	 Roβ 	 1, in which case ν̄ ≈ 1.7 ×
10−3ΩL2

LR̃aE2, η̄ = ν̄10Pm/(1 + Pm) and ᾱ = −(η̄/LL)(R̃o2
/E4R̃a2

). However, the
case of strong MHD turbulence seems to be much more common in natural systems.

8.2. The α-effect in weak turbulence with very weak molecular diffusivities ν and η

It is evident from § 7 that the presented theory is valid only for non-zero molecular
viscosity and molecular magnetic resistivity and, moreover, there exists a lower bound for
their product (7.3). However, there are known and important cases of vigorous plasma
flow when the molecular diffusivities of the plasma are extremely small, such as for
example in the interstellar galactic medium, intracluster medium and some accretion disks.
A consistent description of the MHD turbulence in such objects requires estimates of the
magnitude of the α-effect when both Eν and Eη are very small and (7.3) is not satisfied
in order to properly incorporate the dynamo effect. Therefore, it seems useful to provide
such an estimate at least for the simplest case of weak turbulence, when we can neglect
the effect of turbulence on the diffusivities, to clearly demonstrate the differences between
such a case and the case of finite diffusivities characterized by (7.3). Neglecting of the
mean-field gradients, the mean EMF can be calculated as follows (cf. § 3 or Moffatt &
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Dormy 2019; Mizerski 2020):

Ei = εijk〈ujbk〉

= εijk

∫
d4q

∫
d4q′ k′ · 〈B〉

(ω′ + iηk′2)σ (q′)σ (q)
〈 f̂j(q)f̂k(q′)〉 ei[(k+k′)·x−(ω+ω′)t]

= −iεijkεjklD1

∫
d4q

k · 〈B〉
k5|σ(q)|2(ω − iηk2)

kl

= 2ηD1〈B〉m

∫
d4q

kmki

k3|σ(q)|2(ω2 + η2k4)
, (8.8)

where we recall

σ(q) = ω + iνk2 − (k · 〈B〉)2

ω + iηk2 , (8.9)

and since |σ(q)|2(ω2 + η2k4) is an even function of ω we have used∫ ∞

−∞
dωω/|σ(q)|2(ω2 + η2k4) = 0. (8.10)

Next, we express |σ(q)|2 in the following form:

|σ(q)|2 =
∣∣∣∣ω(1 − (k · 〈B〉)2

ω2 + η2k4

)
+ ik2

[
ν + η

(k · 〈B〉)2

ω2 + η2k4

]∣∣∣∣2
= ω2(ω2 + η2k4 − (k · 〈B〉)2)2 + k4[ν(ω2 + η2k4) + η(k · 〈B〉)2]2

(ω2 + η2k4)2

= ω4 + ω2[k4(ν2 + η2) − 2(k · 〈B〉)2] + (νηk4 + (k · 〈B〉)2)2

ω2 + η2k4 . (8.11)

Using ∫ ∞

−∞
dω

1
ω4 + ω2[k4(ν2 + η2) − 2(k · 〈B〉)2] + (νηk4 + (k · 〈B〉)2)2

= π

k2(ν + η)[νηk4 + (k · 〈B〉)2]
, (8.12)

and introducing spherical variables (k, θ, ϕ) with θ = 0 on the axis of the mean magnetic
field, one obtains

Ei = 2ηD1〈B〉m

∫
d4q
k3

kmki

ω4 + ω2[k4(ν2 + η2) − 2(k · 〈B〉)2] + (νηk4 + (k · 〈B〉)2)2

= 2πηD1

(ν + η)
〈B〉m

∫ Λ

ΛL

dk
k

∫ 1

−1
d(cos θ)

∫ 2π

0
dϕ

kmki/k2

νηk4 + k2〈B〉2 cos2 θ
,

= 8π2ηD1

(ν + η)

〈B〉i

〈B〉2

∫
dk
k3

⎡⎣1 −
√

νηk2

〈B〉2 arctan

√
〈B〉2

νηk2

⎤⎦ . (8.13)

So far, we have simply calculated the EMF for the weak-turbulence case in
a straightforward manner, without making any simplifying assumptions about the
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magnitudes of the diffusivities or the magnitude of the mean magnetic field. In particular,
we have avoided the expansion in small Roβ such as in (A8) which would require (7.3).
We now make a somewhat opposite assumption to Roβ 	 1 that the field is strong enough
and/or the diffusivities are weak enough so that

ΛL 	 〈B〉√
νη

. (8.14)

This allows us to express the EMF in the following way:

Ei ≈ 8π2ηD1

(ν + η)

〈B〉i

〈B〉2

{
1

2Λ2
L

− π
√

νη

2〈B〉ΛL
+ νη

〈B〉2 ln
Λ

ΛL

}

≈ 4π2ηD1

(ν + η)Λ2
L

〈B〉i

〈B〉2

{
1 − π

√
νηΛL

〈B〉
}

≈ 4π2ηD1

(ν + η)Λ2
L

〈B〉i

〈B〉2 . (8.15)

Utilizing the same approach as in (8.4a,b) we get the following estimate for the mean ᾱ

coefficient

ᾱ ≈ 16R̃o2

(1 + Pm)

Ω3L3
L

〈B〉2 . (8.16)

Such an estimate is valid in the limit of extremely weak diffusivities which enter the
expression only through the magnetic Prandtl number based on molecular diffusivities
Pm = ν/η. It is noteworthy that the EMF is inversely proportional to 〈B〉2 at leading
order. Hence, the coefficient ᾱ is singular at 〈B〉 = 0 but, according to our assumption
(8.14), 〈B〉 = 0 is excluded in the considered regime. Still, it is of some interest to observe
that the relation (8.14) could be satisfied by a relatively weak mean magnetic field and
extremely weak diffusivities, which would make the magnitude of the EMF rather large
and thus vivid amplification of the magnetic energy 〈B〉2 would be expected.

9. Limitations of the current theory and relations to some previous nonlinear
approaches

The main limitations of the current theory result from the assumptions of isotropy,
homogeneity and stationarity of the forcing (cf. (2.12)). The forcing has been assumed
to act only at small scales and its non-helical and helical components to be related to
buoyancy driving and the Coriolis force, respectively. In other words, the latter effects
can only be considered at small scales, which seems right for the buoyancy force, but,
as shown in Yokoi & Yoshizawa (1993), the large-scale Coriolis force in inhomogeneous
turbulence can contribute to the so-called vortex-motive force and the creation of complex
large-scale flows; such flows can then significantly alter the large-scale hydromagnetic
dynamo process.

Furthermore, the gradients of the mean fields have been assumed weak in the presented
theory, according to (4.6a,b) and (4.9b). This is just enough to calculate the leading-order
form of the turbulent diffusion, but, in conjunction with the assumed statistical isotropy
of the driving force, eliminates some effects which are based on the inhomogeneity
of turbulence, in particular the effect of strong gradients of means on the small-scale
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turbulence, which can contribute to mean-field dynamo. For example, the effect of
magnetic pumping or the shear-current effect (Krause & Rädler 1980; Rogachevskii &
Kleeorin 2004), the so-called cross-helicity dynamo (Yokoi 2013) and the cross-helicity
effect coupled with the mean magnetic strain (Yoshizawa 1990; Yokoi 2013) have been
excluded in the presented theory. In addition, stationarity of the forcing has recently been
shown by Mizerski (2018a,b, 2020) to be significantly limiting, as interactions between
waves with distinct frequencies provide a powerful mechanism of mean-field dynamo
generation, operating even in the absence of magnetic diffusion.

However, the advantage of the presented theory lies in the clarity of the considered
model, with a given driving force that conceptually can be attributed to common physical
effects. Such an approach allows for clear estimates of transport coefficients in real
systems, in contrast to approaches which only relate statistical properties of the turbulent
velocity and magnetic fields. The estimates provided here include the nonlinear dynamics
of the MHD turbulence and in this sense are more accurate than commonly used estimates
of the EMF based on weak (linear) turbulence.

10. Conclusions

The presented analysis was focused on the derivation of the full set of MHD equations
describing the dynamics of strong (fully nonlinear) stirred turbulence and the derivation
of its statistical characteristics such as the energy and helicity spectra. This includes
the evolution equations for the mean velocity and mean magnetic field, likewise the
equations for the turbulent fluctuations. We have considered the more general case of
helical turbulence, since in many natural systems the helicity plays a crucial role of
inducing the large-scale magnetic dynamo effect, thus substantially modifying the physical
picture of the MHD turbulence. An important feature of the analysis performed was the
inclusion of the effect of the Lorentz force on the flow, hitherto scarcely considered in the
literature. We have applied the renormalization technique in the spirit of Moffatt (1983),
Yakhot & Orszag (1986) and McComb et al. (1992) (see also Smith & Woodruff (1998)
for a review of the method), which allowed us to incorporate the effect of the nonlinear
terms in the dynamical equations for turbulent fluctuations, in the limit of a small ‘Rossby’
number Ro, defined as a relative measure of the fluid’s inertia with respect to the stirring
force. The main results are listed below.

• The full set of the renormalized mean-field MHD equations was derived, including
the effective form of the large-scale Lorentz force in the mean Navier–Stokes
equation for strong helical turbulence; the Lorentz force was reported to be strongly
influenced by the turbulent diffusion.

• Moreover, the complete form of the mean EMF, including the effect of gradients of
the mean fields was obtained for the studied parameter regime; both its linear and
nonlinear dependences on the large-scale magnetic field, the latter resulting from
the action of the Lorentz force, were described within the considered asymptotic
limit Ro 	 Roβ 	 1.

• The effect of nonlinearities ∇ · (uu − bb) and ∇ × (u × b) and the gradients of
the mean fields ∇〈U〉 and ∇〈B〉 on the dynamics of the turbulent fluctuations has
been included. This allowed us to obtain all the turbulent renormalized coefficients,
such as the mean turbulent diffusivities ν̄ and η̄, the mean turbulent ᾱ coefficient,
the Lorentz force coefficients Q̄p and Q̄ and the fluctuational diffusivities ν̆ and η̆

together with the fluctuational ᾰ coefficient for the two cases of strong non-helical
turbulence and strong helical turbulence in the limit D0ΛL � D1, cf. §§ 5 and 6.
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• Furthermore, the turbulent kinetic and magnetic energy spectra and the turbulent
helicity spectrum were obtained for strong helical turbulence.

• We have reported that the mean turbulent diffusivities and fluctuational turbulent
diffusivities are the same in the case of strong turbulence, i.e. ν̄ = ν̆(ΛL), η̄ =
η̆(ΛL).

