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Bootstrap percolation (BP) has been used effectively to model phenomena as diverse as
emergence of magnetism in materials, spread of infection, diffusion of software viruses in
computer networks, adoption of new technologies, and emergence of collective action and
cultural fads in human societies. It is defined on an (arbitrary) network of interacting
agents whose state is determined by the state of their neighbors according to a threshold
rule. In a typical setting, BP starts by random and independent “activation” of nodes
with a fixed probability p, followed by a deterministic process for additional activations
based on the density of active nodes in each neighborhood (θ activated nodes). Here, we
study BP on random geometric graphs (RGGs) in the regime when the latter are (almost
surely) connected. Random geometric graphs provide an appropriate model in settings
where the neighborhood structure of each node is determined by geographical distance,
as in wireless ad hoc and sensor networks as well as in contagion. We derive bounds p′c, p′′c
on the critical thresholds such that for all p > p′′c full percolation takes place, whereas for
p < p′c it does not. We conclude with simulations that compare numerical thresholds with
those obtained analytically.

1. INTRODUCTION

Some crystals or lattices studied in physics and chemistry can be modeled as consisting of
atoms occupying sites with specified probabilities. The lattice as a whole would then exhibit
certain macroscopic properties, such as (ferro)magnetism, only when a sufficient number of
neighboring sites of each atom are also similarly occupied. In computer memory arrays, each
functional memory unit can be considered as an occupied site, and a minimum percentage
of functioning units are needed in the vicinity of each memory unit in order to maintain
the array with proper functioning. In adoption of new technology or emergence of cultural
fads, an individual is positively influenced when a sufficient number of its close friends have
also done so.

All the three examples cited above may be modeled via a formal process called “boot-
strap percolation” (BP), which is a dynamic process that evolves similarly to a cellular
automaton. Unlike traditional cellular automata, however, this process can be defined on
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arbitrary graphs and starts with random initial conditions. Nodes are either active or inac-
tive. Once activated, a node remains active forever. Each node is initially active with a
(given) probability p. Subsequently and at each discrete time step, a node becomes active
if θ of its nearest neighbors are active, for a fixed value of θ = 1, 2, 3, . . . . As time evolves,
a fraction Φ of all the nodes are activated. The emergence of macroscopic properties of
interest typically involve Φ to be at or close to 1.

Gersho and Mitra [10] studied a similar model for adoption of new communication ser-
vices using a random regular graph and obtained (implicit) critical thresholds for widespread
adoption. Chalupa et al. [7] were the first to introduce BP formally to explain ferromag-
netism. Their analysis is carried out on regular trees (Bethe lattices) and a fundamental
recursion is derived for computation of the critical threshold that has since been used
extensively. In the more recent past, results for non-regular (infinite) trees have also been
derived by Balogh et al. [4]. Aizenman and Lebowitz [1] studied metastability of BP on the
d-dimensional Euclidean lattice Z

d which has now been thoroughly investigated in two and
three dimensions; see [6,14]. The existence of a sharp metastability threshold for BP in two-
dimensional lattices was proved by Holroyd [14] and recently generalized to d-dimensional
lattices by Balogh et al. [3]. Even more recently, BP has been studied on random graphs
G(n, p) by Luczak and co-workers [15]. In [19] Watts proposed a model of formation of
opinions in social networks in which the percolation threshold is a certain fraction of the
size of each neighborhood rather than a fixed value, a departure from the standard model
that is used by Amini in [2] for random graphs with a given degree sequence.

Many diffusion processes of interest have a physical contact element. A link in an ad
hoc wireless network, a sensor network, or an epidemiological graph connotes physical prox-
imity within a certain locality. Study of diffusion of virus spread in ad hoc wireless, sensor
or epidemiological graphs requires this notion of neighborhood for accurate estimation of
likelihood of full percolation. This is in contrast to models with long-range reach where
physical proximity plays little, if any, role. The natural random model for such phenomena
is the random geometric graph (RGG). In this work, we focus on BP on RGGs, a topic that
has not been investigated, to the best of our knowledge, and obtain tight bounds on their
critical thresholds for full percolation.

