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Abstract Igusa varieties are smooth varieties in positive characteristic p which are closely related to
Shimura varieties and Rapoport–Zink spaces. One motivation for studying Igusa varieties is to analyse
the representations in the cohomology of Shimura varieties which may be ramified at p. The main purpose
of this work is to stabilize the trace formula for the cohomology of Igusa varieties arising from a PEL
datum of type (A) or (C). Our proof is unconditional thanks to the recent proof of the fundamental
lemma by Ngô, Waldspurger and many others.

An earlier work of Kottwitz, which inspired our work and proves the stable trace formula for the
special fibres of PEL Shimura varieties with good reduction, provides an explicit way to stabilize terms
at ∞. Stabilization away from p and ∞ is carried out by the usual Langlands–Shelstad transfer as in work
of Kottwitz. The key point of our work is to develop an explicit method to handle the orbital integrals at
p. Our approach has the technical advantage that we do not need to deal with twisted orbital integrals
or the twisted fundamental lemma.

One application of our formula, among others, is the computation of the arithmetic cohomology of
some compact PEL-type Shimura varieties of type (A) with non-trivial endoscopy. This is worked out in
a preprint of the author’s entitled ‘Galois representations arising from some compact Shimura varieties’.
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1. Introduction

The l-adic étale cohomology and Hasse–Weil zeta-functions of Shimura varieties have
been computed in several cases using the strategy developed by Ihara, Kottwitz, Lang-
lands and others. At the core of the method lies the comparison of the Arthur–Selberg
formula (or L2-Lefschetz formula by Arthur) and the Lefschetz fixed-point formula for
the special fibres of Shimura varieties at primes of good reduction (‘unramified’ primes).
In order to compute the cohomology of Shimura varieties at ramified primes, Harris and
Taylor introduced a new method making use of the interplay among Shimura varieties,
Rapoport–Zink spaces and Igusa varieties. There are two main parts for this method.
On one hand, one establishes a formula relating the cohomology spaces of the three geo-
metric objects (see [11, Theorem VI.2.9], which is generalized in [29, Theorem 22]). On
the other hand, one obtains a trace formula for the cohomology of Igusa varieties via
counting points (see [11, Proposition V.4.8], which is generalized in [36]) and compares
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it to the L2-Lefschetz formula for Shimura varieties [1, Theorem 6.1]. This comparison of
the two trace formulae usually requires stabilization. On the geometric side of the trace
formula, very roughly speaking, this amounts to rewriting a sum of orbital integrals over
the set of conjugacy classes as a sum of stable orbital integrals over the set of stable
conjugacy classes on endoscopic groups. In fact, the issue of stabilization was bypassed
in the work of Harris and Taylor as they only work with some simple kinds of unitary
similitude groups for which endoscopy disappears. However more interesting applications
are expected to result from the general case where stabilization is necessary.

The aim of our work is to carry out the stabilization of the trace formula for the
cohomology of Igusa varieties, with [36, Theorem 13.1] as a starting point. We will use the
standard form of the fundamental lemma and the transfer conjecture (Conjectures 2.13
and 2.14), which were recently proved by Ngô and Waldspurger, based on previous work of
many others. (See Proposition 2.17 and the subsequent explanation.) Note that there have
been results on the stabilization of various trace formulae which are related or analogous
to ours. The elliptic part of the Arthur–Selberg trace formula was stabilized by Langlands
[26] and Kottwitz [17]. The characteristic 0 Lefschetz formula for Shimura varieties
(as in [1] or [9]) was stabilized by Kottwitz [24] in an unpublished manuscript. The
point-counting formula for PEL-type Shimura varieties of type (A) or (C) was stabilized
by [21], [31] and [30].∗ It is worth noting that [21], [31] and [30] use a form of the
twisted fundamental lemma while our work does not.

Let us summarize our results more precisely. Let G be the reductive group over Q

attached to a PEL Shimura variety Sh of type (A) or (C), which is a projective system
of quasi-projective varieties over a number field. The Newton strata of the special fibre
of Sh at a place above p are parametrized by group-theoretic data b ∈ B(GQp

), where
each b prescribes an isogeny class of Barsotti–Tate groups over F̄p with additional struc-
ture. Choose Σb in that isogeny class. One can define the Igusa variety IgΣb

, which is a
projective system of smooth varieties over F̄p related to the Newton stratum of Sh corre-
sponding to b. From an irreducible finite-dimensional representation ξ of G, we construct
an l-adic local system Lξ on IgΣb

and Sh where l �= p. (We use the same notation Lξ

for IgΣb
and Sh by abuse of language.) We will consider the l-adic cohomology space

Hc(IgΣb
,Lξ) (alternating sum over all cohomological degrees), which is a virtual repre-

sentation of G(A∞,p) × Jb(Qp). Here Jb is a certain inner form of a Levi subgroup (of
a parabolic subgroup) of GQp

. (The group action at p is different for the cohomology of
Sh. The latter has an action of G(A∞).) When φ ∈ C∞

c (G(A∞,p) × Jb(Qp)) is accept-
able [36, Definition 6.2], we have the following formula [36, Theorem 13.1] (details are
given in § 4.4):

tr(φ|Hc(IgΣb
,Lξ)) =

∑
(γ0;γ,δ)∈KTeff

b

vol(I∞(R)1)−1|A(I0)| · tr ξ(γ0) · OG(A∞,p)×Jb(Qp)
(γ,δ) (φ).

(1.1)

∗ Kottwitz stabilized the formula for compactly supported cohomology. This result was extended by
Morel to the case of intersection cohomology.
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The upshot of the present paper is Theorem 1.1 (see also Theorem 7.2 later in the
paper), which stabilizes (1.1). This is an analogue of Kottwitz’s stable trace formula [19,
Theorem 7.2].∗

Theorem 1.1. Let φ ∈ C∞
c (G(A∞,p) × Jb(Qp)) be any acceptable function. For each

elliptic endoscopic triple (H, s, η) for G, let hH be the function on H(A) constructed from
φ as in § 7. Let STH

e denote the stable distribution on H(A) given by the sum of stable
orbital integrals on elliptic semisimple elements. (See (7.3) for the precise definition.)
Then

tr(φ|Hc(IgΣb
,Lξ)) = |ker1(Q, G)|

∑
(H,s,η)

ι(G, H)STH
e (hH).

Since the orbital integral in (1.1) is essentially a product of local orbital integrals, we
can basically stabilize (1.1) at each place. The stabilization away from p is done exactly
as in [19, § 7]. In fact, it is the usual Langlands–Shelstad transfer of orbital integrals
away from p and ∞. At the infinite place of Q, we obtain an explicit transfer in exactly
the same way as in work of Kottwitz, where the essential inputs are Shelstad’s theory
of real endoscopy and Clozel–Delorme’s result on the existence of pseudo-coefficients
for discrete series. (Although the existence of transfer at ∞ can be deduced without
exhibiting functions, the mere existence is not enough for applications to the computation
of cohomology, at least a priori.) So the main issue for us, which takes up § 6, is how to
stabilize the term at p in a sensible way. The stabilization at p, which includes an explicit
process of constructing hH

p , is considered important because the explicit information
about hH

p would eventually go into the computation of the Galois and automorphic
representations (even if they are ramified at p) in the cohomology of Shimura varieties
at p. There are two problems for stabilization at p. First, we are not in the usual formalism
of the trace formula since the orbital integral at p is computed on a different group,
namely on Jb(Qp). We resolve this issue by relating the endoscopy of Jb to the endoscopy
of G in a systematic way. Second, we need to relate the Kottwitz invariant (§ 4.2) at p

to the transfer factors. This is precisely the content of Lemma 6.3, which plays a key
role. (An analogous result in the context of Kottwitz’s formula is proved by Kottwitz
in [31, Appendix].)

