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In this paper we propose a methodology for the efficient implementation of machine
learning (ML)-based methods in particle-in-cell (PIC) codes, with a focus on Monte
Carlo or statistical extensions to the PIC algorithm. The presented approach allows for
neural networks to be developed in a Python environment, where advanced ML tools are
readily available to proficiently train and test them. Those models are then efficiently
deployed within highly scalable and fully parallelized PIC simulations during runtime.
We demonstrate this methodology with a proof-of-concept implementation within the
PIC code OSIRIS, where a fully connected neural network is used to replace a section
of a Compton scattering module. We demonstrate that the ML-based method reproduces
the results obtained with the conventional method and achieves better computational
performance. These results offer a promising avenue for future applications of ML-based
methods in PIC, particularly for physics extensions where a ML-based approach can
provide a higher performance increase.
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1. Introduction

The use of computer simulations has had a major impact in furthering our understanding
of kinetic plasma processes in a variety of laboratory and astrophysical scenarios.
The particle-in-cell (PIC) method (Dawson 1983; Hockney & Eastwood 1988) has been
the flagship technique for the study of these processes over the past few decades. In the
PIC method, plasma is described as a collection of charged particles interacting through
self-consistent electromagnetic fields. In each simulation time step, the plasma charge
and/or current densities are computed from the distribution of particles in configuration
and velocity spaces and deposited on a grid that discretizes the simulation domain. These
densities are then used to advance the electromagnetic field via Maxwell’s equations,
which in turn are used to advance particle momenta and positions.
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The PIC method has found remarkable success in modelling a vast range of systems in
plasma physics. Leveraged on the high scalability of PIC in high-performance computing
(HPC) infrastructures, state-of-the-art codes routinely simulate ~ 10'° particles in grids
with ~ 1000? cells describing very large systems (i.e. with sizes well beyond plasma
kinetic scales) (Shukla et al. 2020; Arrowsmith et al. 2021).

The increasing complexity of the systems studied with the PIC algorithm has also led to
the development of additional physics extensions to this method, e.g. to model Coulomb
collisions (Nanbu 1997; Takizuka & Abe 1977), ionization (Kemp, Pfund & Meyer-ter
Vehn 2004), radiative losses (Vranic et al. 2016b) and quantum electrodynamics processes
(Vranic et al. 2016a). However, these modules often include advanced numerical methods
with significant computational overhead, hindering the performance and scalability of
PIC. Another example of costly algorithms in PIC simulations is that introduced by
numerical solvers that account for vacuum polarization (Grismayer et al. 2021) or particle
equations in non-trivial space—time metrics (Bacchini et al. 2018; Parfrey, Philippov &
Cerutti 2019), which require computationally expensive iterative methods or algorithms
highly tailored to capture specific nonlinearities.

Advanced physics methods in PIC can introduce computational overhead for different
reasons. In the specific case of binary collisions, particles are paired when close
in configuration space and scattered according to a probability distribution function
describing the collisional process (Takizuka & Abe 1977; Miller & Combi 1994; Sherlock
2008; Higginson 2017). Depending on the complexity of the process, the probability may
be computed, either analytically or numerically, or interpolated from large data tables
stored in memory or in files, which can be highly computationally inefficient.

Machine learning (ML) offers a promising avenue for the discovery of new algorithms
that could facilitate the inclusion of advanced physics modules in PIC models via, for
example, generalizable approximators of unknown functions or new solvers of partial
differential equations. Early works incorporating ML-based methods in the PIC loop
focused on assisting (Kube, Churchill & Sturdevant 2021) and replacing (Aguilar &
Markidis 2021) the numerical solver of Maxwell’s equations, showing that its accuracy
is preserved.

In spite of the potential of ML-based methods for PIC algorithms, developing
and deploying ML-based methods in state-of-the-art PIC codes presents a substantial
challenge. While the former are developed in modern languages such as Python or Julia
due to their flexibility and large pool of open-source resources (e.g. the Python libraries
TensorFlow (Abadi et al. 2015), Keras (Chollet 2018) and PyTorch (Paszke et al. 2019)),
the latter are usually written in lower-level languages such as Fortran or C++, to maximize
performance and scalability in large HPC systems.

