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We study the existence and multiplicity of positive solutions for the following
nonlinear Schrödinger–Poisson equations:

−∆u + λu + φu = Q(x)|u|p−2u in R
3,

−∆φ = u2 in R
3,

where 2 < p � 3 or 4 � p < 6, λ > 0 and Q ∈ C(R3). We show that the number of
positive solutions is dependent on the profile of Q(x).

1. Introduction

In this paper, we are concerned with the coupled system of Schrödinger–Poisson
equations of the form:

−∆u + λu + φu = f(x, u) in R
3,

−∆φ = u2 in R
3,

}
(1.1)

with the function f(x, u) being nonlinear in u. In the case when f(x, u) = 0, the
wave function u satisfies the stationary solution of a quantum system proposed by
Benci and Fortunato [4], describing the interaction of a particle with an electromag-
netic field. The time-independent φ is the electrostatic potential and is dependent
on u according to Maxwell’s equations. The Schrödinger–Poisson equations are thus
also known as the Schröndinger–Maxwell equations. Another linear version includ-
ing an additional linear term V (x)u describing the effect of an external potential
has been treated in [8,10], with the potential V (x) assumed to be radially symmet-
ric. The existence of a sequence of solutions has been proved for both of the linear
systems [4, 8].

More recently, systems of a nonlinear version of the Schrödinger equation cou-
pled with a Poisson equation, of a form similar to (1.1), have been widely studied;
see, for example, [1, 2, 12, 19, 21] and the references therein. The nonlinearity of
the Schrödinger equation has its origin in the interaction among particles; many-
particle systems can be found, for example, in the study of condensed matter or
problems in nonlinear optics. A plethora of problems has been investigated under
various conditions of f concerning the existence of solutions, ground-state solutions
and the multiplicity of results. Azzollini and Pomponio [2] and Zhao and Zhao [21],
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for example, studied ground-state solutions depending on the value of p for λ > 0
and for cases when λ is dependent on x in systems with power-type nonlineari-
ties. Ruiz [19] investigated the existence of positive solutions for the nonlinearity
f(x, u) = |u|p−2u, 2 < p < 6; the results were further improved by Ambrosetti and
Ruiz [1] by showing the presence of multiple bound states when certain conditions
on the parameters are satisfied. The semiclassical limit of the nonlinear system,
where the Planck constant � → 0, has also been investigated [11,18]. The existence
and asymptotic behaviours of the solutions describe the particle-like matter in the
transition from quantum to classical mechanics.

In this paper, we are particularly interested in the existence and multiplicity of
positive solutions for the following system:

−∆u + λu + φu = Q(x)|u|p−2u in R
3,

−∆φ = u2 in R
3,

}
(Eλ)

where two ranges 2 < p � 3 and 4 � p < 6 are considered, with λ > 0, and
Q ∈ C(R3) a non-negative function for both cases. The following theorems are our
main results.

Theorem 1.1. Suppose that 4 � p < 6, and the following conditions hold.

(Q1) lim|x|→∞ Q(x) = Q∞ > 0.

(Q2) There exist some points x1, x2, . . . , xk in R
3 such that Q(xi) are strict maxima

and satisfy

Q(xi) = Qmax ≡ sup
x∈R3

Q(x) > 0 for all i = 1, 2, . . . , k.

Then there exists λ0 > 0 such that, for every λ > λ0, (Eλ) has at least k
positive solutions.

Theorem 1.2. If Q∞ < Qmax, then there exists λ̂ � λ0 such that for every λ > λ̂
we can find at least one ground-state solution among the solutions of theorem 1.1.

Furthermore, using a similar argument to that employed by Ruiz [19, theorem
4.1], we have the following non-existence result.

Theorem 1.3.

(i) Suppose that p = 3 and supx∈R3 Q(x) � 1. Then, for any λ > 0, u = 0 is the
unique solution of (Eλ).

(ii) Suppose that 2 < p < 3 and supx∈R3 Q(x) < (p − 2)2−p(3 − p)p−3. Then, for
any λ � 2(p−2)/(p−3), u = 0 is the unique solution of (Eλ).

From the results above, we are inclined to the possibility that p = 3 is the critical
value and that (multiple) positive solutions may exist for 3 < p < 4. Work is
currently ongoing to verify such a result; additional conditions on Q(x), however,
may be required in order to prove that this is indeed the case. Note that for this
particular range of 3 < p < 4, and with Q(x) = 1, Azzollini and Pomponio [2] and

https://doi.org/10.1017/S0308210511000692 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210511000692


Positive solutions for the nonlinear Schrödinger–Poisson equations 747

Zhao and Zhao [21] have demonstrated the existence of ground-state solutions; in
the problem considered in [21], an external potential is considered and the solution
exists subject to various conditions imposed on the potential.

This paper is organized as follows. We first outline the notations and preliminaries
in § 2, before proving theorem 1.1 in § 3 and theorems 1.2 and 1.3 in § 4.

2. Notation and preliminaries

By the change of variables ε = λ−1/2, v(x) = ε2/(p−2)u(εx), (Eλ) can be rewritten
as

−∆v + v + ε4(p−3)/(p−2)φv = Qε|v|p−2v in R
3,

−∆φ = v2 in R
3,

}
(Ēε)

where Qε = Q(εx).
We first recall some well-known results (see, for example, [2, 4, 8–10,12,19]). For

every u ∈ L12/5(R3), there exists a unique solution φu ∈ D1,2(R3) of

−∆φ = u2 in R
3.

