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Abstract
We prove two estimates for the expectation of the exponential of a complex function of a random per-
mutation or subset. Using this theory, we find asymptotic expressions for the expected number of copies
and induced copies of a given graph in a uniformly random graph with degree sequence (d1, . . . , dn) as
n→ ∞. We also determine the expected number of spanning trees in this model. The range of degrees
covered includes dj = λn+O(n1/2+ε) for some λ bounded away from 0 and 1.

2020 MSC Codes: Primary: 05A16; Secondary: 05C80

1. Introduction
For infinitely many natural numbers n, consider vectors

d(n)= (d1(n), . . . , dn(n)) ∈ {0, . . . , n− 1}n.
Since we consider asymptotics with respect to n→ ∞, we will generally assume that n is suffi-
ciently large and just write d in place of d(n), and similarly for other variables. Everywhere in the
paper we assume that

d(n) is a graphical degree sequence;
that is, there exists a graph on the vertex set {1, . . . , n} such that dj(n) is the degree of vertex j, for
j= 1, . . . , n. Let Gd denote the uniform random graph model of simple graphs on the vertex set
{1, . . . , n} with degree sequence d. By G∼ Gd we mean that G is a random graph from Gd.

We study the occurrence of patterns in G∼ Gd such as subgraphs or induced subgraphs iso-
morphic to a given graph. Using this theory, we find asymptotic expressions for the expected
number of some more general structures, namely spanning trees and r-factors. Our aim is to pro-
vide formulae that cover sufficiently large and general structures so they could be subsequently
used to estimatemoments and derive tail bounds for the limiting distribution of the corresponding
random variables.
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For any vector v= (v1, . . . , vt), let

‖v‖ = max
j=1...t

|vj|

denote the infinity norm of v. We also use this norm for functions with finite domain. We will use
the following parameters that depend only on d:

d = 1
n

n∑
j=1

dj, λ = d
n− 1

,

R= 1
n

n∑
j=1

(dj − d)2, δ = ‖(d1 − d, . . . , dn − d)‖.
(1.1)

We consider the range of d which satisfy the following assumptions for some constant η ∈ (0, 12 )
and some constant ε > 0 which is sufficiently small depending on η:

δ � n1/2+ε and min{λ, 1− λ}� 1
6η2 log n

. (1.2)

The set of graphs with degrees d satisfying (1.2) is non-empty for sufficiently large n. This is
implied by the enumeration results in [10] and also follows directly from the Erdős–Gallai char-
acterization of graphical degree sequences [2]. The random graph model Gd is thus well-defined.

Let G(n, p) denote the binomial model of random graph, in which each edge is present indepen-
dently with probability p. Note that the degree sequence of a random graph from G(n, p) satisfies
δ � n1/2+ε with high probability for any p= p(n). Our results show that counts of small sub-
graphs in Gd closely match those in G(n, λ), but for larger subgraphs the two models diverge, and
correction factors that we will determine are required.

Let G and H be graphs with the same vertex set {1, 2, . . . , n}. The number of copies of H in G
is the number of spanning subgraphs of G that are isomorphic to H. For given d,H, the random
variable Nd(H) is the number of copies of H in G when G is taken at random from Gd. The first
problem we consider is the expectation ENd(H). If h= (h1, . . . , hn) is the degree sequence of H,
then we define

m= 1
2

n∑
j=1

hj, μt = 1
n

n∑
j=1

htj for t� 1. (1.3)

Note thatm= nμ1/2 is the number of edges ofH. Define Aut (H) to be the automorphism group
of H, which is the set of permutations of the vertex set {1, . . . , n} that preserve the edge set of H.

Theorem 1.1. For any constant η ∈ (0, 12 ) there is some ε1(η)> 0 such that the following holds for
every fixed ε ∈ (0, ε1(η)]. Let d be a degree sequence which satisfies (1.2). Suppose that H is a graph
on vertex set {1, . . . , n} with m edges and degree sequence h such that

m� n1+2ε ,
δ3μ3
λ3n2

� n−1/2+η and ‖h‖� n1/2+ε . (1.4)

Then, as n→ ∞,

ENd(H)= n!
|Aut (H)| λm exp

(
1− λ

4λ
(μ2

1 + 2μ1 − 2μ2)− R
2λ2n

(μ2
1 + μ1 − μ2)

− 1− λ2

6λ2n
μ3 − 1− λ

λn2
∑

jk∈E(H)

hjhk +O(n−1/2+η)
)
.
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The result of Theorem 1.1 simplifies for graphs H with moderate degrees, as shown in the
following corollary.

Corollary 1.1. Suppose the assumptions of Theorem 1.1 hold for some fixed η ∈ (0, 12 ) and ε ∈
(0, ε1(η)]. Suppose also that μ3 � λ2n1/2+η. Then, as n→ ∞,

ENd(H)= n!
|Aut (H)| λm exp

(
1− λ

4λ
(μ2

1 + 2μ1 − 2μ2)− R
2λ2n

(μ2
1 + μ1 − μ2)+O(n−1/2+η)

)
.

(1.5)

Furthermore, if μ2 � n−3ε then

ENd(H)= n!
|Aut (H)| λm(1+O(n−1/2+η + n−ε/2)),

which matches the binomial random graph model G(n, λ) up to the error term.

McKay [9, Theorem 2.8(a,b)] gave formulae for the number of perfect matchings and cycles of
given size in G∼ Gd when d = (d, . . . , d) is regular (in other words, when δ = 0). Applying (1.5)
in these cases (H is a perfect matching, or a cycle of a given length) reproduces these expressions
when d is regular, and generalizes them to irregular degree sequences. Kim, Sudakov and Vu [5]
obtained a result overlapping the last part of Corollary 1.1 for the case that H has a constant
number of edges and d is regular with d = o(n).

For regular subgraphs H, we have the following result.

Corollary 1.2. For any constant η ∈ (0, 12 ) and every fixed ε ∈ (0, ε1(η)], the following holds as
n→ ∞, where ε1(η) is provided by Theorem 1.1. Let d be a degree sequence which satisfies (1.2).
Suppose also that h� n2ε is a positive integer and nh is even.

(a) Let H be an h-regular graph. Then

ENd(H)= n!
|Aut (H)| λm exp

(
−1− λ

4λ
h(h− 2)− Rh

2λ2n
+O(n−1/2+η)

)
.

(b) The expected total number of h-regular spanning subgraphs of G∼ Gd is√
2

(h!)n
(
2λm
e

)m
exp

(
−h2 − 1

4
− 1− λ

4λ
h(h− 2)− Rh

2λ2n
+O(n−1/2+η)

)
.

The proofs of Theorem 1.1 and Corollaries 1.1 and 1.2 are given in Section 4.
Our second main result concerns the expected number of (labelled) spanning trees in Gd.

This extends, and corrects an error in, a result of McKay [9, Theorem 2.8(c)]. McKay consid-
ered the regular case only, and gave the first term as 7(1− λ)/(2λ). However, the correct value is
−(1− λ)/(2λ), as below.

Theorem 1.2. For any constant η ∈ (0, 12 ) there is some ε2(η)> 0 such that the following holds
for every fixed ε ∈ (0, ε2(η)]. Let d be a degree sequence which satisfies (1.2). Then, as n→ ∞, the
expected number of spanning trees in G∼ Gd is

nn−2λn−1 exp
(

−1− λ

2λ
− R

2λ2n
+O(n−1/2+η)

)
.

The proof of Theorem 1.2 is given in Section 5.
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Let G andH[r] be graphs with vertex sets {1, . . . , n} and {1, . . . , r}, respectively. The number of
induced copies of H[r] in G is the number of induced subgraphs of G that are isomorphic to H[r].
For given d,H[r], the random variable Ñd(H[r]) is the number of induced copies ofH[r] inGwhen
G is taken at random from Gd. Our third main result estimates the expectation Ñd(H[r]) when r is
not too large. If h[r] = (h1, . . . , hr) is the degree sequence of H[r], then we define

ωt =
r∑

j=1
(hj − λ(r − 1))t for t� 1. (1.6)

Let m= 1
2

∑r
j=1 hj be the number of edges of the graph H[r]. Note that the automorphism group

Aut (H[r]) is a subgroup of the group Sr of all permutations of {1, . . . , r}.

Theorem 1.3. For any constant η ∈ (0, 12 ) there is some ε3(η)> 0 such that the following holds for
every fixed ε ∈ (0, ε3(η)]. Let d be a degree sequence which satisfies (1.2). Suppose that H[r] is a graph
on vertex set {1, . . . , r} with m edges and degree sequence h[r] such that

r� n1/2+ε and
δ3

λ3(1− λ)3n3
r∑

j=1
|hj − λ(r − 1)|3 � n−1/2+η. (1.7)

Then, as n→ ∞,

E Ñd(H[r])= r!
|Aut (H[r])|

(
n
r

)
λm (1− λ)(

r
2)−m exp (Λ0 + Λ1 + Λ2 +O(n−1/2+η)),

where

Λ0 = − ω2
2λ(1− λ)n

+ Rω2
2λ2(1− λ)2n2

,

Λ1 = r2

2n
+ (1− 2λ)ω1

2λ(1− λ)n
− ω2

1
4λ(1− λ)n2

− r2R
2λ(1− λ)n2

− r ω2
2λ(1− λ)n2

− (1− 2λ)ω3
6λ2(1− λ)2n2

=O(n4ε( log n)2),

Λ2 = − (1− 2λ)Rω1
2λ2(1− λ)2n2

− r ω1
∑n

j=1 (dj − d)3

2λ2(1− λ)2n4
=O(n−1/3+η/3+4ε).

For induced subgraphs of more moderate order, the terms Λ1 and Λ2 fit into the O(n−1/2+η)
error term.

Corollary 1.3. Suppose the assumptions of Theorem 1.3 hold for some fixed η ∈ (0, 12 ) and ε ∈
(0, ε3(η)]. Suppose also that

r2(1+ δ2/n)� λ2(1− λ)2n1/2+η.
Then, as n→ ∞,

E Ñd(H[r])= r!
|Aut (H[r])|

(
n
r

)
λm (1− λ)(

r
2)−m exp (Λ0 +O(n−1/2+η)). (1.8)

Furthermore, if r� n1/3−ε then

E Ñd(H[r])= r!
|Aut (H[r])|

(
n
r

)
λm (1− λ)(

r
2)−m (1+O(n−1/2+η + n−ε/2)),

which matches the binomial random graph model G(n, λ) up to the error term.
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Note that assumption (1.7) is always satisfied if r� n1/3−ε and η � 1
3 . The proofs of

Theorem 1.3 and Corollary 1.3 are given in Section 6.
Xiao, Yan, Wu and Ren [12] obtained a result overlapping the last part of Corollary 1.3 for the

case that H has constant size and regular d = (d, . . . , d) with d = o(n). The relationship between
the two random graph models Gd and G(n, λ) was also studied by Krivelevich, Sudakov, Vu and
Wormald, who established concentration near the mean when r =O(1) and d = (n/2, . . . , n/2);
see [6, Corollary 2.11]. The following includes their result as a special case.

Corollary 1.4. For any constant η ∈ (0, 12 ) and every fixed ε ∈ (0, ε3(η)], the following holds, where
ε3(η) is provided by Theorem 1.3. Define λmin =min{λ, 1− λ}. Suppose also that

r� (2− ε)
log n

log λ−1
min

.

Then E Ñd(H[r])→ ∞ as n→ ∞, and

P

( ∣∣∣∣ Ñd(H[r])
E Ñd(H[r])

− 1
∣∣∣∣� n−ε/6 + n−1/6+η/3

)
=O(n−ε/6 + n−1/6+η/3).

Since a clique is a subgraph if and only if it is an induced subgraph, we can use either
Theorem 1.1 or Theorem 1.3 to estimate the expected number of r-cliques. Taking H to be Kr
plus n− r isolated vertices in Theorem 1.1, or H[r] =Kr in Theorem 1.3, we obtain the following
corollary.

Theorem 1.4. For any constant η ∈ (0, 12 ) there is some ε4(η)> 0 such that the following holds for
every fixed ε ∈ (0, ε4(η)]. Let d be a degree sequence which satisfies (1.2). Then, as n→ ∞, for any
positive integer r such that r� n1/2+ε and δ3r4/(λ3n3)� n−1/2+η, the expected number of r-cliques
in G ∈ Gd is(

n
r

)
λ(r2) exp

(
− (1− λ)r2(r − 3)

2λn
+ Rr3

2λ2n2
− (1− λ)(2+ 5λ)r4

12λ2n2
+O(n−1/2+η)

)
.