2. RGG MODEL

One of the transitions from the random graph model G(n, p) of Erdős and Rényi [8,9]
and Gilbert [11] to models that may describe processes constrained by geometric distances
among the nodes is the model of RGGs by Gilbert [12]. This model takes as input nodes
placed randomly on the plane and a pair is connected when their distance is within a
prescribed value. (We shall make this definition precise in the sequel.) The RGG model
has been used in many disciplines: for modeling of wireless sensor networks [18], cluster
analysis, statistical physics, hypothesis testing, spread of computer viruses in wired net-
works, processes involving physical contact among individuals, as well as other related
disciplines, see [17] for more details. For example, a wireless sensor network typically con-
tains a large number of randomly deployed nodes with links determined by geometric
proximity enabled by (a small) radio range among the nodes that is sufficient to enable
successful signal transmission across the network. A further application of RGG is in repre-
senting d-attribute data where numerical attributes are used as coordinates in R

d and two
nodes are considered connected if they are within a threshold (Euclidean) distance r of each
other. The metric distance imposed on such an RGG captures the similarity between data
elements.
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Figure 1. (Color online) (Left) the “very” sparse regime (r = 0.02), and (Right) emer-
gence of the giant component regime (r = 0.035).

We shall use the following formal definition of RGG. Let X be a Poisson point process
of intensity 1 on R

2. Consider points of X contained in [0,
√

n]2 representing the nodes
of a graph denoted by Gn,r. Two nodes of Gn,r are connected if their Euclidean distance
is at most r ≡ r(n). Before we cite the result on the connectedness of Gn,r, we intro-
duce the standard asymptotic notation, which will be used in this work. For two functions
f(x) and g(x) we write: (i) f(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0, (ii) f(x) = O(g(x)) if
limx→∞ |f(x)/g(x)| < ∞, and (iii) f(x) = ω(g(x)) if limx→∞ f(x)/g(x) = ∞. When rt(n) =√

(ln n + ω(1)) /π, then Gn,r is connected whp1; see [13,16]. We parametrize r(n) by intro-
ducing a parameter a which ensures connectivity at r(n) =

√
a ln n/π when a > 1 and

measures how much denser an instance of Gn,r is compared to Gn,rt at the connectedness
threshold rt(n). For sufficiently large n the expected degree of a node in RGG is concen-
trated around its mean value a ln n, a fact that is easily derived from the Chernoff and union
bounds.

For example when n = 1000, the critical thresholds for (1) the existence of a giant
component and (2) connectedness in Gn,r satisfy rc ≈ 0.0316 and rt ≈ 0.0469, respectively.
In Figures 1 and 2, we present Gn,r for four different regimes, when r takes the values
0.020, 0.035, 0.045, and 0.050, respectively. The values 0.020 and 0.035 correspond to (1)
the very sparse regime and (2) emergence of a giant component, Figure 1 (left and right).
The values 0.045 and 0.050 correspond to the (1) “almost” connected and (2) connected
regimes, Figure 2 (left and right).

3. BOOTSTRAP PERCOLATION

BP is a cellular automaton defined on an underlying graph G = (V,E) with state space
{0, 1}V whose initial configuration is chosen by a Bernoulli product measure. In other words,
every node is in one of two different states 0 or 1 (inactive or active respectively), and a
node becomes active with probability p independently of other nodes within the initial
configuration.

1 We will use the notation “with high probability” and denote it as whp, meaning with probability 1 − o(1)
as the area n of the square [0,

√
n]2 tends to infinity.
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Figure 2. (Color online) (Left) the “almost” connected regime (r = 0.045), and (Right)
the connected regime (r = 0.05).

After drawing an initial configuration at time t = 0, a discrete time deterministic process
updates the configuration according to a local rule: an inactive node becomes active at time
t + 1 if the number of its active neighbors at t (not necessarily the nearest ones) is greater
than some defined threshold θ. Once an inactive node becomes active it remains active
forever. A configuration that does not change at the next time step is a stable configuration.
A configuration is fully active if all its nodes of are active.

An interesting phenomenon to study is metastability near a first-order phase transition.
Do there exist 0 < p′c ≤ p′′c < 1 such that:

(∀p < p′c) lim
t→∞ Pp (V becomes fully active) = 0, (3.1)

and
(∀p > p′′c ) lim

t→∞ Pp (V becomes fully active) = 1? (3.2)

Further, is it necessary for p′c to be equal to p′′c ?
A study of BP on a regular infinite tree first appeared in [7]. Subsequently, the relations

between the branching number of an infinite (non-regular) tree, threshold value, and p
necessary to fully percolate the tree were studied in [4].