• The general recursion differential equations for all the turbulent coefficients are
provided in (A54a,b) and (A91a–d) with the aid of (A58), (A50a,b) and (A85a–d)
and with the ‘boundary’ conditions (6.14a–f ). In particular, it is noteworthy that
(A54a,b) and (A91d) contain the influence of the fluctuational magnetic diffusivity
on the α-effect. The aforementioned set of recursion differential equations can
be used to resolve the subgrid dynamics in numerical simulations, i.e. to provide
the effective turbulent coefficients for simulations with a given spatial resolution,
incapable of fully resolving the dynamics of small-scale turbulent fluctuations.
Assuming the highest wavenumber achievable in a simulation is λM , the recursions
(A54a,b), (A91a–d) with (A58), (A50a,b) and (A85a–d) and with the boundary
conditions (6.14a–f ) can be solved numerically on the interval λM ≤ k ≤ Λ (or
even for Λ = ∞), which grasps the effect of subgrid fluctuational dynamics and
provides reasonable estimates of effective diffusivities and the α coefficients for the
dynamical (4.30a,b) and (4.31a,b).

• From the point of view of applications to the MHD turbulence in particular physical
systems it is desirable to provide estimates of the turbulent coefficients that can
be utilized for the theoretical description of the phenomenon, e.g. in numerical
simulations. Such estimates have been provided in § 8 based on an assumed
correspondence between the helical component of the driving and the Coriolis force
in natural systems.

• It is to be emphasized that the presented analysis is valid only for non-zero
diffusivities, therefore no conclusions can be drawn for the limiting case of ν = 0
and/or η = 0. However, the limit of weak viscosity and/or magnetic diffusivity is
accessible within the range of validity of the constraint (7.3).

• Of particular astrophysical interest is the limit when both the molecular viscosity
and resistivity are extremely low, unattainable within the presented approach based
on renormalization in strong turbulence. However, we have considered such a
limit in § 8.2 for the case of weak turbulence defined by the linear evolution of
fluctuations (i.e. neglecting the nonlinear terms ∇ · (uu − bb) and ∇ × (u × b) in
the evolution equations for the fluctuations). The full form of the EMF for wave
packets has been calculated and the ᾱ coefficient was shown to be proportional
to 〈B〉−2 in the limit 〈B〉/√νη � ΛL; in this limit the small diffusivities enter
the expression for the mean EMF only through the magnetic Prandtl number,
ᾱ ∼ (1 + Pm)−1〈B〉−2, where Pm = ν/η.

• For the sake of clear comparison, all the turbulent coefficients and turbulent energy
and helicity spectra were also calculated for the case of weak helical turbulence in
the limit Ro 	 Roβ 	 1 under the constraint (7.3).

• Naturally, all the renormalized ᾱ and ᾰ coefficients are proportional to D1, that is,
the magnitude of the non-reflectionally symmetric component of the stirring force.
It follows that the α-effect is impossible if the turbulence is not helical: (D1 = 0) ⇒
(ᾱ = 0).

A significant limitation of the presented analysis is that the turbulence, i.e. the stirring
force, was assumed to be isotropic. This is a great simplification since natural astrophysical
and geophysical flows, in the majority of cases, possess at least one distinguished axis
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associated with the background rotation, which introduces anisotropy. Application of the
renormalization group technique to rapidly rotating MHD flows has been considered in
Mizerski (2021), within what might be called an ‘intermediate turbulence’ limit when the
effect of nonlinearities is included only at leading order at every step of the renormalization
procedure.
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Appendix A

The details of the renormalization procedure applied in order to obtain the mean-field
equations are given in here. First of all, we clarify how the ensemble averaging should be
understood and explain the concept of a conditional average over a statistical subensemble
for short-wavelength modes. We adopt the approach of McComb et al. (1992) (cf. also
McComb & Watt 1990, 1992). The essential idea of this approach is the introduction of
a subensemble of flow realizations including near-chaotic statistical properties for the
short-wavelength shell λ1 < k ≤ Λ, but remaining quasi-deterministic for k ≤ λ1. The
subensemble average can be precisely defined and then, utilizing the assumption that in
the turbulent cascade the energy transfer in the Fourier space is local (i.e. the assumption
of ergodicity of the system), the following crucial properties can be proved:

〈û<(q)〉c = û<(q), 〈û<(q)û<(q′)〉c ≈ û<(q)û<(q′), (A1a)

〈û>(q′)〉c ≈ 〈û>(q′)〉 = 0, 〈û<(q)û>(q′)〉c ≈ û<(q)〈û>(q′)〉c ≈ 0, (A1b)

〈û>(q)û>(q′)〉c ≈ 〈û>(q)û>(q′)〉. (A1c)

For details see particularly section IV and the beginning of § V in McComb et al. (1992).
We now substitute the expressions for short-wavelength modes from (4.27a,b) into the

conditional averages in the equations for long-wavelength modes in (4.26a,b). Neglecting
higher-order correlations of the type 〈û>

i û>
j f̂ >

k 〉c etc. (which eliminates the rests in

(4.27a,b)) and using 〈f̂ >
i 〉c = 0, 〈û<

i 〉c = û<
i and 〈b̂<

i 〉c = b̂<
i one obtains

〈û>
m(q′)û>

n (q − q′)〉c − 〈û>
m(q′)û>

n (q − q′)〉

= − iRo
γν(q′)γν(q − q′)

Pnqp(k − k′)[〈 f̂ >
m (q′)J(u)

qp (q − q′)〉c − H〈 f̂ >
m (q′)J(b)

qp (q − q′)〉c]

− iRo
γν(q′)γν(q − q′)

Pmqp(k′)[〈 f̂ >
n (q − q′)J(u)

qp (q′)〉c − H〈 f̂ >
n (q − q′)J(b)

qp (q′)〉c]

+ O(Ro(Roβ)) (A2a)

〈û>
i (q′)û>

j (q − q′)〉 = 1
γu(q′)γu(q − q′)

〈 f̂ >
i (q′)f̂ >

j (q − q′)〉

− Roε
Pjp(k − k′)

γν(q′)γν(q − q′)2 Gpk〈 f̂ >
i (q′)f̂ >

k (q − q′)〉
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− Roε
Pip(k′)

γν(q − q′)γν(q′)2 Gpk〈 f̂ >
j (q − q′)f̂ >

k (q′)〉

− Ro(kp − k′
p)Pjq(k − k′)

2γν(q′)γν(q − q′)

[
〈 f̂ >

i (q′)f̂q((k − k′)> − εGp, ω − ω′)〉
γν((k − k′)> − εGp, ω − ω′)

−〈 f̂ >
i (q′)f̂q((k − k′)> + εGp, ω − ω′)〉

γν((k − k′)> + εGp, ω − ω′)

]

− Rok′
pPiq(k′)

2γν(q′)γν(q − q′)

[ 〈 f̂ >
j (q − q′)f̂q(k′> − εGp, ω

′)〉
γν(k′> − εGp, ω′)

−
〈 f̂ >

j (q − q′)f̂q(k′> + εGp, ω
′)〉

γν(k′> + εGp, ω′)

]
+ o(Ro3), (A2b)

〈b̂>
m(q′)b̂>

n (q − q′)〉c − 〈b̂>
m(q′)b̂>

n (q − q′)〉 = O(Ro(Roβ)), (A2c)

〈b̂>
i (q′)b̂>

j (q − q′)〉

= −(Roβ)2 (k′ · 〈B〉)((k − k′) · 〈B〉)
γu(q′)γη(q′)γu(q − q′)γη(q − q′)

〈 f̂ >
i (q′)f̂ >

j (q − q′)〉 + O(Ro2(Roβ)2),

(A2d)

〈û>
m(q′)b̂>

n (q − q′)〉c − 〈û>
m(q′)b̂>

n (q − q′)〉

= iRo
γν(q′)γη(q − q′)

(ks − k′
s)〈 f̂ >

m (q′)J(ub)
ns (q − q′)〉c + O(Ro(Roβ)), (A2e)

εkmn〈û>
m(q′)b̂>

n (q − q′)〉 = iRoβεkmn(k − k′) · 〈B〉0

γu(q′)γu(q − q′)γη(q − q′)
〈 f̂ >

m (q′)f̂ >
n (q − q′)〉

− RoεεkmnΓnp

γν(q′)γν(q − q′)γη(q − q′)
〈 f̂ >

m (q′)f̂ >
p (q − q′)〉

+ Roεkmn

2γν(q′)γη(q − q′)
(kl − k′

l)

[
〈 f̂ >

m (q′)f̂n((k − k′)> − εΓ l, ω − ω′)〉
γu((k − k′)> − εΓ l, ω − ω′)

−〈 f̂ >
m (q′)f̂n((k − k′)> + εΓ l, ω − ω′)〉

γu((k − k′)> + εΓ l, ω − ω′)

]
+ o(Ro3). (A2f )

Let us note that the inclusion of the O(Ro(Roβ))-terms in the fluctuational equations
and O(Ro3(Roβ))-terms in the equations for the means would lead to inclusion of the
effect of the Lorentz force on the turbulent diffusivities. In particular, the effect of
the Lorentz force on the turbulent magnetic diffusivity could be important, as it would
lead to a complicated dependence η(〈B〉). Nevertheless, we will neglect this effect here
for simplicity. More precisely, the term (A2c) accounts for the Lorentz-force effect of
short-wavelength fluctuations on the long-wavelength ones (fluctuational Lorentz force
acting on fluctuations), whereas the term (A2d) and the first term in (A2b) contribute
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Renormalization group analysis of the MHD turbulence

directly to the effective mean Lorentz force, acting on the mean field 〈U〉 (mean
fluctuational Lorentz force acting on the mean velocity); of course, to get the Lorentz
force from the first term in (A2b) we need to expand the γ −1

u factors in powers of (Roβ)2.
The former, that is the fluctuational Lorentz force acting on the fluctuational velocity, is of
less importance, as it turns out to influence the effective diffusivities, the α-effect and the
mean Lorentz force only at higher, negligible orders and this is why it will be neglected.
This will still allow us to obtain the leading-order form of the turbulent EMF and the
mean Lorentz force in strong turbulence with Ro 	 Roβ 	 1, that is with inclusion of
the nonlinear evolution of turbulent fluctuations. Substituting once again for û> and b̂>

from (4.27a,b) into all the J-terms in (A2a) and (A2e) and making use of the symmetry
q′ 
→ q − q′ under the integral

∫
d4q′ one obtains

θΛν

∫ Λν

d4q′[〈û>
m(q′)û>

n (q − q′)〉c − 〈û>
m(q′)û>

n (q − q′)〉]

= −iRoθΛν

∫ Λν

d4q′
∫ Λν

d4q′′ û
<
q (q′′)Pnqp(k − k′)〈 f̂ >

m (q′)f̂ >
p (q − q′ − q′′)〉c

γν(q′)γν(q − q′)γν(q − q′ − q′′)

− iRoθΛν

∫ Λν

d4q′
∫ Λν

d4q′′ û
<
q (q′′)Pmqp(k − k′)〈 f̂ >

n (q′)f̂ >
p (q − q′ − q′′)〉c

γν(q′)γν(q − q′)γν(q − q′ − q′′)
+ O(Ro(Roβ)), (A3a)∫ Λ

d4q′[〈û>
m(q′)b̂>

n (q − q′)〉c − 〈û>
m(q′)b̂>

n (q − q′)〉]

= iRoεnsrεrqp

∫ Λ

d4q′
∫ Λ

d4q′′ (ks − k′
s)b̂

<
p (q − q′ − q′′)

γν(q′)γν(q′′)γη(q − q′)
〈 f̂ >

m (q′)f̂ >
q (q′′)〉c

+ O(Ro(Roβ)), (A3b)

where now the q′-integrals are taken over an intersection of the domains λ1 < k′ < Λmax
and λ1 < |k − k′| < Λmax, i.e.