The formula for the number of independent subsets of size r can be obtained from the formula
given in Corollary 1.4 by simply swapping the roles of λ and 1− λ.

1.1 Outline of our approach
Our proofs are based on the asymptotic enumeration results of McKay [9]. To illustrate the nature
of our task, the proof of Theorem 1.1 relies on a theorem from [9], here quoted as Theorem 4.1,
that the probability of a subgraph H appearing in a fixed location in G∼ Gd has the form

P(d,H)= λmeF(d,H)+ o(1) (1.9)

for a certain function F. In order to find the expectation of the number of all appearances of
isomorphs of H as subgraphs, we need to sum P(d,H′) over all H′ ∼=H. Clearly, this is equivalent
to finding the expectation of eF(dσ ,H)+o(1), where dσ is a uniformly random permutation σ of the
entries of d.

Since the function F(d,H) in (1.9) is too large to allow useful expansion of the exponential, we
must estimateE eF(dσ ,H) directly.We do this by applying the theory of exponentials of martingales
developed in [4], which we summarize in Section 2. In order to facilitate similar applications in the
future, in Section 2.2 we prove some general theorems about the expectations of the exponentials
of functions of random permutations. Theorem 1.1 and its corollaries are proved in Section 4.
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The proof of Theorem 1.3 is given in Section 6. It follows by a similar argument starting from
[9, Theorem 2.4], which is quoted here as Theorem 6.1.

The first k entries in a random permutation form a random k-subset, so the same theorems
can be used to estimate the expectations of the exponentials of functions of random subsets, and
thereby functions of hypergeometric and multinomial distributions. We use this theory to prove
Theorem 1.2 in Section 5, as multinomial distributions appear naturally for counts of trees with
given degrees.

2. Expectations of exponentials
First, in Section 2.1 we review some notation and results from [4]. Then, in Sections 2.2 and 2.3,
we prove some auxiliary results which will help us to apply the machinery from [4] in the discrete
setting.

In this paper we will only apply the machinery of this section to real-valued martingales.
However, the complex-valued discrete setting is also covered in this section, in order to provide
bounds which may be useful for future applications. In particular, such bounds can be useful for
determining asymptotic distributions by analysis of the corresponding characteristic functions
(Fourier inversion).

Given a complex random variable Z, two types of squared variation are commonly defined. The
variance is

Var Z =E |Z −E Z|2 =E |Z|2 − |E Z|2 =Var
Z +Var �Z,

while the pseudovariance is

VZ =E (Z −E Z)2 =E Z2 − (E Z)2 =Var
Z −Var �Z + 2iCov (
Z, �Z).
We will need both. Of course, they are equal for real random variables.

2.1 Complex martingales
Let P = (Ω ,F , P) be a probability space. A sequenceF =F0, . . . ,Fn of σ -subfields ofF is a filter
if F0 ⊆ · · · ⊆Fn. A sequence Z0, . . . , Zn of random variables on P = (Ω ,F , P) is a martingale
with respect toF if

(i) Zj is Fj-measurable and has finite expectation, for j= 0, . . . , n,
(ii) E [Zj |Fj−1]= Zj−1 for j= 1, . . . , n.

Observe that Zj =E [Zn |Fj] a.s. for each j= 0, . . . , n.
Let Z be a random variable on P. We use the following notation for statistics conditional onFj,

for j= 0, . . . , n:

Ej Z =E [Z |Fj],
Vj Z =E [(Z −Ej Z)2 |Fj]=Ej Z2 − (Ej Z)2,

diamj Z = diam [Z |Fj].

Here the conditional diameter of Z with respect to σ -subfield F ′ of F is defined as

diam [Z |F ′]= sup
θ∈(−π ,π]

[
ess sup [
(e−iθZ) |F ′]+ ess sup [− 
(e−iθZ) |F ′]

]
, (2.1)
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where the conditional essential supremum of a real random variable X with |X|� c a.s. can be
defined (see [1]) by

ess sup [X |F ′]= −c+ lim
r→∞ (E [(X + c)r |F ′])1/r .

When Z is real, we can restrict (2.1) to θ = 0 and then diam [Z |F ′] is the same as the conditional
range defined byMcDiarmid [7]. In the trivial caseF ′ = {∅,Ω}, the (unconditional) diameter can
be alternatively defined by

diam Z = diam [Z |F ′]= ess sup |Z − Z′|, where Z′ is an independent copy of Z. (2.2)

For more information about conditional essential supremum and conditional diameter, see e.g. [1]
and [4, Section 2.1].Wewill use the fact that the diameter and conditional diameter are seminorms
and so, in particular, they are subadditive.

The following first-order and second-order estimates were proved in [4, Theorem 2.7 and
Theorem 2.9], and are stated below for convenience.

Theorem 2.1. Let Z = Z0, Z1, . . . , Zn be an a.s. bounded complex-valued martingale with respect
to a filter F0, . . . ,Fn. For j= 1, . . . , n, define

Rj = diamj−1 Zj, Qj =max{diamj−1 Ej (Zn − Zj)2, diamj−1 Ej (
Zn − 
Zj)2}.
Then the following estimates hold.

(a) E0 eZn = eZ0 (1+K(Z)), where K(Z) is an F0-measurable random variable with

|K(Z)|� ess sup
[
e
1
8

∑n
j=1 R2j |F0

]
− 1 a.s.

(b) E0 eZn = eZ0+ 1
2 V0 Zn(1+ L(Z)e

1
2 V0 [�Zn]), where L(Z) is an F0-measurable random variable

with

|L(Z)|� ess sup
[
exp

( n∑
j=1

(
1
6
R3j + 1

6
RjQj + 5

8
R4j + 5

32
Q2
j

)) ∣∣∣∣F0

]
− 1 a.s.

The following lemma, proved in [4, Lemma 2.8], is useful for bounding the quantities Qj when
applying Theorem 2.1(b).

Lemma 2.1. Under the conditions of Theorem 2.1, we have

Ej (Zn − Zj)2 =
n∑

k=j+1

Ej (Zk − Zk−1)2

for 0� j� n.

An important example of a martingale is made by the Doob martingale process. Suppose
X = (X1, . . . , Xn) is a random vector on P and f (X) is a complex random variable of bounded
expectation. Consider the filter F0, . . . ,Fn defined by Fj = σ (X1, . . . , Xj), where σ (X1, . . . , Xj)
denotes the σ -field generated by the random variables X1, . . . , Xj. In particular, F0 = {∅,Ω} and
E0 is the ordinary expectation. Then we have the martingale

Zj =E [ f (X1, . . . , Xn) |Fj], j= 0, . . . , n.
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It was shown in [4, Lemma 3.1] that for this case the conditional diameter satisfies the following
property:

diamj f (X) has the same distribution as δj(X1, . . . , Xj), where
δj(x1, . . . , xj)= diam [ f (x1, x2, . . . , xj, Xj+1, . . . , Xn)].

(2.3)

Here the variables Xj, . . . , Xn are random and x1, . . . , xj are fixed.

2.2 Random permutations
Let Sn denote the set of permutations of {1, . . . , n}. We will write a permutation as a vector: if
ω ∈ Sn maps j to ωj for j= 1, . . . , n, then we write ω = (ω1,ω2, . . . ,ωn). For any ω, σ ∈ Sn, define

ω ◦ σ = (ωσ1 , . . . ,ωσn).

That is, σ acts on ω on the right by permuting the positions of ω, not the values.
Now suppose X = (X1, . . . , Xn) is a uniformly random element of Sn. Although the random

variables X1, . . . , Xn are dependent, the Doob martingale process is still applicable: for a given
permutation ω = (ω1, . . . ωn) ∈ Sn and the function f : Sn →C, define

Zk(ω)=E [ f (X) | Xj = ωj, 1� j� k]. (2.4)

The sequence Z0(X), Z1(X), . . . , Zn(X) is a martingale with respect to the filter F0, . . . ,Fn, where
for each k, the σ -field Fk is generated by the sets

Ωk,σ = {ω ∈ Sn | ωj = σj, 1� j� k}
for all k-tuples (σ1, . . . , σk) with distinct components. From now on we simply write Zk instead
of Zk(X), for k= 0, . . . , n.

Since Zn = Zn−1 and Fn =Fn−1, we will find it convenient to stop the martingale at Zn−1. In
the following we will use the notations of Section 2.1 for statistics conditional on Fk.

Given a function f : Sn →C, we use the infinity norm

‖ f ‖ =max
ω∈Sn

| f (ω)|.

For any j, a ∈ {1, . . . , n}, and any ω ∈ Sn, define

D(j a)f (ω)= f (ω)− f (ω ◦ (j a)).
Here ( j a) ∈ Sn is the transposition which exchanges j and a. Now, let

αj[ f , Sn]= 1
n− j

n∑
a=j+1

‖D(j a)f ‖, 1� j� n− 1

Δjk[ f , Sn]= 1
(n− j)(n− k)

n∑
a=j+1

n∑
b=k+1

‖D(k b)D(j a)f ‖, 1� j �= k� n− 1.

Note that the parameters αj and Δjk satisfy the triangle inequality:

αj[ f + f ′, Sn]� αj[ f , Sn]+ αj[ f ′, Sn],
Δjk[ f + f ′, Sn]�Δjk[ f , Sn]+ Δjk[ f ′, Sn].

(2.5)
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The following lemma provides bounds on the quantities that arise in Theorem 2.1.

Lemma 2.2. Let X = (X1, . . . , Xn) be a uniformly random element of Sn. Let f : Sn →C and let
(Z0, Z1, . . . , Zn−1) be the Doob martingale sequence given by (2.4). Write αk = αk[ f , Sn] andΔjk =
Δjk[ f , Sn]. Then

diamj−1 Zj � αj, 1� j� n− 1, (2.6)
diamj−1 Ej (Zk − Zk−1)2 � 2αkΔjk, 1� j< k� n− 1. (2.7)

Proof. First, observe that Zj can be represented by a function of j arguments:
Zj(ω)= fj(ω1, . . . ,ωj), ω ∈ Sn.

Recalling (2.2) and (2.3), we have
diamj−1 Zj =max | fj(σ1, . . . , σj)− fj(σ1, . . . , σj−1, σ ′

j )|,
where the maximum is taken over all j-tuples (σ1, . . . , σj) with distinct components, and σ ′

j �=
σ1, . . . , σj−1. By definition of fj and Zj, we have

| fj(σ1, . . . , σj)− fj(σ1, . . . , σj−1, σ ′
j )|

= |E [ f (X) | X1 = σ1, . . . , Xj = σj]−E [ f (X) | X1 = σ1, . . . , Xj−1 = σj−1, Xj = σ ′
j ]|

=
∣∣∣∣ 1
n− j

n∑
a=j+1

E [D(j a)f (X) | X1 = σ1, . . . , Xj = σj, Xa = σ ′
j ]

∣∣∣∣,
since σ ′

j must occupy some position a ∈ { j+ 1, . . . , n} in σ , and by symmetry each possibility is
equally likely. Therefore

| fj(σ1, . . . , σj)− fj(σ1, . . . , σj−1, σ ′
j )|�

1
n− j

n∑
a=j+1

‖D(j a)f ‖ = αj, (2.8)

which implies the bound (2.6) for diamj−1 Zj.
Now we proceed to the bound for diamj−1 Ej (Zk − Zk−1)2. Define f̃ : Sn →C by

f̃ (ω)= (Zk(ω)− Zk−1(ω))2 = ( fk(ω1, . . . ,ωk)− fk−1(ω1, . . . ,ωk−1))2.

Since D(j a)̃f (ω) is the difference of two squares, we have

D(j a)̃f (ω)= f̃ (ω)− f̃ (ω ◦ (j a))
= (Zk(ω)− Zk−1(ω)+ Zk(ω ◦ (j a))− Zk−1(ω ◦ (j a)))

× (Zk(ω)− Zk−1(ω)− Zk(ω ◦ (j a))+ Zk−1(ω ◦ (j a))).
Using (2.6) applied to f , we have |Zk(ω)− Zk−1(ω)|� diamk−1 Zk and hence

|Zk(ω)− Zk−1(ω)+ Zk(ω ◦ (j a))− Zk−1(ω ◦ (j a))|� 2 diamk−1 Zk � 2αk.