Integrating the ML model development and PIC production environments is essential to
ensure an efficient model experimentation cycle. However, to the extent of our knowledge,
this integration has not yet been discussed. In this work, we propose an interface to develop
and deploy ML models in state-of-the-art PIC codes, in particular neural networks (NNs).
This interface, based in open-source software, allows model training to be done in Python
and final model parameters to be read and used for inference during a PIC simulation.
We implement this interface in the PIC code OSIRIS (Fonseca et al. 2002, 2008) and
demonstrate it in simulations using a Compton scattering module (Del Gaudio et al.
2020) available in OSIRIS, demonstrating how to generalize ML techniques to address
the challenges of advanced physics modules in the PIC algorithm.

This paper is organized as follows. In § 2, a detailed description of the ML—PIC interface
in presented. In § 3, we present a proof-of-concept use of that interface: the use case,
concerning the evaluation of the probability of Compton scattering events, is detailed in
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§ 3.1, the ML methods developed for this particular use case are presented in § 3.2 and
a comprehensive study of the computational performance, accuracy and applicability of
these methods in production PIC simulations is discussed in § 3.3. In § 4, our conclusions
are presented.

2. The ML-PIC interface

Recent works on assisting plasma kinetic simulations (Aguilar & Markidis 2021;
Kube et al. 2021) with ML-based methods offer promising prospects for efficiently
solving challenging substeps of the PIC algorithm. It is thus expected that ML-based
methods and plasma simulations will be used in tandem in the near future. Our work
focuses on designing an efficient interface for the development and deployment of
ML-based methods, in particular NN, into state-of-the-art PIC codes. Such an interface
is challenging to design, since ML-based models are usually developed in high-level
environments, such as Python, while PIC codes tend to be written in lower-level languages
such as Fortran. This duality of environments, although technically demanding to manage,
allows users to leverage the advantages of each of them.

Fortran is a fast and efficient computational language. Due to its high scalability in
large HPC systems, it is widely used in large scientific computing applications. For these
reasons, many PIC codes are written in Fortran, e.g. OSIRIS (Fonseca et al. 2002, 2008),
EPOCH (Arber et al. 2015), Tristan (Buneman 1993) and UPIC (Decyk 2007). On the
other hand, ML models are typically trained and run in high-level languages, such as
Python, whose libraries focused on ML typically interface with code written in more
efficient, lower-level languages (such as C/C++). This allows Python users to efficiently
train and develop ML models. These libraries are also capable of running in parallel during
both training and inference in CPU, GPU and other advanced architectures.

The lack of an interface between Fortran and Python environments makes the task of
implementing ML-based models in highly scalable computational codes arduous. Recent
efforts have significantly simplified this task. The micro-framework neural-fortran ( 2019)
was developed with the intent of providing a library capable of performing the basic
operations needed for a NN (e.g. gradient descent optimization, fully connected dense
layer calculations) within a Fortran environment. Further work expanded this library into
the Fortran—Keras Bridge (FKB) (Ott et al. 2020). With FKB, one can train NNs in a
Python environment with the Keras library and export their parameters to files that are then
read and used for inference by the FKB Fortran. This library constitutes one of the first
attempts at bridging both environments and facilitates the use of NNs in highly scalable,
computationally intensive Fortran codes.

In this work, neural-fortran and the FKB library are used in the OSIRIS code
to run ML-based models in production PIC simulations. In figure 1 we outline the
workflow necessary to efficiently train and utilize a NN model within OSIRIS. Firstly,
a training dataset must be obtained. Our data were generated using algorithms previously
implemented in OSIRIS and were later loaded into the Python environment and employed
to train a NN.

After the training has been performed, the FKB Python library is used to export the
model into a compatible format for the Fortran side of the workflow. OSIRIS has been
modified to include a NN object which stores the model into memory, from the exported
file, at the beginning of the simulation. Moreover, this NN object has a subroutine which
can run the model and execute it for any given batch of inputs. The FKB originally included
a version of neural-fortran. Thus, the FKB is capable of performing the same operations
as neural-fortran. Over time, the libraries have diverged and neural-fortran has continued
to be further optimized. For this reason the initial loading is done with the FKB Fortran
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FIGURE 1. Schematic representation of data acquisition, ML model training and production
workflow. The ML model is loaded in production simulations during runtime using the FKB and
interpreted with the neural-fortran microframework within PIC.

implementation and then neural-fortran is employed in the subroutine responsible for the
model computation. During runtime, after the model has been loaded into memory, the
NN object can be invoked and given inputs in the same manner one would call any other
subroutine.

As far as we are aware, the workflow outlined here is the first of its kind for
PIC simulations. In the next section, a NN is developed and deployed to replace
a long analytical calculation in PIC simulations. A direct comparison between the
computational performance of the NN inference and the analytical calculation in a
production environment was performed, to demonstrate the potential advantages of
ML-based techniques in the context of production PIC runs.