Our motivation for this work stemmed from two kinds of expected application of The-
orem 1.1. (A fair part of that expectation has been realized.) As the first application,
given certain PEL-type Shimura varieties arising from unitary groups with non-trivial
endoscopy, we may compute their l-adic cohomology at ramified primes as long as we have
some prior knowledge of the cohomology of Rapoport–Zink spaces involved in the com-
putation. Indeed, we studied in [37] the cohomology of compact U(1, n−1)-type Shimura
varieties (which are more general than the ones in [11] which have trivial endoscopy) in
detail and obtained applications to Galois representations. We would like to make two
technical remarks regarding the last result. First, in the special case of U(1, n − 1)-type,
it is actually not necessary to assume that the PEL datum is unramified (§ 4.1) (as we
still have nice integral models for Shimura varieties; they also lead to a good notion of

∗ It is a mere coincidence of numbering that our Theorem 7.2 is an analogue of Theorem 7.2 of [19].

https://doi.org/10.1017/S1474748010000046 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000046


850 S. W. Shin

Igusa varieties). Although we wrote this paper only for an unramified PEL datum, the
argument and construction carry over to the U(1, n − 1)-case without the unramified
assumption. Next, it is worth noting that a large part of the cohomology of (compact
or non-compact) Shimura varieties arising from unitary groups with arbitrary signature
could also be computed at ramified places even if endoscopy is non-trivial, by arguing as
in § A.7.3 of [7] (even though the latter only deals with the case of trivial endoscopy).
The basic strategy is to combine what we know in the case of U(1, n−1) (e.g. [37, § 6.2])
with the information about the cohomology of those Shimura varieties at unramified
places (e.g. [31, § 8.4], which extends the results of [20] to the setting of non-compact
Shimura varieties with non-trivial endoscopy), and apply the Cebotarev density theorem
to obtain the desired information at ramified places.∗

The second application of our results is expected in some cases where we have prior
knowledge of the cohomology of Shimura varieties. We may compute the cohomology
of Rapoport–Zink spaces as an application of Theorem 1.1, by proving a generalization
of [11, Theorem V.5.4] and using a result of Mantovan [29, Theorem 23]. This way we
can recover the main results of Fargues [7, Chapter 8] and prove some new facts. The
second application will appear in our forthcoming work.

Finally, let us sketch the structure of the article. Sections 1–4 are devoted to known
facts and background materials from various sources. The reader may try to digest the
statement of Theorem 4.4 and then read from § 5, where the stabilization of formula
(4.3) in Theorem 4.4 begins. The first four sections may be used as reference along the
way. Section 5 is the easier part of stabilization, where local expressions away from p are
treated. Here we have not needed any new ideas or insights. The heart of the paper is § 6
and concerned with stabilization at p. After preparatory §§ 6.1 and 6.2, we construct the
functions hH

p whose stable orbital integrals have the desired values. It is fundamentally
used in our construction that the Kottwitz invariant at p (denoted by α̃p) interacts
nicely with transfer factors. This relationship is formulated in Lemma 6.3. The proof
of Lemma 6.3 is the most technical result of our paper and takes up § 6.4. Section 7
puts together the main results of §§ 5 and 6, culminating in Theorem 7.2 with the fully
stabilized formula. Our paper could end here, but we included § 8 for two purposes. By
explicitly computing some terms in Lemma 6.3 in simple cases, we wish to help the reader
understand the nature of Lemma 6.3. More importantly, the computation of cMH

is a
necessary input in the aforementioned application of our main result to the cohomology
of Shimura varieties.

1.1. Notation and convention

We will work with various sets of isomorphism classes. By abuse of terminology, we
often choose a representative in each isomorphism class and identify the set of isomor-
phism classes with the set of representatives. When a specific representative is chosen
from an isomorphism class, we explain the choice.

∗ Morel suggested that we include this remark on Shimura varieties attached to unitary groups with
arbitrary signature.
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Let F be a field of characteristic 0. Let Γ denote Gal(F̄ /F ) in §§ 2.1–2.4. Starting
from § 3, Γ := Gal(Q̄/Q) and Γ (v) := Gal(Q̄v/Qv) for each place v of Q. For any linear
algebraic group G over F , denote by G0 the neutral component of G.

Let D be a diagonalizable group over F . Let X∗(D) (respectively X∗(D)) denote the
Z-module HomF (D, Gm) (respectively HomF (Gm, D)) with Gal(F̄ /F )-action. We often
write X∗(D)Q for X∗(D) ⊗Z Q. The same applies to X∗(D)Q. For a finite abelian group
A, let AD denote the group Hom(A, C×).

Let G and G′ be connected reductive groups over F . For each g ∈ G(F ), use Int(g) :
G → G to denote the inner automorphism defined by x �→ gxg−1. Let IntK(G) be the
group of all inner automorphisms of G defined over a field K (containing F ). We say that
G and G′ are F -inner forms with respect to an F̄ -isomorphism ψ : G

∼−→ G′ if ψ−1 ◦ ψσ

lies in IntF̄ (G) for every σ ∈ Gal(F̄ /F ). This notion only depends on the G(F̄ )-conjugacy
orbit of ψ. We often omit the reference to ψ when there is no danger of confusion.

Let G be a connected reductive group over F . Let Gder denote the derived subgroup
of G, and G∗ a quasi-split F -inner form of G. Write Z(G) for the centre of G and AG

for the maximal F -split torus in Z(G). If T is a maximal torus of G ×F F̄ , we write
R(G, T ) (respectively R∨(G, T )) for the set of roots (respectively coroots) of T in G and
Ω(G, T ) := NG(T )/T for the Weyl group. Let ZG(γ) denote the centralizer of γ ∈ G(F ) in
G. If γ is semisimple and Gder is simply connected, then ZG(γ) is connected (see [12, § 3]).
A semisimple γ ∈ G(F ) is called F -elliptic if Z(ZG(γ))0/Z(G)0 is anisotropic over F .
An F -elliptic torus T in G is one such that T/Z(G)0 is anisotropic over F .

Set H1(F, G) := H1(Gal(F̄ /F ), G(F̄ )). When F is a number field, write ker1(F, G)
for the kernel of H1(F, G) →

∏
v H1(Fv, G) where v runs over all places of F . Similarly

define ker1(F, H) for any complex Lie group H equipped with an action of Gal(F̄ /F )
factoring through a finite quotient.

Suppose that γ, γ′ ∈ G(F ). We say that γ and γ′ are conjugate in G(F ) and write
γ ∼ γ′ if there exists g ∈ G(F ) such that γ′ = gγg−1. When γ and γ′ are conjugate
in G(F̄ ) so that γ′ = gγg−1 for some g ∈ G(F̄ ), the association σ �→ g−1gσ defines an
element of ker(H1(F, I) → H1(F, G)) where I := ZG(γ). If this cohomology class is in
the image of ker(H1(F, I0) → H1(F, G)), we say that γ and γ′ are stably conjugate, and
write γ ∼st γ′. If I is connected then G(F̄ )-conjugacy and stable conjugacy coincide for
γ by definition.

When we say that a field F of characteristic 0 is global (respectively local), it means
that F is a finite extension of Q (respectively Qv for some place v of Q). Suppose that
F is global or local. Then the Weil group WF of F is defined [38]. To discuss the L-
group LG of a connected reductive F -group G, we fix a Gal(F̄ /F )-invariant splitting data
(B, T, {Xα}α∈∆) once and for all where ∆ is the set of B-positive roots for T in Ĝ. The
L-group is defined as a semi-direct product LG := Ĝ � WF , where WF acts on Ĝ via

WF → Out(G) ∼−→ Aut(Ĝ, B, T, {Xα}α∈∆).

Often a Levi subgroup of a parabolic subgroup of G (respectively LG) will be called a
Levi subgroup of G (respectively LG) by abuse of terminology. (See [4, §§ 2–3] for details
on L-groups and their Levi subgroups.)
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Let F be a global field. When S is a finite set of places of F , we denote by AS
F the

restricted product of Fv for all v /∈ S.
Finally, if G is a Q-group and F is any field containing Q, we write GF for G ×Q F .