Therefore, applying (2.6) to f̃ gives
diamj−1 Ek (Zk − Zk−1)2

� αj[̃f , Sn]= 1
n− j

n∑
a=j+1

‖D(j a)̃f ‖

� 2αk
n− j

n∑
a=j+1

max
ω∈Sn

|Zk(ω)− Zk−1(ω)− Zk(ω◦(j a))+ Zk−1(ω◦(j a))|. (2.9)

In the remainder of the proof we work towards an upper bound on the summand.
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For any c ∈ {1, . . . , n} and any permutation (k b), with 1� k� b� n (either a transposition
or the identity permutation), write c(k b) for the image of c under the action of (k b). Given k ∈
{1, . . . , n}, define the set

Ik = {(b, c) | k� b �= c� n}

of distinct ordered pairs with both entries at least k.
Now we consider two cases.

Case 1. First, suppose that a ∈ {k+ 1, . . . , n}. To begin, observe that

Zk−1(ω)= 1
(n− k)(n− k+ 1)

×
∑

(b,c)∈Ik
E [ f (X) | X1 = ω1, . . . , Xk−1 = ωk−1, Xb = ωk, Xc = ωa] (2.10)

using arguments similar to those which led to (2.8). Next, let X̃ = X ◦ (k b), which is also a
uniformly random element of Sn, and write

E [ f (X ◦ (k b)) | X1 = ω1, . . . , Xk−1 = ωk−1, Xb = ωk, Xc = ωa]
=E [ f (X̃) | X̃1 = ω1, . . . , X̃k = ωk, X̃c(k b) = ωa].

Note that c′ = c(k b) ranges over {k+ 1, . . . , n} as c ranges over {k, . . . , n} \ {b}. Therefore
1

(n− k)(n− k+ 1)
∑

(b,c)∈Ik
E [ f (X ◦ (k b)) | X1 = ω1, . . . , Xk−1 = ωk−1, Xb = ωk, Xc = ωa]

= 1
(n− k)(n− k+ 1)

n∑
b=k

n∑
c′=k+1

E [ f (X̃) | X̃1 = ω1, . . . , X̃k = ωk, X̃c′ = ωa] (2.11)

= 1
n− k

n∑
c′=k+1

E [ f (X̃) | X̃1 = ω1, . . . , X̃k = ωk, X̃c′ = ωa]

=E [ f (X̃) | X̃1 = ω1, . . . , X̃k = ωk]= Zk(ω), (2.12)

similarly to (2.8), since the summand in (2.11) is independent of b.
Arguing as above with X̃ = X ◦ (j c) gives

Zk−1(ω ◦ (j a))
= fk−1(ω1, . . . ,ωj−1,ωa,ωj+1, . . . ,ωk−1)

= 1
(n− k)(n− k+ 1)
×

∑
(b,c)∈Ik

E [f (X ◦ (j c)) | X1 = ω1, . . . , Xk−1 = ωk−1, Xb = ωk, Xc = ωa]. (2.13)

Finally, let X̃ = X ◦ (j c) ◦ (k b), which is a uniformly random element of Sn, and recall that c(k b)
ranges over {k+ 1, . . . , n} as c runs over {k, . . . , n} \ {b}. Arguing as above gives
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1
(n− k)(n− k+ 1)

×
∑

(b,c)∈Ik
E [f (X ◦ (j c) ◦ (k b)) | X1 = ω1, . . . , Xk−1 = ωk−1, Xb = ωk, Xc = ωa]

= 1
(n− k)(n− k+ 1)

×
∑

(b,c)∈Ik
E [f (X̃) | X̃1 = ω1, . . . , X̃j−1 = ωj−1, X̃j = ωa, X̃j+1 = ωj+1, . . . ,

X̃k−1 = ωk−1, X̃k = ωk, X̃c(k b) = ωj]

= 1
n− k+ 1

n∑
b=k

Zk(ω ◦ (j a))= Zk(ω ◦ (j a)). (2.14)

Combining (2.10)–(2.14), we find that when a ∈ {k+ 1, . . . , n},
|Zk(ω)− Zk−1(ω)− Zk(ω ◦ (j a))+ Zk−1(ω ◦ (j a))|

= 1
(n− k)(n− k+ 1)

×
∑

(b,c)∈Ik
E [D(k b)D(j a)f (X) | X1 = ω1, . . . , Xk−1 = ωk−1, Xb = ωk, Xc = ωa]

� 1
(n− k)2

∑
(b,c)∈Ik

‖D(k b)D(j c)f ‖. (2.15)

Case 2. Now suppose that a ∈ { j+ 1, . . . , k}. Define z = b if a= k, and z = a if a ∈ { j+
1, . . . , k− 1}. Arguing as above, we have

Zk(ω)= 1
n− k+ 1

n∑
b=k

E [f (X ◦ (k b)) | X1 = ω1, . . . , Xk−1 = ωk−1, Xb = ωk],

Zk−1(ω)= 1
n− k+ 1

n∑
b=k

E [f (X) | X1 = ω1, . . . , Xk−1 = ωk−1, Xb = ωk],

Zk−1(ω ◦ (j a))= 1
n− k+ 1

n∑
b=k

E [f (X ◦ (j z)) | X1 = ω1, . . . , Xk−1 = ωk−1, Xb = ωk],

Zk(ω ◦ (j a))= 1
n− k+ 1

×
n∑

b=k
E [f (X ◦ (j z) ◦ (k b)) | X1 = ω1, . . . , Xk−1 = ωk−1, Xb = ωk].

Combining these, we find that when a ∈ { j+ 1, . . . , k},

|Zk(ω)− Zk−1(ω)− Zk(ω ◦ (j a))+ Zk−1(ω ◦ (j a))|� 1
n− k

n∑
b=k

‖D(k b)D(j z)f ‖. (2.16)
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Consolidation. Now we perform the sum over a. From (2.15) and (2.16) we have
n∑

a=j+1
|Zk(ω)− Zk−1(ω)− Zk(ω ◦ (j a))+ Zk−1(ω ◦ (j a))|

� 1
n− k

∑
(b,c)∈Ik

‖D(k b) D(j c)f ‖ + 1
n− k

n∑
b=k

‖D(k b)D(j b)f ‖

+ 1
n− k

k−1∑
a=j+1

n∑
b=k

‖D(k b)D(j a)f ‖, (2.17)

using the fact that (2.15) is independent of a in Case 1. Replacing the dummy variable c in the first
sum by a, and observing that any term with k= b equals zero, we can rewrite the right-hand side
of (2.17) as

1
n− k

n∑
a=j+1

n∑
b=k

‖D(k b)D(j a)f ‖ = 1
n− k

n∑
a=j+1

n∑
b=k+1

‖D(k b)D(j a)f ‖ = (n− j)Δjk.

Substituting this into (2.9), we conclude that

diamj−1 Ej (Zk − Zk−1)2 � 2αk Δjk

as required. �

Combining the bounds proved above with Theorem 2.1 gives the following.

Theorem 2.2. Let X be a uniformly random element of Sn and let f : Sn →C. Write αk = αk( f , Sn)
and Δjk = Δjk( f , Sn). Then we have the following.

(a) E e f (X) = eE f (X)(1+K( f )), where K( f ) ∈C satisfies

|K( f )|� e
1
8

∑n−1
j=1 α2

j − 1.

(b) E e f (X) = eE f (X)+ 1
2 Vf (X)(1+ L( f )e

1
2 Var �f (X)), where βj = ∑n−1

k=j+1 αkΔjk and L( f ) ∈C

satisfies

|L( f )|� exp
( n−1∑

j=1

(
1
6
α3
j + 1

3
αjβj + 5

8
α4
j + 5

8
β2
j

))
− 1.

Proof. Let Z(X)= (Z0, Z1, . . . , Zn−1) be the Doob martingale sequence given by (2.4). By
applying Theorem 2.1 to Z(X), it remains to show that

Rj � αj, Qj � 2βj.
The first bound is given by (2.6) and the definition of Rj.

Observe that D(ja)(
f (ω))= 
D(ja)f (ω) for any j, a ∈ {1, . . . , n}. Therefore
αj[
f , Sn]� αj[ f , Sn], 1� j� n− 1,

Δjk[
f , Sn]�Δjk[ f , Sn], 1� j �= k� n− 1.

Using (2.7) twice ( for f and 
f ), we find that both quantities diamj−1 Ej (Zk − Zk−1)2 and
diamj−1 Ej (
Zk − 
Zk−1)2 are bounded above by 2αk Δjk. Since the conditional diameter is
subadditive, we can apply Lemma 2.1 to obtain the remaining bound on Qj.
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2.3 Random subsets and other discrete distributions
Using our estimates for random permutations, we can also apply Theorem 2.1 for functions of ran-
dom subsets of given size, as well as functions of random vectors with standard multidimensional
discrete distributions, such as the hypergeometric distribution or the multinomial distribution.
We now define analogues of the operator D(j a) for these cases.

Subsets. Let 2[n] denote the set of all subsets of {1, 2, . . . , n}. For a given f : 2[n] →C, and for
every A ∈ 2[n], let

D(j a)
B f (A)= f (A)− f (A⊕ { j, a}),

where ⊕ denotes the symmetric difference. Note that if |A∩ { j, a}| = 1 then A⊕ { j, a} has the
same size as A. Let Bn,m denote the set ofm-subsets of {1, . . . , n}, and define

αmax[ f , Bn,m]=max|D(j a)
B f (A)|,

where the maximum is taken over all A ∈ Bn,m and all j, a ∈ {1, . . . , n} such that j ∈A and a �∈A.
Similarly, define

Δmax[ f , Bn,m]=max|D(k b)
B D(j a)

B f (A)|,
where the maximum is over all distinct j, k, a, b ∈ {1, . . . , n} and all A ∈ Bn,m such that j, k ∈A and
a, b �∈A. Note that αmax[ f , Bn,m] andΔmax[ f , Bn,m] depend only on the values of f on the set Bn,m.

Sequences. For a given function f : Z� →C, and for every x= (x1, . . . , x�) ∈Z
�, define

D(j a)
N f (x)= f (x)− f (x′),

where x′ has all entries equal to those of x, except that the jth entry is increased by 1 and the ath
entry is decreased by 1. For positive integers �,m, define

N�,m = {(x1, . . . , x�) ∈ {0, 1, 2, . . . }� : x1 + · · · + x� =m}.
Note that if x ∈N�,m with xa > 0 then x′, defined above, also belongs toN�,m. (If x has any positive
entry then no other entry can equalm.) Define

αmax[ f ,N�,m]=max|D(j a)
N f (x)|, (2.18)

where the maximum is over all x ∈N�,m and all distinct j, a such that xa > 0. Also, define

Δmax[ f ,N�,m]=max|D(k b)
N D(j a)

N f (x)|, (2.19)

where the maximum is taken over all distinct j, k, a, b, such that min{xa, xb} > 0 and all x ∈N�,m.
Again, observe that αmax[ f ,N�,m] and Δmax[ f ,N�,m] depend only on the values of f on N�,m.

Theorem 2.3. Consider any one of the following three possibilities.

(i) X is a uniformly random element of Bn,m, where m� n/2.
(ii) X = (X1, . . . , X�) is an N�,m-valued random variable with the hypergeometric distribution

with parameters n1, . . . , n� � 0 such that n1 + · · · + n� = n� 2m, that is,

P(X = (x1, . . . , x�))=
(
n
m

)−1 �∏
j=1

(
nj
xj

)
, (x1, . . . , x�) ∈N�,m.
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(iii) X = (X1, . . . , X�) is an N�,m-valued random variable with the multinomial distribution with
parameters p1, . . . , p� > 0 such that p1 + · · · + p� = 1, that is,

P(X = (x1, . . . , x�))=m!
�∏

j=1

pxjj
xj! , (x1, . . . , x�) ∈N�,m. (2.20)

With Λ = Bn,m or Λ =N�,m, and given a function f : Λ →C, let αmax = αmax[ f ,Λ] and Δmax =
Δmax[ f ,Λ]. Then we have the following.

(a) E e f (X) = eE f (X)(1+K( f )), where K( f ) ∈C satisfies |K( f )|� e
1
8m α2

max − 1.
(b) E e f (X) = eE f (X)+ 1

2 Vf (X)(1+ L( f ) e
1
2 Var �f (X)), where L( f ) ∈C satisfies

|L( f )|� exp
(
1
2
mα3

max + 1
6
m2α2

maxΔmax + 2mα4
max + 5

8
m3α2

maxΔ
2
max

)
− 1.