3. The ML-PIC proof of concept

As a proof of concept, here a NN that replaces an analytical calculation in a Compton
scattering module for PIC is presented. The choice of this specific task has been driven by
its simplicity, which allows us to have better control of the performance of the classical
and ML-based methods.

3.1. Compton scattering in PIC

Compton scattering describes the most basic interaction of radiation with matter via the
binary scattering between leptons and photons (Compton 1923). Monte Carlo techniques
are usually employed to implement this phenomenon in PIC simulations, as the quantum
nature of the process is intrinsically stochastic. Here, we quickly outline the current
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implementation of the Compton scattering module in the OSIRIS PIC code. For an
in-depth description of this implementation, we refer readers to Del Gaudio et al. (2020).

The algorithm follows three steps. Firstly, the simulation space is divided into collision
cells, in which the particles are binned. From this binning, a list of colliding leptons and
photons is produced for each cell. Secondly, the no-time-counter method is employed to
significantly shorten the list of pairs to be collided (Bird 1989). For each pair in this list,
the probability of interaction is then calculated and compared against a random number.
Finally, for each pair deemed to collide, the kinetic collision is resolved and the momentum
of the particles is updated.

3.2. Machine learning methods

Our proof of concept aims at replacing the calculation of the probability of interaction via
Compton scattering. This probability is a function of the weights of the macroparticles,
their momentum and a normalization factor. This calculation is detailed in § 3 of Del
Gaudio et al. (2020). The photon momentum is first Lorentz boosted to the lepton frame.
Then, the probability is calculated using the Klein—Nishina cross-section and conservation
of momentum. Finally, the evaluated cross-section is Lorentz boosted back into the
simulation (laboratory) frame to obtain the probability of interaction between time steps.
This calculation is a good candidate for a ML proof of concept, mainly because, being
analytical and optimized within the PIC, it represents the worst-case testing scenario for a
ML model to compete against. A NN is used to predict a value y’ € [0, 1], corresponding
to the probability of interaction. The NN takes as input the momenta of the macro-photons
and macro-leptons in the simulation frame in units of m.c (p, and p,, respectively) and the
maximum probability of interaction in each PIC cell Py« = 20rcAtmax [w,, w, ], where
or is the Thompson cross-section, At is the time step and max [w,, w,, ] is the maximum
macroparticle weight within the cell (Del Gaudio et al. 2020). During the training process,
the analytical probability of interaction y is used to compute a loss function and to update
the NN via back-propagation.

The training data were collected from different 2D3V OSIRIS simulations. In
these simulations, a uniform electron—positron—photon plasma with isotropic waterbag
distributions in momentum space (f(p) = noH(p + po), where ng is a constant density,
H(p) is the Heaviside function and p = |p| is the magnitude of the particle momentum)
was initialized and allowed to interact through Compton scattering. Every time a
probability calculation was performed, the result was outputted alongside the relevant
information employed in the calculation. Once the simulation was finished, all the data
were collected for training. Three datasets were produced from three simulations with
po/m.c = 25, 50 and 100.

The NN architecture was chosen such that each output computation was computationally
inexpensive. We used a small number of layers and neurons per layer, which translated
into a small number of floating point operations. By keeping the neural layers as simple
as possible (i.e. only employing fully connected layers), we ensure that all operations can
be vectorized in all common compilers both in high- and low-level languages. Thus, the
NN structure consisted of three hidden layers with 9, 12 and 9 neurons each and one
neuron on the output layer. The hidden layers used ReLU (Fukushima 1969) as activation
functions, whereas the output layers used sigmoid (Han & Moraga 1995), to guarantee
that the predicted value was in the range [0, 1]. As seen in figure 2(a), the NN was trained
by providing the relevant information of many photon—lepton pairs and their associated
probability of interaction. The NN computes the probability of interaction between the
macroparticles y'. During the training process, many targets and outputs of the NN are
compared employing a loss function (Chollet 2017), that we took to be the mean absolute
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FIGURE 2. (a) Depiction of the inputs of the NN during the training process: p, and p,, are
the three momenta of the macroparticles undergoing collisional process, w, and w,, are their
numerical weights and Pp,,x is the maximum probability of interaction in each PIC cell. Finally,
the target y constitutes the probability of interaction according to an analytical model and y’
is the prediction of the NN. (b) Loss score, i.e. the mean absolute error (MAE) and mean
absolute percentage error (MAPE), as accuracy for training and validation data as a function
of the training epoch for the training data with pg = 25 m,c.