1.2. Harmonic analysis on reductive groups

We introduce further notation and convention for harmonic analysis on reductive
groups. Let G be a connected reductive group over a field F of characteristic 0.

Suppose that F is local. The Kottwitz sign e(G) ∈ {±1} is defined in [13]. If G is
quasi-split over F then e(G) = 1. If F = Qp (respectively F = R) then we often write
ep(G) (respectively e∞(G)) for this sign. Let C∞(G(F )) (respectively C∞

c (G(F ))) denote
the space of smooth (respectively smooth and compactly supported) functions on G(F )
with values in an algebraically closed field Ω. When F is R or C, take Ω = C so that
smoothness makes sense. When F is non-archimedean, smooth means locally constant
and Ω may be C or Q̄l for some prime l. We will always take Ω = C from § 5 until the
end. When F = R, let χ : AG(R)0 → C× be a continuous homomorphism and fix a
maximal compact subgroup K∞ of G(R). Define C∞

c (G(R), χ) to be the space of smooth
functions G(R) → C which are bi-K∞-finite, compactly supported modulo AG(R)0, and
transform under AG(R)0 by χ.

Keep assuming that F is local. Let G1 and G2 be connected reductive F -groups which
are inner forms. Once a Haar measure µ1 on G1(F ) is chosen, there is a unique Haar
measure µ2 on G2(F ) such that µ1 and µ2 are compatible in the sense of [18, p. 631].

Let us define orbital integrals and stable orbital integrals. Let γ ∈ G(F ) be a semisimple
element and fix Haar measures on G(F ) and ZG(γ)0(F ). For φ ∈ C∞

c (G(F )), define

OG(F )
γ (φ) :=

∫
ZG(γ)0(F )\G(F )

f(x−1γx) dx,

where the quotient measure is used for integration. The stable orbital integral is defined
as [18, p. 638]

SOG(F )
γ (φ) :=

∑
γ′∼stγ

e(ZG(γ′)0) · a(γ′) · OG(F )
γ′ (φ),

where γ′ runs over a set of representatives for G(F )-conjugacy classes in the stable
conjugacy class of γ. The number a(γ′) is defined as the cardinality of the kernel
of H1(F, ZG(γ′)0) → H1(F, ZG(γ′)). We remark on the choice of Haar measures for
OG(F )

γ′ (φ) in the definition. If γ′ ∼st γ then ZG(γ′)0 and ZG(γ)0 are F -inner forms. The
measure on ZG(γ′)0 is chosen to be compatible with that on ZG(γ)0.

Assume that F is a local non-archimedean field. Let Irr(G(F )) denote the set of iso-
morphism classes of irreducible admissible representations of G(F ). The Grothendieck
group of admissible representations of G(F ) is written as Groth(G(F )). (See [11, p. 23]
for a precise definition, which also works for representations of any topological group.)
Let M be a Levi subgroup of a parabolic subgroup P of G. Write N for the unipotent
radical of P . Define a function DG

M on M(F ) and a character δP : M(F ) → C× by

DG
M (m) = det(1 − ad(m))|Lie(G)/ Lie(M), δP (m) = |det(ad(m))|Lie(P )/ Lie(M)|F ,
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where | · |F : F× → R×
>0 is the valuation map normalized such that the inverse of the

uniformizer maps to the cardinality of the residue field of F . Let π be an admissible
representation of G(F ) on a Ω-vector space V . Denote by JacG

P (π) the admissible repre-
sentation of M(F ) on the quotient of V by the subspace generated by nv−v for n ∈ N(F )
and v ∈ V . Put JG

P (π) := JacG
P (π) ⊗ δ

−1/2
P . Both JacG

P (π) and JG
P (π) induce maps from

Groth(G(F )) to Groth(M(F )). If π is an admissible representation of G(F ) on a vector
space V , each φ ∈ C∞

c (G(F )) defines a finite-rank operator π(φ) :=
∫

G(F ) φ(g)π(g) dg on
V . Thereby trπ(φ), or tr(φ|π), is defined. This definition extends to π ∈ Groth(G(F )).

Let G be a connected reductive group over Q and S be a finite set of places of Q. Choose
a hyperspecial subgroup Khs

v of G(Qv) at every finite place v where GQv
is unrami-

fied (possibly with finitely many exceptions of v), and define the spaces C∞(G(AS))
and C∞

c (G(AS)) via restricted product over all v /∈ S [8, § 3]. Let Groth(G(AS))
denote the Grothendieck group of admissible representations of G(AS) (where we assume
S ⊃ {∞}). The definition of orbital integrals, stable orbital integrals and the trace dis-
tributions extends to the adelic case in an obvious way. There is a canonical measure
on G(A)/AG(R)0, called the Tamagawa measure. The volume of G(A)/AG(R)0 for this
measure is finite and denoted by τ(G). It is known that [18, p. 629]

τ(G) = |π0(Z(Ĝ)Gal(Q̄/Q))|/|ker1(Q, G)|. (1.2)

Let G be a real reductive group and T be an R-elliptic torus in G. Define d(G) :=
|ker(H1(R, T ) → H1(R, G))|. This value is finite and independent of the choice of T .

2. Endoscopic groups and the transfer conjecture

Throughout § 2, let G be a connected reductive group over a local or global field F of
characteristic 0 and assume that Gder is simply connected. More conditions on G or
F will be specified as needed. In § 2.1 and § 2.4 various sets such as EF (G), EQF (G),
SSF (G), etc., are defined. In later sections we will write E(G) (respectively Ev(G)) for
EF (G) if F = Q (respectively F = Qv) and do the same with EQF (G), SSF (G), etc.

2.1. Endoscopic triples

We first give the definition of endoscopic triples. Recall that there is an action of Γ :=
Gal(F̄ /F ) on Ĝ given by the choice of splitting data. The definition below is independent
of this choice since the Γ -actions for any two splitting data differ by Ĝ-conjugacy.

Definition 2.1 (Kottwitz [15, 7.4]). An endoscopic triple for G is a triple (H, s, η)
satisfying the following three conditions where H is a quasi-split connected reductive
group over F , s is an element of Z(Ĥ), and η : Ĥ → Ĝ is an embedding of complex Lie
groups.

(i) η(Ĥ) = ZĜ(η(s))0.

(ii) The Ĝ-conjugacy class of η is fixed by Γ .
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(iii) The image of s in Z(Ĥ)/Z(Ĝ) is Γ -invariant and its image under the connect-
ing homomorphism (Z(Ĥ)/Z(Ĝ))Γ → H1(F, Z(Ĝ)) arising from the Γ -equivariant
short exact sequence

1 → Z(Ĝ) → Z(Ĥ) → Z(Ĥ)/Z(Ĝ) → 1

is trivial if F is local and locally trivial (i.e. contained in ker1(F, Z(Ĝ))) if F is
global.

Remark 2.2. The condition (ii) in the above definition implies that the embedding of
Z(Ĝ) into Z(Ĥ) via η is Γ -invariant. Thus the condition (iii) makes sense.

Remark 2.3. It is obvious that the endoscopic triples for G are the same as those for
G′ if G and G′ are inner forms over F .

Definition 2.4. An endoscopic triple (H, s, η) for G is called elliptic if (Z(Ĥ)Γ )0 ⊂
Z(Ĝ), or equivalently if Z(Ĥ)Γ Z(Ĝ)/Z(Ĝ) is a finite group.

Definition 2.5 (Kottwitz [24, Definition 2.5]). An isomorphism between endoscopic
triples (H, s, η) and (H ′, s′, η′) for G is an isomorphism α : H

∼−→ H ′ such that

(i) η ◦ α̂ and η′ are conjugate under an element of Ĝ (this makes sense as the
Ĥ-conjugacy orbit of α̂ is well-defined);

(ii) s and α̂(s′) are equal in Z(Ĥ)/Z(Ĝ).