Proof. First suppose that X has the distribution described in (i), and define f̃ : Sn →C by

f̃ (ω1, . . . ,ωn)= f ({ω1, . . . ,ωm}), ω ∈ Sn.

Let Y be a uniformly random element of Sn. Observe that f (X) and f̃ (Y) have the same
distribution, and hence

E e f (X) =E ẽf (Y), E f (X)=E f̃ (Y),

and similarly for Vf (X) and Var �f (X).
Let αj = αj[̃f , Sn] and Δjk = Δjk[̃f , Sn] denote the parameters used in Lemma 2.2, defined with

respect to the function f̃ and set Sn. We will apply Theorem 2.2 to the function f̃ . Then the
bound (a) follows immediately from Theorem 2.2(a), since

αj �

⎧⎨⎩αmax for j= 1, . . . ,m,

0 for j=m+ 1, . . . , n.

Next, note that βj = 0 for j=m+ 1, . . . , n, and Δjk = 0 if k>m. We now estimate Δjk when
j< k�m.

If b�m or a�m then D(k b) D(j a)̃f = 0, since f̃ depends only on the set of the first m
components of the input permutation. Next, observe that if a= b>m then

‖D(k a) D(j a)̃f ‖� 2αmax,

while if a �= b and a, b>m then

‖D(k b) D(j a)̃f ‖�Δmax.

Therefore

Δjk �
2(n−m)αmax + (n−m)(n−m− 1)Δmax

(n− j)(n− k)
� 2

n−m
αmax + Δmax.

Hence using Lemma 2.2 it follows that

βj � (m− j)αmax

(
2

n−m
αmax + Δmax

)
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for j= 1, . . . ,m. Using these bounds and the fact that 2m� n, we find that
n−1∑
j=1

(
1
6
α3
j + 1

3
αjβj + 5

8
α4
j + 5

8
β2
j

)

� 1
6
mα3

max + 1
3

α2
max

(
2

n−m
αmax + Δmax

) m∑
j=1

(m− j)+ 5
8
mα4

max

+ 5
8
α2
max

(
2

n−m
αmax + Δmax

)2 m∑
j=1

(m− j)2

� 1
2
mα3

max + 1
6
m2α2

maxΔmax + +5
8
mα4

max + 5
24

m3 α2
max

(
2

n−m
αmax + Δmax

)2

� 1
2
mα3

max + 1
6
m2α2

maxΔmax + 2mα4
max + 5

8
m3α2

maxΔ
2
max.

We used the inequality (a+ b)2 � 3
2a

2 + 3b2 in the final line. Applying Theorem 2.2(b) completes
the proof for when X has the distribution described in (i).

Next, suppose that X has the hypergeometric distribution described in (ii). Take disjoint sets
A1, . . . ,A� with |Aj| = nj for each j. If we choose a random subset B⊆A1 ∪ · · · ∪A� with sizem,
then X = (|B∩A1|, . . . , |B∩A�|) has the required distribution. Now we can consider f (X) as a
function of B and apply case (i).

Finally, suppose that X has the multinomial distribution described in (iii). Apply case (ii) with
nj = �pjt� and let t → ∞.

We remark that by giving tighter bounds on factors of the formm/(n−m) in the above proof,
the constants in the error term |L| for (b) can be improved. We do not pursue this here.

3. Moment calculations
Now we prove a lemma that will be used repeatedly in the following sections.

Lemma 3.1. Suppose u, v : {1, 2, . . . , n} →R. Define the function � = �u,v : Sn →R by

�(σ )=
n∑
j=1

u(j)v(σj) for σ ∈ Sn.

Let X = (X1, . . . , Xn) denote a random permutation uniformly chosen from Sn. Define

ū= 1
n

n∑
j=1

u(j), v̄= 1
n

n∑
j=1

v(j).

Finally, let

α =
(
max

j
u(j)−min

j
u(j)

) (
max

j
v(j)−min

j
v(j)

)
.

(i) Then

E�(X)= n ū v̄ and E e�(X) = eE�(X)+ 1
2 Var�(X)+L

for some L ∈R with |L|� 3
2nα

3 + 11 nα4.
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(ii) Now let u′, v′ ∈ {1, 2, . . . , n} →R and let ū′, v̄′ be the average value of u′, v′, respectively. Let
� ′ = �u′,v′ . Then

Cov (�(X),� ′(X))= 1
n− 1

n∑
j=1

(u(j)− ū)(u′(j)− ū′)
n∑

k=1

(v(k)− v̄)(v′(k)− v̄′).

In particular,

Var�(X)= 1
n− 1

n∑
j=1

(u(j)− ū)2
n∑

k=1

(v(k)− v̄)2.

(iii) For distinct j, k ∈ {1, . . . , n}, define Ejk : Sn →R by

Ejk(σ )= (u(j)+ v(σj))(u(k)+ v(σk)).

Then

E Ejk(X)= (u(j)+ v̄)(u(k)+ v̄)− 1
n(n− 1)

n∑
i=1

(v(i)− v̄)2.

(iv) For j, k, �,m ∈ {1, . . . , n} with j, k distinct and �,m distinct,

Cov (Ejk(X), E�m(X))=
{
O((‖u‖ + ‖v‖)4/n) if { j, k} ∩ {�,m} = ∅,
O((‖u‖ + ‖v‖)4) otherwise.

(v) For distinct j, k ∈ {1, . . . , n},
Cov (Ejk(X),� ′(X))

= 1
n
((u′(j)− ū′)(u(k)+ v̄)+ (u′(k)− ū′)(u(j)+ v̄))

n∑
a=1

(v(a)− v̄)(v′(a)− v̄′)

+O
(
(‖u‖ + ‖v‖)2‖u′‖‖v′‖

n

)
=O((‖u‖ + ‖v‖)2‖u′‖‖v′‖).

Proof. We calculate that

E�(X)=
n∑
j=1

u(j) E v(Xj)= v̄
n∑
j=1

u(j)= nūv̄.

Next we apply Theorem 2.1(b) and Lemma 2.2 to the Doob martingale for � : Sn →R, as defined
in (2.4). Observe that for 1� j< a� n we have

D(j a)�(σ )= (u(j)− u(a))(v(σj)− v(σa)).

Therefore ‖D(j a)�‖� α and αj[� , Sn]� α. When 1� j, k, a, b� n are distinct, observe that
D(k b) D(j a)�(σ )= 0. Otherwise we can bound

‖D(k b) D(j a)�‖� 2‖D(j a)�‖� 2α,

which leads to the estimate Δjk[� , Sn]� 4α/(n− j). Applying Theorem 2.2 and observing that
βj � 4α2 gives the stated bound on L. This completes the proof of (i).

For part (ii) we may assume without loss of generality that ū, v̄, ū′, v̄′ all equal, by shifting u, v,
u′, v′ if necessary. This shifts the distributions of � and � ′ but has no effect on their covariance.
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Next observe that for j, k= 1, . . . , n,

Cov (u(j)v(Xj), u′(k)v′(Xk))=
( n∑

i=1
v(i)v′(i)

)
u(j)u′(k)

n

(
1− (n+ 1) 1j�=k

n− 1

)
,

where 1j�=k is the indicator variable which equals 1 when j �= k and 0 otherwise. Summing this
expression over all pairs (j, k) proves the first statement of (ii), and replacing� ′ with � completes
the proof of (ii).

For part (iii) we calculate that

E [v(X1)v(X2)]= v̄2 − 1
n(n− 1)

n∑
i=1

(v(i)− v̄)2,

from which (iii) follows.
For part (iv), it is not difficult to prove by induction on k that

E [v(X1)v(X2) · · · v(Xk)]= v̄k +O(n−1) ‖v‖k for k=O(1). (3.1)

This follows using the fact that for k� 1,

E [v(X1)v(X2) · · · v(Xk)v(Xk+1)]= 1
n

n∑
i=1

E [v(X1)v(X2) · · · v(Xk) | Xk+1 = i] v(i),

after observing that the average of {v(j) | j �= i} equals v̄+O(‖v‖/n). It follows that

E Ejk(X)= (u(j)+ v̄)(u(k)+ v̄)+O
(‖v‖2

n

)
. (3.2)

Therefore Ejk(X), E�m(X), E Ejk(X) and E E�m(X) are all O((‖u‖ + ‖v‖)2), from which we con-
clude that Cov (Ejk, E�m)=O((‖u‖ + ‖v‖)4), for any distinct j, k and distinct �,m. In the case that
{ j, k} ∩ {�,m} = ∅, it follows from (3.1) that

E [Ejk(X)E�m(X)]= (u(j)+ v̄)(u(k)+ v̄)(u(�)+ v̄)(u(m)+ v̄)+O
(
(‖u‖ + ‖v‖)4

n

)
.

The improved bound on Cov (Ejk(X), E�m(X)) follows directly.
Finally we prove part (v). First we calculate Cov (Ejk(X), v′(Xi)) under the assumption that

i �∈ { j, k}. In this case

E [Ejk(X) v′(Xi)]

= 1
n

n∑
a=1

E [(u(j)+ v(Xj))(u(k)+ v(Xk)) | Xi = a] v′(a)

= 1
n

n∑
a=1

v′(a)
((

u(j)+ nv̄− v(a)
n− 1

)(
u(k)+ nv̄− v(a)

n− 1

)
− 1

(n− 1)(n− 2)
∑

b : b�=a
(v(b)− v̄)2

)

= v̄′(u(j)+ v̄)(u(k)+ v̄)− v̄′

n(n− 1)

n∑
b=1

(v(b)− v̄)2

− u(j)+ u(k)+ 2v̄
n(n− 1)

n∑
a=1

v′(a)(v(a)− v̄)+O
(‖v‖2‖v′‖

n2

)
.
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The second line follows from applying (iii) to the restriction of u, v to {1, . . . , n} \ {a}. Subtracting
E Ejk E v′(Xi) using (iii), we find that

Cov (Ejk(X), v′(Xi))= −u(j)+ u(k)+ 2v̄
n(n− 1)

n∑
a=1

(v(a)− v̄)(v′(a)− v̄′)+O
(‖v‖2‖v′‖

n2

)
.

Now suppose that i ∈ { j, k}. When i= j, using similar calculations as above, we obtain

E [Ejk(X)v′(Xj)]= 1
n

n∑
a=1

(u(j)+ v(a))(u(k)+ v̄) v′(a)+O
(
(‖u‖ + ‖v‖)2‖v′‖

n

)
and hence

Cov (Ejk(X), v′(Xj))= (u(k)+ v̄)
1
n

n∑
a=1

(v(a)− v̄)(v′(a)− v̄′)+O
(
(‖u‖ + ‖v‖)2‖v′‖

n

)
.

A similar formula holds when i= k. Now summing over all i, we obtain the stated formula for
Cov (Ejk(X),� ′(X)), completing the proof.

4. Subgraphs isomorphic to a given graph
If H is a graph on the vertex set {1, . . . , n}, let P(d,H) be the probability that G∼ Gd contains H
as a subgraph. The starting point for our arguments is the following result adapted from McKay
[9, Theorem 2.1]. We state it using the parameters defined in (1.1) and (1.3).

Theorem 4.1. For any constant η ∈ (0, 12 ) there is some ε5(η)> 0 such that the following holds for
every fixed ε ∈ (0, ε5(η)]. Let d be a degree sequence which satisfies (1.2). Suppose that H is a graph
on the vertex set {1, . . . , n} with m� n1+2ε edges and degree sequence h= (h1, . . . , hn) such that
‖h‖� n1/2+ε . Then

P(d,H)= λm exp (f (d, h)+ g(d,H)+O(n−1/2+η)), (4.1)

where

f (d, h)= (1− λ)
4λ

(μ2
1 + 2μ1 − 2μ2)− (1− λ2)

6λ2n
μ3 + 1

λn

n∑
j=1

(dj − d)hj

+ 1
2λ2n2

n∑
j=1

(dj − d)h2j − 1
2λ2n2

n∑
j=1

(dj − d)2hj,

g(d,H)= − 1
λ(1− λ)n2

∑
jk∈E(H)

(dj − d − hj + λhj)(dk − d − hk + λhk).