It follows that (u, φ) ∈ H1(R3) × D1,2(R3) is a solution of (Ēε) if and only if u ∈
H1(R3) is a critical point of the functional Iε,Qε : H1(R3) → R, defined as

Iε,Qε
(u) = 1

2‖u‖2
H1 + 1

4ε4(p−3)/(p−2)
∫

R3
φuu2 − 1

p

∫
R3

Qε|u|p (2.1)

with

‖u‖H1 =
( ∫

R3
|∇u|2 + u2

)1/2

being a standard norm in H1(R3), and φ = φu. Moreover, the function φu possesses
certain properties (see [2, 12, 19]) that we shall outline below using a functional
defined with a more general non-negative function b(x) in place of Qε; the functional
given by (2.1) defined using Qε above is thus a special case. The properties obtained
will automatically be applicable if Qε is used instead.

Lemma 2.1. For each u ∈ H1(R3), we have the following.

(i) ‖φu‖D1,2(R3) � C‖u‖2
H1 , where C does not depend on u. As a consequence,

there exists C0 > 0 such that∫
R3

φuu2 � C0‖u‖4
H1 .

(ii) φu � 0 and

φu(x) =
1
4π

∫
R3

u2(y)
|x − y| dy.

(iii) For any t > 0, φtu = t2φu.
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For u ∈ H1(R3), ε � 0 and a non-negative bounded function b ∈ C(R3), there
exists x0 ∈ R

3 such that

b(x0) = bmax := sup{b(x) | x ∈ R
3} > 0.

Define

Iε,b(x)(u) = 1
2‖u‖2

H1 + 1
4ε4(p−3)/(p−2)

∫
R3

φuu2 − 1
p

∫
R3

b(x)|u|p,

Mε,b(x) = {u ∈ H1(R3) \ {0} | 〈I ′
ε,b(x)(u), u〉 = 0},

αε,b(x) = inf
u∈Mε,b(x)

Iε,b(x)(u),

where I ′
ε,b(x) denotes the Fréchet derivative of Iε,b(x). For brevity, we write Iε,b(x),

I ′
ε,b(x), Mε,b(x) and αε,b(x) as Iε,b, I ′

ε,b, Mε,b and αε,b, respectively. The Sobolev
inequality,

‖u‖2
H1 � ‖u‖2

H1 + ε4(p−3)/(p−2)
∫

R3
φuu2

=
∫

R3
b|u|p � cbmax‖u‖p

H1 for all u ∈ Mε,b,

implies that there exists c0 > 0 such that ‖u‖H1 � c0 and

Iε,b(u) =
(

1
2

− 1
p

)
‖u‖2

H1 +
(

1
4

− 1
p

)
ε4(p−3)/(p−2)

∫
R3

φuu2 � p − 2
2p

c2
0,

for all u ∈ Mε,b. Thus, the functional Iε,b is bounded below on Mε,b.
Define

ψε(u) = 〈I ′
ε,b(u), u〉 = ‖u‖2

H1 + ε4(p−3)/(p−2)
∫

R3
φuu2 −

∫
R3

b|u|p.

Then, for u ∈ Mε,b,

〈ψ′
ε(u), u〉 = 2‖u‖2

H1 + 4ε4(p−3)/(p−2)
∫

R3
φuu2 − p

∫
R3

b|u|p

= (2 − p)‖u‖2
H1 + (4 − p)ε4(p−3)/(p−2)

∫
R3

φuu2

= −2‖u‖2
H1 − (p − 4)

∫
R3

b|u|p

< −2c2
0

< 0,

which implies that Mε,b is a C1 manifold, and so the Nehari manifold Mε,b is a
natural constraint for the functional Iε,b.

For each u ∈ H1(R3) \ {0}, we define

t0,u =
( ‖u‖2

H1∫
R3 |u|p

)1/(p−2)

> 0.

Then we have the following result.
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Lemma 2.2.

(i) Suppose that 4 < p < 6 and ε > 0. Then, for each u ∈ H1(R3) \ {0}, there is
a unique tε > t0,u such that tεu ∈ Mε,b and

Iε,b(tεu) = sup
t�0

Iε,b(tu) = sup
t�t0,u

Iε,b(tu).

(ii) Suppose that p = 4 and ε > 0. Then, for each u ∈ H1(R3) \ {0} with∫
R3

b|u|p − ε4(p−3)/(p−2)
∫

R3
φuu2 > 0,

there is a unique

tε =
( ‖u‖2

H1∫
R3 |u|p − ε4(p−3)/(p−2)

∫
R3 φuu2

)1/(p−2)

> t0,u

such that tεu ∈ Mε,b and

Iε,b(tεu) = sup
t�0

Iε,b(tu) = sup
t�t0,u

Iε,b(tu).

Proof. (i) Fix u ∈ H1(R3) \ {0}. Let

hu(t) = t−2‖u‖2
H1

− tp−4
∫

R3
b|u|p for t > 0.

Clearly, tu ∈ Mε,b if and only if

hu(t) + ε4(p−3)/(p−2)
∫

R3
φuu2 = 0.

We have hu(t0,u) = 0, limt→0+ hu(t) = ∞ and limt→∞ hu(t) = −∞. Since 4 < p < 6
and

h′
u(t) = −2t−3‖u‖2

H1
− (p − 4)tp−5

∫
R3

|u|p

= t−3
(

− 2‖u‖2
H1

− (p − 4)tp−2
∫

R3
b|u|p

)

< 0 for all t > 0,

hu(t) is decreasing for t > 0. Since hu(t0,u) = 0 and limt→∞ hu(t) = −∞, there is
a unique tε > t0,u such that

hu(tε) + ε4(p−3)/(p−2)
∫

R3
φuu2 = 0.