{k′ : λ1 < k′ < Λmax, λ1 < |k − k′| < Λmax}. (A4)

Following the approach of Yakhot & Orszag (1986) and Smith & Woodruff (1998) we
calculate the q′-integrals to lowest non-trivial order in the distant-interaction limit

k
k′ → 0,

ω

ω′ → 0, (A5a,b)

which stems from the assumption of local energy transfer in the Fourier spectrum of a
turbulent cascade. The lowest non-trivial order in k/k′ and ω/ω′ is obtained by simply
setting k = 0 and ω = 0 in the integrands in the expressions for corrections to the means
(A2b), (A2d) and (A2f ) (accordingly they will all turn out to be proportional to δ(k)δ(ω)),
but in the formulae for corrections to fluctuations (A3a), (A3b) we set ω = 0 and we
need to expand the integrands in powers of k up to the first order (in the non-magnetic
case considered by Yakhot & Orszag (1986) the integrals vanish at the order (k/k′)0

and expansion in powers of k/k′ of the integrands to the first order is also necessary;
this results in a viscous correction of the order ∼ νk2). The integrals are then calculated
by substitution k′ 
→ k′ + k/2 hence symmetrization of the integration domain which in
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K.A. Mizerski

spherical spectral variables (k, θ, ϕ) at the first step takes the form{
k′ : .λ1 < k′ <

Λmax + λ1

2
, −k′2 − λ2

1
kk′ < cos θ <

k′2 − λ2
1

kk′

and
Λmax + λ1

2
< k′ < Λmax, −Λ2

max − k′2

kk′ < cos θ <
Λ2

max − k′2

kk′

}
. (A6)

In the case when the zeroth-order term ∼ (k/k′)0 vanishes, no corrections of the order k
(and higher) from the integration domain are necessary, hence it simplifies to

{k′ : λ1 < k′ < Λmax}. (A7)

This way the total renormalized corrections from short-wavelength modes in (4.26a,b) are
proportional to k2, which implies that the lowest non-trivial order in distant interactions
produces corrections to diffusivities.

We also utilize the assumption Roβ 	 1 to expand the inverse γu-factors

1
γu(ω′, k′)γu(−ω′, −k′)

= 1
|γν(ω′, k′)|2

− H(Roβ)2(k′ · 〈B〉)2 1
|γν(ω′, k′)|2

[
1

γν(−ω′, k′)γη(−ω′, k′)
+ 1

γν(ω′, k′)γη(ω′, k′)

]
+ O((Roβ)4), (A8)

where

γu(ω, k) = −iω + Eνk2 + H(Roβ)2 (k · 〈B〉)2

γη

, (A9)

γν(ω, k) = −iω + Eνk2, γη(ω, k) = −iω + Eηk2. (A10a,b)

Substituting for the force correlations from (2.12) into (A2b), (A2d) and (A2f ), taking the
limit of distant wavenumber interactions (A5) and making use of

Pimn(k)δmn = 0, Pimn(k)εmnk = 0, for all i, k, (A11a)

εijkεkmn = δimδjn − δinδjm, (A11b)∫
d

◦
Ωkm . . . knkk︸ ︷︷ ︸

N

= 0, for any odd N and all m, . . . , n, k, (A11c)

∫
k2 d

◦
Ω

kmkn

k4 = 4π

3
δmn, (A11d)∫

k2 d
◦

Ω
kmknkpkq

k6 = 4π

15
(δmnδpq + δmpδnq + δmqδnp), (A11e)

where
◦

Ω denotes a solid angle, we obtain

− θΛν

∫ Λν

d4q ei(k·x−ωt)
∫ Λν

d4q′〈û>
i (q′)û>

j (q − q′)〉

= −2(Roβ)2HD0〈B〉q〈B〉pθΛν

∫ Λν d4q′

k′σ0

k′
qk′

pPij(k′)(ω′2 − EνEηk′4)
(ω′2 + E2

νk′4)2(ω′2 + E2
ηk′4)
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Renormalization group analysis of the MHD turbulence

+ RoEνD0
∂〈U〉p

∂xk
θΛν

∫ Λν d4q′

k′σ0−2
Pjp(k′)Pik(k′) + Pip(k′)Pjk(k′)

(ω′2 + E2
νk′4)2

− 1
2 RoD0θΛν

∫ Λν d4q′k′
p

|γν(q′)|2
[

D0

k′σ0
Piq(k′)

+i
D1

k′σ1
εiqtk′

t

] [
Pjq(k′ − εGp)(1 + iεGp · x)

γν(k′ − εGp, −ω′)
− Pjq(k′ + εGp)(1 − iεGp · x)

γν(k′ + εGp, −ω′)

]

− 1
2 RoD0θΛν

∫ Λν d4q′k′
p

|γν(q′)|2
[

D0

k′σ0
Pjq(k′)

+i
D1

k′σ1
εjqtk′

t

] [
Piq(k′ − εGp)(1 + iεGp · x)

γν(k′ − εGp, −ω′)
− Piq(k′ + εGp)(1 − iεGp · x)

γν(k′ + εGp, −ω′)

]
+ const. + o(Ro3) + O((Roβ)4), (A12a)

θΛη

∫ Λη

d4q ei(k·x−ωt)
∫ Λη

d4q′〈b̂>
i (q′)b̂>

j (q − q′)〉

= (Roβ)2D0〈B〉q〈B〉pθΛη

∫ Λη d4q′

k′σ0

k′
qk′

pPij(k′)
(ω′2 + E2

νk′4)(ω′2 + E2
ηk′4)

+ O(Ro2(Roβ)2, (Roβ)4), (A12b)

εkmn

∫ Λ

d4q ei(k·x−ωt)
∫ Λ

d4q′〈û>
m(q′)b̂>

n (q − q′)〉

= 2RoβEηD1〈B〉0s

∫ Λ d4q′

k′σ1−2

k′
sk

′
k

(ω′2 + E2
νk′4)(ω′2 + E2

ηk′4)

+ 4H(Roβ)3EηD1〈B〉r〈B〉s〈B〉t

∫ Λ d4q′

k′σ1−2

k′
rk

′
sk

′
tk

′
k(ω

′2 − EνEηk′4)
(ω′2 + E2

νk′4)2(ω′2 + E2
ηk′4)2

− RoEηD0
∂〈B〉n

∂xp
εkmn

∫ Λ d4q′

k′σ0−2
Pmp(k′)

(ω′2 + E2
νk′4)(ω′2 + E2

ηk′4)

+ RoD1

∫ Λ d4q′

k′σ1

k′
lk

′
k

ω′2 + E2
νk′4

[ −i + εΓ l · x
iω′ + Eη|k′ − εΓ l|2 + i + εΓ l · x

iω′ + Eη|k′ + εΓ l|2
]

+ o(Ro3) + O((Roβ)5), (A12c)

where the corrections O((Roβ)4) and O((Roβ)5) account for the neglected higher-order
terms in the expansion (A8). The three last lines of (A12a) correspond exactly to (3.15)
times RoθΛν , whereas the first, third and fourth lines of (A12c) correspond directly to
(3.14) times Roβ, with ν and η replaced by Eν and Eη. It follows that, at the first step of
the renormalization procedure, the corrections in the equations for the means generated by
the averaged couplings of fluctuations take the final form

− εRo∂̄jθΛν

∫ Λν

d4q ei(k·x−ωt)
∫ Λν

d4q′〈û>
i (q′)û>

j (q − q′)〉
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K.A. Mizerski

= 8π2HD0

15E2
ν(Eν + Eη)

εRo(Roβ)2
[

4∇̄ 〈B〉2

2
− (〈B〉 · ∇̄)〈B〉

]
i
θΛν

∫ Λν

λ1

dk′

k′σ0+2

+ 2π2(5 − σ0)D0

15E2
ν

ε2Ro2∇̄2〈U〉iθΛν

∫ Λν

λ1

dk′

k′σ0+2 , (A13a)

εHRo∂̄jθΛη

∫ Λη

d4q ei(k·x−ωt)
∫ Λη

d4q′〈b̂>
i (q′)b̂>

j (q − q′)〉

= 8π2HD0

15EνEη(Eν + Eη)
εRo(Roβ)2

[
4∇̄ 〈B〉2

2
− (〈B〉 · ∇̄)〈B〉

]
i
θΛη

∫ Λη

λ1

dk′

k′σ0+2 ,

(A13b)

1
2εHRo∂̄iθΛη

∫ Λη

d4q ei(k·x−ωt)
∫ Λη

d4q′〈b̂>
j (q′)b̂>

j (q − q′)〉

= 8π2HD0

3EνEη(Eν + Eη)
εRo(Roβ)2

[
∇̄ 〈B〉2

2

]
i
θΛη

∫ Λη

λ1

dk′

k′σ0+2 , (A13c)

Roεkmn

∫ Λ

d4q ei(k·x−ωt)
∫ Λ

d4q′〈û>
m(q′)b̂>

n (q − q′)〉

= 8π2D1

3Eν(Eν + Eη)
Ro2β〈B〉k

[∫ Λ

λ1

dk′

k′σ1
− 3

5
H(Roβ)2

EνEη

〈B〉2
∫ Λ

λ1

dk′

k′σ1+2

]
− 8π2D0

3Eν(Eη + Eη)
Ro2ε(∇̄ × 〈B〉)k

∫ Λ

λ1

dk′

k′σ0+2 , (A13d)

where we have used

∫ ∞

−∞
dω′ EνEηk′4 − ω′2

(ω′2 + E2
ηk′4)2(ω′2 + E2

νk′4)2 = π

2E2
νE2

η(Eν + Eη)k′10 , (A14)

∫ ∞

−∞
dω′ EνEηk′4 − ω′2

(ω′2 + E2
ηk′4)(ω′2 + E2

νk′4)2 = π

2E2
ν(Eν + Eη)k′6 . (A15)

Furthermore, the corrections from short-wavelength modes to the equations for
long-wavelength fluctuations in (A3a,b) can be expressed as follows:

θΛν

∫ Λν

d4q′[〈û>
m(q′)û>

n (q − q′)〉c − 〈û>
m(q′)û>

n (q − q′)〉]