The group of automorphisms of (H, s, η) is denoted by AutF (H, s, η). Define

OutF (H, s, η) := AutF (H, s, η)/ IntF (H).

We write EF (G) (respectively Eell
F (G)) for the set of isomorphism classes of all (respec-

tively elliptic) endoscopic triples for G.

Remark 2.6. The notion of isomorphism in Definition 2.5 is stronger than the one
given in [15, § 7]. Consider G = GL2 and H = GL1 × GL1. Let sa,b := (a, b) ∈ Ĥ,
where a, b ∈ C×, and η be such that (a, b) maps to the diagonal matrix with entries a

and b. Then (H, sa,b, η) belongs to EF (G) (but not to Eell
F (G)). Any two (H, sa,b, η) and

(H, sc,d, η) are isomorphic in the sense of [15, § 7], but they are isomorphic in our sense
if and only if a/b = c/d or a/b = d/c.

Let (H, s, η) be an endoscopic triple for G. Let TH ⊂ H, T ⊂ G, TH ⊂ Ĥ, T ⊂ Ĝ be
maximal tori over F̄ . Choose Borel subgroups BH ⊂ H, B ⊂ G, BH ⊂ Ĥ and B ⊂ Ĝ over
F̄ such that TH ⊂ BH , T ⊂ B, TH ⊂ BH and T ⊂ B. These determine isomorphisms
ιH : T̂H � TH and ι : T̂ � T. There exists ĝ ∈ Ĝ such that θ := Int(ĝ) ◦ η sends
TH to T and BH into B. Thereby we obtain T̂

∼−→ T̂H given by ι−1
H ◦ θ−1 ◦ ι. Get an

F̄ -isomorphism j : TH
∼−→ T by taking the dual. The Ω(G, T )-orbit of j is independent

of the choice of ĝ and the Borel subgroups. For a fixed TH , the G(F̄ )-conjugacy class
of embeddings TH ↪→ G induced by j is independent of the choice of T , TH , T, ĝ and
the Borel subgroups. Given an F̄ -maximal torus TH of H, there exists a maximal torus
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defined over F in its H(F̄ )-conjugacy class since H is quasi-split over F . Suppose that
G is quasi-split and that TH is defined over F . Then we may arrange that j is an F -
morphism in the above process, replacing (B, T ) by a G(F̄ )-conjugate if necessary so
that T is defined over F . (Use [12, Corollary 2.2] to find an F -embedding j : TH ↪→ G

in the canonical G(F̄ )-conjugacy class and take for T the image of j.)
There is an embedding of Z(G) ↪→ Z(H) given by j−1 since R(H, TH) ⊂ R(G, T )

via X∗(TH)
j� X∗(T ). The embedding Z(G) ↪→ Z(H) is canonical in the sense that it

only depends on (H, s, η) and that it is compatible with isomorphisms of endoscopic
triples. The embedding Z(G) ↪→ Z(H) is defined over F . Indeed, it is enough to prove
this when G is quasi-split over F , and for such a group G we may take j to be defined
over F as remarked earlier. Restricting Z(G) ↪→ Z(H) to maximal F -split subtori, we
obtain a canonical embedding AG ↪→ AH over F . This embedding is an isomorphism if
(H, s, η) ∈ Eell

F (G).
In practice (from § 5), we will fix a representative in each isomorphism class of endo-

scopic triples and identify the set of isomorphism classes of endoscopic triples with the
set of representatives.

2.2. The groups A(·) and K(I0/Q)

Define AF (G0) := π0(Z(Ĝ0)Γ )D for any connected reductive F -group G0. For the
relationship between AF (G0) and the Galois cohomology of G0, see [17, §§ 1–2]. If F is
local there is a canonical functorial map

H1(F, G0) → AF (G0). (2.1)

(This map is functorial with respect to any F -morphism by [17]; cf. the proof of
Lemma 2.3 in [36].) The map in (2.1) is an isomorphism (of pointed sets) if F is non-
archimedean and will form the left vertical arrow of (3.1).

Let F and G be as before. Let γ0 be a semisimple element and set I0 := ZG(γ0). From
the canonical Γ -equivariant inclusion Z(Ĝ) ↪→ Z(Î0), obtain an exact sequence

1 → Z(Ĝ) → Z(Î0) → Z(Î0)/Z(Ĝ) → 1

and consider the connecting homomorphism (Z(Î0)/Z(Ĝ))Γ → H1(F, Z(Ĝ)). Define
K(I0/F ) = KG(I0/F ) to be the subgroup of (Z(Î0)/Z(Ĝ))Γ whose image in H1(F, Z(Ĝ))
is trivial (respectively locally trivial) if F is local (respectively global). Our definition
(due to [24]) coincides with the one in [17, 4.6] when γ0 is F -elliptic but differs from it
in general.

Define K̃(I0/F ) to be
⋂

v Z(Î0)Γ (v)Z(Ĝ) if F is global and Z(Î0)Γ Z(Ĝ) if F is local.
By unraveling the definition of K(I0/F ) we see that canonically

K(I0/F ) = K̃(I0/F )/Z(Ĝ). (2.2)

Now suppose that F is global and that γ0 is F -elliptic. In particular K(I0/F ) is a finite
abelian group. Assume that the group homomorphism ker1(F, Z(Ĝ)) ↪→ ker1(F, Z(Î0))
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induced by the canonical Γ -equivariant map Z(Ĝ) ↪→ Z(Î0) is injective (cf. Lemma 4.1).
Then by dualizing the exact sequence on [17, p. 395] we obtain an exact sequence

1 → K(I0/F )D → AF (I0) → AF (G) → 1. (2.3)

2.3. Transfer of conjugacy classes

Let F be local or global and consider (H, s, η) ∈ EF (G). We explain how to transfer
semisimple stable conjugacy classes from H to G. Let γH ∈ H(F̄ ) be a semisimple
element of H. Choose a maximal torus TH of H over F̄ containing γH . As explained in
the paragraph below Remark 2.6, there is a canonical G(F̄ )-conjugacy class of embeddings
j : TH → G. Put γ := j(γH) for one such embedding. The G(F̄ )-conjugacy class of γ is
independent of the choice of TH and j. This G(F̄ )-conjugacy class contains an element
γ0 ∈ G(F ) if G is quasi-split over F , but not in general. If such γ0 ∈ G(F ) exists,
we say that γH transfers to γ0 in G(F ), or that γH and γ0 have matching conjugacy
classes. The association γH �→ γ0 is a partially defined map from the set of semisimple
stable conjugacy classes in H(F ) to the set of semisimple stable conjugacy classes in
G(F ). This map is compatible with isomorphisms between endoscopic triples for G. In
the above process, we may choose TH , and also j if G is quasi-split over F , so that TH

and j are defined over F . (Use [12, Corollary 2.2].)
Let T := j(TH). We have an inclusion R(H, TH) ↪→ R(G, T ) ⊂ X∗(T ) via j.

The semisimple element γH is called (G, H)-regular if α(γH) �= 1 for every α in
R(G, T )\R(H, TH). This notion is independent of the choice of TH and j.