Proof. Theorem 2.1 in [9] is stated slightly differently. It supposes two constants a, b> 0 with
a+ b< 1

2 and the second part of (1.2) reads

min{d, n− d − 1}� n
3a log n

.

If ε = ε(a, b) defined in [9, Theorem 2.1], then (4.1) holds with the error term O(n−b). To obtain
our formulation, take a= 2η2, b= 1

2 − η and ε5(η)= ε(a, b). Clearly, for any ε < ε5(η) formula
(4.1) also holds with the same error term, since all assumptions depending on ε become more
strict.
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Lemma 4.1. Let A= ⋃∞
k=1 Ak ⊆C be such that for each k, Ak �= ∅ and supa∈Ak

|a| < ∞. Suppose
ak =O(1) as k→ ∞ for every sequence a1, a2, . . . with ak ∈Ak for each k. Then supa∈A |a| < ∞.

Proof. For each k there is some a′
k ∈Ak such that |a′

k|� supa∈Ak
|a| − 1. Nowwe have supa∈A|a|�

supk�1|a′
k| + 1< ∞.

Remark 4.1. Lemma 4.1 will be useful whenever we need to sum Theorem 4.1, or similar the-
orems, over many values of the parameters. For fixed η, there are only finitely many degree
sequences d and graphsH for each n that satisfy the conditions. Therefore, applying Lemma 4.1 to
the sets consisting of the error terms in Theorem 4.1 for these d and H, scaled by a factor n1/2−η,
shows that the error term is uniform over d and H. That is, there is a function C(η), not depend-
ing on any other parameters, such that the absolute value of the error term is bounded above by
C(η)n−1/2+η.

In order to compute the expected number of subgraphs isomorphic toH, we must sum P(d,H)
over all possible locations of H. We will find it convenient to average over permutations of the
degree sequence d rather than over labellings of the subgraph H; by symmetry, this is equivalent.

For a permutation σ ∈ Sn, let d σ = (dσ1 , . . . , dσn) denote the permuted degree sequence,
and let

fh(σ )= (1− λ)
4λ

(μ2
1 + 2μ1 − 2μ2)− (1− λ2)

6λ2n
μ3 + 1

λn

n∑
j=1

(dσj − d)hj

+ 1
2λ2n2

n∑
j=1

(dσj − d)h2j − 1
2λ2n2

n∑
j=1

(dσj − d)2hj,

gH(σ )= − 1
λ(1− λ)n2

∑
jk∈E(H)

(dσj − d − hj + λhj)(dσk − d − hk + λhk).

Since fh(σ )= f (dσ , h) and gH(σ )= g(dσ ,H), Theorem 4.1 implies that the expected number of
subgraphs isomorphic to H in a uniformly random graph with degree sequence d is

(1+O(n−1/2+η))
n!

|Aut (H)| λm E [exp (fh(X)+ gH(X))], (4.2)

where the expectation is taken with respect to a uniformly random element X of Sn. Here we have
used the uniformity of the error term O(n−1/2+η) in Theorem 4.1, as explained in Remark 4.1.

Define

ε1(η)=min
{
ε5(η),

1
12

η

}
, (4.3)

where ε5(η) is provided by Theorem 4.1. Before proving Theorem 1.1, we apply the results of
Section 3 to obtain the following expressions.

Lemma 4.2. Let η ∈ (0, 12 ) be constant. If assumptions (1.2) and (1.4) hold with ε ∈ (0, ε1(η)], then

E fh(X)= (1− λ)
4λ

(μ2
1 + 2μ1 − 2μ2)− (1− λ2)

6λ2n
μ3 − R

2λ2n
μ1,

E gH(X)= −1− λ

λn2
∑

jk∈E(H)

hjhk +O(n−1/2+η),

Var [fh(X)+ gH(X)]= R
λ2n

(μ2 − μ2
1)+O(n−1/2+η).
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Proof. We repeatedly use the following bounds in our estimates:

nμt � 2 ‖h‖t−1 m� 2n(t+1)(1/2+ε) and R� δ2 � n1+2ε .
The expression for E fh(X) follows directly from applying Lemma 3.1(i) to the terms of fh(X).

(The first two terms are constants, the third and fourth term both give zero since the average of
dσj − d is zero, and the fifth term of fh provides the final term in the expected value.) Similarly,
using Lemma 3.1(iii) and (1.2) we have

E gH(X)= −1− λ

λn2
∑

jk∈E(H)

hjhk + R
λ(1− λ)n2(n− 1)

,

which matches the given expression after applying the assumptions.
Recall that for real random variables X1, . . . , Xt we have

Var
[ t∑

j=1
Xj

]
=

t∑
j,k=1

Cov (Xj, Xk).

For all positive integers i, �, and for all jk ∈ E(H), define the functions �(i,�), Ejk : Sn →R by

�(i,�)(σ )=
n∑
j=1

(dσj − d)i h�
j ,

Ejk(σ )= ((λ − 1)hj + dσj − d)((λ − 1)hk + dσk − d)

for all σ ∈ Sn. Using Lemma 3.1(ii) with u(j)= hj and v(σj)= dσj − d, we find that

Var
[
1
λn

�(1,1)(X)
]

= R(μ2 − μ2
1)

λ2(n− 1)
= R(μ2 − μ2

1)
λ2n

+O(n−1/2+η).

Applying (1.4) and Lemma 3.1(v) with u(j)= (λ − 1)hj, u′(j)= hj, and v(j)= v′(j)= dj − d, we
obtain ∑

jk∈E(H)

Cov (�(1,1)(X), Ejk(X))

=O(μ1(‖u‖ + ‖v‖)2‖u′‖‖v′‖)+ R(λ − 1)
∑

jk∈E(H)

((hj − μ1)hk + (hk − μ1)hj)

=O(n2+6ε).
Consequently

Cov
(

1
λn

�(1,1)(X),− 1
λ(1− λ)n2

Ejk(X)
)

=O(n−1/2+η).

Observe also that

Var
[
− 1

λ(1− λ)n2
∑

jk∈E(H)

Ejk(X)
]

= 1
λ2(1− λ)2n4

∑
jk∈E(H)

∑
i�∈E(H)

Cov (Ejk(X), Ei�(X))

= 1
λ2(1− λ)2n4

(
m‖h‖O(((1− λ)‖h‖ + δ)4)+m2 O

(
((1− λ)‖h‖ + δ)4

n

))
=O(n−1/2+η). (4.4)
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This follows from Lemma 3.1(iv), using the fact that there are at most m‖h‖ pairs of adjacent
edges of H and at mostm2 pairs of non-adjacent edges of H.

We can now verify that all the remaining contributions to Var [ fh(X)+ gH(X)] areO(n−1/2+η).
Using Lemma 3.1(ii), we have

Var
[

1
2λ2n2

�(1,2)(X)
]

= (μ4 − μ2
2)R

4λ4n2(n− 1)
=O(n−1/2+η), (4.5)

Var
[
− 1
2λ2n2

�(2,1)(X)
]

= (μ2 − μ2
1)(R4 − R2)

4λ4n2(n− 1)
=O(n−1/2+η), (4.6)

where R4 = ∑n
j=1 (dj − d)4. For any two real random variables Z, Z′ we have |Cov (Z, Z′)|�

max{Var Z, Var Z′}, so the three covariances involving two of the quantities in (4.4)–(4.6) are also
O(n−1/2+η). The only remaining covariances are

Cov
(

1
λn

�(1,1)(X),
1

2λ2n2
�(1,2)(X)

)
= R(μ3 − μ1μ2)

2λ3n(n− 1)
=O(n−1/2+η) and

Cov
(

1
λn

�(1,1)(X),− 1
2λ2n2

�(2,1)(X)
)

= − (μ2 − μ2
1)

∑n
j=1 (dj − d)3

2λ3n2(n− 1)
=O(n−1/2+η),

using (1.4), since R� δ2 and μ2
1 �μ2 �μ3. This completes the proof.

Proof of Theorem 1.1. Define ε1(η) as in (4.3). We will apply Theorem 2.2 to estimate (4.2). The
expected value and variance of fh + gH are given in Lemma 4.2. It remains to prove that

n−1∑
j=1

(
1
6
α3
j + 1

3
αjβj + 5

8
α4
j + 5

8
β2
j

)
=O(n−1/2+η),

where αj = αj[ fh + gH , Sn], βj = ∑n−1
k=j+1 αkΔjk and Δjk = Δjk[ fh + gH , Sn].

Without loss of generality, we can assume that

h1 � h2 � · · ·� hn.

We calculate that for 1� j< a� n,

‖D(j a)fh‖ =O
(

δhj
λn

)
.

Therefore

αj[fh, Sn]=O
(

δhj
λn

)
.

Observe also that ‖D(k b) D(j a)fh‖ = 0 whenever j, k, a, b are distinct. Otherwise, for 1� j< a� n
and 1� k< b� n with j, k, a, b not all distinct, we use the bound

‖D(k b) D(j a)fh‖� 2‖D(j a)fh‖ =O
(

δhj
λn

)
.

Thus

Δjk[fh, Sn]=O
(

δhj
λn(n− j)

)
.
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Next we need to consider gH , and calculate that

‖D(j a)gH‖ =O
( (δ + hj)2hj

λ(1− λ)n2

)
,

since only the terms of gH corresponding to edges incident with j or a can contribute. This
gives us

αj[gH , Sn]=O
( (δ + hj)2hj

λ(1− λ)n2

)
=O(n−1/2+4ε).

Suppose that j, k, a, b are all distinct, with j< a and j< k< b. If { jk, jb, ab, kb} ∩ E(H)= ∅,
then

‖D(k b) D(j a)gH‖ = 0,

and otherwise

‖D(k b) D(j a)gH‖ =O
( (δ + hj)2

λ(1− λ)n2

)
.

Therefore

Δjk[gH , Sn)]=O
( (δ + hj)2

λ(1− λ)n2

) (
1jk∈E(H) +

hj
n− k

)
.

To see this, we recall that

Δjk[gH , Sn]= 1
(n− j)(n− k)

n∑
a=j+1

n∑
b=k+1

‖D(k b)D(j a)gH‖

and observe that there are at most hj choices for b> k such that jb ∈ E(H). Also, there are at most
n− j choices for a: dividing the product of these by (n− k)(n− j) leads to the term hj/(n− k).
Similarly, there are at most hk choices for a> j such that ka ∈ E(H), and then at most n− k choices
for b> k. If jk ∈ E(H) then there are at most (n− k)(n− j) choices for a, b, and there are at most
(n− k)hk edges with at least one end-vertex in {k+ 1, . . . , n} (this counts the choices for ab ∈
E(H)). The ‘diagonal’ terms (where a= b or a= k) satisfy

‖D(k b) D(j a)gH‖� 2‖D(j a)gH‖ =O
( (δ + hj)2hj

λ(1− λ)n2

)
.

So their contribution to Δjk(gH , Sn) is bounded by

O
( (δ + hj)2hj

λ(1− λ)n2(n− j)

)
.

Combining estimates above and recalling (2.5), we conclude

αj =O
(

δhj
λn

+ n−1/2+4ε
)
, 1� j� n,

Δjk =O
(

δhj
λn(n− j)

+ (δ + hj)2

λ(1− λ)n2

(
1jk∈E(H) +

hj
n− k

))
, 1� j< k� n.

Using the inequality (|x| + |y|)3 � 4(|x|3 + |y|3) for each term of the sum, we get
n−1∑
j=1

α3
j =

n−1∑
j=1

O
((

δhj
λn

+ n−1/2+4ε
)3 )

=O
(

δ3μ3
λ3n2

+ n−1/2+12ε
)
. (4.7)
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This is O(n−1/2+η) by (1.4) and our assumption ε � 1
12η. We now want to show that the other

error terms from Theorem 2.2 all fit inside this bound too.
Now

n−1∑
k=j+1

1jk∈E(H) � hj,
n−1∑
k=j+1

1
n− k

� 1+ log n,

so Lemma 2.2 gives

βj = 2
n−1∑
k=j+1

αkΔjk

=O
(

δ2h2j
λ2n2

+ (δ + hj)2 δ h2j log n
λ2(1− λ)n3

)

=O
(

δ2h2j
λ2n2

+ δh4j log n
λ2(1− λ)n3

)

=O
((

δhj
λn

+ h3j log n
λ(1− λ)n2

)2)

=O
((

δhj
λn

+ n−1/2+4ε
)2)

.