Thus, tεu ∈ Mε,b and

d
dt

Iε,b(tu) = t3
(

hu(t) + ε4(p−3)/(p−2)
∫

R3
φuu2

)
,
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which implies that Iε,b(tu) is increasing for t ∈ [0, tε), decreasing for t ∈ (tε,∞)
and

Iε,b(tεu) = sup
t�0

Iε,b(tu) = sup
t�t0,u

Iε,b(tu).

(ii) Fix u ∈ H1(R3) \ {0} with∫
R3

|u|p − ε4(p−3)/(p−2)
∫

R3
φuu2 > 0.

Let

mu(t) = Iε,b(tu) = 1
2 t2‖u|2H1

− tp

p

( ∫
R3

|u|p − ε4(p−3)/(p−2)
∫

R3
φuu2

)
for t > 0.

Since

m′
u(t) = t‖u‖2

H1
− tp−1

( ∫
R3

b|u|p − ε4(p−3)/(p−2)
∫

R3
φuu2

)
,

there is a unique

tε =
( ‖u‖2

H1∫
R3 |u|p − ε4(p−3)/(p−2)

∫
R3 φuu2

)1/(p−2)

> t0,u

such that tεu ∈ Mε,b and

Iε,b(tεu) = sup
t�0

Iε,b(tu) = sup
t�t0,u

Iε,b(tu).

This completes the proof.

Furthermore, we have the following lemma.

Lemma 2.3.

(i) α0,bmax < αε,bmax for all ε > 0.

(ii) αε,b1 < αε,b2 for all ε > 0 and for all b1, b2 > 0 with b1 < b2.

Proof. The proofs are almost identical to that in Azzollini and Pomponio [2, lemma
2.12].

3. Proof of theorem 1.1

We shall first make use of the profile of Q to construct Palais–Smale (PS) sequences
which are used later to prove theorem 1.1. For a > 0, let Ca(z) denote the hypercube∏3

j=1(zj − a, zj − a) centred at z = (z1, z2, z3), and Ca(z) and ∂Ca(z) denote the
closure and the boundary of Ca(z), respectively. By conditions (Q1) and (Q2), we
can choose a number l > 0 such that Cl(xi) is disjoint and Q(x) < Q(xi) for all
x ∈ ∂Cl(xi) and for all i = 1, 2, . . . , k.

Next, we need a generalized barycentre map. By this we mean a continuous map
Φ : Lp(R3) \ {0} → R

3 that is equivalent to the action of the group of Euclidean
motions in R

3, that is, for every ξ ∈ R
3 and u ∈ Lp(R3)\{0}, we have Φ(u) = Φ(|u|),

Φ(u(x − ξ)) = ξ + Φ(u(x)) and Φ(u(εx)) = ε−1Φ(u(x)). (3.1)
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Such a map has been constructed in Bartsch and Weth [3, theorem 2.1] and Cerami
and Passaseo [7].

Let Ci
l/ε ≡ Cl/ε(xi/ε) and

N i
ε = {u ∈ Mε,Qε | u � 0 and Φε(u) ∈ Ci

l/ε},

∂N i
ε = {u ∈ Mε,Qε

| u � 0 and Φε(u) ∈ ∂Ci
l/ε},

for i = 1, 2, . . . , k. It can be readily verified that N i
ε and ∂N i

ε are non-empty sets
for all i = 1, 2, . . . , k. Consider the minimization problems in N i

ε and ∂N i
ε for Iε,Qε

,

γi
ε = inf

u∈Ni
ε

Iε,Qε
(u) and γ̃i

ε = inf
u∈∂Ni

ε

Iε,Qε
(u) for i = 1, 2, . . . , k.

Let w be a unique positive radial solution of

−∆u + u = Qmax|u|p−2u in R
3,

u ∈ H1(R3),

}
(Ē0,Qmax)

such that I0,Qmax(w) = α0,Qmax . For small ε > 0 satisfying
√

ε < 1, we define a
function ψε ∈ C1(R3, [0, 1]) such that

ψε(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, |x| <
1√
ε

− 1,

0, |x| >
1√
ε
,

and |∇ψε| � 2 in R
3. Let

vε,i(x) = w

(
x − xi

ε

)
ψε

(
x − xi

ε

)
for i = 1, 2, . . . , k.

Then we have the following result.

Lemma 3.1. Suppose that 4 � p < 6. Then

(i)

ε4(p−3)/(p−2)
∫

R3
φvε,i(x)v

2
ε,i(x) → 0 as ε → 0,

(ii) there exist positive numbers ε1, D0 such that∫
R3

Qεv
p
ε,i(x) − ε4(p−3)/(p−2)

∫
R3

φvε,i(x)vε,i(x) � D0 for all ε ∈ (0, ε1).

Proof. (i) Since

0 � ε4(p−3)/(p−2)
∫

R3
φvε,i(x)vε,i(x) � C0ε

4(p−3)/(p−2)‖vε,i‖4
H1

and
‖vε,i‖2

H1 → 2p

p − 2
α0,Qmax as ε → 0,
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we obtain
ε4(p−3)/(p−2)

∫
R3

φvε,i(x)vε,i(x) → 0 as ε → 0.

(ii) Since ∫
R3

Qεv
p
ε,i(x) =

∫
R3

Qεw
p

(
x − xi

ε

)
ψp

ε

(
x − xi

ε

)

=
∫

R3
Q(xi)wp + o(ε)

with o(ε) → 0 as ε → 0, by∫
R3

Q(xi)wp =
2p

p − 2
α0,Qmax > 0

and case (i), there exist positive numbers ε1, D0 such that∫
R3

Qεv
p
ε,i(x) − ε4(p−3)/(p−2)

∫
R3

φvε,i(x)vε,i(x) � D0 for all ε ∈ (0, ε1).

This completes the proof.