Define SSF (G) (respectively SSell
F (G)) to be the set of equivalence classes of (γ0, κ)

where γ0 ∈ G(F ) is semisimple (respectively elliptic) and κ ∈ KG(I0/F ). Two pairs
(γ0, κ) and (γ′

0, κ
′) are considered equivalent if γ0 ∼st γ′

0 and κ = κ′ via the canonical
isomorphism Z(Î0) � Z(Î ′

0), where I ′
0 := ZG(γ′

0). At this point, assume temporarily that
G is quasi-split over F . Define EQF (G) to be the set of equivalence classes of (endoscopic)
quadruples (H, s, η, γH) where (H, s, η) is an endoscopic triple for G and γH is a (G, H)-
regular semisimple element of H(F ). As we are assuming that Gder is simply connected,
we know that IH := ZH(γH) is connected [17, Lemma 3.2]. The quadruples (H, s, η, γH)
and (H ′, s′, η′, γ′

H) are equivalent if there exists an isomorphism (H, s, η) ∼−→ (H ′, s′, η′)
given by α : H

∼−→ H ′ such that α(γH) is conjugate to γ′
H in H ′(F̄ ) (equivalently, α(γH)

and γ′
H are stably conjugate). Define EQell

F (G) to be the subset of EQF (G) characterized
by the condition that (H, s, η) ∈ Eell

F (G). It is worth noting that I0 and IH are connected
and inner forms of each other [17, § 3]. Observe that γH transfers to some γ0 ∈ G(F )
since G is quasi-split over F . From s ∈ Z(Ĥ) we construct κ ∈ K(I0/F ) by taking the
image of s under Z(Ĥ) ↪→ Z(ÎH) ∼−→ Z(Î0), which lies in K̃(I0/Q). (cf. Remark 2.7.) It is
easy to check that equivalent endoscopic quadruples give rise to equivalent pairs (γ0, κ).
Thus we have defined a map (H, s, η, γH) �→ (γ0, κ) from EQF (G) to SSF (G).

Now drop the assumption that G is quasi-split over F and let G∗ be the quasi-split
inner form of G. Define EQF (G) to be the subset of EQF (G∗) consisting of (H, s, η, γH) ∈
EQF (G) for which γH transfers to a stable conjugacy class in G(F ).
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Remark 2.7. In the situation (H, s, η, γH) �→ (γ0, κ), we will always use the symbol κ̃

to denote the image of s under Z(Ĥ) ↪→ Z(ÎH) ∼−→ Z(Î0). It follows that κ̃ ∈ K̃(I0/Q).
The image of κ̃ in K(I0/Q) is κ.

Lemma 2.8 (Kottwitz [24, Lemma 4.1]). The above map defines a bijection from
EQF (G) to SSF (G) and restricts to a bijection from EQell

F (G) to SSell
F (G). An automor-

phism α : H
∼−→ H inducing a self-equivalence of (H, s, η, γH) ∈ EQF (G) is unique up to

H(F̄ )-conjugacy.

Proof. It was proved in [17, Lemma 9.7] that the map from EQell
F (G) to SSell

F (G) is a
bijection. The general case is proved in the same way. �

As remarked at the end of § 2.1, we will fix a representative for each isomorphism
class of EF (G) from § 5. When working with EQF (G), it is convenient to consider only
those (H, s, η, γH) such that (H, s, η) is in the set of fixed representatives. For any given
(H, s, η, γH), it is easy to see from Lemma 2.8 that there are precisely |OutF (H, s, η)|
stable conjugacy classes of γ′

H ∈ H(F ) (including that of γH itself) such that (H, s, η, γH)
and (H, s, η, γ′

H) are equivalent.

2.4. Endoscopic triples for Levi subgroups

Let M be a Levi subgroup of an F -rational parabolic subgroup of G. In § 2.4 we assume
for simplicity that G is quasi-split over F . Let J denote an inner form of M over F .

Definition 2.9 (Kottwitz [24, Definition 7.1]). A G-endoscopic triple for M

is an endoscopic triple (MH , sH , ηH) for M such that the condition (iii) of Defini-
tion 2.1 holds with MH and G in place of H and G, respectively. An isomorphism
between two G-endoscopic triples (MH , sH , ηH) and (M ′

H , s′
H , η′

H) for M is an iso-
morphism α : MH

∼−→ M ′
H of endoscopic triples for M such that sH and α̂(s′

H) are
equal (not only in Z(M̂H)/Z(M̂) but also) in Z(M̂H)/Z(Ĝ). Denote by EF (M, G) the
set of isomorphism classes of G-endoscopic triples for M . Write AutG

F (MH , sH , ηH)
for the group of automorphisms of (MH , sH , ηH) and define OutG

F (MH , sH , ηH) :=
AutG

F (MH , sH , ηH)/ IntF (MH).
If J is an inner form of M over F , define G-endoscopic triples for J , the notion of

isomorphism, and the set EF (J, G) in an analogous way, by replacing M with J and
using the canonical map Z(Ĝ) ↪→ Z(M̂) ∼−→ Z(Ĵ).

Let γ0 ∈ M(F ) be a semisimple element. Let T be a maximal torus of M over F̄

containing γ0. We say that γ0 is (G, M)-regular if α(γ0) �= 1 for every root α of T

in G which is not a root in M . This notion is independent of the choice of T . Now
suppose that γ0 is (G, M)-regular. Let I0 denote ZM (γ0), which is the same as ZG(γ0).
We have a natural map KG(I0/F ) → KM (I0/F ). (This turns out to be a surjection with
kernel (Z(M̂)/Z(Ĝ))Γ but we do not need this fact.) Suppose that a semisimple element
δ ∈ J(F ) transfers to a (G, M)-regular γ0 ∈ M(F ). It is easy to check that Iδ := ZJ(δ) is
an inner form of I0 over F . Define KG(Iδ/F ), replacing Z(Î0) by Z(Îδ) in the definition
of KG(I0/F ). (There is a canonical Γ -equivariant embedding Z(Ĝ) ↪→ Z(Îδ).) There are
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canonical isomorphisms KG(Iδ/F ) � KG(I0/F ) and KJ(Iδ/F ) � KM (I0/F ) coming from
the canonical Γ -equivariant isomorphism Z(Îδ) � Z(Î0).

Define SSF (M, G) to be the set of equivalence classes of (γ0, κ) where γ0 is a (G, M)-
regular semisimple element of M(F ) and κ belongs to KG(I0/F ). Two pairs (γ0, κ) and
(γ′

0, κ
′) are considered equivalent if γ0 ∼st γ′

0 in M(F ) and κ = κ′ via the canonical
isomorphism Z(Î0) � Z(Î ′

0). The set SSF (J, G) is defined analogously, replacing (γ0, κ)
with (δ, κ) where κ ∈ KG(Iδ/F ) and δ ∈ J(F ) is a semisimple element which transfers to a
(G, M)-regular element of M(F ). There is a natural injection SSF (J, G) ↪→ SSF (M, G)
given by the transfer of stable conjugacy classes.

Define EQF (M, G) to be the set of equivalence classes of (G-endoscopic) quadru-
ples (MH , sH , ηH , γH) where (MH , sH , ηH) is a G-endoscopic triple for M and γH is
an (M, MH)-regular semisimple element of MH(F ) which transfers to a (G, M)-regular
element in M(F ). The quadruples (MH , sH , ηH , γH) and (M ′

H , s′
H , η′

H , γ′
H) are equiva-

lent if there is an isomorphism (MH , sH , ηH) ∼−→ (M ′
H , s′

H , η′
H) by α : MH

∼−→ M ′
H such

that α(γH) is conjugate to γ′
H in M ′

H(F̄ ). For (MH , sH , ηH , γH) ∈ EQF (M, G), put
IMH

:= ZMH
(γH) and suppose that γH transfers to γ0 ∈ M(F ). As before, I0 and IMH

are connected and inner forms of each other, and we may construct κ ∈ KG(I0/F ) as the
image of sH ∈ Z(M̂H). Thus obtain a map (MH , sH , ηH , γH) �→ (γ0, κ) from EQF (M, G)
to SSF (M, G). Now define a subset EQF (J, G) of EQF (M, G) by the following condition:
the image (γ0, κ) of (MH , sH , ηH , γH) is such that γ0 transfers to an element δ ∈ J(F ).
Thus we get a map EQF (J, G) → SSF (J, G) given by (MH , sH , ηH , γH) �→ (δ, κ). There
is an analogue of Lemma 2.8.