From this we find that
n−1∑
j=1

αjβj =
n−1∑
j=1

O
((

δhj
λn

+ n−1/2+4ε
)3)

,

which is O(n−1/2+η), similarly to (4.7).
For the two remaining terms, note that

n−1∑
j=1

O
((

δhj
λn

+ n−1/2+4ε
)4)

=
n−1∑
j=1

O
((

δhj
λn

+ n−1/2+4ε
)3)

whenever the right-hand side is O(1), and furthermore both
∑n−1

j=1 α4
j and

∑n−1
j=1 β2

j are covered
by O(n−1/2+η). Applying Theorem 2.2 and using Lemma 4.2 completes the proof.

Proof of Corollary 1.1. To show (1.5), we recall that, by assumption, μ3 � λ2n1/2+η. Hence
1− λ

λn2
∑

jk∈E(H)

hjhk �
1− λ

2λn2
∑

jk∈E(H)

(h2j + h2k)=
1− λ

2λn
μ3 =O(n−1/2+η).

To prove the second part of the corollary, we can use the bound R� δ2 � n1+2ε and observe that
μ1 �μ2 since each hj is a natural number, and μ2

1 �μ2 by the power mean inequality.

Proof of Corollary 1.2. Part (a) is a simple application of Corollary 1.1.
To prove part (b), note that the argument of the exponential in part (a) depends only on the

degree h, and not on the finer structure of H, within the error term. Therefore, using the logic in
Remark 4.1, the expected number of spanning h-regular subgraphs is

RG (n, h) λm exp
(

−1− λ

4λ
h(h− 2)− Rh

2λ2n
+O(n−1/2+η)

)
,
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where RG (n, h) is the number of labelled regular graphs of order n and degree h. From [8] we
know that

RG (n, h)= (nh)!
(nh/2)! 2nh/2(h!)n exp

(
−h2 − 1

4
+O(h3/n)

)
.

Now apply Stirling’s formula and observe that h3/n� n−1+6ε � n−1/2+η, by (4.3).

5. Spanning trees
As another application of our results, we calculate the expected number of spanning trees of
G∼ Gd where the degree sequence d = (d1, . . . , dn) satisfies (1.2). Recall the parameters defined
in (1.1).

5.1 Plan of attack
For some ε > 0, to be chosen later, define

D= {(h1, . . . , hn) ∈ {1, 2, . . . , n− 1}n : h1 + · · · + hn = 2n− 2},
Dgood = {(h1, . . . , hn) ∈D : h1, . . . , hn � n3ε},
Dbad =D \Dgood.

Let T be the set of all labelled trees with n vertices. For h ∈D, let Th be the set of all T ∈ T with
degree sequence h, and note that every T ∈ T belongs to Th for some h ∈D. It is well known that
the number of trees with degree sequence h is

|Th| =
(

n− 2
h1−1, . . . , hn−1

)
(5.1)

(see [11, Theorem 3.1]). Also define

Tgood =
⋃

h∈Dgood

Th and Tbad =
⋃

h∈Dbad

Th.

A tree is called good if it belongs to Tgood, and otherwise it is bad.
Our approach will be to write the expected number of spanning trees in a uniformly random

graph with degree sequence d as∑
T∈T

P(d, T)=
∑

T∈Tgood
P(d, T)+

∑
T∈Tbad

P(d, T). (5.2)

Theorem 1.2 follows immediately from Lemma 5.3, which counts good spanning trees, and
Lemma 5.4, which counts bad spanning trees. In fact bad spanning trees will turn out to be rare,
so the second sum will contribute a negligible amount relative to the first sum.

5.2 The expected number of good spanning trees
It will be useful to define a random variable related to the degree sequence of a tree uniformly
chosen from T , or from Th. Since we are only interested in good trees, we will also consider the
truncation of these random vectors, where any entry larger than �n3ε� is replaced by �n3ε�.

Lemma 5.1. Let X = (X1, . . . , Xn) be the degree sequence of a random tree uniformly chosen
from T . Then, for any fixed ε > 0, the following hold.
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(i) The random vector (X1 − 1, . . . , Xn − 1) has a multinomial distribution with parameters
m= n− 2, k= n, λ1 = · · · = λk = 1, in the notation of (2.20).

(ii) Next, consider a random variable Y ∈ {0, 1, 2, . . . }n, whose components are i.i.d. Poisson
variables with mean 1. For each y, we have that

P(X1 = y1+1, . . . , Xn = yn+1)= P(Y1 = y1, . . . , Yn = yn | Y1 + · · · + Yn = n− 2).

(iii) Define the random variable Z = (Z1, . . . , Zn), where Zj =min{Xj, �n3ε�} for each j. Then,
uniformly over j �= k,

E Zj = 2+O(n−1), E Z2
j = 5+O(n−1),

Var Zj = 1+O(n−1), Var Z2
j = 27+O(n−1), Cov (Zj, Zk)= −n−1 +O(n−2).

Proof. Statements (i) and (ii) are well known and follow easily from (5.1).
For (iii), note that the probability generating function of X is

p(x)=
∑
h

|Th| xh = n−n+2 x1 · · · xn(x1 + · · · + xn)n−2.

This allows computation of small moments of X, for example

E X1 = ∂

∂x1
p(x)|(1,...,1) = 2− 2

n
.

The differences between small moments of Z and the corresponding moments of X are within the
given error terms. To see this, we can set all but one of the arguments of p(x) equal to 1 to find the
distribution of the degree of one vertex. Thus we find that P(X1 = t)� 1/(t − 1)! for t� 1 and so

P(Z �= X)� n P(X1 > �n3ε�)= o(e−n3ε ).

Statement (iii) follows.

The following result from [3, Section 3] will be useful.

Lemma 5.2. Let φ1, . . . , φn ∈R and let h be a sequence such that Th �= ∅. Then
1

|Th|
∑
T∈Th

∑
jk∈E(T)

φjφk = 1
n− 2

( ( n∑
k=1

φk

)( n∑
j=1

(hj−1)φj

)
−

( n∑
j=1

(hj−1)φ2
j

))
and

1
|Th|

∑
T∈Th

exp
(

−
∑

jk∈E(T)
φjφk

)
= exp

(
K − 1

|Th|
∑
T∈Th

∑
jk∈E(T)

φjφk

)
for some K with

|K|� 1
8
n

(
max

j
|φj| −min

j
|φj|

)4
.

Define

ε2(η)=min
{
ε5(η),

1
8
η

}
, (5.3)

where ε5(η) is provided by Theorem 4.1.
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Lemma 5.3. Let η ∈ (0, 12 ) be constant. If assumption (1.2) holds with ε ∈ (0, ε2(η)], then the
expected number of good spanning trees is∑

T∈Tgood
P(d, T)= nn−2 λn−1 exp

(
−1− λ

2λ
− R

2λ2n
+O(n−1/2+η)

)
.

Proof. For a good tree T, we can apply Theorem 4.1 to estimate P(d, T). The function f (d, h) in
Theorem 4.1 depends only on h, not on the tree T itself. We can ‘average out’ the contribution of
g(d, T), which depends on the structure of T, using the function ḡ(d, h) defined by

eḡ(d,h) = 1
|Th|

∑
T∈Th

eg(d,T).

Then we can write∑
T∈Th

P(d, T)= λn−1 exp ( f (d, h)+O(n−1/2+η))
∑
T∈Th

eg(d,T)

= λn−1 |Th| exp ( f (d, h)+ ḡ(d, h)+O(n−1/2+η)).

Define

φj = dj − d − hj + λhj
n
√

λ(1− λ)

for j= 1, . . . , n. Using
∑n

j=1 (dj − d)= 0, ‖h‖� n3ε and |∑n
j=1 hjaj| =O(nmaxj|aj|) for any

a1, . . . , an, the first part of Lemma 5.2 gives
1

|Th|
∑
T∈Th

∑
jk∈E(T)

φjφk =O(n−1/2+2ε).

Combining this with the second part of Lemma 5.2, we find that ḡ(d, h)=O(n−1/2+2ε). The
assumption ‖h‖� n3ε and the fact that μ1 = 2− 2/n for a tree imply that

1− λ

4λ
(μ2

1 + 2μ1)− (1− λ2)
6λ2n

μ3 + 1
2λ2n2

n∑
j=1

(dj − d)h2j

= 2(1− λ)
λ

+O(n−1/2+8ε + n−1+10ε).

Applying Theorem 4.1, we have, since ε � 1
8η,∑

T∈Tgood
P(d, T)= (1+O(n−1/2+η))λn−1

∑
h∈Dgood

(
n− 2

h1−1, . . . , hn−1

)
e f

∗(d,h), (5.4)

where

f ∗(d, h)= 2(1− λ)
λ

− 1− λ

2λ
μ2 − 1

2λ2n2
n∑
j=1

(dj − d)2hj + 1
λn

n∑
j=1

(dj − d)hj.

We now rewrite (5.4) using the random variable Z defined in Lemma 5.1, by extending the sum
over Dgood to all of D, as follows:∑

T∈Tgood
P(d, T)= nn−2λn−1eO(n

−1/2+η)(E e f
∗(d,Z) −E [1Dbade

f ∗(d,Z)]). (5.5)
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Applying the estimates from Lemma 5.1(iii) to f ∗(d, Z), we have

E f ∗(d, Z)= −1− λ

2λ
− R

λ2n
+O(n−1/2+η),

Var f ∗(d, Z)= R
λ2n

+O(n−1/2+η).
(5.6)

Observe that by Lemma 5.1(i), f ∗(d, Z) can be written as a function of a multinomial distribution:

f ∗(d, Z)= f̃ (X1 − 1, . . . , Xn − 1).

We will apply Theorem 2.3(iii) to the function f̃ . Recalling (2.18) and (2.19), we calculate that
αmax =O(n−1/2+2ε) and Δmax = 0. Therefore, using (5.6),

E e f
∗(d,Z) = exp

(
−1− λ

2λ
− R

2λ2n
+O(n−1/2+η)

)
. (5.7)

Next we bound E [1Dbade f
∗(d,Z)]. From the definition of f we have f ∗(z)� f̂ (z) for all z ∈

{1, 2, . . . }n, where

f̂ (z)= 2
λ

+ 1
λn

n∑
j=1

(dj − d)zj.

For σ ∈ Sn, define

f̂σ (z)= 2
λ

+ 1
λn

n∑
j=1

(dσj − d)zj.

We now apply Lemma 3.1 to estimate

1
n!

∑
σ∈Sn

e f̂σ (z) for z ∈ {1, 2, . . . }n.

Defining

uj = dj − d
λn

and vj = zj

for j= 1, . . . n, we find with respect to a uniformly random permutation σ ∈ Sn that f̂σ (z) has
expectation 2/λ and variance at most

R
λ2n(n− 1)

n∑
j=1

z2j .

The parameter α required by Lemma 3.1 satisfies α =O(n−1/2+4ε/λ). Consequently, by
Lemma 3.1(i),

1
n!

∑
σ∈Sn

e f̂σ (z) =O(e2/λ) eC
∑n

j=1 z2j , (5.8)

where

C = R
2λ2n(n− 1)

.
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SinceDgood is invariant under permutations of the components,E e f̂ (Z) is a symmetric function
of d1, . . . , dn. Therefore

E [1Dbade
f (Z)]�E [1Dbade

f̂ (Z)]=E

[
1Dbad

1
n!

∑
σ∈Sn

e f̂σ (Z)
]

=O(e2/λ)E [1Dbade
C

∑n
j=1 Z2j ].

Next, note that Y1 + · · · + Yn has a Poisson distribution with mean n, and hence, by Stirling’s
approximation,

P(Y1 + · · · + Yn = n− 2)= e−n nn−2

(n− 2)! = �(n−1/2).

Applying Lemma 5.1(ii), we obtain

P(X1 = y1 + 1, . . . , Xn = yn + 1)=O(n1/2) P(Y1 = y1, . . . , Yn = yn). (5.9)

Therefore

E [1Dbade
f (Z)]=O(e2/λn1/2)

∑
y1,...,yn

P(Y = (y1, . . . , yn)) eC
∑n

j=1 min{yj+1,�n3ε�}2 ,

where the sum is restricted to sequences (y1, . . . , yn) of non-negative integers such that (y1 +
1, . . . , yn + 1) �∈Dgood. Recalling that the components of Y are independent, we can separate the
sum and use the union bound on the constraint. This gives

E [1Dbade
f (Z)]�O(e2/λn3/2)(Σ1 + Σ2)n−1Σ2,

where

Σ1 =
�n3ε�∑
y=0

e−1

y! eC(y+1)2 and Σ2 =
∞∑

y=�n3ε�+1

e−1

y! eCn
6ε
.