= −iRoD0û<
q (q)θΛν

∫ Λν d4q′

k′σ0

Pnqp(k − k′)Pmp(k′)
γν(q′)γν(q − q′)γν(−q′)

− iRoD0û<
q (q)θΛν

∫ Λν d4q′

k′σ0

Pmqp(k − k′)Pnp(k′)
γν(q′)γν(q − q′)γν(−q′)

+ O(Ro(Roβ)), (A16a)
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Renormalization group analysis of the MHD turbulence∫ Λ

d4q′[〈û>
m(q′)b̂>

n (q − q′)〉c − 〈û>
m(q′)b̂>

n (q − q′)〉]

= iRob̂<
p (q)εnsrεrqp

∫ Λ

d4q′ ks − k′
s

γν(q′)γν(−q′)γη(q − q′)

[
D0

k′σ0
Pmq(k′) + i

D1

k′σ1
εmqlk′

l

]
+ O(Ro(Roβ)). (A16b)

Making the aforementioned substitution k′ → k′ + 1
2 k to symmetrize the domain of

integration one obtains

θΛν

∫ Λν

d4q′[〈û>
m(q′)û>

n (q − q′)〉c − 〈û>
m(q′)û>

n (q − q′)〉]

= −iRoD0û<
q (q)θΛν

∫ Λν d4q′

(k′2 + k′·k)σ0/2

Pnqp

(
1
2 k − k′

)
Pmp(k′ + 1

2 k)

|γν(k′ + 1
2 k, ω′)|2γν(k′ − 1

2 k, −ω′)

− iRoD0û<
q (q)θΛν

∫ Λν d4q′

(k′2 + k′·k)σ0/2

Pmqp(
1
2 k − k′)Pnp(k′ + 1

2 k)

|γν(k′ + 1
2 k, ω′)|2γν(k′ − 1

2 k, −ω′)

+ O(Ro(Roβ)), (A17a)

εkmn

∫ Λ

d4q′[〈û>
m(q′)b̂>

n (q − q′)〉c − 〈û>
m(q′)b̂>

n (q − q′)〉]

= iRoD0b̂<
p (q)εkmnεnsr

∫ Λ d4q′

(k′2 + k′
tkt)σ0/2

εrqpPmq(k′ + 1
2 k)(1

2 ks − k′
s)

|γν(k′ + 1
2 k, ω′)|2γη(k′ − 1

2 k, −ω′)

+ RoD1b̂<
p (q)εkmnεnsr

∫ Λ d4q′

(k′2 + k′
tkt)σ1/2

εrqpεmql(k′
l + 1

2 kl)(k′
s − 1

2 ks)

|γν(k′ + 1
2 k, ω′)|2γη(k′ − 1

2 k, −ω′)

+ O(Ro(Roβ)). (A17b)

Next, we use the following expansions in k/k′ up to the first order:

Pmp

(
k′ + 1

2 k
)

= Pmp(k′) + k′
mk′

pk′
r

k′4 kr − k′
mkp + kmk′

p

2k′2 , (A18)

Pnqp

(
1
2 k − k′

)
= −Pnqp(k′) + 2

k′
nk′

pk′
qk′

r

k′4 kr − k′
nk′

qkp + k′
nk′

pkq + 2knk′
pk′

q

2k′2

+ 1
2 kqPnp(k′) + 1

2 kpPnq(k′), (A19)

1

|γν(k′ + 1
2 k, ω′)|2γν(k′ − 1

2 k, −ω′)
= −iω′ + Eνk′2 − Eνk′ · k

(ω′2 + E2
νk′4)2 , (A20)

1

|γν(k′ + 1
2 k, ω′)|2γη(k′ − 1

2 k, −ω′)
= −iω′ + Eηk′2

(ω′2 + E2
νk′4)(ω′2 + E2

ηk′4)

− Eηk′ · k
(ω′2 + E2

νk′4)(ω′2 + E2
ηk′4)
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− 2(E2
ν − E2

η)ω
′2k′2k′ · k(−iω′ + Eηk′2)

(ω′2 + E2
νk′4)2(ω′2 + E2

ηk′4)2 ,

(A21)

1
(k′2 + k′·k)σ0/2 = 1

k′σ0
− σ0 k′· k

2k′σ0+2 , (A22)

and symmetry arguments such that
∫∞
−∞ ω′fs(ω′)dω′ = 0 for any function fs(ω′) symmetric

about ω′ = 0 which allows us to transform (A17a,b) into

− 1
2 iRoPimn(k)θΛν

∫ Λν

d4q′[〈û>
m(q′)û>

n (q − q′)〉c − 〈û>
m(q′)û>

n (q − q′)〉]

= −2π2(5 − σ0)

15E2
ν

Ro2D0k2û<
i (q)θΛν

∫ Λν

λ1

dk′

k′σ0+2

+ O(Ro2(Roβ), k3), (A23a)

iRokjεijkεkmn

∫ Λ

d4q′[〈û>
m(q′)b̂>

n (q − q′)〉c − 〈û>
m(q′)b̂>

n (q − q′)〉]

= − 8π2

3Eν(Eν + Eη)
Ro2D0k2b̂<

i (q)

∫ Λ

λ1

dk′

k′σ0+2

+ 8π2Ro2

3Eν(Eν + Eη)
D1(εijkikjb̂<

k (q))

∫ Λ

λ1

dk′

k′σ1

+ O(Ro2(Roβ), k3), (A23b)

where we have also used ∫ ∞

−∞
dω′

(ω′2 + E2
νk′4)2 = π

2E3
νk′6 , (A24)∫ ∞

−∞
dω

1
(ω′2 + E2

νk′4)(ω′2 + E2
ηk′4)

= π

EνEη(Eν + Eη)k′6 . (A25)

We now utilize the assumption of narrowness of the first spectral bite Λ − λ1 =
δλ	 1 and define the following coefficients which describe the average effect of the
short-wavelength fluctuations with wavenumbers from the narrow band λ1 ≤ k ≤ Λ on
the means (cf. (A13a–d))

Q̄p(λ1) = 1 + 8π2

15E2
νEη(Eν + Eη)

(θΛηEν − 4θΛν Eη)Ro2D0
δλ

λ
σ0+2
1

, (A26a)

Q̄(λ1) = 1 − 8π2(θΛηEν + θΛν Eη)

15E2
νEη(Eν + Eη)

Ro2D0
δλ

λ
σ0+2
1

(A26b)

Ēη(λ1) = Eη + 8π2Ro2D0

3Eν(Eν + Eη)

δλ

λ
σ0+2
1

, (A26c)

Ēν(λ1) = Eν + 2π2(5 − σ0)

15E2
ν

Ro2D0θΛν

δλ

λ
σ0+2
1

, (A26d)
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Renormalization group analysis of the MHD turbulence

ᾱA(λ1) = 8π2

3
Ro2

Eν(Eν + Eη)

D1δλ

λ
σ1
1

, (A26e)

ᾱS(λ1) = 8π2

5
Ro2(Roβ)2H

E2
νEη(Eν + Eη)

D1δλ

λ
σ1+2
1

, (A26f )

(where ᾱ = ᾱA − ᾱS〈B〉2) and the effect of short-wavelength fluctuations on the
long-wavelength fluctuations corresponding to the band ΛL < k < λ1 (cf. (A23a,b)) is
contained in

Ĕν(λ1) = Eν + 2π2(5 − σ0)

15E2
ν

Ro2D0θΛν

δλ

λ
σ0+2
1

, (A27a)

Ĕη(λ1) = Eη + 8π2

3Eν(Eν + Eη)
Ro2D0

δλ

λ
σ0+2
1

, (A27b)

ᾰ(λ1) = 8π2Ro2

3Eν(Eν + Eη)
D1

δλ

λ
σ1
1

. (A27c)

With the use of those definitions we can write down the dynamical equations (4.8a,b) and
(4.26a,b) in the new form, with the effect of the short-wavelength modes u>, b> expressed
through the effective EMF and the Lorentz force

∂〈U〉
∂t

+ εRo(〈U〉 · ∇)〈U〉 = −ε∇
( 〈p〉

ρ
+ Roβ2HQ̄p(λ1)

〈B〉2

2

)
+ εRoβ2HQ̄(λ1)(〈B〉 · ∇)〈B〉
+ Ēν(λ1)ε

2∇2〈U〉 − εRo(∇ · 〈u<u<〉 − H∇ · 〈b<b<〉), (A28a)

∂〈B〉
∂t

= ε∇ × [(ᾱA(λ1) − ᾱS(λ1)〈B〉2)〈B〉] + εRoβ−1∇ × 〈u< × b<〉

+ εRo(〈B〉 · ∇̄)〈U〉 − ε
Ro
β

(〈U〉 · ∇̄)〈B〉 + ε2

β
Ēη(λ1)∇2〈B〉, (A28b)

(−iω + Ĕνk2)û<
i (q) − iRoβH(k · 〈B〉0)b̂<

i (q) = f̂ <
i (q)

− 1
2 iRoPimn(k)[I(u<)

mn − HI
(b<)
mn − 〈I(u<)

mn 〉 + H〈I(b<)
mn 〉]

− RoεPij(k)Gjkû<
k (q) + RoHεPij(k)Γjkb̂<

k (q)

− Ro
2

kmPij(k)[ûj(k< − εGm, ω) − ûj(k< + εGm, ω)]

+ Ro
2

kmPij(k)[b̂j(k< − εΓ m, ω) − b̂j(k< + εΓ m, ω)], (A28c)

(−iω + Ĕηk2)b̂<
i (q) − iα(λ1)εijkkjb̂<

k = iRoβ(k · 〈B〉0)û<
i (q)

+ iRokj[I
(u<b<)
ij − 〈I(u<b<)

ij 〉]
+ RoεGijb̂<

j (q) − RoεΓijû<
j (q)
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K.A. Mizerski

− Ro
2

km[b̂i(k< − εGm, ω) − b̂i(k< + εGm, ω)]

+ Ro
2

km[ûi(k< − εΓ m, ω) − ûi(k< + εΓ m, ω)]. (A28d)

In order to proceed to the second step of renormalization we need explicit expressions of
the type (4.18a,b). To that end, we introduce a short notation

γν û<(q) − iRoβH(k · 〈B〉0)b̂<(q) = r.h.s.u = f̂ <(q) + remu, (A29a)

γηb̂<(q) − iᾰ(λ1)k × b̂< = r.h.s.b = iRoβ(k · 〈B〉0)û<(q) + remb, (A29b)

with
γν = −iω + Ĕνk2, γη = −iω + Ĕηk2. (A30a,b)

From (A29b) we can write

b̂ = 1
γ 2
α

(γη + iᾰk×)(iRoβ(k · 〈B〉0)û(q) + remb)

= Roβ(k · 〈B〉0)

γ 2
α

(iγηû(q) − ᾰk × û(q)) + K · remb, (A31)

where we have defined the operator

Kik = 1
γ 2
α

(γηδik + iᾰεijkkj), γ 2
α = γ 2

η − k2ᾰ2. (A32)

Next, on defining

γ̃u = γν + H(Roβ)2(k · 〈B〉0)
2

γ 2
α

γη, (A33)

and introducing (A31) into (A29a) we get

γ̃uû(q) + i
ᾰ

γ 2
α

H(Roβ)2(k · 〈B〉0)
2k × û(q) = r.h.s.u + iRoβH(k · 〈B〉0)K · remb.

