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Abstract

Estuarine chaetognath population dynamics are poorly known worldwide. We have conducted
eight seasonal campaigns (October 2007–August 2008) sampling three sectors in the subtrop-
ical Babitonga Bay estuary (26°S 48°W) in order to depict chaetognath abundance and popu-
lation structure dynamics and test the influence of hydrography and food availability and type.
Of three species sampled, Parasagitta friderici represented >93% of abundance in all samples
and was examined in detail. There were no differences in P. friderici abundance between the
sectors of the estuary, related to its high tolerance to low salinity, a feature not common for
most chaetognath species. Salinity tolerance is an important adaptive characteristic to thrive
within estuarine systems, and probably is responsible for the dominance of P. friderici in
coastal and brackish water environments throughout most of its distribution. Juveniles domi-
nated the population most of the year, except in February–April when abundances were lower
and adults predominated. These results suggest that recruitment occurs continuously through-
out the year, being more intense between October and January (spring to early summer) and
in May (autumn) when densities and proportion of juveniles were higher. General Additive
Models suggest that temperature and zooplankton biomass are significant (P < 0.05) factors
influencing juvenile abundance while only the latter influenced the adults. We conclude
that food availability is the most important driver in the studied population of P. friderici
and recruitment peaks, which lead to high densities, seem to occur following peaks of their
copepod prey along with particular temperature conditions (22–23°C).

Introduction

Zooplankton are of great importance in energy transfer and structuring of marine food webs.
Thus, detailed descriptions of zooplankton variability and its main drivers are necessary to
broaden knowledge of how marine ecosystems function. Chaetognaths are an important
planktonic group, commonly present in high densities in marine pelagic environments
(Bone et al., 1991; Liang, 2002). They are active predators, grabbing their prey with rigid
hooks (Feigenbaum, 1991; Casanova, 1999). Due to their position in the pelagic food web
as an intermediate link in the energy flow to higher trophic levels such as fish and ubiquitous
occurrence in marine environments, chaetognaths have a key role structuring both coastal and
oceanic pelagic communities (Bone et al., 1991; Casanova, 1999).

As typical for most zooplankton taxa (e.g. Boltovskoy, 1999), chaetognaths may be sensitive
to changes in the physical structure of the water column, and different hydrographic condi-
tions may lead to different feeding, growth, reproduction and survival rates, influencing
their abundance levels and population dynamics (e.g. Ramírez & Viñas, 1982; Daponte
et al., 2008; Wu et al., 2014). Apart from the physical environment, biotic factors such as
food availability and quality also have an important role influencing chaetognath distribution
and population dynamics (Gibbons & Stuart, 1994; Liang et al., 2003; Sato et al., 2011;
Noblezada & Campos, 2012). The influence of physical and biological environment on chae-
tognath populations and their spatial and temporal dynamics from shelf and oceanic ecosys-
tems is relatively well-known, with many available studies on the South-western Atlantic (e.g.
Crelier & Daponte, 2004; Araújo & Ribeiro, 2005; Souza et al., 2014) and in most other main
regions worldwide (e.g. Gibbons & Stuart, 1994; Nair et al., 2002; Ruiz-Boijseauneau et al.,
2004; Noblezada & Campos, 2012; Wu et al., 2014).

In contrast, estuarine chaetognath populations have been poorly studied. Detailed data on
abundance, population structure and/or reproduction are available only from a few scattered
estuaries and species worldwide (Reeve, 1964; Mulkana & McIlwain, 1973; Grant, 1977;
Srinivasan, 1980; Nair & Sankarankutty, 1988; Liang et al., 2003), with even fewer data for-
mally analysing the influence of food availability and hydrographic parameters. Estuaries
are typically characterized by a haline horizontal gradient which has a paramount influence
on the structure and functioning of communities (Whitfield & Elliott, 2011), including zoo-
plankton abundance, diversity and assemblage structure (Xu et al., 2014; Miyashita &
Calliari, 2016). This may be particularly true for chaetognaths since they are exclusively marine
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and most species are more common over the continental shelf and
offshore (Bone et al., 1991; Casanova, 1999). General latitudinal
climatic patterns, reflected mostly by the temperature and rainfall,
are expected to influence the seasonal dynamics of estuarine
plankton, which typically attain lower abundances during winter
in subtropical to temperate latitudes (Reeve, 1964; Marques
et al., 2009; Nogueira Júnior et al., 2018), and tend to follow
the rainfall regime in tropical regions (Nair, 1974; Hernández
et al., 2005). However, the general absence of baseline detailed
data hampers broad generalizations and understanding the
responses of different species. In the present study we test the
role of physical (temperature and salinity) and biological (food
availability) factors as drivers of spatial and temporal dynamics
of chaetognath population structure through an annual cycle in
the subtropical Babitonga Bay estuary, South Brazil.