A classical example of BP is a d-dimensional lattice Z
d equipped with Bernoulli product

measure with θ = d [1]. For Z
d and V = [0, L − 1]d the existence of a unique threshold

pc was shown in [1]. Concretely for Z
2 and V = [0, L − 1]2 the exact threshold value is

pc = π2/(18 ln L) [14]. Furthermore, the sharp threshold for BP in Z
d in all dimensions was

provided in [3].
Additionally to BP on trees and lattices, there has been recent work of BP on random

regular graphs [5], Erdős–Rényi random graphs [15], as well as random graphs with a given
degree sequence where the threshold depends upon node degree [2].

3.1. BP on Connected RGGs

The structure of Gn,r is dictated by random positions of its nodes and radius r = r(n); so
it is more ‘irregular’ than one a tree or a lattice. In this work, we are interested in BP on
Gn,r which for brevity we denote by BP (Gn,r, p, θ). In this process, a node becomes active
with probability p independently of other nodes in the initial configuration and an inactive
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Figure 3. Bounds (p′, p′′) on the critical thresholds (p′c, p
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node becomes active at each of the following time steps if at least θ = γD of its neighbors
are active at that step, where γ = γ(n) and D(n) = E(deg) = r2π = a ln n is the expected
node degree.

To resolve ambiguity due to the edge effects for the nodes of Gn,r within distance r
from the boundary of the square [0,

√
n]2, we allow the activation rule for these nodes to

include as neighbors all nodes outside [0,
√

n]2 but within a distance r from its boundary,
from the entire process X . The additional nodes in this “frame” are also activated with
probability p at the initial step and participate in the percolation dynamics for the ben-
efit of the boundary nodes within Gn,r. Note that the ratio of the area of the external
r-neighborhood frame around the boundary of the square to the area of the square itself is
of order Θ

((
r2π + 4r

√
n
)
/n

)
that is o(1) and thus asymptotically inclusion of these extra

nodes does not alter our conclusions, but the analysis is now made easier in that we can
treat all nodes insides the square similarly.

For the critical thresholds p′c and p′′c in BP (Gn,r, p, θ), we derive bounds p′ ≤ p′c and
p′′ ≥ p′′c such that a connected Gn,r does not become fully active for p < p′ whp, and con-
versely, becomes fully active for p > p′′ whp. These bounds are schematically presented in
Figure 3.

Before we proceed to the proofs, we need to make an important observation regarding
our methodology. Whereas in the case of BP on regular trees and d-dimensional lattices,
the entire infinite graph is considered, we study BP on the RGG within [0,

√
n]2 for a

fixed n and let n get larger, as needed, to prove the validity of our results. This is because
r(n) =

√
π−1a ln n goes to infinity as n → ∞ and thus RGG within [0,

√
n]2 in the actual

infinite case is a complete graph and thus uninteresting.
The main ideas of the proofs provided below are the following. We obtain the distribu-

tion of the number of active neighbors for each node at the initial configuration. For p < p′

we use the Poisson tail bound and the union bound (see (3.3) in the Appendix) to show
that an initial configuration is stable whp. For p > p′′ we use the Stirling approximation to
lower bound the number of active neighbors for each node. Then we develop a geometric
argument to show that a stable, fully active, configuration is reached within O(

√
n/r) steps

whp. This geometric argument leverages the following simple observation about BP on Z
2

with θ = 1.

Lemma 1: Consider BP in Z
2 with the threshold θ = 1 and the initial probability p > 0. For

p = ω
(
1/N2

)
, a square grid [0, N ]2 becomes fully active within O(N) steps with probability

1 − o(1) as N → ∞.

Proof: The probability that a square grid [0, N ]2 becomes fully active is 1 − (1 − p)N2
and

tends to 1 as N → ∞. Once any point is active within 2N steps the grid [0, N ]2 becomes
fully active. �

We first introduce the following functions upon which our analysis will heavily depend.
For the function H(x) := x ln x − x + 1 on [0,+∞) (see Figure 4 left), define H−1

L : [0, 1] →
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Figure 4. (Color online) Functions H(x) and J(x).

[0, 1] to be the inverse of H(x) on [0, 1], and H−1
R : [0,+∞) → [1,+∞) to be the inverse

of H(x) on [1,+∞). Analogously for the function J(x) := x−1H(x) = ln x − 1 + x−1 on
(0,+∞) (see Figure 4 right), define J−1

L : [0,+∞] → [0, 1] to be the inverse of J(x) on [0, 1],
and J−1

R : [0,+∞) → [1,+∞) to be the inverse of J(x) on [1,+∞).
We will use the following concentration results on a Poisson random variable, see [17].

