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Abstract Let FN
g be the moduli space of polarized Nikulin surfaces (Y, H) of genus g and let PN

g be

the moduli of triples (Y, H,C), with C ∈ |H | a smooth curve. We study the natural map χg : PN
g → Rg ,

where Rg is the moduli space of Prym curves of genus g. We prove that it is generically injective on

every irreducible component, with a few exceptions in low genus. This gives a complete picture of the
map χg and confirms some striking analogies between it and the Mukai map mg : Pg →Mg for moduli

of triples (Y, H,C), where (Y, H) is any genus g polarized K 3 surface. The proof is by degeneration to

boundary points of a partial compactification of FN
g . These represent the union of two surfaces with

four even nodes and effective anticanonical class, which we call half Nikulin surfaces. The use of this

degeneration is new with respect to previous techniques.
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1. Introduction

Complex projective K 3 surfaces have been an object of study already many years before

their name originated. These surfaces were indeed investigated by classical algebraic

geometers both from the point of view of their automorphisms and of their projective

models. Later, for important historical reasons, K 3 surfaces started to play a central role

in several branches of algebraic geometry.

The modern study of linear systems on K 3 surfaces, initiated by Saint-Donat in the

seventies [38], paved the way to important results in the theory of algebraic curves.

This trend is well represented by Green’s conjecture and the timeline of recent results,

leading to the conclusive proof of the conjecture in the case of smooth curves on any

K 3 surface [2, 42, 43]. Furthermore, in modern times, the role of K 3 sections in the
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study of the birational geometry of the moduli space Mg of genus g curves has become

well-established. We mention the pioneering work of Mori and Mukai on the uniruledness

of M11 and Mukai’s realizations of canonical curves in low genus [32, 34].

Let Fg be the moduli space of primitively polarized K 3 surfaces (Y, H) of genus g (that

is, H ∈ Pic Y is primitive, big and nef and H2
= 2g− 2), and Pg be the moduli space

of triples (Y, H,C) with (Y, H) ∈ Fg and C ∈ |H | a smooth curve. There are natural

forgetful morphisms

Pg
qg

~~

mg

!!
Fg Mg.

(1)

The study of the Mukai map mg is a chapter of the history we are outlining and, indeed,

a motivation for this paper.

Let Picd,g →Mg be the universal Picard variety, whose fiber over C is Picd C . For

each n > 0, the assignment (Y, H,C)→ OC (nH) defines a lifting Pg → Pic2n(g−1),g of

mg. There is no hope that other liftings exist; the reason is essentially that Pic Y is

generated by H for a very general pair (Y, H). However, liftings may exist over proper

subloci of Fg that parametrize surfaces carrying other line bundles; this has already been

employed to address very interesting cases (cf., e.g., [14]).

In this paper we investigate some liftings of the Mukai map in order to understand the

natural relations between the moduli space of Prym curves of genus g

Rg ⊂ Pic0,g

and the moduli of those K 3 surfaces, suitably polarized in genus g, which are quotients

of K 3 surfaces endowed with a symplectic involution. Before presenting our results, we

add a few words on these moduli spaces, revisiting some basic facts and definitions.

A Prym curve of genus g is a pair (C, η) such that C is a smooth curve of genus g and

η ∈ Pic0 C is a nontrivial 2-torsion element. The corresponding moduli space is denoted

by Rg. The above K 3 surfaces, or more precisely their minimal desingularizations, are

known as Nikulin surfaces, due to Nikulin’s classification of symplectic automorphisms

of K 3 surfaces, a part of his foundational work on K 3 surfaces [36]. Before giving their

definition, we provide an example of a special family of such surfaces, which is also useful

to introduce another actor of this paper. Let ι be an involution of P1
×P1 with exactly

4 fixed points, then X := P1
×P1/〈ι〉 is a 4-nodal Del Pezzo surface of degree 4. Let

q : P1
×P1

→ X be the quotient map. Let B ∈ |ω−2
X
| be a smooth anti-bicanonical curve

and p : Y → X the double cover branched on it. Consider the Cartesian square

Ỹ
q̃ //

p̃
��

Y

p
��

P1
×P1 q // X

It turns out that Ỹ is a K 3 surface with a symplectic involution and that its singular

quotient Y is a Nikulin surface with eight nodes. In this paper X , or more precisely its
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minimal desingularization, is an example of what we call a half Nikulin surface. These

surfaces are crucial for our work. Indeed, we will use the gluing of two half Nikulin

surfaces along an anticanonical curve for our degeneration arguments.

A Nikulin surface is a smooth K 3 surface Y endowed with a nontrivial double cover π :

Ŷ → Y , whose branch divisor consists of eight disjoint smooth rational curves N1, . . . , N8.

Set M := 1
2OY (N1+ · · ·+ N8). If H is a big and nef line bundle on Y with H2

= 2(g− 1)
and H · Ni = 0 for i = 1, . . . , 8, the triple (Y,M, H) is called a polarized Nikulin surface

of genus g. For any smooth curve C ∈ |H | the restriction of π to π−1(C) defines an étale

double cover of C ; in other words, the pair (C,M ⊗OC ) defines a point of Rg. Thus, one

obtains a lifting of the Mukai map over the locus of polarized Nikulin surfaces of genus g.

The Picard group of any Nikulin surface contains a lattice isomorphic to 3g := Z[H ] ⊥
N, where N denotes the rank eight Nikulin lattice generated by N1, . . . , N8 and M . Using

Dolgachev’s theory of lattice-polarized K 3 surfaces [13], Sarti and van Geemen in [40]

and Garbagnati and Sarti in [22] have shown that primitively polarized Nikulin surfaces

are of two types, according to whether the embedding 3g ⊂ Pic Y is primitive or not; we

will refer to the two types as standard and non-standard (cf. § 2.1), the latter occurring

only in odd genera. There are coarse moduli spaces FN,s
g and FN,ns

g parametrizing genus

g primitively polarized Nikulin surfaces of standard and non-standard type, respectively.

They are both irreducible of dimension 11, cf. [13, § 3], [40, Proposition 2.3].

We denote by PN,s
g the restriction of Pg over FN,s

g , and by

PN,s
g

qN,s
g

}}
χ s

g

��

mN,s
g

!!
FN,s

g Rg pg
//Mg

(2)

the restriction of (1) in the standard case, replacing ‘s’ by ‘ns’ in the non-standard case;

here, χ s
g is the above mentioned lifting of the Mukai map applying ((Y,M, H),C) to

(C,M ⊗OC ) and pg is the forgetful covering map of degree 22g
− 1.

The behavior of these maps can be interestingly compared with the behavior of the

Mukai map mg:

(i) mg is dominant for g 6 11 and g 6= 10 [34];

(ii) m11 is birational [33];

(iii) the image of m10 is a divisor in M10 [34];

(iv) mg is birational onto its image for g > 11 and g 6= 12 [11, 32];

(v) m12 has generically one-dimensional fibers [35].

To enrich the picture recall that the slope conjecture is false for the image of m10 [15].

Also note that the refined study of mg in higher genus is presently very intense:

Mukai’s program toward reconstructing a fiber of mg is now proven [5, 17, 33].

Moreover, the image of mg has been recently characterized, via the Gaussian map, for

Brill–Noether–Petri general curves [6, 45].
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The study of the map χ s
g was started by Farkas and the third author in [16]. Already

in low genera, χ s
g offers unexpected and interesting analogies to the Mukai map. The

turning point is here genus 7 and not 11; let us quote from [16]:

(1) χ s
g is dominant for g 6 7 and g 6= 6.

(2) the image of χ s
6 is a divisor.

(3) χ s
7 is birational.

The image of χ s
6 is again an interesting divisor, as it is the ramification locus of the

Prym map P6 : R6 → A5, and its role is crucial in computing the slope of a suitable

compactification of the moduli space A5 of principally polarized abelian 5-folds [16,

Theorem 0.5]. The first main result of this paper completes the picture of the map χ s
g :

Theorem 1.1. The map χ s
g is birational onto its image if g > 7 and g 6= 8, while its

general fiber is a rational curve for g = 8.

Hence, we retrieve the analogues of the properties (iv) and (v) of the Mukai map.

A major difference between the standard and non-standard case is the Brill–Noether

behavior of general Nikulin sections. Indeed, a general curve in the image of mN,s
g =

pg ◦χ
s
g is Brill–Noether–Petri general (cf. Proposition 2.3), while a general curve in the

image of mN,ns
g = pg ◦χ

ns
g carries two distinguished theta-characteristics that make it

quite special in moduli (cf. Remark 2.4). As a consequence, χns
g can never be dominant.

Furthermore, a heuristic count suggests that it cannot be generically finite for g = 9
and 11. The second main result of this paper proves that the situation is as nice as

possible:

Theorem 1.2. The map χns
g is birational onto its image for (odd) genus g > 13.

The above theorem is optimal, as we show in [28, Theorem 1.1] that a general fiber of

χns
g has dimension four if g = 7, two if g = 9 and one if g = 11.

It is also natural to pose the question of the degree of (the Stein factorization of) the

maps mN,s
g and mN,ns

g . Since deg pg > 1, the degree cannot be one if Rg is dominated,

that is, if g 6 7 with g 6= 6 in the standard case. Otherwise we expect that the Stein

factorization of mN,s
g or mN,ns

g has degree one, that is, the map either has degree one or

has positive dimensional connected fibers. More geometrically, we expect that all Nikulin

surfaces containing a general C define the same étale double cover of C . Our next result

offers a quite positive answer.

Theorem 1.3. The map mN,s
g is birational onto its image for g > 11 and g 6∈ {12, 14}.

The map mN,ns
g is birational onto its image for g = 13 and (odd) g > 17.

Degeneration methods are the core of the proofs of our theorems. We exploit

degenerations to a particular class of type II K 3 surfaces in the Kulikov–Persson–

Pinkham classification [29, 37]. After Friedman’s partial compactification of Fg [18, 19], a

number of type II K 3 surfaces occurred in a variety of applications. We mention especially

the gluing of two Hirzebruch surfaces along a suitable section [9–11]. We also remark
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that in many cases a type II K 3 surface can be mapped in Pg contracting one of the

two components and creating an elliptic singularity on the other; Halphen surfaces (used

in [3, 4]) can be obtained in this way.

The main technical achievement of our work is to provide, and use, type II K 3 surfaces

occurring as limits of Nikulin surfaces. The construction of these limits relies on half

Nikulin surfaces, already present in our example of Nikulin surfaces. These are smooth

rational surfaces X containing a smooth irreducible anticanonical curve A and the sum N
of four disjoint rational curves, so that N or N + A is 2-divisible in Pic X . Accordingly, we

call the half Nikulin surface of untwisted or twisted type. The gluing of two half Nikulin

surfaces along a smooth anticanonical curve yields a type II K 3 surface that turns out

to be a limit of Nikulin surfaces. It plays a central role in the proof of our results, as

its very rich geometry enables us to reconstruct the surface starting from a hyperplane

section of it. As a byproduct, this degeneration provides a new proof of the existence

of an 11-dimensional component of FN,s
g and FN,ns

g that is purely algebro-geometric and

does not rely on any transcendental lattice-theoretical method. We do believe that the

family of boundary K 3 surfaces we have constructed is worth of further study.

Organization of the paper. In § 2 we recall the basic definitions and properties of Nikulin

surfaces and explain the strategy of the proofs of our main results, that proceed by

degeneration to boundary points of suitable partial compactifications of FN,s
g and FN,ns

g .

Proposition 2.5 proves Theorem 1.1 in the exotic case of genus 8.

In § 3 we collect general results on limits of K 3 surfaces and their deformations. In

particular, Lemma 3.3 is an essential tool to study deformations of hyperplane sections

of such limits in a smoothing family of K 3 surfaces. In § 3.2 half K 3 surfaces and half

Nikulin surfaces of untwisted and twisted type are introduced. These can be reconstructed

from their hyperelliptic hyperplane sections, see Proposition 3.13. Section 4 exhibits the

main series of examples of half Nikulin surfaces of untwisted type. These surfaces are

used in § 5 to construct boundary divisors in partial compactifications of both FN,s
g and

FN,ns
g , cf. Corollary 5.9. These compactifications are exploited in the proofs of the main

theorems for almost all genera in the standard case and for genera g ≡ 1 mod 4 in the

non-standard one. Different compactifications are constructed in § 6 starting from the

same half Nikulin surfaces endowed with different polarizations. They allow to cover the

non-standard case also for genera g ≡ 3 mod 4.

In § 7 examples of half Nikulin surfaces of twisted type are produced by blowing up

rational normal scrolls at four pairs of infinitely near points. These surfaces occur as

components of degenerations of Nikulin surfaces of odd genus and standard type, used

to establish the generic injectivity of the maps χ s
g and mN,s

g in the few cases left.

More precisely, Theorems 1.1 and 1.2 are consequences of Theorems 5.11, 6.2 and 7.4,

while Theorem 1.3 follows from Theorems 5.12, 6.3 and 7.5.

2. Nikulin surfaces and their moduli maps

2.1. Some definitions and properties

We recall the following:
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Definition 2.1. A (polarized) Nikulin surface of genus g > 2 is a triple (Y,M, H) such

that Y is a smooth K 3 surface with OY (M), H ∈ Pic Y satisfying

• Y carries mutually disjoint rational curves N1, . . . , N8 such that
∑8

i=1 Ni ∼ 2M ;

• H is nef, H2
= 2(g− 1) and H ·M = 0.