error = () ., |y: — yil)/n, where n is the sample size, y! is the ith predicted value and y; is
the ith true value. The loss function characterizes the inaccuracy of the model prediction,
and is used to repeatedly update the NN parameters (in our case, using the Adam optimizer
with a learning rate r = 0.001 (Kingma & Ba 2014)). As more training data are fed to
the NN, it learns the target function and the loss score is minimized. A total of 5000
epochs were used in the training. The results of the training process for the dataset with
po = 25 m,c are shown in figure 2(b) for both the training and the validation datasets
(corresponding respectively to a randomly selected 80 % and 20 % fraction of the total
data, that comprised ~ 107 Compton scattering events).

To achieve an efficient training process, two techniques were employed. First, the
training data were balanced (Bello er al. 2021), so that Compton scattering events with
different probabilities appeared a similar amount of times. This is a critical step for
efficiently learning the probability of interaction via Compton scattering, as it quickly
decays with increasing photon momenta in the lepton frame. Second, we employed the
multistage training process transfer learning (TL) (Tan ef al. 2018). This technique trains
the NN in stages corresponding to different subsets of the input parameter space S,
allowing it to train on the full probability distribution while relaxing the condition that
the training data have to be identical in all subsets of S.

We used three stages of TL. In the first stage, the NN was trained with the dataset
containing samples of low-energy interactions between macro-leptons and macro-photons
(po/m.c = 25), corresponding to high probabilities of interaction. In the second and
third stages, the NN was smoothly introduced to higher values of particle energies
(and hence smaller probabilities of interaction), through datasets containing high-energy
(po/m.c = 50) and very-high-energy (p,/m.c = 100) interactions, respectively. In each
TL stage, the particle energy range includes also that of previous TL stages in order to
avoid catastrophic forgetting (Kirkpatrick et al. 2017), i.e. having the NN lose information
about the previous training stage while focusing on the relevant information of the current
task.
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FIGURE 3. Probability of interaction estimated for the no-time-counter method as a function
of the incoming photon energy colliding head on with an electron with momentum p, = (al)
5, (b1) 25 and (c1) 50m,c. The estimate calculated by OSIRIS (blue) and the prediction by NN
module for OSIRIS (red) are directly compared and their relative error is shown in (a2—c2).

3.3. Results

In order to assess the value of our ML-assisted Compton scattering module for PIC codes,
we studied: (i) its accuracy, i.e. its ability to correctly capture the physical properties of
the collisional process and produce results that match those of analytical approaches, and
(ii) its computational performance, to determine whether this method yields a speeding up
relative to the implementation described in § 3.1 (and in Del Gaudio et al. (2020) in more
detail).

The first benchmark corresponded to a comparison between the prediction of the NN
and the analytical probability of interaction. This test aimed at explicitly showcasing
how ML-based methods can learn and replicate the Compton scattering process. In
figure 3(a—c), we show the scattering probability between electrons with momenta
Pe/m.c = 5,25 and 50 and photons with a wide range of momenta p,. The good agreement
between the two methods results in relative errors smaller than order unity for all tested
py. The NN performs worse in the region of low p, because training was focused in
higher-energy collisions, with each step in the TL scheme moving further into higher
energies. To improve this result, another TL training could be done in the region of low
photon energy.

To further test the accuracy of our method, we performed a benchmark simulation
consisting of an electron beam interacting with a monoenergetic photon gas via inverse
Compton scattering (Blumenthal & Gould 1970), which has also been performed with the
conventional implementation of Compton scattering in OSIRIS presented in a previous
work (Del Gaudio et al. 2020).

In figure 4, we show the photon spectra obtained from simulating the interaction of
an electron beam of momenta p,/m.c = 25, 50 and 100 with an initial monoenergetic
photon distribution of energy ¢, /m,c® = 2.5 using both the analytical and NN inference
of the probability of interaction via Compton scattering. In all simulations (different
P., analytical or NN), we observe a peaked photon momentum distribution developing
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FIGURE 4. (a) Scattered photon momentum distribution resulting from inverse Compton
scattering with an electron beam with momentum p,. The three peaks correspond to three
initial monoenergetic electron beams with p, = 25, 50 and 100 m,c (identified with dash-dotted,
dashed and solid lines, respectively) interacting with a monoenergetic photon gas with energy
2.5m,c?. For each photon beam energy, the NN module for OSIRIS prediction (red) is plotted
against the results from the conventional algorithm (black). (b) Scattered photon momentum
distribution from inverse Compton scattering between an electron beam with p, /m.c = 100 and a
monoenergetic photon gas with energy ¢, / Mmec? = py /mec = 2.5. Different model predictions at
different TL stages are plotted (blue, grey and red) against results obtained with the conventional
Compton scattering algorithm in OSIRIS (black).