Using lemmas 2.2 and 3.1, for each p ∈ [4, 6) and ε ∈ (0, ε1) there exists

tε,i >

( ‖vε,i‖2
H1∫

R3 Qε|vε,i|p

)1/(p−2)

> 0 (3.2)

such that tε,ivε,i ∈ Mε,Qε
. The following result is obtained.

Lemma 3.2. We have tε,i → 1 as ε → 0.

Proof. Since tε,ivε,i ∈ Mε,Qε
, we have

t2ε,i

∥∥∥∥w

(
x − xi

ε

)
ψε

(
x − xi

ε

)∥∥∥∥
2

H1

= tpε,i

∫
R3

Qεw
p

(
x − xi

ε

)
ψp

ε

(
x − xi

ε

)

+ ε4(p−3)/(p−2)t4ε,i

∫
R3

φw(x−xi/ε)ψε(x−xi/ε)w
2
(

x − xi

ε

)
ψ2

ε

(
x − xi

ε

)
.

Since
‖w‖2

H1 =
∫

R3
Qmaxw

p,

from lemma 3.1,

t2ε,i‖w‖2
H1 = t2ε,i

∥∥∥∥w

(
x − xi

ε

)
ψε

(
x − xi

ε

)∥∥∥∥
2

H1

+ o(ε)

= tpε,i

∫
R3

Qεw
p

(
x − xi

ε

)
ψp

ε

(
x − xi

ε

)
+ o(ε)

= tpε,i

∫
R3

Qε(εx + xi)wp + o(ε),
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where o(ε) → 0 as ε → 0. Moreover,

tε,i >

( ‖w(x − xi/ε)ψε(x − xi/ε)‖2
H1∫

R3 Qε|w(x − xi/ε)ψε(x − xi/ε)|p

)1/(p−2)

= 1 + o(ε).

Thus, tε,i → 1 as ε → 0.

Using the ideas in [6, 14], we have the following results.

Lemma 3.3. Suppose that 4 � p < 6. Then, for each positive number η � α0,Qmax ,
there exists εη ∈ (0, ε1] such that, for any ε ∈ (0, εη),

αε,Qε � γi
ε < α0,Qmax + η for all i = 1, 2, . . . , k.

In particular, the N i
ε are non-empty sets.

Proof. First, we show that Φε(tε,ivε,i) ∈ Ci
l/ε. By the definition of ψε and tε,i → 1

as ε → 0,

Φ(tε,ivε,i) =
xi

ε
+ o(ε),

where o(ε) → 0 as ε → 0. We conclude that Φε(tε,ivε,i) ∈ Ci
l/ε. Thus, tε,ivε,i ∈ N i

ε.
Moreover, by lemmas 3.1 and 2.2,

Iε,Qε(tε,ivε,i)

=
t2ε,i

2

∥∥∥∥w

(
x − xi

ε

)
ψε

(
x − xi

ε

)∥∥∥∥
2

H1

+ 1
4ε4(p−3)/(p−2)t4ε,i

∫
R3

φw(x−xi/ε)ψε(x−xi/ε)w
2
(

x − xi

ε

)
ψ2

ε

(
x − xi

ε

)

−
tpε,i

p

∫
R3

Qεw
p

(
x − xi

ε

)
ψp

ε

(
x − xi

ε

)

= 1
2‖w‖2

H1 − 1
p

∫
R3

Q(εx + xi)wp + o(ε). (3.3)

From (3.3), we have
Iε,Qε

(tε,ivε,i) = α0,Qmax + o(ε).

Therefore, there exists εη > 0 such that, for any ε ∈ (0, εη),

γi
ε < α0,Qmax + η for all i = 1, 2, . . . , k.

This completes the proof.

Lemma 3.4. Suppose that 4 � p < 6. Then there are positive numbers δ and εδ

such that, for any i = 1, 2, . . . , k,

γ̃i
ε > α0,Qmax + δ for all ε ∈ (0, εδ).
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Proof. Fix i ∈ {1, 2, . . . , k}. Assume to the contrary that there exists a sequence
{εn} with εn → 0 as n → ∞ such that γ̃i

εn
→ c � α0,Qmax . Then there exists a

sequence {un} ⊂ ∂N i
εn

such that Φ(un) ∈ ∂Ci
l/εn

,

‖un‖2
H1 + ε4(p−3)/(p−2)

n

∫
R3

φunu2
n =

∫
R3

Qεn |un|p

and
Iεn,Qεn

(un) → c � α0,Qmax as n → ∞.

It follows that {un} is uniformly bounded in H1(R3). Moreover, by∫
R3

φuu2 � C0‖u‖4
H1 ,

we have
ε4(p−3)/(p−2)

n

∫
R3

φunu2
n → 0 as n → ∞,

which implies that

‖un‖2
H1 =

∫
R3

Qεn |un|p + o(1). (3.4)

Thus, there exists a sequence {tn} ⊂ R
+ with tn → 0 such that

‖tnun‖2
H1 =

∫
R3

Qεn |tnun|p

and
Iεn,Qεn

(tnun) � α0,Qεn
� α0,Qmax ,

which implies
Iεn,Qεn

(un) → α0,Qmax . (3.5)

Next we shall show that ∫
R3

[Qmax − Qεn ]|un|p = o(1). (3.6)

Supposing otherwise, we may assume that there exists a positive constant C0 such
that, for large n, ∫

R3
[Qmax − Qεn ]|un|p > C0. (3.7)

By (3.4) and (3.7), there exists a sequence {sn} ⊂ R+ such that

‖snun‖2
H1 =

∫
R3

Qmax|snun|p,

and, for large n,

sp−2
n =

‖un‖2
H1∫

R3 Qmax|un|p <
‖un‖2

H1∫
R3 Qεn |un|p + C0

=
(

1 +
C0

‖un‖2
H1

)−1

+ o(1). (3.8)