We say that (S,M, H) is primitively polarized if in addition H is primitive in Pic Y .

The line bundle OY (M) defines a double cover π : Ŷ → Y branched on
∑8

i=1 Ni . This

fits into a Cartesian square:

Ŷ τ̂ //

π

��

Ỹ

π̄
��

Y τ // Y ,

(3)

where τ and τ̂ are the contractions of the curves Ni and of their inverse images on

Ŷ , respectively. Since the latter are (−1)-curves, the surface Ỹ is a smooth K 3 surface

endowed with an involution ι with exactly 8 fixed points. The map π in (3) is the quotient

of Ỹ by ι and thus Y has 8 double points. Furthermore, the line bundle H̃ := τ̂∗π∗H defines

a genus 2g− 1 polarization on Ỹ .

Definition 2.2. The Nikulin lattice N = N(Y,M) of a genus g Nikulin surface (Y,M, H)
is the rank 8 sublattice of Pic Y generated by N1, . . . , N8 and M .

A primitively polarized Nikulin surface (Y,M, H) is standard if the embedding of the

rank 9 lattice

3 = 3(Y,M, H) := Z[H ]⊕⊥ N ⊂ Pic Y

is primitive, and non-standard otherwise.

By [22, Proposition 2.1, Corollary 2.1], in the non-standard case the embedding 3 ⊂

Pic Y has index 2 and the genus g is odd. Moreover, possibly after renumbering the curves

Ni , the following classes v, v′ ∈ Pic Y are 2-divisible:

• v = H − N1− N2− N3− N4 and v′ = H − N5− N6− N7− N8, if g ≡ 1 mod 4;

• v = H − N1− N2 and v′ = H − N3− · · ·− N8, if g ≡ 3 mod 4.

Furthermore, standard (respectively, non-standard) Nikulin surfaces of Picard rank 9
exist in any genus (respectively, any odd genus), cf. [22, Proposition 2.3].

The next result is along the same lines as [1, Theorem 0.5] in the standard case.

Proposition 2.3. Let (Y,M, H) be a primitively polarized Nikulin surface of genus g such

that rk Pic Y = 9.

If Y is standard, then all smooth curves in |H | are Brill–Noether general, and the

general ones are Brill–Noether–Petri general.

If Y is non-standard and g ≡ 1 mod 4 (respectively, g ≡ 3 mod 4), then any smooth

curve C in |H | has Clifford index g−1
2 (respectively, g−3

2 ).
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Proof. If Y is standard, then Pic Y ' 3 and one may check that there is no decomposition

H ' H1⊗ H2 in Pic Y with h0(Hi ) > 2 for i = 1, 2. As in [30], one shows that any smooth

curve in |H | satisfies the Brill–Noether Theorem, and a general one also fulfills the

Gieseker–Petri Theorem.

Assume that Y is non-standard. By [23], all smooth curves in |H | have the same

Clifford index c. Moreover, if c < (g− 1)/2, there is a decomposition H ' H1⊗ H2 in

Pic Y with h0(Hi ) > 2 for i = 1, 2 such that c = Cliff C = CliffOC (H1) = H1 · H2− 2 for

any smooth C ∈ |H |, cf. [25, 27]. Conversely, for any decomposition H ' H1⊗ H2 in

Pic Y with h0(Hi ) > 2 for i = 1, 2, the line bundles OC (Hi ) contribute to the Clifford

index and CliffOC (Hi ) = H1 · H2− 2 > c. Therefore, to compute c we have to search for

decompositions of H as above with minimal H1 · H2. This is an exercise using the fact

that Pic S ' Z[v/2]⊕N by [22, Proposition 2.1 and Corollary 2.1]. We show how to treat

the case g ≡ 1 mod 4.

Write Hi ∼
αi
2 v+

∑8
j=1

βi j
2 N j , i = 1, 2. Since H ∼ H1+ H2 and each Hi is effective and

nontrivial, we must have α1 = α2 = 1 and

β1 j +β2 j =

 2, if j ∈ {1, 2, 3, 4},

0, if j ∈ {5, 6, 7, 8}.

This yields

H1 · H2 =
1
2

g+ 3+
4∑

j=1

β1 j (β1 j − 2)+
8∑

j=5

β2
1 j

 ,
and one sees that the minimum is reached for

β1 j =

 1, if j ∈ {1, 2, 3, 4},

0, if j ∈ {5, 6, 7, 8},

and is g−1
2 , as stated.

Remark 2.4. If (Y,M, H) is a non-standard Nikulin surface of genus g ≡ 1 mod 4
(respectively, g ≡ 3 mod 4), any C ∈ |H | carries two distinguished theta-characteristics,

namely, OC (
v
2 ) and OC (

v′

2 ). They satisfy h0(OC (v/2)) = (g+ 3)/4 (respectively, (g+
5)/4) and h0(OC (v

′/2)) = (g+ 3)/4 (respectively, (g+ 1)/4). In particular, they prevent

C from being Brill–Noether general. Hence, the moduli maps χns
g and mN,ns

g can never

be dominant. Furthermore, a heuristic count comparing the dimension of PN,ns
g with the

expected dimension of the locus of curves in Mg carrying two theta-characteristics as

above suggests that the generic fiber dimension of mN,ns
g is 4, 2 and 1 for g = 7, 9, 11,

respectively. This expectation is proved in [28, Theorem 1.1].

2.2. Moduli maps and the strategy of the proof

We recall the definitions of the parameter spaces FN,s
g and PN,s

g and the maps qN,s
g ,

mN,s
g and χ s

g in the introduction, as well as their analogues in the non-standard case. We
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are going to sketch the strategy of the proof of the birational statements in the main

theorems, concentrating on the standard case. We first focus on Theorem 1.1. Thanks to

the double cover (3) associated with any Nikulin surface (Y,M, H), the generic injectivity

of χ s
g is equivalent to the generic injectivity of the map m̃s

2g−1 in the following diagram:

P̃s
2g−1

q̃s
2g−1

||

m̃s
2g−1

##
F̃ s

2g−1 M2g−1,

(4)

where F̃ s
2g−1 is the moduli space of primitively polarized K 3 surfaces (Ỹ , H̃ , ι) of genus

2g− 1 with a Nikulin involution ι of standard type (cf. [40]), and P̃s
2g−1 is the open subset

of a Pg-bundle over F̃ s
2g−1 whose fiber over (Ỹ , H̃ , ι) consists of all smooth integral curves

in |H̃ | invariant under ι. The maps in (4) are restrictions of the following ones:

P2g−1
q2g−1

{{

m2g−1

$$
F2g−1 M2g−1,

(5)

where F2g−1 is the moduli space of genus 2g− 1 primitively polarized K 3 surfaces (Ỹ , H̃)
and P2g−1 is the open subset of a P2g−1- bundle with fiber over (Ỹ , H̃) parametrizing all

smooth integral curves in |H̃ |. The map m2g−1 is birational onto its image (cf. [11]) for

2g− 1 > 13, that is, g > 7. The generic injectivity of m̃s
2g−1 can be proved by showing that

the fiber of m2g−1 over a general [γ̃ ] ∈ Im m̃s
2g−1 consists of only one point. By [11], this

follows if γ̃ has a corank one Gaussian map, cf. [31, Sketch of proof of Proposition 3.3].

On the other hand, since Cliff(γ̃ ) > 3 (by Proposition 2.3 and [7]) and 2g− 1 > 11, the

fiber m−1
2g−1([γ̃ ]) is positive dimensional as soon as the Gaussian map of γ̃ has corank

> 1, cf. [6, Theorem 3] and [44, Theorem 7.1]. Hence, to show that m−1
2g−1([γ̃ ]) consists

of exactly one point, it suffices to prove that it is finite.

We introduce partial compactifications F2g−1 and P2g−1 of F2g−1 and P2g−1
respectively, and extend (5) to:

P2g−1
q2g−1

{{

m2g−1

$$
F2g−1 M2g−1.

(6)

The boundary of F2g−1 parametrizes surfaces obtained by gluing two smooth irreducible

rational surfaces along a smooth elliptic curve that is anticanonical on each. The

numerical invariants of the two components will be fixed according to the genus and

type (standard or non-standard) considered.

The restriction of q2g−1 over F2g−1 coincides with q2g−1 and its fiber over a reducible

surface (S̃, H̃) consists of curves C̃ ∈ |H̃ | with only nodes as singularities, all of which lie

on Sing S̃.

https://doi.org/10.1017/S1474748019000574 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000574


Half Nikulin surfaces and moduli of Prym curves 1555

We consider a general point ((S̃, ι, H̃), C̃) in the closure of P̃s
2g−1 in P2g−1 and study

the fiber of f 2g−1 over [C̃]. If this is finite, we are done by upper semicontinuity.

Unfortunately, in most cases this does not hold true. We circumvent this problem by

considering the analogue of (5) at the Hilbert scheme level:

P2g−1
q2g−1

zz

m2g−1

$$
H2g−1 C2g−1 .

(7)

Here H2g−1 denotes the component of the Hilbert scheme of degree 4g− 4 surfaces in

P2g−1 containing smooth primitively embedded K 3 surfaces of genus 2g− 1. The space

P2g−1 denotes the flag Hilbert scheme of pairs γ ⊂ Y ⊂ P2g−1 with [Y ⊂ P2g−1
] ∈ H2g−1

and γ a hyperplane section of it, while C2g−1 is the Hilbert scheme containing canonical

curves of genus 2g− 1 in P2g−1 (each living in some hyperplane). The fibers of m2g−1
have dimension at least 2g, which is the dimension of the space of projectivities fixing a

hyperplane. Since a fiber of m2g−1 is the quotient of a fiber of m2g−1 by the projective

group, it is enough to show that for a general [γ̃ ] ∈ Im m̃s
2g−1 the fiber of m2g−1 over

a point [γ̃ ⊂ P2g−1
] ∈ C2g−1 has dimension 2g. As above, we consider a general point

((S̃, H̃ , ι), C̃) in the closure of P̃s
2g−1 in P2g−1, along with the embedding C̃ ⊂ S̃ ⊂ P2g−1

determined by the line bundle H̃ (up to projectivities). It is then enough to show that a

component of the fiber of m2g−1 over [C̃ ⊂ P2g−1
] has dimension 2g.

The strategy of the proof of Theorem 1.3 for mN,s
g is basically the same. To prove that

mN,s
g is birational onto its image, it suffices to show that the fiber f −1

g ([C]) over a general

[C] ∈ Im mN,s
g consists of only one point; as above, one reduces to showing that f −1

g ([C]) is

finite. Again this is done by degeneration considering the forgetful maps between Hilbert

schemes as in (7) but for genus g.

We end this section by proving Theorem 1.1 in the exceptional case g = 8.

Proposition 2.5. A general fiber of the map χN,s
8 is a rational curve.

Proof. As proved in [41], a general primitively polarized Nikulin surface (Y,M, H) of

genus 8 is embedded in P6 by the line bundle H(−M) as

Y = Q ∩ T = Q ∩ (P6
∩G(1, 4)) ⊂ P9,

where Q is a quadric hypersurface, T is a smooth quintic Del Pezzo threefold, P6
⊂

P9 is a six-dimensional linear subspace and G(1, 4) is the Plücker embedding of the

Grassmannian of lines in P4. Furthermore, one has

H(−2M) ' OY (A) (8)

for a smooth rational normal sextic A spanning P6. Let C ∈ |H | be general. Since

JY/T (2) ' OT and JC/Y (2) ' OY (A) by (8), the exact sequence of ideal sheaves becomes

0 −→ OT −→ JC/T (2) −→ OY (A) −→ 0,
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which shows that C is contained in a pencil of surfaces PC+A := |JC/T (2)| with base

scheme C + A. Actually PC+A is a general line in PA := |IA/T (2)|. Let us recall from [41]

some properties of PA. We have dim PA = 9 and any smooth Y ∈ PA is a Nikulin surface,

cf. [41, Theorem 6.6]. Let NY be the sum of the 8 lines of Y defined by its Nikulin lattice.

Notice that these are bisecant to A and that

OY (NY ) ' OY (C − A) (9)

by (8). Moreover, the union of the bisecant lines to A contained in T is a singular

element Y0 ∈ PA, whose normalization ν : R→ Y0 is a P1-bundle p : R→ P1. Given a

general Y ∈ PA, equations (8) and (9) yield OY (Y0) ' OY (2A+ NY ) and

ν∗PA = p∗|OP1(8)| + ν∗A (10)

by [41, Lemma 6.5]. Relying on these properties, we claim that the moduli map m A :

PA 99K FN,s
8 is not constant. To prove our claim we observe that m A(Y ) = m A(Y ′) if

and only if there exists α ∈ AutP6 so that α(Y ) = Y ′ and α∗OY ′(C) ' OY (C). Since A+
NY ∼ C and A is rigid, it follows that the latter condition is equivalent to α∗(NY ′) = NY .

We now define a moduli map n A : PA 99K |OP1(8)|/PGL(2) in the following way. Given a

general Y ∈ PA, equation (10) implies that NY ⊂ Y ∩ Y0 and ν∗NY ∈ p∗|OP1(8)|; we then

set n A(Y ) to be the PGL(2)-orbit of p∗ν∗NY . The map n A clearly factors through m A.