(A34)
Inverting the latter equation yields

û(q) = K̃ · [r.h.s.u + iRoβH(k · 〈B〉0)K · remb]

= K̃ · f̂ (q) + K̃ · remu + iRoβH(k · 〈B〉0)K̃ · K · remb, (A35a)

b̂(q) = iRoβ(k · 〈B〉0)K · K̃ · f̂ (q) + iRoβ(k · 〈B〉0)K · K̃ · remu

− H(Roβ)2(k · 〈B〉0)
2K · K̃ · K · remb + K · remb, (A35b)

where

K̃ik = 1
γ̃ 2
α

(
γ̃uδik − i

ᾰ

γ 2
α

H(Roβ)2(k · 〈B〉0)
2εijkkj

)
, (A36)

γ̃ 2
α = γ̃ 2

u − k2 ᾰ2

γ 4
α

H2(Roβ)4(k · 〈B〉0)
4. (A37)

926 A13-44

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

70
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.707


Renormalization group analysis of the MHD turbulence

We can now substitute back for the reminders remu and remb, which leads to explicit
expressions for ûi(q) and b̂i(q)

ûi(q) = K̃ijf̂j(q) − 1
2 iRoK̃ijPjmn(k)[I(u)

mn − HI
(b)
mn − 〈I(u)

mn〉 + H〈I(b)
mn〉]

− Ro(Roβ)H(k · 〈B〉0)kmK̃ijKjk(I
(ub)
km − 〈I(ub)

km 〉)
− RoεK̃ijPjn(k)Gnkûk(q) + RoHεK̃ijPjn(k)Γnkb̂k(q)

+ iHRo(Roβ)ε(k · 〈B〉0)K̃ijKjkGkmb̂m(q)

− iHRo(Roβ)ε(k · 〈B〉0)K̃ijKjkΓkmûm(q)

− Ro
2

kmK̃ijPjk(k)[ûk(k − εGm, ω) − ûk(k + εGm, ω)]

+ Ro
2

kmK̃ijPjk(k)[b̂k(k − εΓ m, ω) − b̂k(k + εΓ m, ω)]

− 1
2 iRo(Roβ)H(k · 〈B〉0)kmK̃ijKjk[b̂k(k − εGm, ω) − b̂k(k + εGm, ω)]

+ 1
2 iRo(Roβ)H(k · 〈B〉0)kmK̃ijKjk[ûk(k − εΓ m, ω) − ûk(k + εΓ m, ω)],

(A38a)

b̂i(q) = iRoβ(k · 〈B〉0)KijK̃jkf̂k(q)

+ iRo[Kil − H(Roβ)2(k · 〈B〉0)
2KijK̃jkKkl]km(I

(ub)
lm − 〈I(ub)

lm 〉)
+ 1

2 Ro(Roβ)(k · 〈B〉0)KijK̃jkPkmn(k)[I(u)
mn − HI

(b)
mn − 〈I(u)

mn〉 + H〈I(b)
mn〉]

− iRo(Roβ)ε(k · 〈B〉0)KijK̃jkPkm(k)Gmnûn(q)

+ iRo(Roβ)Hε(k · 〈B〉0)KijK̃jkPkm(k)Γmnb̂n(q)

+ Roε[Kil − H(Roβ)2(k · 〈B〉0)
2KijK̃jkKkl]Glmb̂m(q)

− Roε[Kil − H(Roβ)2(k · 〈B〉0)
2KijK̃jkKkl]Γlmûm(q)

− 1
2 iRo(Roβ)(k · 〈B〉0)kmKijK̃jkPkl(k)[ûl(k − εGm, ω) − ûl(k + εGm, ω)]

+ 1
2 iRo(Roβ)(k · 〈B〉0)kmKijK̃jkPkl(k)[b̂l(k − εΓ m, ω) − b̂l(k + εΓ m, ω)]

− 1
2 Ro[Kil − H(Roβ)2(k · 〈B〉0)

2KijK̃jkKkl]km[b̂l(k − εGm, ω)

− b̂l(k + εGm, ω)]

+ 1
2 Ro[Kil − H(Roβ)2(k · 〈B〉0)

2KijK̃jkKkl]km[ûl(k − εΓ m, ω)

− ûl(k + εΓ m, ω)]. (A38b)

We now proceed to the next step of the renormalization procedure which consists of
a step-by-step elimination of infinitesimally small wavenumber bands from the Fourier
spectrum from the short-wavelength side. We introduce λ2, which satisfies

δλ = λ1 − λ2 	 1, (A39)

and, again, split the remaining fluctuational Fourier spectrum ΛL ≤ k ≤ λ1 into two parts
by defining new variables (but keeping the same notation)

θ(k − λ2)û<
i (k, ω) 
→ û>

i (k, ω), (for λ2 < k < λ1), (A40)
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K.A. Mizerski

θ(λ2 − k)û<
i (k, ω) 
→ û<

i (k, ω), (for k < λ2), (A41)

and same for b̂ and f̂ . The equations for the fluctuations are also split, as in the first step
(cf. (4.26a,b) and (4.27a,b)), i.e. we have

(−iω + Ĕνk2)û<
i (q) = f̂ <

i (q) + iRoβH(k · 〈B〉0)b̂<
i (q)

− 1
2 iRoPimn(k)[I(u<)

mn − HI
(b<)
mn − 〈I(u<)

mn 〉 + H〈I(b<)
mn 〉]

− 1
2 iRoPimn(k)

{
θΛν

∫ Λν

d4q′[〈û>
m(q′)û>

n (q − q′)〉c − 〈û>
m(q′)û>

n (q − q′)〉]

−HθΛη

∫ Λη

d4q′[〈b̂>
m(q′)b̂>

n (q − q′)〉c − 〈b̂>
m(q′)b̂>

n (q − q′)〉]
}

− RoεPij(k)Gjkû<
k (q) + RoHεPij(k)Γjkb̂<

k (q)

− Ro
2

Pij(k)km[ûj(k< − εGm, ω) − ûj(k< + εGm, ω)]

+ Ro
2

Pij(k)km[b̂j(k< − εΓ m, ω) − b̂j(k< + εΓ m, ω)], (A42a)

(−iω + Ĕηk2)b̂<
i (q) − iᾰ(λ1)εijkkjb̂<

k (q) = iRoβ(k · 〈B〉0)û<
i (q)

+ iRokj[I
(u<b<)
ij − 〈I(u<b<)

ij 〉]

+ iRokjεijkεkmn

∫ Λ

d4q′[〈û>
m(q′)b̂>

n (q − q′)〉c − 〈û>
m(q′)b̂>

n (q − q′)〉]

+ RoεGijb̂<
j (q) − RoεΓijû<

j (q)

− Ro
2

km[b̂i(k< − εGm, ω) − b̂i(k< + εGm, ω)]

+ Ro
2

km[ûi(k< − εΓ m, ω) − ûi(k< + εΓ m, ω)], (A42b)

for the new long-wavelength modes and for the short-wavelength ones it is enough to write

û>
i (q) = K̃ijf̂ >

j (q) − 1
2 iRoK̃ijPjmn(k)[I(u<)

mn − HI
(b<)
mn − 〈I(u<)

mn 〉 + H〈I(b<)
mn 〉]

− Roε
Pin(k)

γ 2
ν

Gnmf̂ >
m (q) − Ro

2γν

kmPij(k)

[
f̂j(k> − εGm, ω)

γν(k> − εGm, ω)
− f̂j(k> + εGm, ω)

γν(k> + εGm, ω)

]

− i
Ro
γν

Pimn(k)[J(u)
mn − HJ

(b)
mn] + · · · , (A43a)

b̂>
i (q) = iRoβ(k · 〈B〉0)KijK̃jkf̂ >

k (q) + iRoKilkm(I
(u<b<)
lm − 〈I(u<b<)

lm 〉)

− Roε
Kil

γν

Γlmf̂ >
m (q) + 1

2 RoKilkm

[
f̂l(k> − εΓ m, ω)

γν(k> − εΓ m, ω)
− f̂l(k> + εΓ m, ω)

γν(k> + εΓ m, ω)

]
+ iRoKilkmJ

(ub)
lm + · · · , (A43b)

Kik = 1
γ 2
α

(γηδik + iᾰεijkkj), γ 2
α = γ 2

η − k2ᾰ2, (A43c)
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Renormalization group analysis of the MHD turbulence

K̃ik = 1
γ̃u

δik − i
ᾰ

γ̃ 2
u γ 2

α

H(Roβ)2(k · 〈B〉0)
2εijkkj, (A43d)

γ̃u = γν + H(Roβ)2(k · 〈B〉0)
2

γ 2
α

γη, (A43e)

as the remaining terms indicated by the dots create negligible corrections within the kept
order of accuracy (we neglected terms of order o(Ro3) and O(Ro2(Roβ)2); the J-terms
will not contribute to the corrections in the equations for the means and in the following
calculation of corrections in the fluctuational equations we will neglect terms of order
O(Ro(Roβ)2) in the above expressions for û>

i (q) and b̂>
i (q); we have also neglected

O((Roβ)4) terms in γ̃ 2
α ). Of course now 〈·〉c denotes conditional average over the second

shell (λ2 ≤ k ≤ λ1) statistical subensemble.
According to the above remark, for the sake of the fluctuational equations, i.e.

calculation of the corrections from short-wavelength couplings of the type 〈û>
mb̂>

n 〉c −
〈û>

mb̂>
n 〉, all we need from the expressions (A43a,b) is

û>
i (q) = 1

γν

f̂i(q) − i
Ro
γν

Pimn[J(u)
mn − HJ

(b)
mn] + · · · , (A44a)

b̂>
i (q) = iRoβ

(k · 〈B〉0)

γν

Kijf̂j(q) + iRoKimkjJ
(ub)
mj + · · · . (A44b)

Repetition of the sub-steps undertaken in the first step of the renormalization procedure,
but with the modified expressions for the short-wavelength modes û>

i (q) and b̂>
i (q), leads

to modification of the mean and fluctuational EMF (including the turbulent magnetic
diffusivities – mean and fluctuational) and the mean Lorentz force. However, it is quite
clear from the expressions (A44a,b) that the fluctuational turbulent viscosity remains
uninfluenced by the fluctuational EMF ᾰ at leading order and is thus unaltered with respect
to the previous step of the procedure (recall that we neglect the terms of order O(Ro(Roβ))

in the fluctuational corrections 〈û>
mû>

n 〉c − 〈û>
mû>

n 〉 and 〈b̂>
mb̂>

n 〉c − 〈b̂>
mb̂>

n 〉). The effect of
the fluctuational EMF ᾰ is pronounced in all the remaining short-wavelength couplings as
follows:

〈û>
m(q′)b̂>

n (q − q′)〉c − 〈û>
m(q′)b̂>

n (q − q′)〉

= iRoKnq(q − q′)
γν(q′)

(ks − k′
s)〈 f̂ >

m (q′)J(ub)
qs (q − q′)〉c + O(Ro(Roβ)), (A45a)

〈û>
i (q′)û>

j (q − q′)〉
= K̃ik(q′)K̃jl(q − q′)〈 f̂ >

k (q′)f̂ >
l (q − q′)〉

− Roε
Pjp(k − k′)

γν(q′)γν(q − q′)2 Gpk〈 f̂ >
i (q′)f̂ >

k (q − q′)〉

− Roε
Pip(k′)

γν(q − q′)γν(q′)2 Gpk〈 f̂ >
j (q − q′)f̂ >

k (q′)〉

− Ro(kp − k′
p)Pjq(k − k′)

2γν(q′)γν(q − q′)

[
〈 f̂ >

i (q′)f̂q((k − k′)> − εGp, ω − ω′)〉
γν((k − k′)> − εGp, ω − ω′)
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− 〈 f̂ >
i (q′)f̂q((k − k′)> + εGp, ω − ω′)〉

γν((k − k′)> + εGp, ω − ω′)

]

− Rok′
pPiq(k′)

2γν(q′)γν(q − q′)

[ 〈 f̂ >
j (q − q′)f̂q(k′> − εGp, ω

′)〉
γν(k′> − εGp, ω′)

−
〈 f̂ >

j (q − q′)f̂q(k′> + εGp, ω
′)〉

γν(k′> + εGp, ω′)

]
+ o(Ro3), (A45b)

〈b̂>
i (q′)b̂>

j (q − q′)〉
= −(Roβ)2(k′ · 〈B〉)((k − k′) · 〈B〉)Kik(q′)K̃kl(q′)

× Kjm(q − q′)K̃mn(q − q′)〈 f̂ >
l (q′)f̂ >

n (q − q′)〉
+ O(Ro2(Roβ)2), (A45c)

εkmn〈û>
m(q′)b̂>

n (q − q′)〉
= iRoβεkmn((k − k′) · 〈B〉0)K̃mq(q′)Knp(q − q′)K̃pl(q − q′)〈 f̂ >

q (q′)f̂ >
l (q − q′)〉

− RoεεkmnK̃mq(q′)Knl(q − q′)Γlp

γν(q − q′)
〈 f̂ >

q (q′)f̂ >
p (q − q′)〉

+ 1
2 RoεkmnK̃mr(q′)Knl(q − q′)(kq − k′

q)

[
〈 f̂ >

r (q′)f̂l((k − k′)> − εΓ q, ω − ω′)〉
γν((k − k′)> − εΓ q, ω − ω′)

−〈 f̂ >
r (q′)f̂l((k − k′)> + εΓ q, ω − ω′)〉

γν((k − k′)> + εΓ q, ω − ω′)

]
+ o(Ro3). (A45d)

A.1. Renormalized fluctuational coefficients ν̆, η̆ and ᾰ

Making use of (4.28c) and (2.12) we start by calculating the fluctuational EMF at the
second step ∫ Λ

d4q′[〈û>
m(q′)b̂>

n (q − q′)〉c − 〈û>
m(q′)b̂>

n (q − q′)〉]

= iRoD0b̂<
w (q)εqstεtrw

∫ Λ d4q′

k′σ0

Knq(q − q′)
|γν(q′)|2 (ks − k′

s)Pmr(k′)

− RoD1b̂<
w (q)εqstεtrwεmrl

∫ Λ d4q′

k′σ1

Knq(q − q′)
|γν(q′)|2 (ks − k′

s)k
′
l

+ O(Ro(Roβ)), (A46)

and, substituting for Knq(q − q′), from (A43c) one obtains

εkmn

∫ Λ

d4q′[〈û>
m(q′)b̂>

n (q − q′)〉c − 〈û>
m(q′)b̂>

n (q − q′)〉]

= iRoD0b̂<
w (q)εkmnεnstεtrw

∫ Λ d4q′

k′σ0

γη(q − q′)(ks − k′
s)Pmr(k′)

|γν(q′)|2[γ 2
η (q − q′) − (k − k′)2α2]
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Renormalization group analysis of the MHD turbulence

+ iRoD0b̂<
w (q)εkmnεqstεtrwεnuq

∫ Λ d4q′

k′σ0

iᾰ(ku − k′
u)(ks − k′

s)Pmr(k′)
|γν(q′)|2[γ 2

η (q − q′) − (k − k′)2α2]

− RoD1b̂<
w (q)εkmnεnstεtrwεmrl

∫ Λ d4q′

k′σ1

γη(q − q′)(ks − k′
s)k

′
l

|γν(q′)|2[γ 2
η (q − q′) − (k − k′)2α2]

− RoD1b̂<
w (q)εkmnεqstεtrwεmrlεnuq

∫ Λ d4q′

k′σ1

iᾰ(ku − k′
u)(ks − k′

s)k
′
l

|γν(q′)|2[γ 2
η (q − q′) − (k − k′)2α2]

+ O(Ro(Roβ)). (A47)

Since

γ 2
η (−q′) − k′2α2 = (iω′ + Eηk′2)2 − k′2α2 = −ω′2 + E2

ηk′4 − k′2α2 + 2iω′Eηk′2,
(A48)

|γ 2
η (−q′) − k′2α2|2 = (ω′2 − E2

ηk′4 + k′2α2)2 + 4ω′2E2
ηk′4, (A49)

we introduce the following notation

I1(k′) =
∫ ∞

−∞
dω′ ω′2 + E2

ηk′4 − α2k′2

(ω′2 + E2
νk′4)[(ω′2 − E2

ηk′4 + α2k′2)2 + 4ω′2E2
ηk′4]

, (A50a)

I2(k′) =
∫ ∞

−∞
dω′ ω′2 − E2

ηk′4 + α2k′2

(ω′2 + E2
νk′4)[(ω′2 − E2

ηk′4 + α2k′2)2 + 4ω′2E2
ηk′4]

, (A50b)

which allows us to express the fluctuational EMF in the form

iRokjεijkεkmn

∫ Λ

d4q′[〈û>
m(q′)b̂>

n (q − q′)〉c − 〈û>
m(q′)b̂>

n (q − q′)〉]

= −8πD0

3
Ro2Ĕη

I1(λ2)δλ

λ
σ0−4
2

k2b̂<
i (q)

+ 8πD0

3
Ro2ᾰ

I2(λ2)δλ

λ
σ0−4
2

(iεijkkjb̂<
k (q))

+ 8πD1

3
Ro2Ĕη

I1(λ2)δλ

λ
σ1−6
2

(iεijkkjb̂<
k (q))

− 8πD1

3
Ro2α

I2(λ2)δλ

λ
σ1−4
2

k2b̂<
i (q)

+ O(Ro(Roβ), k3). (A51)

This leads to the following expressions for the corrections to the fluctuational diffusivity
η̆ and the ᾰ coefficient

δη̆ = η̆(λ1) − η̆(λ2) = −8πD0

3
η̆
I1(λ2)δλ

λ
σ0−4
2

− 8πD1

3
ᾰ
I2(λ2)δλ

λ
σ1−4
2

, (A52)

δᾰ = ᾰ(λ1) − ᾰ(λ2) = −8πD1

3
η̆
I1(λ2)δλ

λ
σ1−6
2

− 8πD0

3
ᾰ
I2(λ2)δλ

λ
σ0−4
2

, (A53)
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K.A. Mizerski

and we have returned to the dimensional variables (cf. discussion below (4.20)). It is now
clear that in all the following steps of the renormalization procedure no terms with a new
structure can appear in the fluctuational equations and thus we can now take the continuous
limit δλ→ 0 of the obtain recursions, which yields

dη̆

dλ
= −8πD0

3
η̆
I1(λ)

λσ0−4 − 8πD1

3
ᾰ
I2(λ)

λσ1−4 , (A54a)

dᾰ

dλ
= −8πD1

3
η̆
I1(λ)

λσ1−6 − 8πD0

3
ᾰ
I2(λ)

λσ0−4 . (A54b)

The latter constitute the general form of renormalized recursion differential equations
for the fluctuational magnetic diffusivity η̆ and the ᾰ coefficient. On the other hand, the
equation for the fluctuational turbulent viscosity can be obtained from (A27a)

dν̆

dλ
= −2π2(5 − σ0)

15ν̆2 θΛν

D0

λσ0+2 . (A55)

Given that we assume ν and η finite (non-zero), the fact that we have written down the
differential recursion equations in the above form means that we are allowed to group
terms in the Ro−, Roβ−expansions in the following way:

η̆ = Ro2( f1 + O(Ro(Roβ))) + Ro4( f2 + O(Ro(Roβ))) + · · · . (A56)

In other words, at each Ro2n order we can take the leading-order form of the coefficient
next to Ro2n (neglecting the O(Ro(Roβ)) terms) and we are left with a series of the form∑∞

n=1 fnRo2n. In this way we grasp the full leading-order dependence of the turbulent
fluctuational diffusivities and ᾰ on the wavenumber k in the limit ΛL ≤ k 	 Λ by keeping
in the corrections from short-wavelength modes of the form Ro2f (ν̆, η̆, ᾰ) at each step of
the renormalization procedure, where f (·) denotes here a function different for each of the
coefficients ν̆, η̆, ᾰ.