With {un} being uniformly bounded in H1(R3), there also exists c0 > 0 such that

s2
n < 1 − c0 for n sufficiently large.
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Thus, by (3.4) and the Sobolev inequality, there exists d0 > 0 such that

Iεn,Qεn
(un) =

(
1
2

− 1
p

)
‖un‖2

H1 + o(1)

>

(
1
2

− 1
p

)
‖snun‖2

H1 +
(

1
2

− 1
p

)
c0‖un‖2

H1 + o(1)

� α0,Qmax +
(

1
2

− 1
p

)
c0d0,

for n sufficiently large; this contradicts (3.5). It then follows from (3.4) and (3.6)
that

‖un‖2
H1 =

∫
R3

Qmax|un|p + o(1) (3.9)

and

Iεn,Qεn
(un) = 1

2‖un‖2
H1 − 1

p

∫
R3

Qmax|un|p + o(1) = α0,Qmax . (3.10)

Using the results of (3.9), (3.10) and [20, lemma 7], {un} is thus a (PS)α0,Qmax
-

sequence in H1(R3) for I0,Qmax . Since un ∈ Mεn,Qεn
, we deduce from the Sobolev

imbedding theorem that ‖un‖H1 > ν > 0 for some constant ν and for all n. Apply-
ing the concentration-compactness principle of Lions [15, 16] to |un|p, there exist
positive constants R, θ and {zn} ⊂ R

3 such that∫
BN (zn;R)

|un|p � θ for all n, (3.11)

where BN (zn; R) = {x ∈ R
3 | |x − zn| < R}. Let ũn = un(z + zn). From the

translation invariance of the functional I0,Qmax , we conclude that {ũn} is also a
(PS)α0,Qmax

-sequence in H1(R3) for I0,Qmax . Then, by (3.11), there exist a subse-
quence {ũn} and a non-zero u0 ∈ H1(R3) such that

ũn ⇀ u0 in H1(R3),

ũn → u0 a.e. in R
3,∫

BN (0;R)
|ũn|p →

∫
BN (0;R)

|u0|p � θ.

This implies that u0 is a non-trivial solution of (Ē0,Qmax). By the Fatou lemma

α0,Qmax � I0,Qmax(u0) =
(

1
2

− 1
p

) ∫
R3

|u0|p � lim inf
(

1
2

− 1
p

) ∫
R3

|ũn|p = α0,Qmax ,

and so I0,Qmax(u0) = α0,Qmax . Moreover, by the strong maximum principle, u0 is a
positive solution of (Ē0,Qmax). Set wn = ũn − u0. Since {ũn} is uniformly bounded,
by the Brézis–Lieb lemma [5], we obtain∫

R3
|ũn|p =

∫
R3

|u0|p +
∫

R3
|wn|p + o(1). (3.12)
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Moreover, ũn ⇀ u0 weakly in H1(R3); thus,

‖ũn‖2
H1 = ‖u0‖2

H1 + ‖wn‖2
H1 + o(1). (3.13)

Combining (3.12) and (3.13) gives

‖wn‖2
H1 =

∫
R3

w4
n + o(1), (3.14)

and so(
1
2

− 1
p

)
‖wn‖2

H1 = I0,Qmax(wn) = I0,Qmax(ũn) − I0,Qmax(u0) + o(1) = o(1).

This implies ũn → u0 strongly in H1(R3). Moreover, Φ(un) ∈ ∂Ci
l/εn

and ũn(z) =
un(z + zn), we have

εnzn = εnΦ(un) − εnΦ(ũn) = εnΦ(un) − εnΦ(u0),

and so dist(εnzn, ∂Cl(xi)) → 0 as n → ∞. Without loss of generality, we may
assume that εnzn → z0 ∈ ∂Cl(xi). By condition (Q2), Q(z0) < Qmax. Subsequently,
using (3.4) and (3.6), we can conclude

‖u0‖2
H1 =

∫
R3

Q(z0)|u0|p <

∫
R3

Qmax|u0|p;

this contradicts the earlier result that u0 is a positive solution of (Ē0,Qmax). This
completes the proof.

Using lemmas 2.3, 3.3 and 3.4 for a positive number η � min{δ, α0,Qmax} and
taking ε0 = min{εη, εδ}, we obtain, for any ε ∈ (0, ε0),

αε,Qε
� γi

ε < min{2α0,Qmax , γ̃
i
ε} � min{2αε,Q∞ , γ̃i

ε} for all i = 1, 2, . . . , k. (3.15)

Adopting the idea of Ni and Takagi [17], we have the following result.

Lemma 3.5. Suppose that 4 � p < 6. Then, for each ε ∈ (0, ε0) and u ∈ N i
ε, there

exist σ > 0 and a differentiable function t∗ : B(0; σ) ⊂ H1(R3) → R
+ such that

t∗(0) = 1, t∗(v)(u − v) ∈ N i
ε for all v ∈ B(0; σ) and

〈(t∗)′(0), ϕ〉 =
2

∫
R3(∇u∇ϕ + uϕ) + 4ε4(p−3)/(p−2)

∫
R3 φuuϕ − p

∫
R3 Qε|u|p−2uϕ

‖u‖2
H1 − (p − 1)

∫
R3 Qε|u|p

for all v ∈ H1(R3).

Proof. For u ∈ N i
ε, define a function Fu : R × H1(R3) → R by

Fu(t, v) = 〈I ′
ε,Qε

(t(u − v)), t(u − v)〉

= t2
∫

R3
[|∇(u − v)|2 + (u − v)2] + ε4(p−3)/(p−2)t4

∫
R3

φuu2

− tp
∫

R3
Qε|u − v|p.
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Then, Fu(1, 0) = 〈I ′
ε,Qε

(u), u〉 = 0 and

d
dt

Fu(1, 0) = 2‖u‖2
H1 + 4ε4(p−3)/(p−2)

∫
R3

φuu2 − p

∫
R3

Qε|u|p

= −2‖u‖2
H1 + u2 − (p − 4)

∫
R3

Qε|u|p

< 0.