Since n A is not constant, the same is true for m A. This implies that m A is not constant

on a general pencil PA+C and the statement follows.

3. Half K 3 surfaces and half Nikulin surfaces

3.1. Limits of K 3 surfaces

By results of Kulikov [29] and Persson–Pinkham [37], semi-stable degenerations of K 3
surfaces are completely classified and of three types. In the type II case, the central

fiber is a chain of elliptic ruled surfaces with a rational component at each end, and all

double curves are smooth elliptic curves. Furthermore, all elliptic components can be

contracted performing suitable birational modifications and thus leaving only the two

rational surfaces. We therefore use the following terminology.

Definition 3.1. A K 3 surface of type II is the transversal union X tA X ′ of two smooth

rational surfaces X and X ′ glued along a smooth elliptic curve A that is anticanonical on

both surfaces. It is stable ([19, (3.1)]) if in addition NA/X ⊗NA/X ′ ' OA.

If p : X → D is a proper flat map from a threefold X to a disc D whose general fibers

are smooth irreducible K 3 surfaces and whose central fiber is a type II K 3 surface S,

then S is said to be smoothable. If moreover the total family X is smooth, then p is called

a semi-stable degeneration.

We recall that, if S = X tA X ′ is any transversal union of two smooth surfaces along a

smooth curve A, then the first cotangent sheaf of S, defined as T 1
S := ext1OS

(�S,OS), cf.

[39, Corollary 1.1.11] or [18, § 2], satisfies

T 1
S ' NA/X ⊗NA/X ′ ,
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by [18, Proposition 2.3]. Thus, the second part of Definition 3.1 can be rephrased by

saying that a type II K 3 surface is stable if and only if its first cotangent sheaf is trivial.

We refer the reader to [39, Chapter 2] or [18, § 2] for the deformation-theoretic meaning

of this sheaf.

A crucial point is that any stable K 3 surface of type II occurs as the central fiber of a

semi-stable degeneration of K 3 surfaces by [18, Proposition 2.5, Theorem 5.10]. Moreover,

any K 3 surface S = X tA X ′ of type II with h0(NA/X ⊗NA/X ′) > 0 can be made stable

after a suitable birational modification as follows. If T 1
S is nontrivial, pick any element

Z in the linear system |T 1
S | = |NA/X ⊗NA/X ′ | on A; also choose any ‘decomposition’

Z = W +W ′ into effective divisors on A. Then W (respectively, W ′) is a 0-dimensional

subscheme of X (respectively, X ′). Let X̃ → X (respectively, X̃ ′→ X ′) be the blow-up

along W (respectively, W ′) and denote by Ã the strict transform of A on both surfaces.

Let S̃ := X̃ t Ã X̃ ′ denote the natural gluing along Ã. Then S̃ is a stable K 3 surface of

type II. We will refer to the natural map

π : S̃ = X̃ t Ã X̃ ′ −→ X tA X ′ = S (11)

as a birational modification along Z ∈ |T 1
S |. Note that this is not unique, as it depends

on the choice of the decomposition Z = W +W ′.
If a K 3 surface S = X tA X ′ of type II is smoothable, then π can be achieved

by performing birational modifications on the whole threefold X . Indeed, the family

p : X → D determines a nonzero section of T 1
S and the threefold X is singular precisely

along the zero set Z ∈ |T 1
S | of this section, cf., e.g., [39, Chapter 2] or [18, § 2]. The

singularities can be resolved by a small resolution whose restriction to the central fiber

yields (11). The resolution and its nonuniqueness can be easily explained when Z consists

of distinct points: the tangent cone to X at each of these points has rank 4. The

exceptional divisors of the blow-up X̂ → X at these points are rank 4 quadric surfaces.

These can be contracted along any of the two rulings on one of the two irreducible

components of the strict transform of S in X̂ by a contraction map X̂ → X̃ . One obtains

a morphism X̃ → X , which is the desired small resolution, and depends on the choice

of ‘which of the components of the central fiber to contract along’, corresponding to the

choice of decomposition Z = W +W ′ above. If Z is nonreduced, the situation can be

handled in a similar, only technically more involved, way.

Remark 3.2. The above discussion yields in particular that the effectiveness of the line

bundle NA/X ⊗NA/X ′ on A is a necessary condition for a type II K 3 surface S = X tA X ′

to be smoothable. Conversely, up to a birational modification that can be fixed to be the

identity on either component, this condition is also sufficient.

For every integer g > 2, let Fg be the coarse moduli space parametrizing smooth

irreducible primitively polarized K 3 surfaces (Y, H) of genus g, that is, Y is a smooth

K 3 surface and H ∈ Pic(Y ) is a big and nef line bundle that is indivisible in Pic Y and

satisfies H2
= 2g− 2 > 2.
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A polarization H on a K 3 surface S of type II is still defined as a big and nef line

bundle on S. If S is stable, then it naturally carries a Cartier divisor

ξ ∈ Pic S satisfying ξ |X ' OX (A) and ξ |X ′ ' OX ′(−A) (12)

(cf. [19, (3.3)]). Two polarizations H1 and H2 on S are called equivalent if H1 ' H2⊗ ξ .

A polarization is primitive if its image in H2(S,Z)/〈ξ〉 is indivisible, cf. [19, (3.11)].

By [19, Theorem 4.10] there is a partial compactification F g of Fg whose boundary

consists of divisorial components parametrizing various kinds of type II stable

degenerations of K 3 surfaces. More precisely, the points of F g \Fg represent isomorphism

classes of triples (
S := X tA X ′, Z , H

)
,

where S is a K 3 surface of type II, Z is an element in |T 1
S | and H is an equivalence

class of primitive polarizations on S. One of the main achievements of this paper is to

describe induced partial compactifications of the loci FN,s
g (respectively, FN,ns

g ) in Fg
parametrizing Nikulin surfaces of standard (respectively, non-standard) type, and of the

loci F̃N,s
2g−1 (respectively, F̃N,ns

2g−1) in F2g−1 parametrizing surfaces with a Nikulin involution

of standard (respectively, non-standard ) type, cf., e.g., Corollaries 5.9 and 5.10.

In the sequel we will make use of the following result.

Lemma 3.3. Let S = X tA X ′ be the transversal union of two irreducible projective

surfaces X and X ′ along a smooth irreducible curve A lying in the smooth locus of both

X and X ′. Let C ⊂ S be a nodal curve, which is Cartier on S and smooth outside of A
(in particular, C is disjoint from Sing X ∪Sing X ′).

Assume that S admits a deformation to an irreducible surface that deforms C preserving

a subset Z of its nodes; more precisely, there is:

(i) a flat proper map p : X → D over the disc D whose general fibers are irreducible

and with central fiber p−1(0) ' S,

(ii) a relative Cartier divisor C ⊂ X such that p|−1
C (0) ' C,

(iii) a one-dimensional subscheme Z ⊂ C such that p|−1
Z (0) = Z ⊂ C,

(iv) for all t 6= 0, the fiber Ct := p|−1
C (t) is nodal and its scheme of nodes coincides with

Zt := p|−1
Z (t).

Then there is a nonzero section σ ∈ H0(NA/X ⊗NA/X ′) such that Z is contained in the

zero scheme Z(σ ) of σ .

Proof. Since C does not meet Sing X and Sing X ′, we may assume both X and X ′ to be

smooth.

If the total space X is singular along the double curve A, we blow up X along A, and

repeat the process if necessary until we get a morphism f : X̃ → X , where X̃ has isolated

singularities. The result is a new deformation p̃ : X̃ → D with unchanged general fibers

and new central fiber

S̃ := p̃∗(0) = X0+ X1+ · · ·+ Xr + Xr+1, X0 = X, Xr+1 = X ′, (13)
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consisting of a chain of ruled surfaces X1, . . . , Xr over A (as in the picture of [24, p. 38])

with X and X ′ attached at its ends and such that for each i = 1, . . . , r the intermediate

surface X i has two sections Ai and Ai+1 coinciding with the intersections X i ∩ X i−1 and

X i ∩ X i+1, respectively. Here we are identifying A1 with A on X0 = X and Ar+1 with

A on Xr+1 = X ′. (The fact that the central fiber looks like (13) may be checked on a

general surface section of X , where it follows as the surface has An–singularities. See also

[24, pp. 39–43].)

Note that X i = P(Ei ) with Ei a rank two bundle on A such that Ei ' OA⊕L
and degL = 0. If L = OA, then X i ' A×P1. Otherwise, X i has two natural sections,

corresponding to the normalized bundles OA⊕L and OA⊕L−1, whence the sections

have normal bundles L and L−1, respectively. In any case one has

degNAi /X i = degNAi+1/X i = 0, i = 1, . . . , r (14)

and

NAi /X i ⊗NAi+1/X i ' OA, i = 1, . . . , r. (15)

Write C = D ∪ D′ with D ⊂ X and D′ ⊂ X ′ its smooth irreducible components. The

intersection D ∩ D′ is transversal and occurs along A. The central fiber of the new relative

Cartier divisor C̃ = f ∗(C) is

C̃ = D0+ D1+ · · ·+ Dr + Dr+1, D0 = D, Dr+1 = D′,

where for every i = 1, . . . , r the curve Di is contained in X i and consists of disjoint lines

of its ruling. Hence, D1+ · · ·+ Dr is a union of chains of smooth rational curves, each

chain connecting the pair of points on D and D′ mapping to a node of C . In particular,

C̃ has only nodes as singularities and they all lie along the double curves of S̃.

The deformation p̃ : X̃ → D determines an element ξ ∈ Ext1OS̃
(�S̃,OS̃), namely, the

Kodaira–Spencer class. We have the local-to-global exact sequence for Ext:

0 // H1(homOS̃
(�S̃,OS̃))

// Ext1OS̃
(�S̃,OS̃)

α // H0(T 1
S̃
),

where

T 1
S̃ := ext1OS̃

(�S̃,OS̃) ' ⊕
r+1
i=1

(
NAi /X i−1 ⊗NAi /X i

)
(16)

by [18, Proposition 2.3]. Let σ̃ := α(ξ). By [18, Remark 2.6], the singularities of X̃ along

S̃ coincide with the zero set Z(σ̃ ). As X̃ has only isolated singularities, (14) yields

NAi /X i−1 ⊗NAi /X i ' OA i = 2, . . . , r, (17)

whence (16) yields that Z(σ̃ ) = Z(σ̃1)t Z(σ̃r+1), with

σ̃1 ∈ H0(NA1/X0 ⊗NA1/X1), and σ̃r+1 ∈ H0(NAr+1/Xr ⊗NAr+1/Xr+1).

An easy local computation, using the fact that C̃ is Cartier, shows that a node of C̃ lying

outside of Sing X̃ automatically smooths as S̃ deforms, see for instance [8], [20, § 2] or

[21, Proof of Lemma 3.4]. Hence, the preserved set of nodes of C̃ lie in Z(σ̃ ). Pushing

forward via f , the preserved set of nodes Z of C must lie in

|
(
NA1/X0 ⊗NA1/X1

)
⊗
(
NAr+1/Xr ⊗NAr+1/Xr+1

)
| = |NA/X ⊗NA/X ′ |,

since NA1/X1 ⊗NAr+1/Xr ' OA by (15) and (17).
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3.2. Half K 3 surfaces and half Nikulin surfaces

The scope of this section is to study properties of surfaces arising as one of the two

components of a type II K 3 surface.

Definition 3.4. A smooth rational surface X is called a half K 3 surface if it carries a

smooth irreducible anticanonical divisor. The degree of X is K 2
X .

Remark 3.5. Although we will not use this, we note that a half K 3 surface X of degree

d occurs as component of a stable type II K 3 surface if and only if d > −9.

The ‘only if’ part directly follows from Remark 3.2 and the fact that any half K 3
has degree 6 9. For the ‘if’ part, fix any smooth elliptic anticanonical curve A on X
and embed it into P2 as a cubic; in the special case where d = −9, choose a particular

embedding given by any triple root of the inverse of its normal bundle NA/X , that is, a

line bundle L of degree 3 on A such that L⊗3
' N∨A/X . Since NA/X ⊗NA/P2 is effective,

the surface S := X tA P2 is a smoothable type II K 3 surface by Remark 3.2.

We are interested in the natural candidates among half K 3 surfaces to be irreducible

components of limits of Nikulin surfaces.

Definition 3.6. A half K 3 surface X is called an untwisted (respectively, twisted) half

Nikulin surface if it contains four disjoint smooth rational curves N1, . . . , N4 with

N 2
i = −2 such that N := N1+ · · ·+ N4 (respectively, N + K X := N1+ · · ·+ N4+ K X ) is

2-divisible in Pic X . A (primitively) polarized half Nikulin surface is a pair (X, H) with

X half Nikulin and H a big and nef (primitive) line bundle on X such that H · N = 0.

Note that on a half Nikulin surface X the four (−2)-curves Ni are always disjoint from

any irreducible anticanonical divisor. Moreover, in the untwisted case the 2-divisible line

bundle on X uniquely defines a finite double covering π : X̂ −→ X branched along N .