Materials and methods

Study area

Babitonga Bay estuary is located in the state of Santa Catarina,
south Brazil (Figure 1), with an area of ∼130 km2 and average
depth of 6 m, and up to 28 m depth in the main canal. The region
is characterized by a wet subtropical climate, with mean rainfall of
∼2000 mm year−1, a rainy season between spring and late sum-
mer/early autumn and a dry season during autumn and winter
(DNIT-IME, 2004; Cremer et al., 2006). It has a high biological
productivity, sustaining high abundance and diversity of aquatic
fauna and flora (Brandini et al., 2006; Vilar et al., 2011; Nogueira
Júnior, 2012). Babitonga Bay estuary has a tidal range of ∼1.30 m
(DNIT-IME, 2004; Cremer et al., 2006). The tide is mixed with
semidiurnal dominance and diurnal inequalities with a natural
oscillation period of ∼3.6 h (Truccolo & Schettini, 1999).

Sampling

Eight seasonal surveys, two in each season, were performed at
Babitonga Bay estuary between October 2007 and August 2008.
During each field campaign three sectors of the estuary were
sampled (Figure 1). In each sector three replicate zooplankton
samples were performed with a 40 cm mouth diameter and
200 µm mesh WP-2 plankton net (N = 72), and six replicate sam-
ples with a 50 cm mouth diameter and 500 µm mesh WP-2
plankton net (N = 144). Nets were slowly (≤1.5 knots), obliquely
hauled for 2–5 min covering most of the water column. Nets were
coupled with a mechanical flowmeter (Hydrobios). All hauls (N =
216) were performed during daylight, between 9 a.m. and 3 p.m.
Samples were fixed in 4% formaldehyde filtered (<30 µm) sea-
water solution directly after retrieval of the nets.

Subsurface and near-bottom temperature and salinity were
measured with a multi-probe (Horiba U-10) and water transpar-
ency with a Secchi disk. Chlorophyll-a was estimated based on
subsurface samples filtered with Whatman filters (25 mm diam-
eter, GF/F), with pigments extracted in the laboratory (Parsons
et al., 1984) and measured on a calibrated fluorometer (Turner
Designs – Trilogy).

Whole samples taken with the 200 µm mesh net (N = 72)
were analysed under a stereomicroscope (Zeiss, Stemi, 2000) and
the chaetognaths were separated, identified (mainly following
Casanova, 1999) and quantified. The dominant Parasagitta
friderici was further classified as either juvenile or adult following
standard classification of the species (Boltovskoy, 1975; Mendes
et al., 2012). Gelatinous organisms were also manually removed
from the samples (Nogueira Júnior, 2012) and the rest of the
200 µm samples were used to estimate zooplankton wet weight
(mostly copepods, cladocerans and other crustaceans) by

gravimetry after removing the water excess with blotted paper
(Omori & Ikeda, 1994), using a digital analytical balance (Lab
Genius DL-224) with precision of 0.1 mg. Samples taken with
the 500 µm mesh (N = 144) were analysed in their entirety
under the stereomicroscope and fish larvae counted. Zooplankton
biomass and fish larvae abundance were used to characterize differ-
ent types of food items and their availability for the chaetognaths.

Data analysis

Two-way analysis of variance (ANOVA) was used to test if the
abundance of adult or juvenile P. friderici changes significantly
(P < 0.05) considering temporal (months sampled; eight levels)
and spatial (sectors within the estuary; three levels) factors and
their interaction (Zar, 2010). To test the effect of different hydro-
graphic and biological variables on juvenile and adult P. friderici
abundances, we used Generalized Additive Models (GAMs).
GAMs are able to deal with non-linear relationships between a
dependent variable and multiple predictors in the same model
through non-parametric generalizations of multiple linear regres-
sions that are less restrictive about the underlying distribution of
data (Hastie & Tibshirani, 1990). Among predictors used, we
included physical parameters, such as temperature, salinity and
water transparency, and biological parameters such as zooplank-
ton biomass and fish larvae abundance, considered as food source
availability for chaetognaths, and chlorophyll-a as an indirect
measure of biological productivity. Statistical analyses were per-
formed in STATISTICA 13.0.