Lemma 2: A Poisson random variable Po(λ) (with λ > 0) satisfies:

P (Po(λ) ≥ k) ≤ exp (−λH(k/λ)) , k ≥ λ, (3.3)

P (Po(λ) ≤ k) ≤ exp (−λH(k/λ)) , k ≤ λ, (3.4)

where

H(x) =

{
1, x = 0
x ln x − x + 1, x > 0.

(3.5)

We now provide bounds on the critical thresholds on p in Theorems 1 and 2.

Theorem 1: Consider bootstrap percolation BP (Gn,r, p, θ), where r =
√

π−1a ln n and
θ = γa ln n. For a > 1, γ ∈ (0, 1) and when

p < p′ := γ/J−1
R (1/aγ), (3.6)

Gn,r does not become fully active whp.

Proof: We show that for the conditions of the assertion, an initial configuration is
stable whp. The number of active nodes in the initial configuration follows Poisson dis-
tribution Po(pn). The degree distribution of a node is Po(r2π), and the expected degree
D = r2π = a ln n. By the thinning theorem [17] the number of active neighbors in the initial
configuration follows Po(pD). We consider the case p ≤ γ and seek a maximal p′ ≤ γ for this
method (see Figure 3) such that BP (Gn,r, p

′, γ) does not become fully active whp. Con-
sider the activation rule in BP (Gn,r, p, θ). The probability that a node becomes active at the
next time step given that it is inactive initially is P (Po(pD) ≥ γD) ≤ exp (−pDH(γ/p)),
see (3.3). From (3.3) and (3.4) it follows that the number of nodes Po(n) within the square
[0,

√
n]2 is concentrated around its mean n whp. Hence, the union bound over all nodes

provides

Pp (the initial configuration is stable) ≥ 1 − exp ((1 + ø(1)) ln n − pDH(γ/p)) . (3.7)

Given D = a ln n, the condition paH(γ/p) > 1 suffices that the initial configuration is stable
whp. The function J(x) = x−1H(x) is monotonically decreasing on (0, 1), monotonically
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increasing on (1,+∞), with the minimum 0 attained at x = 1. Hence, for any positive γ <
+∞ there are two solutions of J(x) = 1/aγ, denoted x1 < 1 < x2. This yields p > γ/x1 > γ
or p < γ/x2 < γ. The acceptable solution is p < γ/x2, since we consider the case p < γ. For
J(γ/p) > 1/aγ from (3.7) it follows that the probability that the initial configuration is
stable tends to one as n tends to infinity. Finally, a bound on p is given by

p < p′ := γ/J−1
R (1/aγ), (3.8)

which concludes the proof. �

Theorem 2: Consider bootstrap percolation BP (Gn,r, p, θ), where r =
√

π−1a ln n, θ =
γa ln n, a ≥ 5π/H(5πγ) and γ ∈ (0, 1/(5π)). Then, for

p > p′′ :=
5πγ

J−1
R (1/aγ)

, (3.9)

Gn,r becomes fully active within O(
√

n/r) steps whp.

The proof of Theorem 2 consists of two parts. We tile the square [0,
√

n]2 into cells
r/
√

5 × r/
√

5 and show that in the initial configuration: (i) When a > 1, γ ∈ (0, 1/(5π)),
and a ≥ 5π/H(5πγ), every cell contains at least γD nodes whp; (ii) When p > p′′ at least
one cell contains γD or more active nodes. By Lemma 1 it follows that for a, γ, p in the
specified ranges Gn,r becomes fully active within O(

√
n/r) steps whp.

Proof: Tile the square [0,
√

n]2 into cells r/
√

5 × r/
√

5, see Figure 5. Define the area of a
cell A := r2/5 = a ln n/5π. Call two cells neighboring if they share one side. Note that every
pair of nodes within the same cell or within two neighboring cells are adjacent by the choice
of the size of a cell. Define Ĝn,r on the set of nodes of Gn,r as follows. The set of edges of
Ĝn,r consists of the subset of edges of Gn,r whose terminal nodes belong to the same cell
or two neighboring cells. Then the monotonicity of BP yields

Pp

(
Ĝn,r becomes fully active

)
≤ Pp (Gn,r becomes fully active) . (3.10)