Similarly, if X is twisted, for any fixed smooth and irreducible anticanonical divisor A,

there is a finite double cover (still denoted by π) branched along N + A. Since X is

smooth, X̂ is smooth as well. For i = 1, . . . , 4, we set N̂i := π
−1(Ni ); since π∗Ni = 2N̂i ,

it follows that N̂i is a (−1)-curve.

We denote by τ̂ the contraction of N̂1, . . . , N̂4; the surface X̃ := τ̂ (X̂) is still smooth.

One has the Cartesian square

X̂ τ̂ //

π

��

X̃

π̄
��

X τ // X ,

(18)

where τ is the contraction of the curves Ni to four nodes on X and π̄ is the quasi-étale

double cover branched on Sing X and, in the twisted case, on τ(A) ' A. It is also clear that

π̄ is the quotient map by the involution ι : X̃ −→ X̃ induced by π . As a consequence,

identifying A with τ(A) and setting Ã := π̄−1(A), in the twisted case the restriction

π | Ã : Ã −→ A is an isomorphism and K X̃ ∼ π̄
∗K X + Ã ∼ −π̄∗(A)+ Ã ∼ Ã, so that Ã is
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anticanonical. Instead, in the untwisted case the canonical divisor of X̃ satisfies K X̃ ∼

π̄∗K X and, if A is any smooth anticanonical curve on X and Ã := π̄−1(A), the map π̄ | Ã :

Ã −→ τ(A) ' A is an étale double cover; in particular, Ã is again a smooth anticanonical

divisor of X̃ .

To summarize, we have:

Lemma 3.7. The surface X̃ is a half K 3 surface of degree 2d in the untwisted case and

d/2 in the twisted case.

Remark 3.8. Let X be a half Nikulin surface of degree d glued with another half Nikulin

surface X ′ to obtain a type II K 3 surface that is smoothable to Nikulin surfaces. Then,

Lemma 3.7 and Remark 3.5 yield d > −4.

Indeed, this is immediate in the untwisted case where X̃ has degree 2d > −9. In the

twisted case, the 2-divisibility of N + K X forces d to be divisible by 4, so we only need to

eliminate the case d = −8. Assume that S = X tA X ′ is the flat limit of smooth Nikulin

surfaces. After making a birational modification of S leaving X fixed, we may assume

that X tA X ′ is stable, which means that d ′ = −d = 8. But the only half K 3 surfaces of

degree 8 are P1
×P1, F1 and F2, and neither contain four (−2)-curves, a contradiction.

Definition 3.9. We call (18) the double cover diagram associated with X (which depends

on the choice of an anticanonical curve A in the twisted case), the surface X the nodal

model of X and the surface X̃ the half K 3 double cover of X .

3.3. Reconstructing half K 3 surfaces from hyperelliptic hyperplane sections

A crucial point in the proof of our results is to reconstruct, up to finitely many choices,

a polarized half K 3 surface from its general hyperplane section. This is troublesome in

general but becomes easier if the hyperplane section is hyperelliptic. Indeed, under mild

conditions, the g1
2 on the curve turns out to be induced by a unique pencil of divisors on

the surface, which can be exploited in the reconstruction process.

Definition 3.10. Let X be a half K 3 surface. A pencil of conics |B| on X is a base point

free pencil of divisors B such that B2
= 0 and B · K X = −2.

Lemma 3.11. Let X be a half K 3 surface. Assume that D ⊂ X is a smooth, hyperelliptic

curve of genus g(D) > 2 such that D2 > max{10, 2g(D)+ 1}. Then there is a unique pencil

of conics |B| on X cutting out the g1
2 on D (in particular, B · D = 2).

Proof. We fix a reduced and irreducible member A ∈ |− K X |. From the natural restriction

sequence along with the vanishings h0(K X ) = h1(K X ) = 0, we find that H0(K X + D) '
H0(ωD) ' Cg. In particular, K X + D is effective and nontrivial and the linear system

|K X + D| fails to separate any pair of points x and y forming a divisor in the g1
2 on D. Since

D2 > 10, we can apply Reider’s Theorem and conclude that any such pair is contained in

an effective divisor B on X satisfying (B · D, B2) ∈ {(0,−2), (0,−1), (1,−1), (1, 0), (2, 0)}.
As B ∩ D contains both x and y, the only possibility is (B · D, B2) = (2, 0). Since the
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divisor x + y moves in the hyperelliptic pencil, one has h0(B) > 2. Let |B| = |M | + F
be the decomposition of B into its moving and fixed parts. As members of |B| must

pass through varying members of the g1
2 , we must have M · D = 2 and F · D = 0. The

Hodge index theorem thus yields M2
= 0, and, since D is not rational, one concludes that

h0(M) = 2. Hence, without loss of generality, we may assume that |B| is a base point free

pencil cutting out the g1
2 on D and satisfying B2

= 0.

The adjunction formula yields B · A = −B · K X = −B · (B+ K X ) = 2− 2g(B) 6 2. As

B is nef, we must have B · A = 0 or 2. If B · A = 0, then A is contained in a

member of |B|, whence −D · K X = D · A 6 D · B = 2, so that D2
= 2g− 2− D · K X 6 2g,

a contradiction. Hence B · A = −B · K X = 2, as claimed.

We have left to prove the unicity of B. If |B ′| is a different pencil satisfying the same

conditions, then B ′ · B > 2 as the members of the pencils pass through the same pairs of

points on D. Thus, (B ′+ B)2 = 2B ′ · B > 4, and the Hodge index theorem yields 4D2 6
(B+ B ′)2 D2 6 ((B+ B ′) · D)2 = 16, whence the contradiction D2 6 4.

Remark 3.12. On Del Pezzo surfaces of degrees > 3, the existence of B (under weaker

assumptions) is an immediate consequence of [26, Corollary 5.2]. On any Del Pezzo

surface, the result can be deduced from [26, Proposition 5.1] with a similar reasoning.

However, in the present paper, Lemma 3.11 is applied also to surfaces that are not Del

Pezzo.

Proposition 3.13. Fix an integer b 6 9 and set s := max{0, b−b+1
2 c}. Let D be a smooth

hyperelliptic curve of genus g(D) > 2 carrying a line bundle N of degree

a > 2g(D)+ 6+ 2s. (19)

Then there are finitely many half K 3 surfaces X of degree b such that D is contained in

X and ND/X ' N .

If moreover

−K X · γ > 0 for all curves γ for which D · γ > 0 (20)

(e.g., −K X is ample), then condition (19) can be weakened allowing equality (and s = 0).

Proof. Let X be any such surface. By Lemma 3.11, there is a unique pencil of conics

|B| cutting out the g1
2 on D. Let p : X → P1 be the fibration induced by |B|; thus the

restriction q := p|D : D→ P1 is the hyperelliptic map. The line bundle N is very ample

for degree reasons. The standard exact sequence

0 −→ OX −→ OX (D) −→ OD(D) ' N −→ 0 (21)

shows that OX (D) is globally generated and thus defines a morphism

ϕ : X → X ⊂ PH0(OX (D))∨.

Since ϕ restricts to an isomorphism on D, then the general hyperplane section of X is

smooth. In particular, ϕ is birational and X has at most isolated singularities.

Apply the p∗-functor to (21) to obtain

0 −→ OP1 −→ p∗OX (D) −→ q∗N −→ 0. (22)
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Here, N1 := p∗OX (D) is a globally generated rank-3 vector bundle on P1 of degree a−
g(D)− 1. Hence, there are only finitely many choices for it once a is given.

We set P := P(N∨1 ) and R := P(q∗N∨). Then P and R are, respectively, a P2-bundle

and a P1-bundle over P1 and, by (22), R is embedded in P as a section of OP (1). Note that

the embedding of R inside of P as a hyperplane section is not unique. However, it is unique

up to projectivities. Indeed, up to projectivities, we may assume the embedding P ⊂
P(H0(OP (1))∗) = Pm to be fixed. The deformations of R inside of P are parametrized by

H0(NR/P ) that trivially injects in H0(NR/Pm ); the latter space parametrizes deformations

of R in Pm and any such deformation is induced by a projectivity.

There is a natural morphism ϕ†
: X → P, whose image we denote by X†, through which

ϕ factors, and X† is embedded in P as a conic bundle. Denoting by F a fiber of P → P1,

standard computations show that

X†
∼ 2R− (a− 2g(D)− 2)F. (23)

The curve D is embedded in R ⊂ P so that R→ P1 restricts to the hyperelliptic map q.

It is quite immediate that D = R ∩ X†.

To end the proof, it is then enough to show that

h0(ID/P (X†)) = 1. (24)

We consider the following standard exact sequence of ideal sheaves on P:

0 −→ OP (−X†
− R) −→ OP (−X†)⊕OP (−R) −→ ID/P −→ 0.

Tensoring it by OP (X†) and taking cohomology, one sees that (24) is equivalent to

h0(OP (X†
− R)) = 0. It is immediate to check that this is also equivalent to the vanishing

h0(OX†(X†
− R)) = 0. If this is failed, the line bundle (ϕ†)∗OX†(X†

− R) on X would have

sections, that is, by (23), the divisor

γ := D− (a− 2g(D)− 2)B

would be effective (and nontrivial, as γ · B = 2). The definition of s ensures that −K X +

s B is nef (as it intersects the irreducible effective divisors −K X and B nonnegatively),

and (19) yields that γ · (−K X + s B) < 0, whence γ is not effective, and we are done.

Finally, assume that equality in (19) and condition (20) hold. The equality D2
=

a = 2g(D)+ 6+ 2s yields −K X · D > 0, and thus K 2
X = b > 0 by (20) and s = 0. As

a consequence, one has γ = D− 4B and −γ · K X = 0. One computes γ · D = a− 8 =
2g(D)− 2 > 0, whence γ is not effective by (20).

4. Construction of untwisted half Nikulin surfaces

4.1. Main series of examples

We start with an example of untwisted half Nikulin surfaces endowed with a pencil of

conics.

Example 4.1. Consider the four-nodal cubic surface

X := {x2x3x4+ x1x3x4+ x1x2x4+ x1x2x3 = 0} ⊂ P3
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and let X be its desingularization. There are four disjoint smooth rational curves

N1, . . . , N4 of self-intersection (−2) on X that are contracted to the four nodes ni of X
by the anticanonical morphism f : X → P3. The four-nodal cubic X contains the edges

Ti j := 〈ni n j 〉 of the tetrahedron T of vertices n1, . . . , n4. Let Ei j be the strict transform

of Ti j by f . It is clear that E2
i j = −1 and Ni · Ei j = N j · Ei j = 1. Moreover it is a standard

exercise to show that

• |N1+ N2+ 2E12| = |N3+ N4+ 2E34|,

• |N1+ N3+ 2E13| = |N2+ N4+ 2E24|,

• |N1+ N4+ 2E14| = |N2+ N3+ 2E23|

and that these three linear systems are three pencils of conics such that the listed elements

are mapped to double lines in P3 by f . Two elements of any of these pencils are linearly

equivalent to N1+ N2+ N3+ N4 plus twice the sum of two of the Ei j , showing that

N1+ N2+ N3+ N4 is 2-divisible in Pic X .

The source of inspiration behind the series of examples of untwisted half Nikulin

surfaces that we will meet in a moment are older results related to Enriques surfaces

on one side and to degenerations of K 3 surfaces to unions of two rational normal scrolls

on the other side. Concerning the Enriques surfaces side, a beautiful old realization of

a general Enriques surface S is known as a double covering of a 4-nodal quartic Del

Pezzo surface X of P4 branched over the set N of its four nodes and a disjoint quadratic

section B of X (c.f., e.g., [12, §§ 7–8]). The set of nodes N is even, meaning that the sum

of the exceptional curves in the minimal desingularization is 2-divisible in the Picard

group. As considered in the introduction, the double cover Y → X branched exactly at

B is a singular model of a Nikulin surface, singular at the inverse image Ñ of the set

of nodes N . The K 3 cover Ỹ → Y , branched exactly on Ñ is the K 3 cover of S. On the

K 3 surface side, degenerations of a K 3 to the union of two rational normal scrolls have

been exploited in many works (cf., e.g., [11]). It is natural to join these two sources and

see that, gluing appropriately two 4-nodal quartic Del Pezzo surfaces, a reducible K 3
surface with an even set of eight nodes comes out as a natural candidate to be a limit

in a family of Nikulin surfaces. We now consider an appropriate generalization of this

object that provides another example of an untwisted half Nikulin surface X4 of degree 4.

Starting from X4, untwisted half Nikulin surfaces Xd of any admissible degree d will be

constructed.

Fix a quadrilateral of lines

N := N1+ N2+ N3+ N4

on P1
×P1, where N1, N2 and N3, N4, respectively are in |OP1×P1(1, 0)| and |OP1×P1(0, 1)|,

with N1 6= N2 and N3 6= N4. Therefore, Sing N consists of the points

ei j := Ni ∩ N j

with 1 6 i 6 2 and 3 6 j 6 4. Let

σ : X4 −→ P1
×P1
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be the blowing-up of these four points, so that X4 is a half K 3 surface, more precisely, a

weak Del Pezzo surface of degree 4.