Since

C =O(n−1+2ε/λ2) and
∞∑
j=0

1
j! (j+ 1)2 = 5e,

we conclude that

Σ1 =
�n3ε�−1∑
y=0

e−1

y! (1+ C(y+1)2 +O(n−2+17ε))= 1+ 5C +O(n−2+17ε), (5.10)

Σ2 =O(e−n3ε ).

Therefore

E [1Dbade
f (Z)]=O(n3/2) exp (2/λ − n3ε +O(n2ε/λ2))=O(e−n3ε/2). (5.11)

Combining (5.5), (5.7) and (5.11) completes the proof.

5.3 The expected number of bad spanning trees
To complete the proof of Theorem 1.2, it remains for us to bound

∑
T∈Tbad P(d, T). Note that we

cannot use Theorem 4.1 directly since T fails the required degree bound. However, we can choose
a subgraph F ⊆ T to which Theorem 4.1 applies and use the fact that P(d, T)� P(d, F).
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Lemma 5.4. Let η ∈ (0, 12 ) be constant. If assumption (1.2) holds with ε ∈ (0, ε2(η)], where ε2(η) is
defined in (5.3), then the expected number of bad spanning trees is∑

T∈Tbad
P(d, T)= nn−2 λn−1 O(e−n3ε/2).

Proof. Let T be a bad tree. Define F(T) to be the set of all subgraphs of T that have maximum
degree at most n3ε and at least n− 1− ∑n

j=1 max{0, xj − n3ε} edges. Since one such subgraph
is obtained by deleting max{0, xj − �n3ε�} arbitrary edges incident with each vertex j, we have
F(T) �= ∅. We also have that for any permutation σ of the vertices, F(σ (T))= σ (F(T)). Since
g(d, F′)=O(n2ε/λ(1− λ)) for all F′ ∈ F(T), using Theorem 4.1 we can write∑

T∈Tbad
P(d, T)� eλ

−1(1−λ)−1O(n2ε)
∑

T∈Tbad
λ
n−1−∑n

j=1 max{0,xj−n3ε} 1
|F(T)|

∑
F′∈F(T)

e f̂ (z(F
′)),

where z(F′) is the degree sequence of F′ and f̂ is defined as before. The expression on the right is
a symmetric function of d, so we can average it over all permutations of the elements of d. The
same calculations that led to (5.8) show that

1
n!

∑
σ∈Sn

e f̂σ (z(F
′)) =O(e2/λ)eC

∑n
j=1 min{xj,n3ε}2 .

Therefore ∑
T∈Tbad

P(d, T)

� eλ
−1(1−λ)−1O(n2ε) λn−1

∑
T∈Tbad

λ
− ∑n

j=1 max{0,xj−n3ε}eC
∑n

j=1 min{xj,n3ε}2

� eλ
−1(1−λ)−1O(n2ε) λn−1nn−2

×
∑

y1,...,yn
P(Y = (y1, . . . , yn)) λ− ∑n

j=1 max{0,yj+1−n3ε} eC
∑n

j=1 min{yj+1,n3ε}2 ,

using (5.9). As before, the sum is restricted to those sequences (y1, . . . , yn) of non-negative
integers such that (y1 + 1, . . . , yn + 1) �∈Dgood.

Separating the sum and applying the union bound, we have∑
y1,...,yn

P(Y = (y1, . . . , yn)) λ− ∑n
j=1 max{0,yj+1−n3ε} eC

∑n
j=1 min{yj+1,n3ε}2 � n (Σ1 + Σ ′

2)
n−1Σ ′

2,

where Σ1 was defined earlier and

Σ ′
2 =

∞∑
y=�n3ε�

e−1λ−(y−n3ε)

y! eCn
6ε =O(e−n3ε ).

Therefore, using (5.10),∑
T∈Tbad

P(d, T)� λn−1 nn−2 exp
(

−n3ε + λ−2n2ε + 1
λ(1− λ)

O(n2ε)
)

= λn−1 nn−2 O(e−n3ε/2). �
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6. Counting induced subgraphs
Recall the parameters defined in (1.1). In this section our starting point is the following result
adapted from McKay [9, Theorem 2.4] in the same way as Theorem 4.1 was adapted from
[9, Theorem 2.1]. We require notation that generalizes (1.6):

ωs,t =
r∑

j=1
(dj − d)s(hj − λ(r − 1))t for s, t� 0.

Theorem 6.1. Let η ∈ (0, 12 ) be constant. Then there is a constant ε6(η)> 0 such that the following
holds for every fixed ε ∈ (0, ε6(η)]. Let d be a degree sequence which satisfies (1.2). Suppose that H[r]

is a graph on the vertex set {1, . . . , r} with degree sequence h[r] = (h1, . . . , hr) such that r� n1/2+ε .
Then the probability that G∼ Gd has H[r] as an induced subgraph is

λm(1− λ)(
r
2)−m

× exp
(
2ω1,1 − ω0,2
2λ(1− λ)n

+ r2

2n
+ (1− 2λ)ω0,1

2λ(1− λ)n
+ 4ω1,0ω0,1 − ω2

0,1 − 2ω2
1,0

4λ(1− λ)n2

+ r(2ω1,1 − ω2,0 − ω0,2)
2λ(1− λ)n2

− (1− 2λ)(ω0,3 + 3ω2,1 − 3ω1,2)
6λ2(1− λ)2n2

+O(n−1/2+η)
)
.

Now, for a given permutation σ ∈ Sn, let

ωs,t(σ )=
r∑

j=1
(dσj − d)s (hj − λ(r − 1))t .

Note that ω0,t(σ ) is independent of σ and equals ωt from (1.6). Let find : Sn →R be defined as

find(σ )= 2ω1,1(σ )− ω2
2λ(1− λ)n

+ r2

2n
+ (1− 2λ)ω1

2λ(1− λ)n
+ 4ω1,0(σ )ω1 − ω2

1 − 2ω1,0(σ )2

4λ(1− λ)n2

+ r(2ω1,1(σ )− ω2,0(σ )− ω2)
2λ(1− λ)n2

− (1− 2λ)(ω3 + 3ω2,1(σ )− 3ω1,2(σ ))
6λ2(1− λ)2n2

.

Observe that the considerations of Remark 4.1 apply to Theorem 6.1. Thus we find (under the
assumptions of Theorem 6.1) that the expected number of induced copies of H[r] in a uniformly
random graph with degree sequence d is

(1+O(n−1/2+η))
r!

|Aut (H[r])|
(
n
r

)
λm (1− λ)(

r
2)−m

E [e find(X)], (6.1)

where the expectation is taken with respect to a uniformly random element X of Sn.
In the proof of Theorem 1.3 we will use the following bounds given by the power mean

inequality:

δ

λ(1− λ)n

r∑
j=1

|hj − λ(r − 1)|� r2/3
(

δ3

λ3(1− λ)3n3
r∑

j=1
|hj − λ(r − 1)|3

)1/3
,

δ2

λ2(1− λ)2n2
r∑

j=1
|hj − λ(r − 1)|2 � r1/3

(
δ3

λ3(1− λ)3n3
r∑

j=1
|hj − λ(r − 1)|3

)2/3
.

(6.2)

https://doi.org/10.1017/S0963548320000498 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000498


490 C. Greenhill, M. Isaev and B. D. McKay

Before proving Theorem 1.3, we apply the results of Section 3 to obtain the following
expressions. Define

ε3(η)=min
{
ε6(η),

1
8
η

}
. (6.3)

Lemma 6.1. Let η ∈ (0, 12 ) be constant. If assumptions (1.2) and (1.7) hold with ε ∈ (0, ε3(η)], then

E find(X)= − ω2
2λ(1− λ)n

+ r2

2n
+ (1− 2λ)ω1

2λ(1− λ)n
− ω2

1
4λ(1− λ)n2

− r2R
2λ(1− λ)n2

− r ω2
2λ(1− λ)n2

− (1− 2λ)ω3
6λ2(1− λ)2n2

− (1− 2λ)Rω1
2λ2(1− λ)2n2

+O(n−1/2+η),

Var find(X)= Rω2
λ2(1− λ)2n2

− r ω1
∑n

j=1 (dj − d)3

λ2(1− λ)2n4
+O(n−1/2+η).

Proof. We will often employ the bounds R� δ2 and |hj − λ(r − 1)|� r.
In order to easily apply Lemma 3.1, we extend the sum definingωs,t(σ ) to n terms by appending

zeros:

ωs,t(σ )=
n∑
j=1

ujvσj , (6.4)

where, for j= 1, . . . n,

uj =
⎧⎨⎩(hj − λ(r − 1))t if j� r,

0 if j� r + 1,
and vj = (dj − d)s.

When applying Lemma 3.1, it will be convenient to use the identity
n∑
j=1

(u(j)− ū)(u′(j)− ū′)=
n∑
j=1

u(j)u′(j)− nūū′.

If u(j)= qkj and u′(j)= qtj for j= 1, . . . , n, for some sequence (q1, . . . , qn) ∈R
n and k, t� 0, then

we can apply the power mean inequality to bound this expression by O(1)
∑n

j=1 |qj|k+t .
By Lemma 3.1(i),

E [ωs,t(X)]= 1
n

( n∑
j=1

(dj − d)s
)( r∑

j=1
(hj − λ(r − 1))t

)
.

This implies that E [ω1,t(X)]= 0 for any t� 0, and that

E

[
− r ω2,0(X)
2λ(1− λ)n2

]
= − r2R

2λ(1− λ)n2
, E

[
− (1− 2λ)ω2,1(X)

2λ2(1− λ)2n2

]
= − (1− 2λ)Rω1

2λ2(1− λ)2n2
.

Finally, applying Lemma 3.1(ii) shows that

E [ω1,0(X)2]=Var [ω1,0(X)]

= 1
n− 1

n∑
j=1

(dj − d)2
(
r
(
1− r

n

)2
+ (n− r)

(
r
n

)2)
=O(Rr),
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again using the fact that E [ω1,0(X)]= 0 for the first equality. Therefore

E

[
− ω1,0(X)2

2λ(1− λ)n2

]
=O

(
Rr

λ(1− λ)n2

)
=O(n−1/2+4ε)=O(n−1/2+η).

Combining the above expressions and estimates leads to the expression for E find(X).
Now for the variance. From Lemma 3.1(ii) we have

Var [ω1,1(X)]= nR
n− 1

(
ω2 − ω2

1
n

)
= Rω2 +O

(R(ω2 + ω2
1)

n

)
. (6.5)

Combining (1.7) and (6.2) gives

Rω2
1

λ2(1− λ)2n3
=O

(
r4/3n−1/3+2η/3

n

)
=O(n−1/2+η),

Rω2
λ2(1− λ)2n3

=O
(
r1/3n−1/3+2η/3

n

)
=O(n−1/2+η).

Therefore the first term of find has variance

Var
[

ω1,1(X)
λ(1− λ)n

]
= Rω2

λ2(1− λ)2n2
+O(n−1/2+η).

Also

Var
[

r ω1,1(X)
λ(1− λ)n2

]
=O

(
r2Rω2

λ2(1− λ)2 n4

)
=O

(
δ2r5

λ2(1− λ)2 n4

)
=O(n−1/2+η).

Using Lemma 3.1(ii), we have the following rough bound:

Var [ωk,t(X)]=O(δ2k r2t+1). (6.6)

Hence

Var
[

ω1,0(X)ω1
4λ(1− λ)n2

]
=O

(
r5 δ2

λ2(1− λ)2n4

)
=O(n−1/2+η),

Var
[

r ω2,0(X)
λ(1− λ)n2

]
=O

(
r3δ4

λ2(1− λ)2n4

)
=O(n−1/2+η),

Var
[

ω2,1(X)
λ2(1− λ)2n2

]
=O

(
δ4r3

λ4(1− λ)4n4

)
=O(n−1/2+η),

Var
[

ω1,2(X)
λ2(1− λ)2n2

]
=O

(
δ2r5

λ4(1− λ)4n4

)
=O(n−1/2+η).

The final variance that we must calculate is Var [ω1,0(X)2]. We have

Var [ω1,0(X)2]�E [ω1,0(X)4]= 1
n!