during the interaction around p, =~ p,, with an extended tail for p, < p,. The NN and
the analytical result agree within ~ 10~ particle count, i.e. the NN precisely modelled
the expected photon spectra for all the three peaks. A small underestimation of the
number of collisions is observed for the peaks corresponding to p./m.c = 25 and 50,
which is a consequence of the underestimation of the probability of interaction for small
p, identified above. Overall, our results show that Compton scattering physics can be
accurately described by a NN, and thus that it can be used to replace conventional
analytical calculations of the probability of interaction.

In order to illustrate the relevance of TL in the training process, we show in figure 4 the
scattered photon momentum distributions for a simulation with p,/m.c = 100 obtained
with NNs trained with a different number of TL stages. We can see a clear convergence
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FIGURE 5. (a) Comparison of the elapsed time during the complete collision list generation
algorithm. (b) Comparison of the elapsed time for the inference of the collision probability and
for the NN case the input preparation is also plotted. The time is normalized with respect to the
time taken for the conventional approach with particles per collision cell = 1.

towards the results obtained with the analytical approach with increasing number of
TL stages. These results suggest that simulations can be performed with NNs trained
in an already expected electron and/or photon energy range, and extra TL stages can
be applied if at some point particle energies exceed the training range. Besides the
improvement in accuracy, applying extra TL stages has the advantage of requiring a
small number of training samples and thus does not significantly affect the cost of
training.

We have also benchmarked the computational performance of our ML-based method.
Several simulations with varying number of particles per collision cell were performed
and timed. We chose to benchmark our ML-based method against the original algorithm
in OSIRIS, which is heavily optimized. The direct comparison between the two methods
is plotted in figure 5. In order to guarantee that both methods were compared on the
same footing, we timed the computation of the probability of interaction with the NN
and with the analytical approach within the same simulation. In each time iteration of
these simulations, the analytical probability of interaction was used to determine if each
pair of macroparticles should be collided. This ensured that both methods compute the
probability for the same number of collisions in each time step, and that they are provided
with exactly the same inputs in each computation.

The performance comparison in figure 5(a) displays the total collision list generation
time for the analytical and NN approaches. It demonstrates that both methods scale
linearly with respect to the number of particles per collision cell. The NN-based
approach outperforms the optimized Compton module, which becomes more evident
with higher number of particles. The whole NN algorithm achieves only slightly
faster times than the analytical-based collision list algorithm. The reason behind this
is that, even if the NN inference calculation is significantly faster than its analytical
counterpart, as seen in figure 5(b), the NN algorithm requires that the input of the
NN is prepared. This part of the algorithm slows down the whole collision list
generation.
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4. Conclusions

In this work, we have proposed an interface to include ML-based methods in
production PIC simulations. This interface allows NNs to be trained using open-source
Python packages and deployed in PIC codes written in Fortran. We have presented a
proof-of-concept implementation of this interface in the OSIRIS PIC code, and used it
to perform simulations where an involved analytical calculation is replaced with a NN
of parameters determined in a Python environment. The NN, which was trained with
analytical data, computes the probability for two macroparticles to interact via Compton
scattering. In order to ensure that the NN accurately captures the dynamic range of
the target probability, we have (i) employed multiple stages of TL corresponding to
different particle energy ranges and (ii) used a balanced dataset within each stage. We
have tested the performance of our approach by studying the photon spectra produced
in the interaction between an electron beam and a monoenergetic photon distribution.
The ML-based method accurately reproduced the results obtained with a conventional
algorithm using the analytical approach. We have also demonstrated that the ML-based
method was able to outperform the analytical model in computational efficiency.

In the simulations presented in this work, the NN was trained in a Python environment
and its parameters were then saved for later runtime use. However, our implementation
including neural-fortran also allows training NNs within the PIC simulation and exporting
them for use in other environments or other PIC simulations. This flexible architecture
offers a promising avenue for future applications of ML-based methods in PIC, not limited
only to collisional processes (e.g. Compton scattering, Coulomb collisions), but also
applicable to a vast range of physical processes (e.g. high-order quantum electrodynamic
processes) and numerical techniques, such as field and particle equation solvers, dynamical
load balancing and advanced diagnostics.
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