Remark 4.2. The construction of X4 is equivalent to choosing a smooth elliptic curve A
with two different line bundles L1, L2 ∈ Pic2(A) such that L⊗2

1 ' L⊗2
2 , and choosing a

general point x ∈ A. Indeed, L1 and L2 provide an embedding A ⊂ P1
×P1 and the fact

that L⊗2
1 ' L⊗2

2 ensures that x uniquely determines a quadrilateral of lines N1+ N2+

N3+ N4 in P1
×P1 such that the four intersection points ei j := Ni ∩ N j for 1 6 i 6 2 and

3 6 j 6 4 all lie on A and e14 = x . We recall, for later use, the following relations on A:

2e13 ∼ 2e24 and 2e14 ∼ 2e23. (25)

We let Ei j := σ
−1(ei j ) denote the four exceptional curves on X4. Moreover, by abuse

of notation, we will still denote the strict transform of N j on X4 by N j . These are four

disjoint smooth, rational curves of self-intersection −2.

The strict transforms of the pencils of conic sections through e13, e24 and e14, e23,

respectively, define two pencils of conics on X4, namely:

N1+ N4+ 2E14 ∼ σ
∗OP1×P1(1, 1)− E13− E24 ∼ N2+ N3+ 2E23, (26)

N1+ N3+ 2E13 ∼ σ
∗OP1×P1(1, 1)− E14− E23 ∼ N2+ N4+ 2E24. (27)

Remark 4.3. The anticanonical morphism f : X4 → P4 is well known: the map f factors

through the contraction τ : X4 → X4 of N followed by an embedding

X4 = Q1 ∩ Q2 ⊂ P4,

as a four-nodal complete intersection of two rank-three quadrics Q1, Q2 such that

Sing X4 = { f (N1), . . . , f (N4)} = (Sing Q1 ∩ Q2)∪ (Q1 ∩Sing Q2).

Each of the two pencils of conics (26) and (27) contains two double lines: E14 and E23 in

the former case and E13 and E24 in the latter.

It is easy to construct from X4 examples of half K 3 surfaces Xd of any degree d :=
K 2

Xd
6 4 endowed with a pencil of conics. Fix any smooth anticanonical divisor A ∈

|− K X4 | (by the point of view of Remark 4.2, the curve A is already fixed from the start)

and one of the two pencils above, say (26). Consider the blowing-up

γd : Xd −→ X4

at 4− d sufficiently general points u1, . . . , u4−d ∈ A. More precisely, in order to make sure

that certain linear systems only contract the four curves Ni (cf. the proof of Lemma 4.7),

we require that

u1, . . . , u4−d lie on distinct smooth, irreducible members of the pencil (26). (28)

Remark 4.4. If d > 1, the generality of the points u1, . . . , u4−d also ensures that the only

curves γ ⊂ Xd such that −K Xd · γ 6 0 are N1, . . . , N4.
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We denote the strict transforms of A, N j and Ei j on Xd by the same letters, so that A
is a smooth anticanonical divisor on Xd with A2

= d 6 4. Let

Um := γ
−1
d (um), 1 6 m 6 4− d

be the exceptional divisors of γd , and consider the contractions

Xd
γd
−→ X4

σ
−→ P1

×P1.

We define, for later use, the line bundles

` := (σ ◦ γd)
∗OP1×P1(1, 1), `1 := (σ ◦ γd)

∗OP1×P1(1, 0), `2 := (σ ◦ γd)
∗OP1×P1(0, 1)

(29)

(in the notation of Remark 4.2, we have `i |A ' L i ).

The contraction of the divisor N = N1+ N2+ N3+ N4 is denoted by

τ = τd : Xd −→ Xd .

The pullback by γd of any of the previous pencils of conics (26) and (27) is still a pencil

of conics whose image by τ still has two double lines. We denote the pullback by γd of

the chosen pencil (26) by B. Thus, we recall that

B ∼ N1+ N4+ 2E14 ∼ N2+ N3+ 2E23 (30)

and |B| is the strict transform under σ ◦ γd of the pencil of conic sections in |OP1×P1(1, 1)|
passing through the points e13 and e24. Note also that we have

N = N1+ N2+ N3+ N4 ∼ 2B− 2E14− 2E23,

just by the definition of B. Obviously this implies the following.

Lemma 4.5. OXd (N ) is divisible by two in Pic Xd . In particular, Xd is an untwisted half

Nikulin surface.

Precisely, with notation (29), equivalences (30) yield

1 :=
N
2
∼ B− E14− E23 ∼ `− E13− E14− E23− E24. (31)

It is easy to check that

hi (OXd (±1)) = 0 for i > 0 and h0(OXd (21)) = 1 (32)

and the classes [N1], . . . , [N4], [1] generate a primitive sublattice of rank four:

MXd ⊂ Pic Xd .

4.2. Hyperelliptic polarizations

We are looking for line bundles OXd (D) in the orthogonal lattice M⊥Xd
⊂ Pic Xd such that

τ∗D is a very ample Cartier divisor on Xd . For our purposes the main series of examples

is provided by the divisors

Dk := −K Xd + k B ∼ A+ k B, for a positive integer k. (33)
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It is clear that Ni · Dk = 0 for i = 1, . . . , 4, whence Dk belongs to M⊥Xd
. Moreover,

D2
k = d + 4k, K Xd · Dk = −d − 2k, pa(Dk) = k+ 1, Dk · B = 2. (34)

For later use, recalling (29), we also note that

Dk ∼ 2`1+ k N1+ N3+ (k+ 1)N4−

4−d∑
i=1

Ui + 2k E14, (35)

which can be proved using the first equivalence in (30), and

−K X ∼ 2`− E13− E14− E23− E24−

4−d∑
j=1

U j ∼ 2`1+ N3+ N4−

4−d∑
j=1

U j . (36)

A peculiarity of the linear system |Dk | is the following.

Lemma 4.6. Any smooth curve D ∈ |Dk | is hyperelliptic, with its g1
2 being cut out by |B|.

Furthermore, the line bundle ηD := OD(1) is a nontrivial 2-torsion element of Pic0 D.

More precisely, the points w14 := E14 ∩ D and w23 := E23 ∩ D are Weierstrass points on

D such that ηD ' OD(w14−w23) ' OD(w23−w14).

Proof. Using (32) one may check that ηD is nontrivial and η⊗2
D has a global section for

every D ∈ |Dk |. Equation (30) implies that OD(B) ' OD(2w14) ' OD(2w23) and thus w14
and w23 are Weierstrass points of D. Equation (31) then yields ηD ' OD(w14−w23) '

OD(w23−w14).

The following summarizes other elementary properties of Dk that are rather standard

when Xd is a weak Del Pezzo surface, that is, for d = K 2
Xd

> 1; even though this is the

main case of application, we will also need the case d = −4 in § 6.

Lemma 4.7. Assume that d + k > 1.

(a) One has h1(Dk) = h2(Dk) = 0; in particular dim |Dk | = 3k+ d.

(b) If furthermore d + 2k > 3, the complete linear system |Dk | is base point free and

defines a morphism that is an embedding except for the contraction of N1, . . . , N4;

in particular, τ∗Dk is very ample on Xd .

Proof. Set L := −K Xd + Dk ∼ 2A+ k B. Then L2
= 4(d + 2k) > 8. As B is nef and by

assumption A · L = −K Xd · L = 2(d + k) > 2, we have that L is nef. Thus, L is big and

nef, whence hi (L + K Xd ) = hi (Dk) = 0 for i = 1, 2, and (a) follows by Riemann–Roch.

Assume furthermore that d + 2k > 3. Then L2
= 4(d + 2k) > 12. Let Z ⊂ Xd be either

a base point of |Dk | = |L + K Xd | or a length-two scheme that is not separated by |Dk |.

Reider’s theorem yields the existence of an effective divisor F on Xd containing Z
and satisfying (F · L , F2) ∈ {(0,−2), (0,−1), (1,−1), (1, 0), (2, 0)}, with (0,−1) and (1, 0)
being the only admissible cases if Z is a point.

Assume that F · A < 0. Then A is a component of F and A2 < 0. Thus, F ∼ A+ F ′,
for some F ′ > 0. As L is nef, we have

2 > F · L = A · L + F ′ · L > A · L = −K Xd · L = 2(d + k) > 2,
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by our assumptions. Hence, we must have equalities all the way, in particular d + k = 1
and F ′ · L = 0. Hence, F ′ · A = F ′ · B = 0. Since 0 = F2

= A2
+ 2A · F ′+ F ′2 < F ′2, we

get a contradiction by the Hodge index theorem.

Assume that F · A > 0. As F · B > 0 and k > 0, we must have (F · L , F2) = (2, 0) and

F · A = −F · K Xd = 1, a contradiction by the adjunction formula.

Hence, F · A = 0. In particular, F2 must be even by adjunction, so that the only

possibilities are (F · L , F2) ∈ {(0,−2), (1, 0), (2, 0)}.
If F · B > 0, we have F · L > 0, whence F2

= 0. Hence pa(F) = 1, so that F has at

least one irreducible component that is nonrational. Since |B| is a base point free pencil,

we must therefore have B · F > 2. Hence

2 > F · L = F · A+ k F · B = k F · B,

yields the only possibility k = 1 and F · B = 2. The Hodge index theorem yields that

d = K 2
Xd

6 0, whence d + 2k 6 2, a contradiction.

Therefore, the only possibility left is F · B = 0, whence (F · L , F2) = (0,−2). In

particular, Z cannot be a point and we have proved that |Dk | is base point free. The

nefness of L and B implies that any component 0 ⊆ F must satisfy 0 · L = 0 · B = 0,

whence 0 · A = −0 · K Xd = 0. By the Hodge index theorem, we must have 02 < 0, whence

02
= −2 by the adjunction formula. Any such 0 must be contained in a member of |B|,

as 0 · B = 0, whence 00 := γd∗0 must be contained in a member of the pencil (26) on

X4. The assumptions (28) imply that 00 cannot be an element of the pencil, whence is

contained in a reducible member, thus the same conditions guarantee that 00 does not

contain any of the points u1, . . . , u4−d . Therefore, 00 is the inverse image of a rational

curve 00 ⊂ X4 satisfying 02
0 = −2. It is well known and easily checked that any such

curve on X4 is one of the N1, . . . , N4.

We have therefore shown that |Dk | defines a morphism that is an embedding except

for the contraction of N1, . . . , N4, proving (b).

Consider the double cover diagram (cf. Definition 3.9):

X̂d
τ̂ //

π

��

X̃d

π
��

Xd
τ // Xd ,

(37)

and recall that X̃d is a half K 3 surface of degree 2d by Lemma 3.7. Set D̂k := π
∗Dk

and D̃k := τ̂∗ D̂k . It is easy to conclude from Lemma 4.7(b) that, when d + k > 1 and

d + 2k > 3, the divisor D̃k is very ample and

dim |D̃k | = 6k+ 2d.

Finally, let p : Xd → P1 be the conic bundle structure defined by |B|. Since B · Ni = 0
for i = 1, . . . , 4, then p induces a conic bundle structure

p : Xd → P1
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such that p = p ◦ τ . It is important to remark that X̃d is defined via base change of p as

follows. Consider the nonreduced fibers B14 := N1+ N4+ 2E14 and B23 := N2+ N3+ 2E23
of p and let β : P1

→ P1 be the double cover branched along p(B14)+ p(B23). Then

X̃d
π //

p̃
��

Xd

p
��

P1 β // P1

is a Cartesian square, where p̃ : X̃d → P1 is the conic bundle structure induced by the

pullback of the conic bundle structure p. Denote by B̃ a fiber of p̃. One has 2B̃ ∼ π∗τ∗B ∼
τ̂∗π
∗B and it is easy to see that |B̃| is a pencil of conics on X̃d . Moreover, recalling that

Ã is an anticanonical divisor on X̃d , we have

D̃k ∼ −K X̃d
+ 2k B̃ ∼ Ã+ 2k B̃. (38)

The following important properties are immediate.

Lemma 4.8. Any smooth curve D̃ ∈ |D̃k | is hyperelliptic of genus 2k+ 1, with its g1
2 cut

out by |B̃|. Furthermore, for any smooth D ∈ |Dk |, let D̃ := π−1(τ∗D) ∈ |D̃k |. Then

πD := π |D̃ : D̃ −→ τ∗D ' D

is the étale double covering induced by ηD (cf. Lemma 4.6).

5. A partial compactification of FN,s
g and FN,ns

g by unions of untwisted half

Nikulin surfaces

In this section, we construct type II K 3 surfaces that are limits of polarized Nikulin

surfaces by gluing pairs of half Nikulin surfaces of the same degree d with 1 6 d 6 4.

Let Xd be a half Nikulin surface as in § 4, keeping the notation therein. Let A be a

fixed smooth anticanonical divisor on Xd , recalling Remark 4.2 and in particular (25).

We make the same construction starting from the same A but (possibly) different points

x ′ ∈ A and u′1, . . . , u′4−d ∈ A, thus obtaining another half Nikulin surface X ′d of degree

d := K 2
X ′d

; we use the notation N ′i j , e′i j , u′k , 1′ for the obvious objects on X ′d . Then, the

following relation on A holds:

e13+ e14+ e23+ e24 ∼ e′13+ e′14+ e′23+ e′24. (39)

Let Sd := Xd tA X ′d be the surface obtained by gluing Xd and X ′d along A; then, Sd has

simple normal crossing singularities and trivial canonical bundle.