Results

Abiotic environment

Salinity was always >26 in the outer sector, varying between 26
and 31.5 and between 27.3 and 33.6 in the sub-surface and
near the bottom respectively without a clear temporal pattern.
In the intermediate and inner sector salinities were lower, ranging
in the inner sector from 10.1 to 28.4, and from 16 to 28.8 in the
sub-surface and near bottom respectively (Figure 2). While in the
outer sector no clear temporal pattern could be discerned, in the
intermediate and inner sectors salinity was considerably lower in
February (Figure 2), associated with higher rainfall. In February,
April, July and August, salinities in the inner and intermediate
sectors were similar, while the outer sector salinity was always

Fig. 1. Map of Babitonga Bay, South Brazil, showing the three sectors sampled
between October 2007 and August 2008. Generated using Ocean Data View software
(Schlitzer, 2017).
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distinct from the other two sectors (Figure 2). Temperature
remained between 25–27°C throughout the summer, decreasing
to 19.2–19.9°C in August; no spatial differences in the tempera-
ture were observed, either horizontally or vertically (Figure 2).

Biotic environment

Two seasonal peaks of chlorophyll-a concentration were observed
during summer and early winter, tending to be lower in the outer
sector particularly during summer (Figure 3A). Zooplankton bio-
mass increased through spring, peaking in January and later
decreasing, with a second smaller peak in August in the inner sec-
tor (Figure 3C). Fish larvae peaked in November in the outer sec-
tor and in January in the intermediate sector. In the inner sector,
a peak of fish larvae also occurred in November–January, how-
ever, abundances were considerably lower (Figure 3C).

Chaetognaths

Parasagitta friderici, originally described from Cape Verde
(Ritter-Záhony, 1911), was always the dominant species in the
present study, representing from 93–100% of the chaetognaths
from all the samples analysed. Other species found included
Parasagitta tenuis (Conant, 1896) and Flaccisagitta enflata
(Grassi, 1881), always in low, intermittent abundances, and exclu-
sively in the outer sector in the case of the latter. Parasagitta fri-
derici occurred in all 72 zooplankton samples taken and its
abundance ranged from <1 to 250 ind. m−3, averaging (±SD) 36
± 52 ind. m−3. Juveniles dominated the population throughout
most of the year (Figure 4) and represented ∼80% of the total
annual population, reaching densities of up to 233 ind. m−3.
Adults (up to 24 ind. m−3) exceeded juveniles in February and
April in all three sectors, representing between 55 and 68% of

total population. In August, adult contribution also was relatively
high, particularly in the outer sector, where they represented 49%
of the population (Figure 4).

Abundance of both juveniles and adults did not differ between
different sectors but differed significantly (P < 0.05) through time,
considering months, and the interaction between months and sec-
tors (Table 1). This indicates that the spatial distribution was not
constant throughout the year. For instance, in October both juve-
niles and adults were more abundant in the outer sector, while in
January and August both tended to be less abundant in this sector
(Figure 5A, B). In the inner sector, abundance of juveniles
increased through the spring and peaked in early summer
(January), when they averaged ∼105 ind. m−3. Lower abundances
of both juveniles and adults occurred between February and April
in all sectors (Figure 5). A second peak of juveniles was observed
in May, mostly in the intermediate and outer sectors. In contrast,
adult abundances also peaked in August particularly in the inner
sector (Figure 5).

The Generalized Additive Model (GAM) explained 69.2% of
the deviance in P. friderici juvenile abundance. From the six vari-
ables considered (temperature, salinity, water transparency,
chlorophyll-a, zooplankton biomass and fish larvae), the model
indicated significant (P < 0.001) relationships with zooplankton
biomass and sub-surface temperature. For adults, the model
explained a lower proportion (45.3%), and suggested a significant
(P < 0.001) relationship only with zooplankton biomass.