∑
σ∈Sn

( r∑
j=1

(dσj − d)
)4

− (r)4
(n)4

( n∑
k=1

(dk − d)
)4

. (6.7)

Note that the second term is 0 since
∑n

k=1 (dk − d)= 0. Expanding the right-hand side of (6.7) as

E

[ n∑
i1,i2,i3,i4=1

c(i1, i2, i3, i4)(di1 − d)(di2 − d)(di3 − d)(di4 − d)
]
,
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we find that c(i1, i2, i3, i4)= 0 if i1, i2, i3, i4 are distinct. The part( r∑
j=1

(dσj − d)
)4

has r4 − (r)4 =O(r3) other terms while the part

(r)4
(n)4

( n∑
k=1

(dk − d)
)4

has n4 − (n)4 =O(n3) other terms. Therefore

Var [ω1,0(X)2]=O(r3δ4 + r4δ4/n)=O(r3δ4),

which proves that

Var
[

ω1,0(X)2

2λ(1− λ)n2

]
=O(n−1/2+η).

Hence we see that only the first term of find(X) has non-negligible variance. It follows that any
covariance which does not involve the first term will automatically fit within theO(n−1/2+η) error
term. We now compute the remaining covariances. Lemma 3.1(ii) implies that

Cov (ωj,k(X),ωs,t(X))=O(δj+s rk+t+1),

which shows that

Cov
(

ω1,1(X)
λ(1− λ)n

,
ω1,0(X)

λ(1− λ)n3

)
=O

(
δ2r2

λ2(1− λ)2n3

)
=O(n−1/2+η).

Using assumption (1.7) and bounds (6.2), (6.5), we find that

Cov
(

ω1,1(X)
λ(1− λ)n

,
r ω1,1(X)

λ(1− λ)n2

)
= r

λ2(1− λ)2n3
Var [ω1,1(X)]

=O
(

δ2rω2
λ2(1− λ)2n3

)

=O
(
r4/3n−1/3+2η/3

n

)
=O(n−1/2+η).

Applying Lemma 3.1(ii) and using the same kind of argument, we find that

Cov
(

ω1,1(X)
λ(1− λ)n

,
ω2,1(X)

λ2(1− λ)2n2

)
=O

(
δ3ω2

λ3(1− λ)3n3

)

=O
(

δr1/3n−1/3+2η/3

λ(1− λ)n

)
=O(n−1/2+η),

Cov
(

ω1,1(X)
λ(1− λ)n

,
ω1,2(X)

λ2(1− λ)2n2

)
=O

(
δ2

∑r
j=1 |hj − λ(r − 1)|3
λ3(1− λ)3n3

)
=O(n−1/2+η).
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The following term will contribute to the answer, so we calculate it precisely. Writing
ω1,1(σ ))= ∑n

j=1 ujvσj using (6.4) with s= t = 1, we have ū= ω1/n and v̄= 0. Similarly, write
ω2,0(σ )= ∑n

j=1 u′
jv′

σj using (6.4) with s= 2 and t = 0, giving ū′ = r/n and v̄′ = R. Applying
Lemma 3.1(ii) gives

Cov
(

ω1,1(X)
λ(1− λ)n

,
−r ω2,0(X)
2λ(1− λ)n2

)
= − r

2λ2(1− λ)2n3(n− 1)

n∑
j=1

(dj − d)((dj − d)2 − R)

×
( r∑

j=1

(
hj − λ(r − 1)− ω1

n

)(
1− r

n

)
+ ω1 r(n− r)

n2

)

= − r ω1
∑n

j=1 (dj − d)3

2λ2(1− λ)2n4
+O(n−1/2+η). (6.8)

Finally, we need

Cov
(

ω1,1(X)
λ(1− λ)n

,
ω1,0(X)2

λ(1− λ)n2

)
= 1

λ2(1− λ)2n3
r∑

j=1

r∑
k=1

Cov (Êjk(X),ω1,1(X)), (6.9)

where Êjk(σ )= (dσj − d)(dσk − d). If j �= k then each covariance in the sum on the right-hand side
matches the setting of Lemma 3.1(v) with uj = 0 for all j, and vj = dj − d. Note ū= v̄= 0. Write
� ′(X)= ω1,1(X) using (6.4) with s= t = 1, giving ū′ = ω1/n and v̄′ = 0. By Lemma 3.1(iv), if j �= k
then

Cov (Êjk(X),ω1,1(X))=O
(

δ3r
n

)
since u(k)+ v̄= u(j)+ v̄= 0 for all j, k. Therefore the terms in (6.9) with j �= k contribute

2
(
r
2

)
O

(
δ3r
λ2n4

)
=O(n−1/2+η).

The terms in (6.9) with j= k contribute

1
λ2(1− λ)2n3

Cov (ω1,1(X), ω2,0(X))=O
(

δ3ω1
λ2(1− λ)2n3

)
=O(n−1/2+η),

using the earlier expression for this covariance (6.8) and the bound ω1 =O(r2). Thus we see that
(6.9) does not contribute significantly.

Combining all the estimates above (and multiplying (6.8) by 2) gives the stated expression for
the variance of find(X). This completes the proof.

We can now prove our main result about induced subgraphs.

Proof of Theorem 1.3. Define ε3(η) as in (6.3). We will apply Theorem 2.2 to estimate (6.1). The
expected value and variance of find are given in Lemma 6.1. It remains to prove that

n−1∑
j=1

(
1
6
α3
j + 1

3
αjβj + 5

8
α4
j + 5

8
β2
j

)
=O(n−1/2+η),

where αj = αj[ find, Sn], βj = ∑n−1
k=j+1 αkΔjk and Δjk = Δjk[ find, Sn].
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Without loss of generality, we can assume that

|h1 − λ(r − 1)|� |h2 − λ(r − 1)|� · · ·� |hr − λ(r − 1)|.
For any s, t, and 1� j< a� n, the function ωs,t satisfies

‖D(ja)ωs,t‖ =
{
O(δs|hj − λ(r − 1)|t) for j� r,

0 otherwise.

Also, we have

‖D(ja)ω2
1,0‖� 2‖ω1,0‖‖D(ja)ω1,0‖ =

{
O(δ2r) for j� r,

0 otherwise.

Let αj = αj[ find, Sn]. Observe that αj = 0 for j> r. By our assumptions, we have

r, δ, hj =O(n1/2+ε), ω1 = 2m− λ

(
r
2

)
=O(n1+2ε).

Thus, using the above bounds, we find that αj =O(γj) for 1� j� r, where

γj = δ|hj − λ(r − 1)|
λ(1− λ)n

+ n−1/2+4ε .

Note that for any s, t, and distinct 1� j, k, a, b� n with j< a and j< k< b, we have

‖D(k b)D(j a)ωs,t‖ = 0,

‖D(k b)D(j a)ω2
1,0‖ =

{
O(δ2) for k� r,

0 otherwise.

Let Δjk = Δjk[ find, Sn]. We have that Δjk = 0 for k> r. Observe also that

‖D(k a)D(j a)find‖� 2‖D(k a)find‖ =O(n3ε),

‖D(k b)D(j k)find‖� 2‖D(j k)find‖ =O(n3ε).

Thus, using the bounds above, we find that Δjk =O(n−1+3ε) for 1� j< k� r.
Using the inequality (|x| + |y|)3 � 4(|x|3 + |y|3) for each term of the sum, we find that

n−1∑
j=1

α3
j =O(1)

r∑
j=1

γ 3
j

=
r∑

j=1
O

((
δ|hj − λ(r − 1)|

λ(1− λ)n
+ n−1/2+4ε

)3 )

=O
(

δ3
∑r

j=1 |hj − λ(r − 1)|3
λ3(1− λ)3n3

+ rn−3/2+12ε
)

=O(n−1/2+η)

by (1.7) and the bound ε � 1
8η. Observe that βj = 0 for j> r and

βj =O(rαjn−1+3ε)=O(γj n−1/2+4ε) for j� r.
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Using the power mean inequality, we bound
n∑
j=1

αjβj =O(n−1/2+4ε)
r∑

j=1
γ 2
j

�O(n−1/2+4ε)r1/3
( r∑

j=1
γ 3
j

)2/3

=O(n−1/3+4ε+ε/3)
( r∑

j=1
γ 3
j

)2/3
=O(n−1/2+η)

as before. The two remaining terms also have negligible contribution:
n−1∑
j=1

α4
j �

r∑
j=1

γ 4
j =O(1)

r∑
j=1

γ 3
j =O(n−1/2+η),

n−1∑
j=1

β2
j =O(n−1+8ε)

r∑
j=1

γ 2
j =O(n−1/2+η).

Applying Theorem 2.2 and using Lemma 6.1, we complete the proof. The bound Λ2 =
O(n−1/3+4ε+η/3) in the theorem statement follows directly from (1.7) and (6.2).

Proof of Corollary 1.3. To show (1.8), observe that ωt =O(rt+1). Therefore the assumption
r2(1+ δ2/n)=O(λ2(1− λ)2n1/2+η) implies that

r2

2n
+ (1− 2λ)ω1

2λ(1− λ)n
− r2R

2λ(1− λ)n2
− (1− 2λ)Rω1

2λ2(1− λ)2n2
=O

(
r2(1+ δ2/n)
λ2(1− λ)2n

)
=O(n−1/2+η),

ω2
1

4λ(1− λ)n2
+ rω2

2λ(1− λ)n2
+ (1− 2λ)ω3

6λ2(1− λ)2n2
=O

(
r4

λ2(1− λ)2n2

)
=O(n−1/2+η),

rω1
∑n

j=1 (dj − d)3

2λ2(1− λ)2n4
=O

(
r3δ3

λ2(1− λ)2n3

)
=O(n−1/2+η).

For the second statement, observe that the assumption r =O(n1/3−ε) implies that r2(1+
δ2/n)=O(n2/3) and so

− ω2
2λ(1− λ)n

+ Rω2
2λ2(1− λ)2n2

=O
(
r3(1+ δ2/n)
λ2(1− λ)2n

)
=O

(
r

n1/3λ2(1− λ)2

)
=O

(
n−ε

λ2(1− λ)2

)
=O(n−ε/2).

Applying (1.8) completes the proof.
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Proof of Corollary 1.4. The bound on r in the corollary statement implies that r =O( log n) and
is equivalent to λrmin � n−2+ε . The fact that E Yn → ∞ thus follows from Corollary 1.3. In order
to prove the concentration, we use the second moment method in a standard fashion. Define

N =
(
n
r

)
r!

|Aut (H[r])| ,

and let H1, . . . ,HN be a list of all the potential induced copies of H[r]. Let pj,k be the probability
that both Hj and Hk occur simultaneously as induced subgraphs, and define

Et =
∑

1�j,k�N
|V(Hj)∩V(Hk)|=t

pj,k, 0� t� r.

We know that E Y2
n = ∑r

t=0 Et and now we compare E Y2
n to (E Yn)2. The probability pj,k is not

provided directly by either Theorem 1.1 or Theorem 1.3 but we can infer it from the second part
of Corollary 1.3. By summing over all the possible subgraphs induced by V(Hj)∪V(Hk), we find
that Et asymptotically matches the corresponding expectation for the binomial random graph
model G(n, λ) to relative error O(n−ε/2 + n−1/2+η). Therefore we have

E0 =
(
n
r

)(
n− r
r

)(
r!

|Aut (H[r])|
)2

λ2m(1− λ)r(r−1)−2m(1+O(n−ε/2 + n−1/2+η))

= (E Yn)2(1+O(n−ε/2 + n−1/2+η)).

To bound Et from above for t� 1, we can assume that two induced copies of H[r] always overlap
correctly. This gives

Et �
(
n
r

)(
r
t

)(
n− r
r − t

)(
r!

|Aut (H[r])|
)2

λ2m(1− λ)r(r−1)−2mλ
−(t2)
min

� (E Yn)2(2n−1r2λ−(t−1)/2
min )t(1+ o(1)).

Using the condition λrmin � n−2+ε , we have that

(n−12r2λ−(t−1)/2
min )t =O(n−1/2+η) for t = 1

and

(n−12r2λ−(t−1)/2
min )t =O(n−tε/3) for 2� t� r.

Therefore

E Y2
n = (E Yn)2(1+O(n−ε/2 + n−1/2+η)),

which implies that

Var Yn = (E Yn)2 O(n−ε/2 + n−1/2+η).

The desired result now follows from Chebyshev’s inequality.
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