Lemma 5.1. The following hold:

(i) The pair (1,1′) defines a Cartier divisor M on Sd ;

(ii) For any integer k > 1 the pair (Dk, D′k) defines a Cartier divisor on Sd if and only

if the following equivalence of divisors on A is satisfied:

2ke14−

4−d∑
j=1

u j ∼ 2ke′14−

4−d∑
j=1

u′j . (40)
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Proof. Here, and in the sequel, we use the fact that a Cartier divisor on Sd is a pair of

divisors on its two components with matching intersection along the double curve. Then,

point (i) follows from (31) and (39), whereas (ii) follows from (35).

When (40) is satisfied, let Hd,k ∈ Pic(Sd) denote the Cartier divisor defined by (Dk, D′k)
and ϕd,k be the map induced by the complete linear system |Hd,k |.

Theorem 5.2. The map ϕd,k is an embedding except for the contraction of the eight curves

Ni and N ′i to ordinary rational double points. Its image is the (transversal) gluing Sd :=

Xd tA X
′

d ⊂ P4k+d+1 of Xd and X
′

d along A, which is embedded as an elliptic normal

curve of degree 2k+ d in P2k+d−1.

A general C ∈ |Hd,k | is the union of two smooth irreducible curves D ⊂ Xd and D′ ⊂ X ′d
of genus k+ 1, intersecting transversely in d + 2k points. In particular, pa(C) = 4k+
d + 1. Moreover, D and D′ are hyperelliptic and their g1

2 is cut out by |B| and |B ′|,
respectively. The pair (C,OC (M)) is a stable Prym curve.

Proof. Apply Lemma 4.7 along with (34) to both D and D′. From

0 // OX ′d
(k B ′) // Hd,k // OXd (Dk) // 0, (41)

we obtain h0(Hd,k) = 4k+ d + 2, because h1(OX ′d
(k B ′)) = 0 and h0(OX ′d

(k B ′)) = k+ 1.

Furthermore, from (41) and

0 // OXd (k B) // OXd (Dk) // OA(Dk) // 0

we get h0(A, Hd,k |A) = 2k+ d and obtain surjective restriction maps

H0(Sd , Hd,k) // // H0(Xd , Hd,k |Xd )
// // H0(A, Hd,k |A).

We next prove that ϕd,k is an embedding outside the contracted curves, which implies

ϕd,k(Sd) = Sd .

By Lemma 4.7, ϕd,k is an embedding outside the contracted curves on each of the

components of Sd . Suppose that there are points y ∈ Xd \ A and y′ ∈ X ′d \ A, such that

ϕd,k(y) = ϕd,k(y′). Let C ⊂ Xd be a general curve in |Dk | passing through y. Then C
intersects A transversely along a divisor Z ∈ |OA(Dk)| = |OA(D′k)|. The ideal sequence

of Z ⊂ A ⊂ X ′d tensored by OX ′d
(D′k):

0 // OX ′d
(k B ′) // OX ′d

(D′k)⊗JZ/X ′d
// OA // 0,

and the vanishing h1(OX ′d
(k B ′)) = 0, prove that |OX ′d

(D′k)⊗JZ/X ′d
| is base point free off

Z , so that we can find a C ′ ∈ |D′k | not passing through y′ and such that C ∩C ′ = Z . Thus

we have found a member C ∪C ′ ∈ |Hd,k | containing y but not y′, a contradiction.

We argue similarly for any two infinitely near points y and y′ on A.

This proves that ϕd,k is an embedding outside the contracted curves.

The statements about a general C ∈ |Hd,k | easily follow from Lemma 4.6.
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Choose other 2d points u4−d+1, . . . , u4, u′4−d+1, . . . , u′4 on A satisfying:

u1+ u2+ u3+ u4+ u′1+ u′2+ u′3+ u′4 ∈ |L
⊗2
1 ⊗ L⊗2

2 | (42)

(recalling Remark 4.2) and denote by X (respectively, X ′) the blow-up of Xd (respectively,

X ′d) at u4−d+1, . . . , u4 (respectively, u′4−d+1, . . . , u′4). By abuse of notation, we denote the

strict transform on X (or X ′) of a divisor on Xd (or X ′d) still by the same name.

Lemma 5.3. The surface S := X tA X ′ is a stable K 3 surface of type II, whose

construction depends on 10 parameters.

Proof. Just use (42) in order to show that NA/X ⊗NA/X ′ ' OA. Concerning the number

of moduli of S, recalling Remark 4.2, there is one for the choice of the elliptic curve

A, one for the choice of the line bundles L1, L2 ∈ Pic2(A) such that L⊗2
1 ' L⊗2

2 , eight

for the choice of the points x = e14, x ′ = e′14, u1, . . . , u4, u′1, . . . , u′4 ∈ A satisfying (40)

and (42).

We denote by f : S→ Sd the natural contraction map and still by M (respectively,

Ni , N ′i ) the pullback under f of M (and of Ni , N ′i , respectively).

Fix henceforth integers k and d such that

k > 1, d ∈ {1, 2, 3, 4}

and let g := 4k+ d + 1. Consider the Cartier divisor H := f ∗Hd,k on S, defining a linear

system of genus g curves. Recall that, in addition to the line bundles H , M , Ni and

N ′i , the surface S carries the Cartier divisor ξ in (12). We denote by 3 ⊂ Pic(S)/〈ξ〉 the

lattice generated by H,M, N1, N2, N3, N4, N ′1, N ′2, N ′3, N ′4 modulo ξ .

Proposition 5.4. The embedding 3 ⊂ Pic S/〈ξ〉 is primitive except precisely when d = 4
(thus, g = 4k+ 5) and

ke14 ∼ ke′14 on A. (43)

In this case H is primitive and the sum of H and four of the (−2)-curves is 2-divisible

in Pic S.

Proof. We denote by Ui the exceptional divisor over ui , i = 1, . . . , 4. By abuse of notation,

we still denote by H a divisor in the linear system |H |. If the embedding 3 ⊂ Pic S/〈ξ〉
is not primitive, there exist integers βi , β

′

i for 1 6 i 6 4 such that H +
∑4

i=1
βi
2 Ni +∑4

i=1
β ′i
2 N ′i + εξ is m-divisible in Pic S, for some m > 2, and ε = 0 or 1. In particular,

its restriction to both X and X ′ is m-divisible. Its intersection with U4 equals −ε, whence

we must have ε = 0. If d < 4, then U1 · H |X = 1 and U1 · Ni = 0 for 1 6 i 6 4, whence

the embedding is primitive. Assume now d = 4. Since B · H |X = 2, the only possibility is

m = 2. By (35), the restriction of H |X +
∑4

i=1
βi
2 Ni to A lies in |L⊗2

1 (2ke14)|. Analogously,

the restriction of H |X ′ +
∑4

i=1
β ′i
2 N ′i to A lies in |L⊗2

1 (2ke′14)|, whence the 2-divisibility of

H +
∑4

i=1
βi
2 Ni +

∑4
i=1

β ′i
2 N ′i in Pic S requires (43) to be satisfied.

Conversely, assume that (43) holds.
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If k is even, then (35) implies that H |X + N3+ N4 is 2-divisible in Pic X , with its half

given by

w := `1+
k
2

N1+ N3+
k+ 2

2
N4+ k E14

(recalling (29)). The analogous equation holds for w′ := (H |X ′ + N ′3+ N ′4)/2 on X ′.
Condition (43) implies that w|A ∼ w

′
|A, so that (w,w′) is an element in Pic S. It follows

that H + N3+ N4+ N ′3+ N ′4 is 2-divisible in Pic R.

If k is odd, then (35) yields that H|X + N1+ N3 is 2-divisible in Pic X , with its half

given by

w := `1+
k+ 1

2
N1+ N3+

k+ 1
2

N4+ k E14,

and analogously one defines w′ on X ′. As above, (w,w′) defines an element in Pic S and

thus H + N1+ N3+ N ′1+ N ′3 is 2-divisible in Pic S.

Remark 5.5. Since condition (43) is exactly (40) divided by two, we can always impose

that (Dk, D′k) is Cartier on Sd but (43) is not satisfied, so that the embedding 3 ⊂

Pic S/〈ξ〉 is primitive.

On the other hand, if (43) is satisfied, then (Dk, D′k) automatically defines a Cartier

divisor on Sd by Lemma 5.1. Therefore, for any g ≡ 1 mod 4, we can also construct

surfaces S such that the embedding 3 ⊂ Pic S/〈ξ〉 fails to be primitive; the construction

still depends on 10 parameters.

By Lemma 5.3 and [18, Theorem 5.10], the surface S is smoothable and its versal

deformation space has a unique smoothing component V, which is 20-dimensional and

contains a smooth divisor D such that

• V \D parametrizes smooth K 3 surfaces;

• D parametrizes locally trivial deformations of S that remain stable.

Proposition 5.6. A general point in D parametrizes a birational modification along a

divisor in |T 1
R | of a surface R obtained by gluing two half K 3 surfaces of degree d along

an anticanonical divisor.

Proof. It is enough to show that surfaces as in the statement depend on 19 parameters.

Degree d Del Pezzo surfaces have 10− 2d moduli and the anticanonical linear system on

such a surface is d-dimensional. In order to glue two Del Pezzo surfaces W and W ′ along

an anticanonical divisor, the two anticanonical divisors should be isomorphic and this

imposes one condition. However, given two copies of the same elliptic curve, one can glue

them in infinitely many ways thanks to the one-dimensional family of automorphisms of

the curve. Therefore, such a gluing R = W tA W ′ depends on 20− 2d parameters. Since

T 1
R ' NA/W ⊗NA/W ′ has degree 2d, then the linear system |T 1

R | has dimension 2d − 1,

and hence altogether the number of moduli is 19.

Define the polarization

L := H(−M) ∈ Pic S.
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By [19, Proposition 4.3], there are unique smooth 19-dimensional subvarieties Vg−2,Vg ⊂

V such that

• Dg := D∩Vg and Dg−2 := D∩Vg−2 are smooth of dimension 18, contain the point [S]
and parametrize deformations in D preserving the polarizations H and L, respectively;

• Vg \Dg (respectively, Vg−2 \Dg−2) parametrizes smooth polarized K 3 surfaces of genus

g (respectively, g− 2).

Let Vi and V ′i denote the loci in Vg containing a deformation of Ni and N ′i , respectively.

Lemma 5.7. For 1 6 i 6 4, the loci Vi and V ′i are divisors in Vg that are smooth at the

point [S] and do not lie inside Dg.

Proof. Since Ni and N ′i satisfy Ni · KS = N ′i · KS = 0 and stay off the singular locus of S,

the argument is identical to the one at the beginning of [10, Proof of Lemma 4.1].

Proposition 5.8. The locus

N ′g := Vg ∩Vg−2 ∩V1 ∩V2 ∩V3 ∩V4 ∩V ′1 ∩V
′

2 ∩V
′

3

has an 11-dimensional component Ng whose general point parametrizes a smooth

primitively polarized Nikulin surface of genus g. Its type is non-standard if and only

if g ≡ 1 mod 4 and equation (43) holds.

Proof. By Lemma 5.7, N ′g contains [S] and has dimension > 19− 8 = 11. Locally around

the point [S], its intersection with D consists of deformations of S as in Proposition 5.6

that preserve H , L, N1, N2, N3, N4, N ′1, N ′2, N ′3, whence, automatically, also N ′4. By

Proposition 5.6 and Lemma 5.3, this locus is 10-dimensional, whence N ′g does not lie

entirely inside Dg. The point [S] belongs to an 11-dimensional component Ng of N ′g,

whose general point corresponds to a smooth K 3 surface Y that carries two polarizations

HY , LY of genus g and g− 2, respectively, and seven mutually disjoint rational curves

N Y
1 , . . . , N Y

7 , not intersecting HY and each intersecting LY in exactly one point. The

surface Y contains one more (−2)-curve with the same properties, whose class is given by

2(HY − LY )−
∑7

i=1 N Y
i . This curve degenerates to N ′4 as Y degenerates to S, whence it is

smooth, rational and disjoint from the first seven. The sum of the eight disjoint rational

curves is linearly equivalent to 2(HY
− LY ) and hence 2-divisible. As a consequence,

setting MY
:= HY

⊗ (LY )∨, the triple (Y,MY , HY ) is a Nikulin surface of genus g. To

determine its type and conclude that HY is primitive, it is enough to apply Proposition 5.4

and Remark 5.5.

There are dominant maps Vg \Dg → Fg and Ng \ (Ng ∩Dg) −→ FN,s
g (or to FN,ns

g ,

if g ≡ 1 mod 4 and equation (43) holds). By Propositions 5.6 and 5.8 one may use the

boundary divisors Dg ⊂ Vg and Ng ∩Dg ⊂ Ng to obtain partial compactifications of Fg

and FN,s
g (or FN,ns

g ), respectively. More precisely:

Corollary 5.9. (1) There exists a partial compactification F g of Fg, whose boundary is

a smooth irreducible divisor parametrizing isomorphism classes of triples (R, T, H),
where R is the union of two half K 3 surfaces of degree d glued along a smooth

anticanonical divisor, T ∈ |T 1
R |, and H is a primitive polarization of genus g.
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(2) The closure FN,s
g of FN,s

g in F g is a partial compactification of FN,s
g whose boundary

points represent unions of half Nikulin surfaces. The same holds for the closure

FN,ns
g of FN,ns

g if g ≡ 1 mod 4.