There is a clear tendency of increasing abundance of both
juvenile (Figure 6A) and adults (Figure 7) with increasing zoo-
plankton biomass up to around 450 mgm−3. Biomass values
above 800 mgm−3 were associated mainly with mid-low adult
and juvenile densities (Figures 6A & 7) at the inner sector in
January (Figure 5A, B). Abundance of juveniles also tended to
increase with water temperature, up to 22–23°C, where most of

Fig. 2. Abiotic environment. Seasonal variation of sub-surface and near bottom salinity and temperature in the three sectors of Babitonga Bay, South Brazil,
between October 2007 and August 2008. Symbols represent the means and vertical bars the standard deviation.
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the high abundances were found (Figure 6B). In warmer waters
juvenile abundance tended to decrease, but on a few occasions
in January, high juvenile density also occurred with temperatures
above 26°C.

Discussion

The high dominance of P. friderici observed here is common in
South-western Atlantic coastal and estuarine ecosystems, includ-
ing tropical (0–2°S; Krumme & Liang, 2004; Costa et al., 2008)
and subtropical to temperate latitudes (∼20–40°S; Boltovskoy,
1975; Loureiro Fernandes et al., 2005; see also references from
Table 2). Indeed, this species is amongst the few chaetognaths
abundant in and restricted to coastal and neritic waters (Pierrot-
Bults & Nair, 1991). It is the dominant species in many coastal
and estuarine ecosystems throughout its distribution, such as

both sides of the North (Furnestin, 1957; Fraser, 1960;
McLelland, 1980; Blanco-Bercial et al., 2006; Champalbert et al.,
2007; Marques et al., 2009) and South (Stuart & Verheye, 1991;
Gibbons & Stuart, 1994) Atlantic up to latitude of ∼40°, in the east-
ern Pacific (Hossfeld, 1996) and the south Mediterranean (Aziz,
2005; Zakaria, 2006).

Densities of P. friderici populations found in the
South-western Atlantic vary a lot, from <20 ind. m−3 in the trop-
ical Caeté River estuary and on the temperate Argentinian Shelf to
up to 5746 ind. m−3 in the subtropical Santos Bay (Table 2). There
is no latitudinal trend in P. friderici abundance throughout the
South-western Atlantic, with very high densities both in tropical
(0.5°S), subtropical (23°50′S) and nearly temperate (31–32°S) lati-
tudes (Table 2). However, near its southernmost limit (>35°S) P.
friderici abundances are typically low, never exceeding 60 ind.
m−3 (Table 2), perhaps due to temperature constraints of this
warm water species in higher latitudes. The values found here,
up to 250 ind. m−3 (annual mean of total population = 36 ±
52 ind. m−3) are within this range and, in comparison to other
known South-western Atlantic populations (Table 2), cannot be
considered either particularly abundant or scarce. Populations
of this species elsewhere throughout its distribution also are

Fig. 3. Biotic environment. Seasonal variations of chlorophyll-a (a), zooplankton bio-
mass (b) and fish larvae abundance (c) in the three sectors of Babitonga Bay estuary,
South Brazil, between October 2007 and August 2008. Symbols represent the means
and vertical bars the standard deviation.

Fig. 4. Seasonal changes in the proportion (% of ind. m−3) of juveniles (grey bars)
and adults (black bars) in the three sectors of Babitonga Bay estuary between
October 2007 and August 2008.
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within this abundance range (Stuart & Verheye, 1991; Gibbons &
Stuart, 1994; Hossfeld, 1996; Champalbert et al., 2007; Marques
et al., 2009), as are other estuarine and coastal chaetognaths
worldwide (Reeve, 1964; Srinivasan, 1971; Nair, 1974; Grant,
1977; Nair et al., 1981; Besiktepe & Unsal, 2000; Hernández
et al., 2005; Modéran et al., 2010; Noblezada & Campos, 2012;
Wu et al., 2014).