Therefore it is sufficient to show that whp Ĝn,r becomes fully active when p > p′′ (3.19).
Part (i) (To show that every cell contains at least γD nodes whp.) We first bound

the probability that an arbitrary cell contains at most γD nodes. The number of nodes
in a cell follows Po(A), that is, Po(a ln n/5π). Moreover, the numbers of nodes in cells
are independent random variables (given the Poisson point process X ). For γ ≤ 1/(5π),
from (3.4) we obtain

P (a cell contains at most γD nodes) = P

(
Po

(
a ln n

5π

)
≤ γa ln n

)
≤ exp

(
−a ln n

5π
H(5πγ)

)
= n− a

5π H(5πγ). (3.11)

The total number of cells in [0,
√

n]2 is 5n/r2 = 5πn/(a ln n) = o(n). The union bound taken
over all cells yields

P (every cell contains at least γD nodes) ≥ 1 − o
(
n1− a

5π H(5πγ)
)

. (3.12)

Finally, for a ≥ 5π/H(5πγ), from (3.12) it follows that every cell contains at least γD nodes
whp.
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Figure 5. Tiling the square [0,
√

n]2.

Part (ii). (To show that at least one cell contains γD or more active nodes.) We now
derive conditions such that at least one cell contains at least θ = γD active nodes in the
initial configuration. In order to guarantee that whp there is at least one cell among 5n/r2 =
Θ(n/ ln n), which contains at least θ active nodes in the initial configuration, it suffices to
find p such that

P (Po(pA) ≥ γD) = ω

(
ln n

n

)
, (3.13)

since

lim
n→∞ 1 − (1 − ω(ln n/n))Θ(n/ ln n) = 1. (3.14)

Define α := 5πγ/p − 1, then by rewriting (3.13) we need p such that

P (Po(pA) ≥ (1 + α)pA) = ω

(
ln n

n

)
. (3.15)

Call λ := pA and without loss of generality assume that (1 + α)λ is an integer. By Stirling’s
approximation we have

P (Po(λ) ≥ (1 + α)λ) ≥ P (Po(λ) = (1 + α)λ) = e−λ λλ(1+α)

((1 + α)λ)!

= exp
(
−λI(α) − 1

2
log ((1 + α)λ) + O(1)

)
, (3.16)

where I(α) = (1 + α) ln(1 + α) − α. From (3.5) note that I(α) = H(1 + α) = H(5πγ/p).
Therefore for (3.15) to be satisfied we require

n

ln n
exp

(
−pAI(α) − 1

2
log ((1 + α)pA) + O(1)

)
= ω(1). (3.17)
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The left-hand side of (3.17) equals

exp
((

1 − ap

5π
I(α)

)
ln n − 3

2
ln lnn − 1

2
ln

(1 + α)pa

5π
+ O(1)

)
, (3.18)

which is ω(1) if 1 > apI(α)/5π. Given α = 5πγ/p − 1, the condition 1 > apI(α)/5π is
equivalent to 1/aγ > H(5πγ/p)/(5πγ/p), and moreover to

p > p′′ :=
5πγ

J−1
R (1/aγ)

. (3.19)

To complete the proof notice that once any γD nodes within a (square) cell become
active, all nodes within that cell become active at the next time step as would all nodes
within its neighboring cells. The resulting process that jointly activates all nodes within
one cell is equivalent to activating a site in Z

2. The resulting BP in Z
2 has the threshold

θ = 1 by construction, see Figure 5. Thus, BP (G′
n,r, p, θ) becomes fully active when p > p′′

by Lemma 1. The proof follows from (3.10). �

The following remark clarifies the feasible region for a and γ required by Theorem 2. It
is verified by inspection of the function H(x).

Remark 1: The condition a ≥ 5π/H(5πγ) is equivalent to:

γ ∈
[

1
5π

H−1
R (5π/a) ,∞

)
, for a < 5π (3.20)

and

γ ∈
[
0,

1
5π

H−1
L (5π/a)

] ⋃[
1
5π

H−1
R (5π/a) ,∞

)
, for a ≥ 5π. (3.21)

Next, we observe that γ is a trivial lower bound for p′′ because if the initial probability
of occupancy is greater than γ then full percolation takes place with high probability. The
following remark characterizes a necessary condition for p′′ < γ.