Proof. By [19, Definition 4.9 and Theorem 4.10] there is a normal separated partial

compactification of Fg obtained by adding a smooth divisor whose components

correspond to various kinds of type II degenerations of K 3 surfaces. Take the component

containing the point (Sd , u4−d+1+ · · ·+ u4+ u′4−d+1+ · · ·+ u′4, Hd,k), and hence all

surfaces in Dg. Propositions 5.6 and 5.8 imply that points in this component represent

isomorphism classes of triples (R, T, H), with R the transversal union of two half K 3
surfaces of degree d, the line bundle H ∈ Pic(R) a primitive genus g polarization, and

T ∈ |T 1
R |.

Now we consider the double cover of Sd defined by the line bundle M = (1,1′) as in

Lemma 5.1(i). The double cover diagrams (37) for Xd and X ′d extend to:

X̂d t Ã X̂ ′d Ŝd
t̂=(τ̂ ,τ̂ ′) //

5=(π,π ′)

��

S̃d

5=(π,π ′)

��

X̃d t Ã X̃ ′d

Xd tA X ′d Sd
t=(τ,τ ′) // Sd Xd tA X

′

d ,

(44)

where Ã denotes the curve inverse image of both A ⊂ Xd and A ⊂ X ′d under π and

π ′, respectively. In other words, 5 is the double cover of Sd branched along the eight

(−2)-curves Ni , N ′i for 1 6 i 6 4, and t̂ is the contraction of their inverse images.

By Lemma 3.7, the surface S̃d is the transversal union of two Del Pezzo surfaces of

degree 2d along an anticanonical divisor; by Theorem 5.2, it is embedded by |5
∗Hd,k |

into Pg̃, with g̃ := 2g− 1 = 8k+ 2d + 1, as a degree 2(g̃− 1) surface with trivial canonical

bundle. Since deg T 1
S̃d
= 4d, the surface S̃d is not stable. To obtain a stable K 3 surface, one

must as usual perform a birational modification S̃ := X̃ t Ã X̃ ′→ S̃d = X̃d t Ã X̃ ′d along a

divisor in |T 1
S̃d
|, cf. § 3.1. For instance, one may obtain such an S̃ simply by taking the

double cover Ŝ of the surface S in Lemma 5.3 branched along the eight curves Ni , N ′i for

1 6 i 6 4, and then contracting the ramification divisor.

Corollary 5.10. (1) There exists a partial compactification F2g−1 of F2g−1, whose

boundary is a smooth irreducible divisor parametrizing isomorphism classes of

triples (R̃, T̃ , H̃), where R̃ is the union of two half Del Pezzo surfaces of degree

2d glued along a smooth anticanonical divisor, T̃ ∈ |T 1
R̃
|, and H̃ is a primitive

polarization of genus 2g− 1.

(2) The locus in F2g−1 \F2g−1 of double covers of members in FN,s
g \F

N,s
g (or FN,ns

g \

FN,ns
g ) forms a partial compactification of F̃ s

2g−1 (or of F̃ns
2g−1), cf. § 2.2.

Proof. This is immediate from Corollary 5.9.

By (38), Lemma 4.8 and Theorem 5.2, the inverse image of a general curve C = D ∪
D′ ∈ |Hd,k | under 5 is a nodal curve C̃ = D̃ ∪ D̃′ lying in Ŝd (and also in S̃d), where D̃
and D̃′ are hyperelliptic curves of genus 2k+ 1 intersecting in 2d + 4k points.
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Theorem 5.11. The map χ s
g is birational onto its image for g = 7 and g > 10. The map

χns
g is birational onto its image for (odd) genus g > 13 such that g ≡ 1 mod 4.

Proof. We follow the strategy outlined in § 2.2. Let [(Sd , Hd,k,C)] be general in PN,s
g or

in PN,ns
g . We consider the surface S̃d in (44) containing the double cover C̃ of C . Let

x := [C̃ ⊂ S̃d ⊂ P2g−1
]

be the point of the flag Hilbert scheme P2g−1 determined up to projectivities by the line

bundle H̃ := OS̃d
(C̃). We need to show that, as soon as (d, k) 6∈ {(1, 1), (3, 1), (4, 1)}, the

fiber of m2g−1 over the point [C̃ ⊂ P2g−1
] has a component of dimension 2g, that equals

the dimension of the projectivities of P2g−1 fixing the hyperplane containing C̃ . Let Y

be any component of this fiber containing x .

If a general point of Y parametrizes an irreducible surface, then by Lemma 3.3 the

2d + 4k nodes of C̃ are contained in the support of a divisor in |T 1
S̃d
|, which has degree

4d. Therefore, 2k 6 d. If equality occurs, then (d, k) ∈ {(2, 1), (4, 2)} and the nodes of C̃
define a divisor in |T 1

S̃d
|, which is the pullback of the divisor in |T 1

Sd
| = |NA/Xd ⊗NA/X ′d

|

determined by the d + 2k nodes on C . Hence, (−K Xd + k B)|A ∼ (−K Xd − K X ′d
)|A, which

implies the relation

u′1+ · · ·+ u′4−d ∼ 2e13+ 2(1− k)e14

on A. When (d, k) = (4, 2), we get the contradiction 2e13 ∼ 2e14. When (d, k) = (2, 1), we

obtain the equivalence u′1+ u′2 ∼ 2e13 in contradiction with the generality of the points

u′1 and u′2 and thus of Sd . We conclude that 2k < d, which means (d, k) ∈ {(3, 1), (4, 1)},
but this contradicts our assumption on g.

Hence, a general point of Y parametrizes a reducible surface. Since embedded unions

of half K 3 surfaces of degree 2d glued along an anticanonical divisor form a dense open

subset of an irreducible component of the locus of reducible surfaces in H2g−1, general

surfaces in Y are of this type.

Both components of C̃ = D̃ ∪ D̃′ are hyperelliptic of genus 2k+ 1. Given any surface

W ∪W ′ of the specific type containing C̃ , the Cartier divisor (D̃, D̃′) on W ∪W ′ restricts

to the canonical divisor on C̃ . In particular, the normal bundle ND̃/W does not depend on

W and has degree D̃2
= 2d + 8k, as ND̃/W ' ωC̃ |D̃ ' ωD̃(D̃ ∩ D̃′). Inequality (19) reads

d + 2k > 4 (as −KW is ample). Hence, Proposition 3.13 ensures that W is determined up

to finitely many choices unless (d, k) = (1, 1). Exactly in the same way one reconstructs

W ′ starting from D̃′ up to finitely many choices.

Theorem 5.12. The map mN,s
g is birational onto its image for g = 13 and g > 15. The

map mN,ns
g is birational onto its image for (odd) genus g > 13 such that g ≡ 1 mod 4.

Proof. Let [(Sd , Hd,k,C)] be general in PN,s
g or in PN,ns

g and let

x := [C ⊂ Sd ⊂ Pg
= P(H0(Hd,k)

∨)]

be the corresponding point (up to projectivities) in the flag Hilbert scheme Pg. As

outlined in § 2.2, we show that the fiber of fg over the point [C ⊂ Pg
] has a component

of dimension g+ 1, that is, made of projectively equivalent surfaces.
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Consider any component of that fiber containing x . Exactly as in the proof of

Theorem 5.11, one applies Lemma 3.3 to exclude that a general point of Y parametrizes

an irreducible surface except when (d, k) ∈ {(3, 1), (4, 1)}, which yields g 6 9.

Hence, general points of Y represent reducible surfaces and more precisely unions of

two half K 3 surfaces of degree d glued along an anticanonical divisor. We have left only

to prove that C lies on finitely many such unions. One may argue as in the proof of

Theorem 5.11 and apply Proposition 3.13, since both components of C are hyperelliptic.

By Remark 4.4, we may assume condition (20) to be fulfilled; it is then enough to rewrite

condition (19) (allowing equality) as D2
k > 2g(Dk)+ 6. Recalling (34), this becomes d +

2k > 8, which is satisfied precisely when g = 13 and g > 15.

6. A change of polarization

We make a birational modification of the limit surfaces in the previous section and a

change of polarization, to treat the non-standard cases for genera g ≡ 3 mod 4.

Let d = 4 and fix an integer l > 1. As in § 4, we construct two weak Del Pezzo surfaces

X4 and X ′4 of degree 4 but replace condition (40) with:

2(l + 1)e14 ∼ 2le′14+ 2e′24. (45)

We then choose on the elliptic curve A a divisor

u1+ u2+ u3+ u4+ u5+ u6+ u7+ u8 ∈ |L⊗2
1 ⊗ L⊗2

2 |, (46)

and denote by X the blow-up of X4 at the eight points u1, . . . , u8. As customary, we

denote the strict transform on X of a divisor on X4 still by the same name.

We define S := X tA X ′4 as the gluing of X and X ′4 along A. It is straightforward to

check, using (30), (36) and (45), that the pair

(A+ (l + 1)B, (l − 1)B ′)

defines a Cartier divisor on S, which we denote by H . A general curve C in |H | consists

of a smooth irreducible component D ⊂ X of genus l + 2 intersecting transversely l − 1
rational curves in |B ′|, each in two points, whose union we denote by D′. As a consequence,

pa(C) = 2l + 1.

Condition (46) ensures that T 1
S ' OA and the same reasoning as in § 4 shows that

(S,M, H) is a stable limit of smooth polarized Nikulin surfaces of genus g := 2l + 1 (here,

M is defined in the obvious way). More precisely, (S,M, H) moves in a smooth divisor in a

partial compactification of either FN,s
g or FN,ns

g , depending on the following proposition.

This compactification is obtained by taking the closure of the moduli space of genus g
Nikulin surfaces (of standard or non-standard type) in a partial compactification of Fg,

whose boundary points parametrize genus g polarized type II K 3 surfaces that are unions

of two half K 3 surfaces of degree −4 and 4, respectively.

Proposition 6.1. The embedding 3 ⊂ Pic S/〈ξ〉 is primitive unless

(l + 1)e14 ∼ le′14+ e′24 on A.

In this case H is primitive and either
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(i) l is even (whence g ≡ 1 mod 4) and the sum of H and four of the (−2)-curves is

2-divisible in Pic S; or

(ii) l is odd (whence g ≡ 3 mod 4) and the sum of H and two of the (−2)-curves is

2-divisible in Pic S.

Proof. The proof is almost identical to that of Proposition 5.4. The 2-divisible linear

combinations are H + N1+ N4+ N ′1+ N ′3 in case (i) and H + N ′3+ N ′4 in case (ii).

We consider the double cover of S defined by M and obtain a commutative diagram

X̂ t Ã X̂ ′4 Ŝ t̂ //

5

��

S̃

5

��

X̃ t Ã X̃ ′4

X tA X ′4 S t // S X tA X
′

4

similar to (44), where we have used the usual notation. By Lemma 3.7, the surfaces X̃
and X̃ ′4 are half K 3 surfaces of degrees −8 and 8, respectively. In particular, one easily

proves that X̃ ′4 ' P1
×P1.

We denote by C̃ := D̃ ∪ D̃′ the inverse image in S̃ (or Ŝ) of a general curve C = D ∪ D′ ∈
|H |. Then D̃ ∈ | Ã+ 2(l + 1)B̃|, while D̃′ ∈ |2(l − 1)B ′|.

The stable model D of C̃ in Mg is obtained by contracting D̃′, whence it is an

irreducible nodal curve with precisely 2(l − 1) nodes, having D̃ as normalization. Denote

by ν : D̃→ D its normalization. Then ND̃/X̃ ' ωD̃(Z) ' ν
∗ωD , where Z = D̃ ∩ D̃′ ⊂ D̃

is the inverse image of the scheme of nodes of D.

Theorem 6.2. The maps χ s
g and χns

g are birational onto their images for any odd genus

g > 13.

Proof. We follow the strategy outlined in § 2.2. This time we partially compactify F2g−1
by adding a boundary divisor parametrizing stable type II K 3 surfaces obtained by gluing

two half K 3 surfaces of degree −8 and 8, respectively. In comparison with the proof of

Theorem 5.11, it is not necessary to pass to the Hilbert schemes. Indeed, under our

assumptions, we are able to prove that the fiber f̄ −1
2g−1(D) of the compactified forgetful

map is finite.

By Lemma 3.3, in a neighborhood of [(S̃, H̃ , C̃)], the fiber of f̄ −1
2g−1(D) has a component

consisting only of curves on reducible surfaces. Let [(R = W−8 tW8, H R,C−8 ∪C8)]

denote a general element in this component. Then C−8 ' D̃ and its normal bundle

NC−8/W−8 ' ωD̃(Z). Now apply Proposition 3.13 to the hyperelliptic curve C−8, which

has genus g(D̃) = 2l + 3, and the line bundle N := ωD̃(Z), which has degree 8l. Condition

(19) is satisfied if (and only if) l > 6, that is, g = g(D) = 2l + 1 > 13. Under this

assumption, the component W−8 is determined up to finitely many choices. For each

such W−8, the anticanonical system has a unique effective member AW , which intersects

D̃ along Z . We claim that this also determines W8 in finitely many ways. Indeed,

W8 ' P1
×P1 and AW

⊂ W8 is an anticanonical divisor satisfying

NAW /W8
' N∨AW /W−8

(47)
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(as NAW /W−8
⊗NAW /W8

' T 1
R ' OAW ). The restriction to AW of one of the rulings of W8

is determined by the pairs of points in the subscheme Z ⊂ AW . Since AW is a divisor

of type (2, 2) on W8 ' P1
×P1, condition (47) yields only finitely many choices for the

restriction of the second ruling of W8 to AW . Hence, the embedding AW ↪→ P1
×P1 can

be reconstructed in finitely many ways. This proves that also W−8 tW8 is determined up

to a finite number of choices.