The constant and abundant presence of juveniles throughout
the year indicates continuous reproduction and recruitment.
Although we did not evaluate in detail reproduction in the present
study, and not necessarily all adult individuals are reproducing

continuously, the year-round occurrence of many juveniles clearly
suggests the population is reproducing throughout the year, which
is to be expected for tropical and subtropical chaetognaths in gen-
eral (Ghirardelli, 1968; Ramírez & Viñas, 1982). Even though con-
tinuous, reproduction of P. friderici was not uniform.
Reproductive peaks, as suggested by juvenile peaks, occurred
between October and January and in May, as indicated by higher
abundances and proportion of juveniles (Figures 4 & 5). In add-
ition, between February and April, and in August, densities were
considerably lower and adults represented a larger proportion of
the population, suggestive of less intense recruitment in these per-
iods. Although existing data on P. friderici are scarce and scat-
tered, they suggest a general trend of continuous reproduction
and recruitment with sporadic peaks commonly during spring,
as well as higher proportion of adults in late summer and/or
early autumn which is probably food-related according to the pre-
sent data. This pattern includes populations from tropical
(Mendes et al., 2012), subtropical (Furnestin, 1957; Liang et al.,
2003; this study) and temperate (∼38°S; Ramírez & Viñas, 1982;
Daponte et al., 2004) latitudes.

The few other studied estuarine chaetognaths worldwide up to
∼40° of latitude also have similar patterns of high juvenile dom-
inance suggesting year-round reproduction with intermittent
peaks, as is the case for tropical populations of Zonosagitta bedoti
(Béraneck, 1895), F. enflata and P. tenuis (Srinivasan, 1980; Nair
& Sankarankutty, 1988; Ramaiah & Nair, 1993), subtropical
Ferosagitta hispida (Conant, 1895) (Reeve, 1964) and temperate
Aidanosagitta regularis (Aida, 1897) (36°S; Webb & Sewell,
2015). Populations from colder regions such as Parasagitta setosa
(J. Müller, 1847) from Black Sea (Besiktepe & Unsal, 2000),
Parasagitta elegans (Verril, 1873) from Charente estuary, France
(Modéran et al., 2010) and P. tenuis and F. hispida from
Chesapeake Bay, USA (Grant, 1977) tend to have marked seasonal
cycles typically with abundance peaks and high dominance of
juveniles mostly during summer, or occasionally winter such as
P. elegans from Chesapeake Bay (Grant, 1977).

The presence of P. friderici throughout the salinity range
sampled in the present study, from 10.1 to 33.6, is not surprising
considering that this chaetognath is known to commonly dwell in
both lower and higher salinities (Furnestin, 1957; Liang et al.,
2003; Blanco-Bercial et al., 2006; Cervetto et al., 2006).
Consequently, salinity did not significantly explain part of either
adult or juvenile abundance variations in the present study
according to the GAM, supporting the hypothesis that salinity
variations are not of great importance for this species (Fraser,
1960). This high tolerance of P. friderici to salinity variations is
an important adaptation to thrive within estuarine systems and

Table 1. Summary of the ANOVA testing for differences in abundance of Parasagitta friderici juveniles and adults considering months and sectors as factors and their
interaction

Maturity stage Factors DF SS MS F P

Juveniles Month 7 37,870.75 5410.11 3.388 0.004

Sector 1 1028.37 1028.37 0.644 0.425

Month × sector 7 32,826.38 4689.48 2.937 0.011

Residuals 56 89,419.68 1596.78

Adults Month 7 1040.58 148.65 6.593 <0.001

Sector 1 22.24 22.24 0.986 0.325

Month × sector 7 541.34 77.33 3.430 0.004

Residuals 56 1262.57 22.55

DF, degree of freedom; SS, sum of squares; MS, mean squares; F, parameter of the ANOVA; P, probability associated to the test.
Differences are considered significant if P < 0.05.

Fig. 5. Seasonal variation of Parasagitta friderici juvenile (a) and adult (b) abundance
in the three sectors of Babitonga Bay estuary, South Brazil, between October 2007
and August 2008. Symbols represent the means and vertical bars the standard devi-
ation. Notice different scales.
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is different to most other chaetognath species worldwide which are
commonly highly influenced by this factor (e.g. Srinivasan, 1971;
Nair, 1974; Grant, 1977; Blanco-Bercial et al., 2006). Moreover,
since salinity commonly is the main factor affecting spatial struc-
ture of estuarine zooplankton in general (e.g. Xu et al., 2014;
Miyashita & Calliari, 2016) and of chaetognaths in particular
(Srinivasan, 1971, 1980; Nair, 1974; Loureiro Fernandes et al.,
2005), this high tolerance of P. friderici probably accounts for the
similar densities of both juvenile and adults in all three sectors
sampled. Hitherto, laboratory survival experiments have not been
performed and are necessary to determine the extent of P. friderici
resistance and the effects of reduced salinity on its biological para-
meters such as feeding, growth and reproductive output.