Lemma 2.10. The maps that we constructed above are bijections from EQF (M, G)
to SSF (M, G) and from EQF (J, G) to SSF (J, G), respectively. An automorphism α :
MH

∼−→ MH inducing a self-equivalence of (MH , s, η, γH) in EQF (M, G) is unique up to
MH(F̄ )-conjugacy.

Proof. In the case of EQF (M, G) and SSF (M, G), the proof of [17, Lemma 9.7] works
without essential change. The analogous assertion for EQF (J, G) and SSF (J, G) follows
from this. �

2.5. Levi subgroups of L-groups

In this subsection we use the notions and facts covered in [4, §§ 1–3], omitting proofs
most of the time. Choose a Borel subgroup B and a maximal torus T of G over F̄ . Thus
get a based root datum (X∗(T ), ∆, X∗(T ), ∆∨). In particular we are given a bijection
α �→ α∨ from R(G, T ) onto R∨(G, T ) which restricts to a bijection ∆ ↔ ∆∨. Recall that
we choose a Gal(F̄ /F )-invariant splitting data (B, T, {Xα}) to define LG = Ĝ � WF . In
particular LG is equipped with a natural surjection LG � WF .

Definition 2.11. The normalizer P of a parabolic subgroup of Ĝ in LG is called a
parabolic subgroup of LG if P surjects onto WF . A standard parabolic subgroup of LG

is one containing B � WF . If P is a parabolic subgroup of LG, the normalizer in P of a
Levi subgroup of P := P0 (which is a parabolic subgroup of Ĝ) is called a Levi subgroup
of P (or of LG by abuse of terminology).
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The bijection ∆ ↔ ∆∨ induces a natural injection from the set of G(F )-conjugacy
classes of F -rational parabolic subgroups of G to the set of Ĝ-conjugacy classes of
parabolic subgroups of LG. Similarly there is a natural injection from the set of
G(F )-conjugacy classes of F -rational Levi subgroups of G to the set of Ĝ-conjugacy
classes of Levi subgroups of LG [4, 3.3, 3.4]. If G is quasi-split over F then both injec-
tions are bijections. So if the image of an F -embedding iM : M ↪→ G is an F -rational
Levi subgroup of G, then iM determines a Ĝ-conjugacy class of L-embeddings LM ↪→ LG

whose images are Levi subgroups of LG. Let l̃0M : LM ↪→ LG be one such embedding and
put l0M := l̃0M |M̂ .

Lemma 2.12. If lM : M̂ ↪→ Ĝ lies in the Ĝ-conjugacy orbit of l0M then lM can be
extended to an L-embedding l̃M : LM ↪→ LG which is Ĝ-conjugate to l̃0M . Moreover,
the image of any such extension l̃M is the centralizer of lM ((Z(M̂)Γ )0) in LG.

Proof. Let ĝ ∈ Ĝ be such that Int(ĝ) ◦ l0M = lM . Then l̃M := Int(ĝ) ◦ l̃0M is as
desired in the first assertion. Let us prove the second assertion. Let M := l̃M (LM) and
M′ := ZLG(lM ((Z(M̂)Γ )0)). Clearly, M ⊂ M′ and (M′)0 = M0. Moreover, M and M′

are Levi subgroups of LG. This is obvious for M and follows from [4, Lemma 3.5] for
M′. From this it is easy to see that M = M′. �

2.6. Transfer conjecture and the fundamental lemma

In § 2.6 we state the famous transfer conjecture and the fundamental lemma which are
at the heart of the stable trace formula formalism. They are now proved in most cases
by the work of several mathematicians. (See Proposition 2.17 and the remark below it.)

Assume that F is a local field. For each (H, s, η) ∈ Eell
F (G), fix an L-group morphism

η̃ : LH → LG extending η. Such an η̃ exists since Gder is simply connected (see [25,
Proposition 1], cf. [15, 1.8.3]). Consider a (G, H)-regular semisimple element γH ∈ H(F )
and a semisimple element γ0 ∈ G(F ) with matching stable conjugacy classes. There is
a complex-valued function ∆(· , ·)G

H , called the transfer factor and well-defined up to a
constant, defined on any such pair of elements (γH , γ). (See [27] when γH is G-regular
and [28] in general.) The function ∆(· , ·)G

H depends not only on η but also on the choice of
η̃. When there is no danger of confusion, we simply write ∆(· , ·) for ∆(· , ·)G

H . Langlands
and Shelstad proposed the following transfer conjecture. Functions φ and φH as in the
conjecture are called (∆-)matching functions.

Conjecture 2.13 (Kottwitz [17, Conjecture 5.5], cf. Langlands and Shelstad
[28, 2.1]). For each function φ ∈ C∞

c (G(F )), there exists a function φH ∈ C∞
c (H(F ))

such that for every (G, H)-regular semisimple element γH ∈ H(F ), if γH transfers to
γ0 ∈ G(F ) in the sense of § 2.3, we have

SOH(F )
γH

(φH) =
∑

γ∼stγ0

e(ZG(γ)) · ∆(γH , γ) · OG(F )
γ (φ),

where the sum is taken over a set of representatives for conjugacy classes in the stable
conjugacy class of γ0, and SOH(F )

γH
(φH) = 0 if γH does not transfer to G(F ).
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There is freedom in the choice of ∆(γH , γ). Namely it is fixed only up to a constant.
Nevertheless, once the value of ∆(· , ·) is fixed for one pair (γH , γ), it is determined for
every other pair.

When G is an unramified group over F , there is a more precise conjecture. Suppose that
η̃ is unramified in the sense that it arises from a map Ĥ � W (F ur/F ) → Ĝ � W (F ur/F )
by inflation. (By definition W (F ur/F ) is the free abelian group generated by the Frobe-
nius morphism.) Let KG and KH be hyperspecial maximal compact subgroups of G and
H, respectively. The following is believed to be true under an appropriate normalization
of ∆(γH , γ).

Conjecture 2.14 (fundamental lemma). For any (G, H)-regular semisimple element
γH ∈ H(F ), if γH transfers to γ0 ∈ G(F ) then

SOH(F )
γH

(charKH
) =

∑
γ∼stγ0

e(ZG(γ)) · ∆(γH , γ) · OG(F )
γ (charKG

)

and SOH(F )
γH

(charKH
) = 0 if γH does not transfer to G(F ).

Remark 2.15. As proved in [28, Lemma 2.4.A], the general case of Conjecture 2.13
and 2.14 follows from the special case where γH is G-regular in the sense of [27, 1.3].

Remark 2.16. The map η̃ induces a map

η̃∗ : C∞
c (KG\G(Qp)/KG) → C∞

c (KH\H(Qp)/KH)

of unramified Hecke algebras. A more general version of the fundamental lemma says
that φ and η̃∗(φ) are ∆-matching functions. (Recall that ∆ depends on the choice of η̃.)
The proof of this general version reduces to the case φ = charKG

as proved by Hales [10].

Proposition 2.17. Conjecture 2.13 is true. Conjecture 2.14 is true if the residue char-
acteristic of F is sufficiently large.∗

We briefly remark on the proof of the proposition. Waldspurger showed in [40] and [42]
that Conjectures 2.13 and 2.14 follow from a Lie algebra version of the fundamental
lemma. The proof of the Lie algebra fundamental lemma over F (with charF = 0)
is reduced by [41] to the proof for local fields of positive characteristic if the residue
characteristic of F is large enough. The proof of the last case was recently announced
by Ngô [32]. (In fact it is enough to assume that the residue characteristic of F does
not divide the order of the Weyl group.) This implies Conjecture 2.13 for any F and
Conjecture 2.14 for any F with large residue characteristic. For more details and related
works on the fundamental lemma, we refer to the introduction of [32].