Theorem 6.3. The maps mN,s
g and mN,ns

g are birational onto their images for any odd

genus g > 17.

Proof. We again follow the strategy outlined in § 2.2 and prove that the fiber m̄−1
g (D0)

is finite, where D0 is the stable model of a general curve C = D ∪ D′ ∈ |H |, that is,

D0 is obtained by contracting D′ and identifying l − 1 pairs of points on D. Again

by Lemma 3.3, it is enough to show that there are finitely many unions of half K 3
surfaces of degrees −4 and 4 containing a curve stably equivalent to D0. One applies

Proposition 3.13 to reconstruct, up to finitely many choices, the half K 3 surface of

degree −4 containing D. Indeed, condition (19) reads D2 > 2g(D)+ 6+ 4. Recalling that

D2
= 4l and g(D) = l + 2, this becomes l > 8, that is, g > 17. Since the reconstructed

half K 3 surface has degree −4, it contains a unique anticanonical elliptic curve A. Now

we want to show that there are only finitely many half K 3 surfaces of degree 4 containing

A∪ D′ with A anticanonical. Let W be any such surface and let W ⊂ P(H0(OW (A))∨) be

its anticanonical model. Recall that D′ consists of l − 1 disjoint rational curves Bi (for

i = 1, . . . , l − 1) each intersecting A transversely in a pair of points forming a divisor

in the same g1
2 . Therefore, all curves Bi are members of the same pencil of conics

|B| on W . We proceed as in the proof of Proposition 3.13 and use the (hyperelliptic)

curve A and the pencil |B| in order to define a P1-bundle R and a P2-bundle P on

P1 such that R is a hyperplane section of P and the anticanonical morphism on W
factors through a morphism W → W †

⊂ P realizing the image W † as a conic bundle

in P; more precisely, one has W †
∼ 2R on P and A = R ∩W †. We still denote by Bi

the image of Bi on W †. It is enough to show that h0(JA∪B1∪···∪Bl−1/P (W †)) = 1. Since

A∪ B1 ∪ · · · ∪ Bl−1 = (R+ F1+ · · ·+ Fl−1)∩W †, where Fi is the P2-fiber of P containing

Bi , one reduces to proving that h0(OP (W †
− R− (l − 1)F)) = 0 with F the class of the

divisors Fi . By using the equivalence W †
∼ 2R and then restricting to W †, it suffices to

check that A− (l − 1)B is not effective on W . This holds true because its intersection

with A is negative as soon as l > 4.

7. A partial compactification of FN,s
g and FN,ns

g by unions of twisted half

Nikulin surfaces

7.1. Construction of twisted half Nikulin surfaces

Let g > 3 be an odd integer and P1
×P1

' R ⊂ Pg be a rational normal scroll of degree

g− 1. Fix a smooth anticanonical divisor AR ∈ |− K R |; thus, AR ⊂ Pg is an elliptic

normal curve of degree g+ 1. We set n := g−1
2 and denote by s and f a minimal section
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and a fiber of the ruling of R, respectively, so that AR ∼ −K R ∼ 2(s+ f) and

Dn := OR(1) ' OR(s+ nf).

Pick four distinct points x1, . . . , x4 on AR and blow up R first at these points, and

then at the intersection points of the four exceptional curves N1, . . . , N4 with the strict

transform of AR . Let

τR : X // R

be the resulting sequence of eight blow-ups. On X we denote by A the strict transform

of AR , still by Ni the strict transform of the curve Ni for i = 1, . . . , 4, and by E1, . . . , E4
the exceptional curves obtained at the second set of blow-ups. Then N 2

i = −2, E2
i = −1

and one has:

A ∼ τR
∗AR −

4∑
i=1

Ni − 2
4∑

i=1

Ei ,

so that A is anticanonical on X and A2
= 0. Furthermore, the divisor

A+
4∑

i=1

Ni ∼ 2

[
τR
∗(s+ f)−

4∑
i=1

Ei

]
(48)

is 2-divisible on X and A2
= 0. In particular, X is a half Nikulin surface of twisted type

and degree 0. The double cover diagram (18) associated with X fits into

X̂ τ̂ //

π

��

X̃ τ̃ //

π
��

R̃

π̃

��

X

τR
''

τ // X

R;

(49)

here, as usual, π is the double covering branched on A+
∑4

i=1 Ni , while τ is the

contraction of the Ni and τ̂ of their inverse images π−1(Ni ) on X̂ . The curves π−1(Ei )

are (−2)-curves doubly covering Ei and intersecting π−1(Ni ) in one point. Thus, their

images in X̃ are (−1)-curves and τ̃ is their contraction to a smooth surface R̃. The map

π̃ is the double cover of R branched along AR . Denoting by Ã the inverse image of AR
on R̃, we have 2 Ã ∼ π̃∗A ∼ 2π̃∗(s+ f), so that Ã ∼ π̃∗(s+ f) and

K R̃ ∼ π̃
∗K R + Ã ∼ π̃∗(−2s− 2f+ s+ f) ∼ − Ã.

In particular, Ã is anticanonical and Ã2
= 2(s+ f)2 = 4. Moreover, one can show that

Ã is ample and the divisor B̃ := π̃∗f satisfies B̃2
= 0 and B̃ · Ã = π̃∗f · π̃∗(s+ f) = 2. To

summarize, we have the following.

Lemma 7.1. The surface R̃ is a Del Pezzo surface of degree 4 endowed with a pencil of

conics B̃.
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Finally, we set D̃n := π̃
∗Dn , so that

D̃n ∼ Ã+ (n− 1)B̃ (50)

and dim |D̃n| = 3n+ 1. Clearly, any smooth curve in |D̃n| is hyperelliptic of genus n, with

its g1
2 being cut out by |B̃|.

7.2. Limit surfaces

As in § 5, we construct a limit of polarized Nikulin surfaces as follows. The rational normal

scroll R ⊂ Pg can be constructed starting with the elliptic normal curve AR ⊂ Pg and

choosing a general line bundle L ∈ Pic2(A): indeed, the surface R ⊂ Pg is the union of

the secant lines to AR spanned by the divisors in |L|. Choose another general line bundle

L′ ∈ Pic2(A) such that L′ 6' L and let R′ ⊂ Pg be the associated rational normal scroll;

again one has R′ ' P1
×P1. Divisors on R′ are denoted in the same way as those on R

adding a ′.

By [11, Theorem 1], R and R′ intersect transversely along AR , which is anticanonical

on both scrolls. Hence, the surface W := R tAR R′ has normal crossing singularities and

ωW is trivial. Moreover, by [11, Theorem 3], the surface W is a flat limit of smooth K 3
surfaces in Pg. We have

T 1
W ' NAR/R ⊗NAR/R′ ' OAR (s+ f+ s′+ f′)⊗2.

We repeat the same procedure (and same notation) used while constructing X starting

from R, in order to obtain a surface X ′ that is the blow-up of R′ along four pairs of

infinitely near points on AR . In particular, the four points on AR blown up at the first

step are denoted by x ′1, . . . , x ′4 and chosen so that

x1+ · · ·+ x4+ x ′1+ · · ·+ x ′4 ∈ |OAR (s+ f+ s′+ f′)|. (51)

We consider the reducible surface S := X tA X ′. The analogue of Lemma 5.3 holds:

Lemma 7.2. The surface S is a stable K 3 surface of type II, whose construction depends

on 10 parameters.

Proof. Condition (51) implies that NA/X ⊗NA/X ′ ' OA. Concerning the number of

moduli of S, there is one for the choice of the elliptic normal curve AR ⊂ Pg, two for

the choices of the line bundles L,L′ ∈ Pic2(A) and seven for the choice of the eight points

xi and x ′i satisfying (51).

We define H = Hn as the line bundle on S determined by the pair of Cartier divisors

(τR
∗Dn, τR′

∗D′n) on X and X ′, respectively. The eight smooth rational curves N1, . . . , N4,

N ′1, . . . , N ′4 also define Cartier divisors on S, since they do not intersect the singular locus

of S. Finally, recalling (12), equivalence (48) and its analogue on X ′ ensure the existence

of a line bundle M on S satisfying

M⊗2
|X ' OR

( 4∑
i=1

Ni

)
⊗ ξ|X and M⊗2

|X ′ ' OX ′

( 4∑
i=1

N ′i

)
⊗ ξ|X ′ .

Let 3 ⊂ Pic(S)/〈ξ〉 be the lattice generated by H,M, N1, N2, N3, N4, N ′1, N ′2, N ′3, N ′4
modulo ξ .
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Proposition 7.3. The embedding 3 ⊂ Pic S/〈ξ〉 is primitive.

Proof. If not, there exist integers βi , β
′

i for 1 6 i 6 4 such that H +
∑4

i=1
βi
2 Ni +∑4

i=1
β ′i
2 N ′i + εξ is m-divisible in Pic S, for some m > 2, and for ε = 0 or 1. In particular,

its restrictions to X and X ′ are m-divisible. But this is impossible, as their intersections

with τR
∗f and (τR′)

∗f′ are 1+ 2ε and 1− 2ε, respectively.

By Lemma 7.2, Proposition 7.3 and [18, Theorem 5.10], arguing as in § 5, the surface S is

smoothable to a primitively polarized Nikulin surface of standard type. In particular, one

constructs a partial compactification FN,s
g of FN,s

g whose boundary points parametrize

reducible surfaces that are unions of two half Nikulin surfaces of twisted type and degree

0 like X and X ′.
Diagrams (49) for X and X ′ give rise to a diagram

Ŝ = X̂ t Ã X̂ ′ //

��

S̃ = X̃ t Ã X̃ ′ //

��

W̃ = R̃ t Ã R̃′

��

S = X tA X ′ //

,,

S = X tA X
′

W = R tAR R′.

By Lemma 7.1, the surface W̃ is the transversal union of two degree four Del Pezzo

surfaces along an anticanonical divisor. The line bundle H̃ on W̃ defined by the pair(
D̃n, D̃′n

)
=
(

Ã+ (n− 1)B̃, Ã+ (n− 1)B̃ ′
)
,

cf. (50), embeds W̃ into P2g−1 as a degree 4g− 4 surface with trivial canonical bundle.

Therefore, S̃ represents a point of the component H2g−1 of the Hilbert scheme of degree

4g− 4 surfaces in P2g−1 containing smooth primitively embedded K 3 surfaces of genus

2g− 1. Let C = D ∪ D′ be a general hyperplane section of W ⊂ Pg and let C̃ = D̃ ∪ D̃′

be its double cover lying on W̃ ⊂ P2g−1. Then C̃ is nodal, and its components D̃ and D̃′

are hyperelliptic curves of genus n intersecting in 2n+ 2 points and lying in the linear

systems |D̃n| on R̃ and |D̃′n| on R̃′, respectively.

Theorem 7.4. The map χ s
g is birational onto its image for any odd genus g > 7.

Proof. We proceed as in the proof of Theorem 5.11 following the strategy outlined in § 2.2,

and show that the fiber of m2g−1 over the point [C̃ ⊂ P2g−1
] has a component of dimension

2g, that is the dimension of the projectivities fixing the hyperplane containing C̃ . Let Y

be any component of that fiber containing the point [C̃ ⊂ W̃ ⊂ P2g−1
].

Assume first that a general element in Y parametrizes an irreducible surface. Then, by

Lemma 3.3, the scheme of 2n+ 2 nodes of C̃ is contained in a divisor in the linear system

|T 1
W̃
| on Ã, which has degree 8. Hence, we obtain 2n+ 2 6 8, or equivalently, g 6 7. If

equality occurs, then n = 3 and both C̃ ⊂ W̃ and C ⊂ W have eight nodes. On C ⊂ W
they must coincide with x1, . . . , x4, x ′1, . . . , x ′4, on AR . Condition (51) yields

OAR (s+ f+ s′+ f′) ' OAR (1) ' OAR (s+ 3f) ' OAR (s
′
+ 3f′),
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whence OAR (2(f+ f′)) ' OAR (1); this provides a nontrivial relation between L, L′ and

OAR (1) on AR , thus contradicting the generality of W .

Hence, general points of Y parametrize unions of Del Pezzo surfaces of degree 4 glued

along an anticanonical divisor. As in the proof of Theorem 5.11, we apply Proposition 3.13

to each of the components of C̃ , which are hyperelliptic of genus n with normal bundle

of degree 4n. Condition (19) with ‘>’ reads like n > 3, that is, g > 7.

Theorem 7.5. The map mN,s
g is birational onto its image for any odd genus g > 11.

Proof. Following the strategy outlined in § 2.2, it suffices to show that the Gaussian map

of a general [γ ] ∈ Im mN,s
g has corank one. But γ specializes to a general hyperplane

section of W , whose Gaussian map has corank one for g > 11 by [11].
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