Most environmental variables tested in the present study were
not significantly related to either juvenile or adult abundance
according to the GAM analyses. Zooplankton biomass was the
best predictor of both adults and juveniles, along with tempera-
ture for the latter category. Accordingly, P. friderici is known to
occur in a wide range of hydrographic conditions, wider than
the ones found here for both salinity (see above) and temperature.
This species is known to grow and reproduce in 10°C waters
(Daponte et al., 2004), considerably colder than the minimum
recorded here (19.2°C). Thus, these hydrographic parameters

probably are not major limiting factors for P. friderici populations
in the subtropical Babitonga estuary. The relationship of juveniles
with temperature probably is due to the thermal influence on
reproduction, development and growth rates of chaetognaths in
general (Russell, 1932; Ghirardelli, 1968; Terazaki, 2004) and P.
friderici in particular (Ramírez & Viñas, 1982; Resgalla, 2010).
According to our results, the optimal temperature range for juve-
niles is 22–23°C (Figure 6B). This agrees with the negative rela-
tionship between P. friderici and temperature in a tropical
estuary with annual temperature range between 22 and 29°C
(Loureiro Fernandes et al., 2005), and with the positive relation-
ship with temperature in temperate areas (Blanco-Bercial et al.,
2006). The difference in environmental preferences between juve-
niles and adults is similar to the related species Parasagitta setosa
from the Black Sea where adults tolerate a wider temperature
range than juveniles (Besiktepe and Unsal, 2000), resulting in
the higher influence of temperature on juveniles as observed here.

The observed relationship of both juveniles and adults with
zooplankton biomass is probably trophic-related. All gelatinous
and semi-gelatinous organisms were removed from the samples,
prior to weighing, and so the bulk of the biomass estimated
here was composed of crustaceans, particularly the copepods
Acartia tonsa Dana, 1849, Acartia lilljeborgi Giesbrecht, 1889,
Temora turbinata (Dana, 1849), Oithona hebes Giesbrecht, 1891
and Pseudodiaptomus acutus (Dahl F., 1894) (Souza, 2013).
These copepod taxa are amongst the main prey items of P. frider-
ici, although other zooplankton such as appendicularians, mol-
luscs, cladocerans and chaetognaths may also be eaten (Stuart &
Verheye, 1991; Vega-Pérez & Liang, 1992; Liang & Vega-Pérez,
1995; Liang et al., 2003; Sato et al., 2011). Chaetognaths may
prey on a variety of planktonic organisms but their diet is typically
composed mainly of copepods, reflecting the general composition
of the zooplanktonic community (Feigenbaum, 1991; Casanova,
1999). Although chaetognaths may impact fish larvae abundance
(Casanova, 1999), predation on ichthyoplankton is usually smaller
(Feigenbaum, 1991). Accordingly, P. friderici distribution was not
explained by fish larvae abundance in the present study. Food
availability has commonly been considered an important factor
controlling spatial and seasonal patterns of chaetognath abun-
dance and reproduction both on estuarine and open shelf water
ecosystems (Bone et al., 1991; Gibbons & Stuart, 1994; Liang,
2002; Terazaki, 2004; Loureiro Fernandes et al., 2005; Noblezada
& Campos, 2012). This may be particularly true for P. friderici
(e.g. Liang et al., 2003) which has a wide tolerance for hydrographic
conditions (see above) and thus food availability and quality
appears as the main driver of its spatial and temporal dynamics
as suggested here.

Fig. 6. Results of the Generalized Additive Model for
Parasagitta friderici juveniles showing the abun-
dance trends and the effect modelled of zooplank-
ton biomass (a) and sub-surface temperature (b).
Solid lines show the smoothing function and dotted
lines the 95% confidence interval.

Fig. 7. Result of the Generalized Additive Model for Parasagitta friderici adults show-
ing the abundance trends and the effect modelled of zooplankton biomass. Solid
lines show the smoothing function and dotted lines the 95% confidence interval.
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