We start by considering the viscosity (A55) which is independent of η̆ and ᾰ

dν̆3

dλ
= −θΛν

2π2(5 − σ0)D0

5λσ0+2 , (A57)

which can be solved explicitly with a boundary condition ν̆(Λ) = ν,

ν̆(λ) =
[
ν3 + θΛν

2π2D0(5 − σ0)

5(σ0 + 1)

(
1
λσ0+1 − 1

Λ
σ0+1
ν

)]1/3

, (A58)

and since, ultimately, we are interested in the limiting case ΛL ≤ k 	 Λ when the θΛν

coefficient becomes irrelevant, it will be dropped in the following. In strong turbulence,
when ΛL ≤ λ	 Λ, we may expect

ν̆(λ) =
(

π2D0

5

)1/3 1
λ4/3 , (A59)

where we have substituted σ0 = 3 since this value leads to the Kolmogorov-type scaling
for the kinetic energy – cf. § 5.1 and Yakhot & Orszag (1986).
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Renormalization group analysis of the MHD turbulence

A.1.1. The case of non-helical turbulence D1 = 0
When the helical component of the driving vanishes, D1 = 0, we have

ᾰ = 0, I1(k) = π

ν̆η̆(ν̆ + η̆)k6 , (A60a,b)

and (A54a) takes the form

(ν̆ + η̆)
dη̆

dλ
= −8π2

3ν̆

D0

λσ0+2 . (A61)

We take σ0 = 3 and change variables according to (A59) in the limit ΛL ≤ λ	 Λ, which
yields

(ν̆ + η̆)
dη̆

dν̆
= 10ν̆. (A62)

The general solution of the latter equation obtained via the method of characteristics can
be written in the parametric form,

η̆ = aC0s − (ν̆0 − C0)ã
sa/ã

, (A63a)

ν̆ = C0s + ν̆0 − C0

sa/ã
, (A63b)

where s is the parameter along the curve η̆(ν̆),

a = 1
2 (

√
41 − 1), ã = 1

2(
√

41 + 1), C0 = η̆0 + ãν̆0√
41

, (A64a–c)

and ν̆0 = ν̆(s = 0), η̆0 = η̆(s = 0). General solutions are not attainable in the explicit form
η̆(ν̆), however, in the considered limit of small wavenumber λ	 Λ the turbulent viscosity
becomes large, which implies that the terms ∼ sa/ã are negligible and the solution of (A62)
takes the following simple form at leading order (a simple example with a/ã approximated
by 0.5 may be helpful to get some bearings. In such a case (A63b) can be inverted with
the use of the Cardano’s formulae for a cubic equation. In the limit of small wavenumber
λ	 Λ one can neglect (ν̆0 − C0)

2/C2
0 with respect to 2ν̆3/27C3

0, which implies that the
discriminant of the cubic equation vanishes. It follows that there is only one non-trivial
root s = ν̆/C0 and hence ηf = aνf at the leading order):

η̆ = aν̆. (A65)

We gather the strong-turbulence results for renormalized diffusivities with σ0 = 3,

ν̆(k) =
(

π2D0

5

)1/3 1
k4/3 , η̆(k) = a

(
π2D0

5

)1/3 1
k4/3 , ΛL ≤ k 	 Λ, (A66a–c)

and also provide the simple solution of the form η̆ = aν̆ for the case of general σ0

η̆ = aν̆(λ) =
[

2π2D0(5 − σ0)

5(σ0 + 1)

]1/3 a
λ(σ0+1)/3 , (A67)

where in general

a = 1
2

(√
1 + 240

3(5 − σ0)
− 1

)
. (A68)
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K.A. Mizerski

A.1.2. Helical turbulence with D0ΛL � D1
In the case at hand the effect of D1 is weaker than that of D0 and we have |ᾰ|k 	 ν̆k2, η̆k2,
which allows us to write

I1(k) ≈ π

ν̆η̆(ν̆ + η̆)k6 , I2(k) ≈ − π

ν̆(ν̆ + η̆)2k6 . (A69a,b)

The expressions (A54a,b) simplify to

dη̆

dλ
= 8π2D0

3�

ᾰ − (�λ)(ν̆ + η̆)λ

ν̆(ν̆ + η̆)2λ7 , (A70a)

dᾰ

dλ
= 8π2D1

3
�ᾰ − (ν̆ + η̆)

ν̆(ν̆ + η̆)2λ5 , (A70b)

where we have introduced the length scale
D0

D1
= �. (A71)

The current limit is defined by
λ� � 1, (A72)

which in tandem with |ᾰ|k 	 ν̆k2, η̆k2 allows us to further simplify the magnetic
diffusivity equation

dη̆

dλ
= −8π2D0

3
1

ν̆(ν̆ + η̆)λ5 . (A73)

The latter equation is the same as in the non-helical case (cf. (A61)), thus, in the limit
ΛL ≤ λ	 Λ, we can write down the solution in the form

η̆ = aν̆. (A74)

Next we transform (A70b) into

d
(

ᾰ
ν̆

)
dν̆

+ 1
ν̆

(
ᾰ

ν̆

)
= −10

�

�
(

ᾰ
ν̆

)
− (1 + a)

(1 + a)2
1
ν̆
, (A75)

which in the limit ΛL ≤ λ	 Λ has a solution in the form

ᾰ = 10
2a + 1

ν̆

�
= 10D1

(2a + 1)D0
ν̆. (A76)

Verification of consistency shows that, indeed,

ᾰ = 10
2a + 1

ν̆

�
	 η̆λ = aν̆λ⇐⇒ λ� � 1. (A77)

So that, finally, in the limit

D0ΛL

D1
= 2πD0

LLD1
� 1, ΛL ≤ λ	 Λ, (A78)

we obtain

ν̆(k) = A
k4/3 , η̆(k) = aA

k4/3 , ᾰ(k) = 10D1

(2a + 1)D0

A
k4/3 , (A79a–c)

A =
(

π2D0

5

)1/3

, a = 1
2(

√
41 − 1). (A80a,b)
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Renormalization group analysis of the MHD turbulence

A.2. Renormalized mean coefficients ν̄, η̄, ᾱ, Q̄, Q̄p

Similarly to the case of the fluctuational viscosity, the mean turbulent viscosity at the kept
order of accuracy remains the same for both the non-helical and the helical turbulence,
and it is obtained from (cf. e.g. (3.19) with ν̆ substituted for ν)

dν̄

dλ
= −2π2(5 − σ0)D0

15ν̆2(λ)λσ0+2 . (A81)

The solution of the latter equation in the case of strong turbulence takes the form

ν̄ = ν +
(

π2D0

5

)1/3 1

Λ
4/3
L

≈
(

π2D0

5

)1/3 1

Λ
4/3
L

= ν̆(ΛL). (A82)

Next, we proceed to calculation of the mean EMF

εkmn

∫ Λ

d4q ei(k·x−ωt)〈û>
m(q′)b̂>

n (q − q′)〉

= −iRoβεkmnk′ · 〈B〉0K̃mq(q′)Knp(−q′)K̃pl(−q′)
[

D0

k′σ0
Pql(k′) + i

D1

k′σ1
εqlkk′

k

]
− RoβεεkmnKnl(−q′)Γlp

γν(q′)γν(−q′)

[
D0

k′σ0
Pmp(k′) + i

D1

k′σ1
εmpkk′

k

]
− Roεkmn

2|γν(q′)|2
[

D0

k′σ0
Pml(k′) + i

D1

k′σ1
εmlkk′

k

]
k′

q[Knl(εΓ q − k′, −ω′)(1 + iεΓ q · x)

− Knl(−εΓ q − k′, −ω′)(1 − iεΓ q · x)] + o(Ro3). (A83)

The algebraic manipulations needed to obtain the explicit form of the EMF are
cumbersome, but at this stage conceptually straightforward, thus, we now provide the final
result

E = εkmn

〈∫ Λ

d4q ei(k·x−ωt)
∫ Λ

d4q′〈û>
m(q′)b̂>

n (q − q′)〉
〉

= 8πD1

3
Roβ〈B〉k

∫ λ1

λ2

Ĕη dk′

k′σ1−6I1(k′) + 8πD0

3
Roβ〈B〉k

∫ λ1

λ2

ᾰ dk′

k′σ0−4I2(k′)

+ (Roβ)2 8π

5
HRoβ〈B〉2

0〈B〉0k

∫ λ1

λ2

dk′
[

D0ᾰIL2(k′)
k′σ0−6 − D1IL1(k′)

k′σ1−6

]
− 8πD0

3
Ro

∂〈B〉n

∂xm
εkmn

∫ λ1

λ2

Ĕη dk′

k′σ0−4I1(k′) − 8πD1

3
Ro

∂〈B〉n

∂xm
εkmn

∫ λ1

λ2

ᾰ dk′

k′σ1−4I2(k′),

(A84)

where

IL1(k′) =
∫ ∞

−∞
dω′ fL1(ω

′, k′)
[(ω′2 − Ĕ2

ηk′4 + ᾰ2k′2)2 + 4Ĕ2
ηk′4ω′2]2(ω′2 + Ĕ2

νk′4)2
, (A85a)

fL1(ω
′, k′) = Ĕηk′2[2Ĕν Ĕηk′4(Ĕ2

ηk′4 − ᾰ2k′2 + ω′2)
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K.A. Mizerski

− 2ω′2(Ĕ2
ηk′4 + ᾰ2k′2 + ω′2)](Ĕ2

ηk′4 − ᾰ2k′2 + ω′2)

+ 2ᾰ2k′2(Ĕ2
ηk′4 − ᾰ2k′2 − ω′2)[Ĕ2

ηĔνk′6 − ᾰ2Ĕνk′4 − (2Ĕη + Ĕν)ω
′2k′2],
(A85b)

IL2(k′) =
∫ ∞

−∞
dω′ fL2(ω

′, k′)
[(ω′2 − Ĕ2

ηk′4 + ᾰ2k′2)2 + 4Ĕ2
ηk′4ω′2]2(ω′2 + Ĕ2

νk′4)2
, (A85c)

fL2(ω
′, k′) = 2Ĕηk′2(Ĕ2

ηk′4 − ᾰ2k′2 + ω′2)(Ĕ2
ηĔνk′6 − ᾰ2Ĕνk′4 − (2Ĕη + Ĕν)ω

′2k′2)

+ (Ĕ2
ηk′4 − ᾰ2k′2 − ω′2)[2Ĕν Ĕηk′4(Ĕ2

ηk′4 − ᾰ2k′2 + ω′2)

− 2ω′2(Ĕ2
ηk′4 + ᾰ2k′2 + ω′2)]. (A85d)

The curl of the EMF then reads

εRoβ−1εijk
∂

∂Xj
εkmn

〈∫ Λ

d4q ei(k·x−ωt)
∫ Λ

d4q′〈û>
m(q′)b̂>

n (q − q′)〉
〉

= 8π

3
Ro2

[
D1

∫ λ1

λ2

Ĕη dk′

k′σ1−6I1(k′) + D0

∫ λ1

λ2

ᾰ dk′

k′σ0−4I2(k′)

]
(∇̄ × 〈B〉)i

+ 8π

5
HRo2(Roβ)2

∫ λ1

λ2

dk′
[

D0ᾰIL2(k′)
k′σ0−6 − D1IL1(k′)

k′σ1−6

]
[∇̄ × (〈B〉2〈B〉)]i

+ 8π

3
Ro2

[
D0

∫ λ1

λ2

Ĕη dk′

k′σ0−4I1(k′) + D1

∫ λ1

λ2

ᾰ dk′

k′σ1−4I2(k′)

]
(∇̄2〈B〉)i. (A86)

Let us point out that, in the limit D1/D0 	 ΛL,

IL1(k′) ≈ 2Ĕηk′2
∫ ∞

−∞
dω′ Ĕν Ĕηk′4 − ω′2

(ω′2 + Ĕ2
ηk′4)2(ω′2 + Ĕ2

νk′4)2
= π

Ĕ2
ν Ĕη(Ĕν + Ĕη)k′8 , (A87a)

IL2(k′) ≈ 2
∫ ∞

−∞
dω′ 2Ĕν Ĕ3

ηk′8 − (2Ĕν + 3Ĕη)Ĕηk′4ω′2 + ω′4

(ω′2 + Ĕ2
ηk′4)3(ω′2 + Ĕ2

νk′4)2
= (Ĕν + 2Ĕη)π

Ĕ2
ν Ĕ2

η(Ĕν + Ĕη)2k′10
.