Remark 2: From (3.19), for non-trival percolation threshold, that is, p′′ < γ, it is necessary

aγ ≤ 1
JR(5π)

≈ 0.55. (3.22)

3.2. Analysis of Bounds on Critical Thresholds

A bound on the critical threshold p′ = γ/J−1
R (1/aγ) can be rewritten as

ln p′ = − ln a − ln
(
(1/aγ)J−1

R (1/aγ)
)
. (3.23)

The function − ln
(
xJ−1

R (x)
)

is monotonically decreasing in x, hence p′ is monotonically
increasing in a and monotonically decreasing in γ. As an example we numerically compute
and tabulate p′ for γ = 1/20 and different values of a in Table 1. In Figure 6, p′ is plotted
as a function of a for different values of

γ ∈ {1/70, 1/60, 1/50, 1/40, 1/30, 1/20}. (3.24)
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Table 1. Bounds p′, p′′ on a bound on the critical
thresholds for different values of a when γ = 1/20

a p′ p′′

3 0.0000234198 0.0003678767
4 0.0001242460 0.0019516511
5 0.0003391906 0.0053279940
6 0.0006649716 0.0104453500
7 0.0010794693 0.0169562642
8 0.0015576467 0.0244674579
9 0.0020779022 0.0326396121
10 0.0026234549 0.0412091329
25 0.0101188498 0.1589465210
50 0.0174952121 0.0174952120
100 0.0246619916 0.3873896589

Figure 6. (Color online) The bound p′ for γ ∈ {1/70, 1/60, 1/50, 1/40, 1/30, 1/20} as a
function of a.

The experiments are performed on Gn,r with n = 15000 and n = 25000 nodes, and
r =

√
a ln n/π for the cases: (i) a = 30 and γ = 1/100, and (ii) a = 35 and γ = 1/75. On

these instances of graphs, for each chosen value of p in (0, 1) we simulate BP 100 times.
More precisely, within each experiment we generate a random initial configuration with the
probability p and perform BP with the threshold θ = γD, where the expected degree D is
calculated for a given input Gn,r.

Numerical results are presented with the initial probability p on the horizontal axis,
and the percentage of fully active stable configurations on the vertical axis. Four cases
when (a = 30, γ = 1/100), (a = 35, γ = 1/75), for n = 15000, 25000, are presented in Fig-
ures 7–10, respectively. These charts match the bounds derived theoretically for p′ and p′′.
Furthermore, they appear to suggest that p′c �= p′′c even though we do not currently have a
proof one way or the other.
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Figure 7. (Color online) Percentage of fully percolated configurations in 100 simulations
of BP (Gn,r, p, θ) when a = 30, γ = 1/100, n = 15000, r =

√
30 ln n/πn ≈ 0.07824, D = 30

ln n ≈ 288.47 and θ = �100−1
E(deg) = �2.88 = 3, where a = 30 > 5π and γ = 1/100 ∈[

0,H−1
L (5π/a) /5π

] ≈ [0, 0.0110]. The bounds are p′ = 0.000133 and p′′ = 0.002089.

Figure 8. (Color online) Percentage of fully percolated configurations in 100 simulations
of BP (Gn,r, p, θ) when a = 30, γ = 1/100, n = 25000, r =

√
30 ln n/πn ≈ 0.06219, D = 30

ln n ≈ 303.80 and θ = �100−1
E(deg) = �3.04 = 4, where a = 30 > 5π and γ = 1/100 ∈[

0,H−1
L (5π/a) /5π

] ≈ [0, 0.0110]. The bounds are p′ = 0.000133 and p′′ = 0.002089.

https://doi.org/10.1017/S0269964813000405 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964813000405


180 Milan Bradonjić and Iraj Saniee

Figure 9. (Color online) Percentage of fully percolated configurations in 100 simulations
of BP (Gn,r, p, θ) when a = 35, γ = 1/75, n = 15000, r =

√
35 ln n/πn ≈ 0.08451, D = 35

ln n ≈ 336.55 and θ = �75−1
E(deg) = �4.49 = 5, where a = 35 > 5π and γ = 1/75 ∈[

0,H−1
L (5π/a) /5π

] ≈ [0, 0.0139]. The bounds are p′ = 0.000602 and p′′ = 0.009457.

Figure 10. (Color online) Percentage of fully percolated configurations in 100 simulations
of BP (Gn,r, p, θ) when a = 35, γ = 1/75, n = 25000, r =

√
35 ln n/πn ≈ 0.06718, D = 35

ln n ≈ 354.43 and θ = �75−1
E(deg) = �4.73 = 5, where a = 35 > 5π and γ = 1/75 ∈[

0,H−1
L (5π/a) /5π

] ≈ [0, 0.0139]. The bounds are p′ = 0.000602 and p′′ = 0.009457.
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