According to the implicit function theorem, there exist σ > 0 and a differentiable
function t∗ : B(0; σ) ⊂ H1(R3) → R such that t∗(0) = 1,

〈(t∗)′(0), ϕ〉 =
2

∫
R3(∇u∇ϕ + uϕ) + 4ε4(p−3)/(p−2)

∫
R3 φuuϕ − p

∫
R3 Qε|u|p−2uϕ

‖u‖2
H1 − (p − 1)

∫
R3 Qε|u|p

and
Fu(t∗(v), v) = 0 for all v ∈ B(0; σ),

which is equivalent to

〈I ′
ε,Qε

(t∗(v)(u − v)), t∗(v)(u − v)〉 = 0 for all v ∈ B(0; σ).

Furthermore, by the continuity of the maps Φε and t∗, we have

〈ψ′
ε(t

∗(v)(u − v)), t∗(v)(u − v)〉

= −2‖t∗(v)(u − v)‖2
H1 − (p − 4)

∫
R3

Qε|t∗(v)(u − v)|p

< 0

and
Φε(t∗(v)(u − v)) ∈ Ci

l/ε

still hold if σ is sufficiently small. Therefore, t∗(v)(u − v) ∈ N i
ε for all v ∈ B(0; σ).

This completes the proof.

Proposition 3.6. Suppose that 4 � p < 6. Then, for each ε ∈ (0, ε0), there exists
a sequence {un} ⊂ N i

ε such that

Iε,Qε(un) = γi
ε + o(1) and I ′

ε,Qε
(un) = o(1) in H−1(R3).

Proof. If N̄ i
ε denotes the closure of N i

ε, then first we note that N̄ i
ε = N i

ε ∪ ∂N i
ε for

each i = 1, 2, . . . , k. Hence,

γi
ε = inf{Iε,Qε

(u) | u ∈ N̄ i
ε} for all i = 1, 2, . . . , k. (3.16)

Now we fix i ∈ {1, 2, . . . , k}. Applying the Ekeland variational principle [13], there
exists a minimizing sequence {un} ⊂ N̄ i

ε such that

Iε,Qε(un) < γi
ε +

1
n

(3.17)

and
Iε,Qε(un) � Iε,Qε(w) +

1
n

‖w − un‖H1 for all w ∈ N̄ i
ε. (3.18)
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Using (3.15), we may assume that un ∈ N i
ε for n sufficiently large. Applying

lemma 3.5 with u = un, we obtain the function t∗n : B(0; εn) → R for some εn > 0
such that t∗n(w)(un − w) ∈ N i

ε. Let 0 < δ < εn and u ∈ H1(R3) with u �≡ 0. We set
wδ = δu/‖u‖H1 and zδ = t∗n(wδ)(un − wδ). Since zδ ∈ N i

ε, we deduce from (3.18)
that

Iε,Qε
(zδ) − Iε,Qε

(un) � − 1
n

‖zδ − un‖H1 .

By the mean value theorem, we obtain

〈I ′
ε,Qε

(un), zδ − un〉 + o(‖zδ − un‖) � − 1
n

‖zδ − un‖H1 .

Therefore,

〈I ′
ε,Qε

(un),−wδ〉 + (t∗n(wδ) − 1)〈I ′
ε,Qε

(un), (un − wδ)〉

� − 1
n

‖zδ − un‖H1 + o(‖zδ − un‖). (3.19)

Now we observe that t∗n(wδ)(un − wδ) ∈ N i
ε and, consequently, we derive from (3.19)

that

− δ

〈
I ′
ε,Qε

(un),
u

‖u‖H1

〉
+

(t∗n(wδ) − 1)
t∗n(wδ)

〈I ′
ε,Qε

(zδ), t∗n(wδ)(un − wδ)〉

+ (t∗n(wδ) − 1)〈I ′
ε,Qε

(un) − I ′
ε,Qε

(zδ), (un − wδ)〉

� − 1
n

‖zδ − un‖H1 + o(‖zδ − un‖).

We rewrite the above inequality in the following form:〈
I ′
ε,Qε

(un),
u

‖u‖H1

〉
� ‖zδ − un‖H1

δn
+

o(‖zδ − un‖H1)
δ

+
(t∗n(wδ) − 1)

δ
〈I ′

ε,Qε
(un) − I ′

ε,Qε
(zδ), (un − wδ)〉. (3.20)

Since we can find a constant C > 0 independent of δ such that

‖zδ − un‖H1 � δ + C(|t∗n(wδ) − 1|)

and

lim
δ→0

|t∗n(wδ) − 1|
δ

� ‖(t∗n)′(0)‖ � C

for a fixed n, let δ → 0 in (3.20) and, using the fact that

lim
δ→0

‖zδ − un‖H1 = 0,

we obtain 〈
I ′
ε,Qε

(un),
u

‖u‖H1

〉
� C

n
.

The result implies that

Iε,Qε
(un) = γi

ε + o(1) and I ′
ε,Qε

(un) = o(1) in H−1(R3).

This completes the proof.
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Proof of theorem 1.1. Fix i ∈ {1, 2, . . . , k} and let {ui
n} ⊂ N i

ε be a sequence satis-
fying

Iε,Qε(un) = γi
ε + o(1) and I ′

ε,Qε
(un) = o(1) in H−1(R3).