2.7. Transfer between GLn and their inner forms over p-adic fields

The purpose of § 2.7 is to exhibit one of the simplest examples of the Langlands–
Shelstad transfer as well as its interaction with representation theory, in the case of

∗ Michael Harris, as well as Sophie Morel, informed us that the condition on the residue characteristic
can be removed by results of [10].
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general linear groups and their inner forms. The result in this subsection, which is not
new, will not be used in later sections but turns out to be useful for applications (as
in [37]).

Let F be a finite extension of Qp. In this subsection, let G be an F -inner form of
G∗ := GLn. Note that conjugacy classes are the same as stable conjugacy classes in
G(F ) and G∗(F ) by Hilbert 90.

Badulescu defined a morphism LJ = LJG∗(F )
G(F ) from Groth(G∗(F )) to Groth(G(F ))

which is uniquely determined by the character identity [3, Proposition 3.3]

tr LJ(π)(g) = e(G) · trπ(g∗) (2.4)

for every π ∈ Groth(G∗(F )) and every pair of regular semisimple elements g ∈ G(F )
and g∗ ∈ G∗(F ) with matching conjugacy classes. If π ∈ Irr(G∗(F )) is square-integrable,
its image LJ(π) is the inverse image of π under the Jacquet–Langlands correspondence
as in [6]. In general, an irreducible smooth representation of G∗(F ) may not map to an
irreducible representation of G(F ) under LJ.

Lemma 2.18 (cf. [11, Lemma V.5.1]). For each φ ∈ C∞
c (G(F )), there exists a

function φ∗ ∈ C∞
c (G∗(F )) such that

(i) for any pair of semisimple elements γ ∈ G(F ), γ∗ ∈ G∗(F ) with matching conjugacy
classes,

OG(F )
γ (φ) = e(G) · e(ZG(γ)) · OG∗(F )

γ∗ (φ∗),

where Haar measures are chosen to be compatible between the inner forms G(F )
and G∗(F ) (respectively ZG(γ)(F ) and ZG∗(γ∗)(F )), and OG∗(F )

γ∗ (φ∗) = 0 if a
semisimple γ∗ ∈ G∗(F ) does not transfer to G(F );

(ii) for any π∗ ∈ Groth(G∗(F )),

tr LJ(π∗)(φ) = trπ∗(φ∗).

Remark 2.19. Lemma 2.18 admits an obvious generalization to the case where G is an
inner form of a product of general linear groups.

Remark 2.20. Note that (G∗, 1, id) is an endoscopic triple for G. Part (i) of the lemma
is a basic example of Conjecture 2.13, with the normalization ∆(· , ·)G

G∗ ≡ e(G).

Proof. By [6, Theorem B.2.c], we may choose φ∗ ∈ C∞
c (G∗(F )) such that (i) holds,

but we need to account for the sign difference. Our sign convention is different from that
of [6] because we use compatible measures in the sense of [18, p. 631]. The ratio of the
measures on G(F ) and G∗(F ) in our case differs by e(G) from that in [6], which explains
the appearance of e(G). The extra sign factor e(ZG(γ)) comes from the fact that we
choose compatible measures on ZG(γ)(F ) and ZG∗(γ∗)(F ) in (i).

It remains to verify (ii). Recall the Weyl integration formula in the notation of [11,
p. 189]

trπ(φ) =
∑
T

|WG(T )|−1
∫

T reg
DG(t)OG(F )

t (φ) trπ(t) dt,

https://doi.org/10.1017/S1474748010000046 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000046


862 S. W. Shin

where the sum runs over G(F )-conjugacy classes of maximal tori T in G(F ). A similar
formula holds for π∗ and G∗. Using part (i) and the fact that tr LJ(π∗)(t) = e(G) trπ∗(t∗)
by (2.4), we deduce that tr LJ(π∗)(φ) = trπ∗(φ∗). �

3. More background

3.1. The sets B(G), N(G) and the Newton maps

In §§ 3.1 and 3.2, let G be a connected reductive group over Qp which is quasi-split. Choose
a maximal torus T of G defined over Qp. Let L := FracW (F̄p) and Ls := FracW (Fps)
for s ∈ Z>0. Denote by σ the Frobenius automorphism of L which induces the pth power
map on the residue field. In this section Γ (p) := Gal(Q̄p/Qp). Let D denote the protorus
with character group Q. Define

B(G) = G(L)/ ∼, where x ∼ y ⇔ ∃g ∈ G(L), x = g−1ygσ,

N(G) = (IntG(L)\ HomL(D, G))〈σ〉 � (X∗(T )Q/Ω)Γ (p),

where Ω is the Weyl group for T in G over F̄ . There is a map

νG : G(L) → HomL(D, G)

characterized by various properties (see [33, Theorem 1.8] and [16, § 4]) which induces
the Newton map ν̄G : B(G) → N(G). The sets B(G), N(G) and the maps νG, ν̄G are
functorial in G. Moreover, ν̄G fits into the commutative diagram (3.1) below, which is
functorial in G. The first (respectively second) row of (3.1) is exact in the middle in the
sense of pointed sets (respectively abelian groups). See [33, Theorem 1.15] about these
facts and the maps in the diagram:

H1(Qp, G) ��

∼
��

B(G)
ν̄G ��

κG

��

N(G)

δG

��
π0(Z(Ĝ)Γ (p))D �� X∗(Z(Ĝ)Γ (p))

ρG �� X∗(Z(Ĝ))Γ (p) ⊗Z Q

(3.1)

3.2. The groups Mb and Jb

An element b̃ ∈ G(L) is called decent [34, Definition 1.8] if for some s ∈ Z>0, sνG(b̃)
arises from a morphism Gm → G and

b̃σ(b̃) · · ·σs−1(b̃) = sνG(b̃)(p). (3.2)

In particular this implies that b̃ ∈ G(Ls). Recall that b̃ ∈ G(L) is called basic [16, § 5.1]
if νG(b̃) : D → G factors through Z(G). Any b ∈ B(G) is basic if it has a representative
b̃ ∈ G(L) which is basic.

Fix b ∈ B(G) for the moment. It is possible to choose a decent representative b̃ of
b such that νG(b̃) is defined over Qp (see § 4.3 and p. 219 of [16]). Write Mb̃ for the
centralizer of νG(b̃), which is a Qp-rational Levi subgroup of G. In fact b gives rise to a
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basic element of B(Mb̃) [16, Proposition 6.2]. We may and will arrange that b̃ ∈ Mb̃(L)
and that b̃ is a basic decent element of Mb̃(L). Fix s ∈ Z>0 which satisfies (3.2) for b̃.

Define a Qp-group Jb̃ by

Jb̃(R) = {g ∈ G(L ⊗Qp
R) | g = b̃σ(g)b̃−1}

for any Qp-algebra R. The representability of Jb̃ is shown in [34, 1.12]. We will often
use the fact that Jb̃ is an inner form of Mb̃ represented by the cocycle σ �→ Int(b̃) in
H1(Ls/Qp, Int(Mb̃)) (cf. [36, Lemma 4.2]). We may and will fix a choice of an Ls-
isomorphism ψ : Jb̃

∼−→ Mb̃ such that ψψ−σ = Int(b̃). (The Mb̃(Q̄p)-conjugacy class of ψ

is canonical.) This allows us to embed Jb̃ into G over Q̄p by Jb̃ � Mb̃ ↪→ G. If b̃′ is another
choice for b̃, then there exists g ∈ G(Qp) such that Mb̃′ = gMb̃g

−1 and b̃′ = gb̃g−1 [16,
Proposition 6.3].

From now on we fix the choice of a decent b̃ for each b ∈ B(G) and will write Jb,
Mb and νb for Jb̃, Mb̃ and νG(b̃) for simplicity of notation. It is easy to see from the
previous discussion that the G(Qp)-conjugacy class of the Qp-embedding Mb ↪→ G and
the G(Q̄p)-conjugacy class of the Q̄p-embedding Jb ↪→ G are canonical in that they are
independent of the choice of b̃.