(A87b)

The Lorentz force can also be calculated using∫ Λ

d4q ei(k·x−ωt)〈û>
i (q′)û>

j (q − q′)〉

= K̃ik(q′)K̃jl(−q′)
[

D0

k′σ0
Pkl(k′) + i

D1

k′σ1
εkluk′

u

]
+ · · · (A88a)∫ Λ

d4q ei(k·x−ωt)〈b̂>
i (q′)b̂>

j (q − q′)〉

= (Roβ)2〈B〉v〈B〉wk′
vk′

wKik(q′)Kjm(−q′)
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Renormalization group analysis of the MHD turbulence

× K̃kl(q′)K̃mn(−q′)
[

D0

k′σ0
Pln(k′) + i

D1

k′σ1
εlnuk′

u

]
+ O(Ro2(Roβ)2), (A88b)

where the dots indicate the terms proportional to ∇̄〈U〉 which contribute to the mean
turbulent viscosity. Finally, we get

− εRo∇̄ ·
∫ Λ

d4q′
∫ Λ

d4q ei(k·x−ωt)〈û>
i (q′)û>

j (q − q′)〉

= ε
16π

15
HRo2(Roβ)

[
4∇̄ 〈B〉2

2
− (〈B〉 · ∇̄)〈B〉

] [
D0

∫ λ2

λ1

dk′

k′σ0−4IQ1(k′)

−D1

∫ λ2

λ1

ᾰ dk′

k′σ1−6IQ2(k′)
]

+ o(Ro4) + const., (A89a)

εRoH∇̄ ·
∫ Λ

d4q′
∫ Λ

d4q ei(k·x−ωt)〈b̂>
i (q′)b̂>

j (q − q′)〉

= ε
16π

15
HRo2(Roβ)

[
4∇̄ 〈B〉2

2
− (〈B〉 · ∇̄)〈B〉

] [
D0

2

∫ λ2

λ1

dk′

k′σ0−4IQ3(k′)

−D1

∫ λ2

λ1

ᾰEη dk′

k′σ1−8 IQ4(k′)
]

+ o(Ro4(Roβ)2), (A89b)

1
2 HRo

∫ Λ

d4q′
∫ Λ

d4q ei(k·x−ωt)〈b̂>
i (q′)b̂>

i (q − q′)〉

= 16π

3
HRo2(Roβ)

〈B〉2

2

[
D0

2

∫ λ2

λ1

dk′

k′σ0−4IQ3(k′) − D1

∫ λ2

λ1

ᾰEη dk′

k′σ1−8 IQ4(k′)
]

+ O(Ro2(Roβ)2), (A89c)

where

IQ1(k′) =
∫ ∞

−∞
dω′ EνEηk′4(E2

ηk′4 − α2k′2 + ω′2) − ω′2(E2
ηk′4 + α2k′2 + ω′2)

(ω′2 + E2
νk′4)2[(ω′2 − E2

ηk′4 + α2k′2)2 + 4ω′2E2
ηk′4]

,

(A90a)

IQ2(k′) =
∫ ∞

−∞
dω′ E2

ηEνk′6 − α2Eνk′4 − (2Eηk′2 + Eνk′2)ω′2

(ω′2 + E2
νk′4)2[(ω′2 − E2

ηk′4 + α2k′2)2 + 4ω′2E2
ηk′4]

, (A90b)

IQ3(k′) =
∫ ∞

−∞
dω′ E

2
ηk′4(E2

ηk′4 − α2k′2 + ω′2)2 + ω′2(ω′2 + k′2α2 + E2
ηk′4)2

(ω′2 + E2
νk′4)[(ω′2 − E2

ηk′4 + α2k′2)2 + 4ω′2E2
ηk′4]2

+
∫ ∞

−∞
dω′ ᾰ2k′2[(E2

ηk′4 − α2k′2 − ω′2)2 + 4ω′2E2
ηk′4]

(ω′2 + E2
νk′4)[(ω′2 − E2

ηk′4 + α2k′2)2 + 4ω′2E2
ηk′4]2 , (A90c)

IQ4(k′) =
∫ ∞

−∞
dω′ (E2

ηk′4 − α2k′2)2 + (E2
ηk′4 + α2k′2)ω′2

(ω′2 + E2
νk′4)[(ω′2 − E2

ηk′4 + α2k′2)2 + 4ω′2E2
ηk′4]2 . (A90d)

It is clear now that following the steps of the renormalization procedure does not
introduce any new terms of an order lower than O(Ro2(Roβ)2, Ro4) in the expressions
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for the coefficients Q̄, Q̄p, η̄ and ᾱ. In the limit δλ→ 0, (A84) and (A89a–c) transform
into the following set of recursion differential equations (cf. (A26a–f )):

dQ̄
dλ

= 16π

15
Ro2

{
D0

1
λσ0−4

[
IQ1(λ) + 1

2IQ3(λ)
]

− D1
ᾰ

λσ1−6 [IQ2(λ) + Ĕηλ
2IQ4(λ)]

}
,

(A91a)

dQ̄p

dλ
= 64π

15
Ro2

{
D0

1
λσ0−4

[
IQ1(λ) − 1

8
IQ3(λ)

]
− D1

ᾰ

λσ1−6

[
IQ2(λ) − 1

4
Ĕηλ

2IQ4(λ)

]}
,

(A91b)

dĒη

dλ
= −8π

3
Ro2

[
D0

Ĕη(λ)

λσ0−4 I1(λ) + D1
ᾰ(λ)

λσ1−4I2(λ)

]
, (A91c)

dᾱ

dλ
= −8π

3
Ro2

[
D1

Ĕη(λ)

λσ1−6 I1(λ) + D0
ᾰ(λ)

λσ0−4I2(λ)

]

− 8π

5
HRo2(Roβ)2

[
D0ᾰ(λ)IL2(λ)

λσ0−6 − D1IL1(λ)

λσ1−6

]
〈B〉2. (A91d)

Finally, we solve the above set of differential equations, with the obvious ‘boundary’
conditions

Ēη(Λ) = 0, ᾱ(Λ) = 0, Q̄(Λ) = 1, Q̄p(Λ) = 1, (A92a–d)

in the limit ΛL � �−1 = D1/D0. Returning to dimensional units (cf. (4.21a–e)), and
taking the limit λ→ ΛL (with ΛL 	 Λ), for strong turbulence with σ0 = 3 and σ1 = 5
one obtains for the EMF

I1(k) = π

ν̆η̆(ν̆ + η̆)k6 , I2(k) = − π

ν̆(ν̆ + η̆)2k6 , (A93a)

IL1(k) ≈ 2η̆k2
∫ ∞

−∞
dω

ν̆η̆k4 − ω2

(ω2 + η̆2k4)2(ω2 + ν̆2k4)2 = π

ν̆2η̆(ν̆ + η̆)k8 , (A93b)

IL2(k′) ≈ 2
∫ ∞

−∞
dω

2ν̆η̆3k8 − (2ν̆ + 3η̆)η̆k4ω2 + ω4

(ω2 + η̆2k4)3(ω2 + ν̆2k4)2 = (ν̆ + 2η̆)π

ν̆2η̆2(ν̆ + η̆)2k10 , (A93c)

dη̄

dλ
= − 8π2D0

3(1 + a)A2

[
1
λ7/3 − 10

(2a + 1)(1 + a)λ2�2
1
λ7/3

]
≈ − 8π2D0

3(1 + a)A2
1
λ7/3 ,

(A94a)

dᾱ

dλ
= − 40

3(1 + a)�

(
π2D0

5

)1/3 [
1 − 10

(2a + 1)(1 + a)

]
1
λ7/3

− 8π2

5

[
D0ᾰ(ν̆ + 2η̆)

ν̆2η̆2(ν̆ + η̆)2λ7 − D1

ν̆2η̆(ν̆ + η̆)λ7

]
〈B〉2, (A94b)
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and hence with ν̆, η̆ and ᾰ given by (A79)

η̄ = η̆(ΛL) = aA

Λ
4/3
L

, ᾱ = 10D1

(2a + 1)D0

A

Λ
4/3
L

. (A95a,b)

Note that the correction proportional to 〈B〉2 in the ᾱ coefficient vanishes, thus, in strong
turbulence, the effect of the Lorentz force on the α-effect is pronounced only at higher
orders. Furthermore, in the limit D0ΛL � D1 we have

IQ1(k) ≈
∫ ∞

−∞
dω

ν̆η̆k4 − ω2

(ω2 + ν̆2k4)2(ω2 + η̆2k4)
= π

2ν̆2(ν̆ + η̆)k6 , (A96a)

IQ2(k) ≈
∫ ∞

−∞
dω

η̆2ν̆k6 − (2η̆k2 + ν̆k2)ω2

(ω2 + ν̆2k4)2(ω2 + η̆2k4)2 = π

2ν̆2(ν̆ + η̆)2k8 , (A96b)

IQ3(k) ≈
∫ ∞

−∞
dω

1
(ω2 + ν̆2k4)(ω2 + η̆2k4)

= π

ν̆η̆(ν̆ + η̆)k6 , (A96c)

IQ4(k) ≈ η̆2k4
∫ ∞

−∞
dω

1
(ω2 + ν̆2k4)(ω2 + η̆2k4)3 = (3ν̆2 + 9ν̆η̆ + 8η̆2)π

8ν̆η̆3(ν̆ + η̆)3k10 , (A96d)

thus the Lorentz-force coefficients are

Q̄(ΛL) ≈ − 8
3a

ln
Λ

ΛL
, Q̄p(ΛL) ≈ −4(4a − 1)

15
ln

Λ

ΛL
. (A97a,b)

It is of interest to point out that, in the case of weak turbulence, the mean diffusivities
and the ᾱ, Q̄ and Q̄p coefficients are obtained from (A91a–d) with the integrals given by
(A93a–c) and (A96a–d) but all the fluctuational diffusivities replaced by the molecular
ones ν̆ = ν and η̆ = η and with ᾰ = 0.

As a final note, it is to be stressed once again that the entire renormalization technique
fundamentally relies on two important assumptions regarding the properties of the flow.
Firstly, we recall that the statistical correlations between short-wavelength fluctuations
of the order higher than second, i.e. terms of the type 〈û>

i û>
j f̂ >

k 〉c have been neglected.
Secondly, the limit of distant interactions (A5) corresponding to an assumption of
ergodicity of the system has greatly simplified the calculations.
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