Since {ui
n} is bounded in H1(R3), we can assume that there exists ui

0 ∈ H1(R3)
such that

ui
n ⇀ ui

0 weakly in H1(R3); (3.21)

ui
n → ui

0 strongly in Lr
loc(R

3) for 2 � r < 6; (3.22)

ui
n → ui

0 a.e. in R
3. (3.23)

First, we claim that ui
0 �≡ 0. Suppose the contrary, i.e. ui

0 ≡ 0. Since {ui
n} ⊂ N i

ε and
γi

ε > 0, we deduce from the Sobolev imbedding theorem that ‖ui
n‖H1 > ν > 0 for

some constant ν and for all n. Applying the concentration-compactness principle
of Lions [15, 16], there are positive constants R, θ and a sequence {zn} ⊂ R

3 such
that ∫

BN (0;R)
|ui

n(x + zn)|p � θ for n sufficiently large. (3.24)

We shall show that {zn} is an unbounded sequence in R
3. Suppose the contrary.

Then we can assume that zn → z0 for some z0 ∈ R
3. By (3.22) and (3.19),∫

BN (z0;R)
|ui

0|p � θ;

this contradicts ui
0 ≡ 0. Thus, {zn} is an unbounded sequence in R

3. Set ũi
n(z) =

ui
n(z + zn). Since {ũi

n} is bounded in H1(R3), we may assume that there exists
ũi

0 ∈ H1(R3) such that

ũi
n ⇀ ũi

0 weakly in H1(R3). (3.25)

From (3.24), we have ũi
0 � 0 and ũi

0 �≡ 0 in R
3. Set vn = ũi

n − ũi
0. We distinguish

the following two cases:

(I) ‖vn‖H1 → 0 as n → ∞;

(II) ‖vn‖H1 � θ for large n and for some constant θ > 0.

Assuming case I, we employ the argument in lemma 3.3 to obtain

zn = Φ(ui
n) − Φ(ũi

n) + o(1),

and so |Φ(ui
n)| → ∞ as n → ∞. This contradicts Φ(ui

n) ∈ Ci
l/ε.

In case II, we notice first that I ′
ε,Qε

(ui
n) → 0 strongly in H−1(R3). Condition

(Q1) and {ui
n} ⊂ N i

ε imply

‖ũi
0‖2

H1 + ε4(p−3)/(p−2)
∫

R3
φũi

0
(ũi

0)
2 −

∫
R3

Q∞|ũi
0|p = 0 (3.26)

and

‖ũi
n‖2

H1 + ε4(p−3)/(p−2)
∫

R3
φũi

n
(ũi

n)2 −
∫

R3
Q∞|ũi

n|p = o(1). (3.27)
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By (3.26), (3.27), the Brézis–Lieb lemma [5] and [21, lemma 2.2], we obtain

‖vn‖2
H1 + ε4(p−3)/(p−2)

∫
R3

φvn
v2

n −
∫

R3
Q∞|vn|p = o(1).

Since ‖vn‖H1 � θ for large n, it is straightforward to find a sequence {sn} ⊂ R
+

with sn → 1 as n → ∞ such that

‖snvn‖2
H1 + ε4(p−3)/(p−2)

∫
R3

φsnvn(snvn)2 =
∫

R3
Q∞|snvn|p,

and so

1
2‖vn‖2

H1 + 1
4ε4(p−3)/(p−2)

∫
R3

φvn
v2

n − 1
p

∫
R3

Q∞|vn|p � αε,Q∞ + o(1).

Similarly,

1
2‖ũi

0‖2
H1 + 1

4ε4(p−3)/(p−2)
∫

R3
φũi

0
(ũi

0)
2 − 1

p

∫
R3

Q∞|ũi
0|p � αε,Q∞ .

Thus, by the Brézis–Lieb lemma [5] and [21, lemma 2.2],

Iε,Qε
(ui

n) = 1
2‖ũi

n‖2
H1 + 1

4ε4(p−3)/(p−2)
∫

R3
φũi

n
(ũi

n)2 − 1
p

∫
R3

Q∞|ũi
n|p + o(1)

= 1
2‖vn‖2

H1 + 1
4ε4(p−3)/(p−2)

∫
R3

φvnv2
n − 1

p

∫
R3

Q∞|vn|p

+ 1
2‖ũi

0‖2
H1 + 1

4ε4(p−3)/(p−2)
∫

R3
φũi

0
(ũi

0)
2 − 1

p

∫
R3

Q∞|ũi
0|p + o(1)

� 2αε,Q∞ + o(1),

which implies that
lim

n→∞
Iε,Qε(u

i
n) = γi

ε � 2αε,Q∞ ; (3.28)

this contradicts (3.15). Next we shall show that ui
n → ui

0 strongly in H1(R3). This
can be done either by using case II or by adopting a similar argument to that
above in order to arrive at the contradiction (3.28). Finally, we shall show that
ui

0 ∈ N i
ε. Since {ui

n} ⊂ N i
ε, we have ui

0 ∈ N i
ε ∪ ∂N i

ε. Moreover, Iε,Qε(u
i
0) = γi

ε < γ̃i
ε

and so ui
0 /∈ ∂N i

ε. Thus, ui
0 ∈ N i

ε. It is clear that ui
0 is non-negative, and, by

the maximum principle, ui
0 is therefore positive for i = 1, 2, . . . , k. Moreover, the

ui
0 are different and the (ui

0, φui
0
) are positive solutions of (Ēε). Taking λ0 = ε−2

0
and Ui(x) = λ1/(p−2)ui

0(
√

λx), we conclude that the (Ui, φUi)
′ are positive solutions

of (Eλ).

4. Proofs of theorems 1.2 and 1.3

By lemma 3.3, there exists a positive function ηε with ηε → 0 as ε → 0 such that
the sublevel set

M(ε, ηε) = {u ∈ Mε,Qε | Iε,Qε(u
i
0) < α0,Qmax + ηε}

is non-empty for ε sufficiently small. Then we have the following result.
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Lemma 4.1. Suppose that the conditions (Q1) and (Q2) hold and that Q∞ < Qmax.
Then

lim
ε→0

sup
u∈M(ε,ηε)

inf
x∈

⋃k
i=1 Ci

l/2ε

|Φ(u) − x| = 0. (4.1)

Proof. Let εn → 0 as n → ∞; for any n, there exists un ∈ M(ε, ηεn) such that

inf
x∈

⋃k
i=1 Ci

l/2εn

|Φ(un) − x| = sup
u∈M(ε,ηεn )

inf
x∈

⋃k
i=1 Ci

l/2εn

|Φ(u) − x| + o(1).

In order to prove (4.1), it suffices to find points xn ∈
⋃k

i=1 Ci
l/2εn

such that

lim
n→∞

|Φ(un) − xn| = 0, (4.2)

possibly up to a subsequence. Then, similarly to the argument in the proof of
lemma 3.4, we have

lim
n→∞

∫
R3

Qεn |un|p =
2p

p − 2
α0,Qmax .

Moreover, there exists {xn} ⊂ R
3 such that un(· + xn) converges strongly in

H1(RN ) to u0, a positive ground-state solution of (E0,Qmax). We prove that {εnxn}
is a bounded sequence in R

3. Arguing by contradiction, we may assume that
|εnxn| → ∞ as n → ∞. Then

lim
n→∞

∫
R3

Qεn |un|p = lim
n→∞

∫
R3

Q(εnx + εnxn)|un(x + xn)|p

=
∫

R3
Q∞|u0|p

<

∫
R3

Qmax|u0|p

=
2p

p − 2
α0,Qmax ,

which is a contradiction. In conclusion, the sequence {εnxn} is bounded and it con-
verges to some x0 (up to a subsequence). We are left to prove x0 ∈ {x1, x2, . . . , xk}.
Since

2p

p − 2
α0,Qmax = lim

n→∞

∫
R3

Qεn |un|p

= lim
n→∞

∫
R3

Q(εnx + εnxn)|un(x + xn)|p

=
∫

R3
Q(x0)|u0|p,

which implies that Q(x0) = Qmax, i.e.

x0 ∈ {x1, x2, . . . , xk} ⊂
k⋃

i=1

Ci
l/2.

Then (4.2) holds.
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Proof of theorem 1.2. We first show that there exists a positive number ε̂ such that,
for every ε ∈ (0, ε̂), M(ε, ηε) ⊂

⋃k
i=1 N i

ε. This is done by using lemma 4.1. We can
thus find ε̂ > 0 such that, for every ε ∈ (0, ε̂),

sup
u∈M(ε,ηε)

inf
x∈

⋃k
i=1 Ci

l/2ε

|Φ(u) − x| <
l

2ε

or

dist
(

Φ(u),
k⋃

i=1

Ci
l/2ε

)
<

l

2ε
for all u ∈ M(ε, ηε),

implying that

Φ(u) ∈
k⋃

i=1

Ci
l/ε for all u ∈ M(ε, ηε).

Therefore, M(ε, ηε) ⊂
⋃k

i=1 N i
ε and we can find at least one ground-state solu-

tion (u0, φu0) ∈ N i
ε of (Ēε) for some i = 1, 2, . . . , k. By letting λ̂ = ε̂−2 and

U0(x) = λ1/(p−2)u0(
√

λx), we obtain (U0, φU0) as a ground-state solution of (Eλ).

Proof of theorem 1.3. Suppose that (u, φ) ∈ H1(R3)×D1,2(R3) is a solution of (Ēε).
Then u ∈ Mε,Qε

, i.e.

‖u‖2
H1 + ε4(p−3)/(p−2)

∫
R3

φu2 −
∫

R3
Qε|u|p = 0. (4.3)

By the definition of φ, we have∫
R3

φu2 =
∫

R3
φ(−∆φ) =

∫
R3

|∇φ|2,

while, on the other hand,∫
R3

|u|3 =
∫

R3
(−∆φ)|u| =

∫
R3

∇φ · ∇|u|.

It follows that ∫
R3

|u|3 �
∫

R3
|∇u|2 + 1

4

∫
R3

|∇φ|2. (4.4)

(i) Since p = 3 and supx∈R3 Q(x) � 1, inserting the inequality (4.4) into (4.3), we
obtain

0 =
∫

R3
(|∇u|2 + u2) +

∫
R3

|∇φ|2 −
∫

R3
Qε|u|3 �

∫
R3

u2,

implying that u must be equal to zero, and so u = 0 is the unique solution of (Eλ).
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(ii) Since 2 < p < 3, ε = λ−1/2 and λ � 2(p−2)/(p−3), inserting the inequality (4.4)
into (4.3), we obtain

0 =
∫

R3
(|∇u|2 + u2) + ε4(p−3)/(p−2)

∫
R3

|∇φ|2 −
∫

R3
Qε|u|p

�
∫

R3
(|∇u|2 + u2) + 1

4

∫
R3

|∇φ|2 − sup
x∈R3

Q(x)
∫

R3
|u|p

�
∫

R3

(
u2 + |u|3 − sup

x∈R3
Q(x)|u|p

)
.

However, the function g(u) = u2 + |u|3 − supx∈R3 Q(x)|u|p is non-negative and
vanishes only at zero if supx∈R3 Q(x) < (p − 2)2−p(3 − p)p−3. Therefore, u must be
equal to zero, and so u = 0 is the unique solution of (Eλ).
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