3.3. Acceptable elements

Consider a triple (G0, ν, M0) such that

(i) G0 is a connected reductive group over Qp;

(ii) ν : D → G0 is defined over Qp;

(iii) M0 is the centralizer of ν in G0 (thus a Qp-rational Levi subgroup of G0).

For any maximal torus T0 of M0 over Q̄p, the map ν may be viewed as an element of
X∗(T0)Q. Choose s ∈ Z>0 such that sν ∈ X∗(T0). We assume that

for every α ∈ R(G0, T0)\R(M0, T0), we have vp(α(sν(p))) �= 0. (�)

If condition (�) is verified for some T0 and s then it is also true for any other choice
of T0 and s. For α ∈ R(G0, T0), condition (iii) implies that 〈α, ν〉 = 0 if and only if
α ∈ R(M0, T0).

Definition 3.1. A semisimple element γ0 ∈ M0(Qp) is said to be ν-acceptable if the
following condition is verified: for every α in R(G0, T0)\R(M0, T0), we have 〈α, ν〉 > 0 if
and only if α(γ0) ∈ Q̄×

p has positive (additive) p-adic valuation. An arbitrary element γ0 ∈
M0(Qp) is said to be ν-acceptable if the semisimple part of γ0 in the Jordan decomposition
is ν-acceptable.

Whether γ0 is ν-acceptable is independent of the choice of T0. If γ0, γ
′
0 ∈ M0(Qp) are

M0(Q̄p)-conjugate, then γ0 is ν-acceptable if and only if γ′
0 is. So it makes sense to ask

whether a stable or M0(Q̄p)-conjugacy class in M0(Qp) is ν-acceptable. Let J0 be an
inner form of M0 over F .
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Definition 3.2. For an element δ ∈ J0(Qp), let δs denote its semisimple part. We say
that δ is ν-acceptable if the stable conjugacy class of δs transfers to a ν-acceptable stable
conjugacy class in M0(Qp) (via the transfer between inner forms).

Remark 3.3. This definition coincides with the one given in [36, Definition 6.1].

Denote by P (ν) the unique Qp-rational parabolic subgroup of G0 containing M0 as a
Levi subgroup such that α ∈ R(G0, T0)\R(M0, T0) satisfies 〈α, ν〉 < 0 exactly when α is
a positive root with respect to P (ν). The following lemma is obvious.

Lemma 3.4. If γ0 ∈ M0(Qp) is ν-acceptable, then γ0 is (G0, M0)-regular (§ 2.4) and
|DG0

M0
(γ0)|p = δP (ν)(γ0). The set of all ν-acceptable elements is open in M0(Qp).

We record a few other useful lemmas. (We do not assume that the derived subgroups
of G0 and M0 are simply connected.∗ This does not bother us as we are concerned with
elements with connected centralizers when it comes to applications.)

Lemma 3.5. Let m ∈ M0(Qp) be a (G0, M0)-regular semisimple element. (For instance,
m may be any ν-acceptable semisimple element by the preceding lemma.) The inclusion
M0 ↪→ G0 induces a bijection from the set of M0(Qp)-conjugacy classes in the stable
conjugacy class (in M0) of m to that of G0(Qp)-conjugacy classes in the stable conjugacy
class (in G0) of m.

Proof. Set I := ZM0(m)0. We know I = ZG0(m)0. The first assertion is equivalent to
the statement that the natural map

ker(H1(Qp, I) → H1(Qp, M0)) → ker(H1(Qp, I) → H1(Qp, G0))

is a bijection. We will prove that the map H1(Qp, M0) → H1(Qp, G0) given by
M0 ↪→ G0 is an injection of sets. Since H1(Qp, P (ν)) → H1(Qp, G0) is an injection [35,
III.2.1.Exercise 1], it suffices to show that H1(Qp, M0) → H1(Qp, P (ν)) is an injection.
Let U be the unipotent radical of P (ν). Since the composition M0 ↪→ P (ν) � P (ν)/U

is an isomorphism, the composition

H1(Qp, M0) → H1(Qp, P (ν)) → H1(Qp, P (ν)/U)

is a bijection and the proof is complete. �

Lemma 3.6. If ν-acceptable semisimple elements m, m′ ∈ M0(Qp) are conjugate in
G0(Q̄p) then m and m′ are conjugate in M0(Q̄p).

Remark 3.7. Lemma 3.6 fails if m, m′ are assumed not ν-acceptable but only (G0, M0)-
regular. A counterexample can be given when M0 = GL1 × GL1 is the diagonal torus of
G0 = GL2, by taking m = (1,−1) and m′ = (−1, 1).

∗ In § 6, the role of G0 is played by H, for instance. For a PEL datum of type (C) (namely when the
group G of § 4.1 is a sympletic similitude group), Hder is usually not simply connected.
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Proof. Let g0 ∈ G0(Qp) be such that m′ = g0mg−1
0 and choose maximal tori T0 and T ′

0
of M0 over Q̄p containing m and m′ respectively. The proof is easily reduced to the case
where T0 = T ′

0 and g0T0g
−1
0 = T0. Then Int(g0) acts on X∗(T0) in the same way as some

w ∈ Ω(G0, T0). As m and m′ are ν-acceptable and conjugate under g0, it follows that w

must preserve the parabolic subgroup P (ν). This proves w ∈ Ω(M0, T0). Therefore, m

and m′ are M0(Q̄p)-conjugate. �

Corollary 3.8. Let m ∈ M0(Qp) be a semisimple element such that ZM0(m) is con-
nected. In the G0(Qp)-conjugacy class of m, there is at most one M0(Qp)-conjugacy class
which is ν-acceptable.

Proof. Immediate consequence of Lemma 3.5 and Lemma 3.6. (Recall that if ZM0(m)
is connected, the stable conjugacy class of m is the same as the M0(Q̄p)-conjugacy class
of m by definition.) �

The discussion so far may be applied to (G, νb, Mb) of § 3.2 as the conditions (i)–(iii)
and (�) are clearly satisfied. So we can make sense of νb-acceptable elements in Mb(Qp)
and Jb(Qp) as well as the parabolic subgroup P (νb) of G. Another example is given by
(H, iνMH

, MH) of § 6.3.

3.4. A lemma on the transfer of functions

Let (G0, ν, M0) be a triple as in § 3.3. Fix Haar measures on G0 and M0.

Lemma 3.9. Suppose that φ ∈ C∞
c (M0(Qp)) is supported on ν-acceptable elements

and that OM0(Qp)
m (φ) = 0 whenever m is a semisimple element such that ZM0(m) is not

connected. Then there exists a function φ̃ ∈ C∞
c (G0(Qp)) such that

(i) for any semisimple element g ∈ G0(Qp),

OG0(Qp)
g (φ̃) = δP (ν)(m)−1 · OM0(Qp)

m (φ)

if there exists a ν-acceptable element m ∈ M0(Qp) which is conjugate to g in
G0(Qp) (if so, m is unique up to M0(Qp)-conjugacy), and

OG0(Qp)
g (φ̃) = 0

otherwise; if m is ν-acceptable and m ∼ g in G0(Qp) then we choose compatible
Haar measures on ZM0(m)0(Qp) and ZG0(g)0(Qp), which are isomorphic; and

(ii) for any π ∈ Irr(G0(Qp)),

trπ(φ̃) = trJG0
P (ν)op(π)(φ).

Proof. In [11, Lemma V.5.2] the above lemma is proved when G0 is a general linear
group and M0 is the Levi subgroup of a maximal parabolic subgroup of G0. As the same
argument works in our case we only sketch the proof indicating the necessary changes
that should be made.
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Define a function φ0 ∈ C∞
c (M0(Qp)) by φ0 := φ · δ−1

P (ν) and a function W on G0(Qp)
by

W (g) :=
∑
m

OM0(Qp)
m (φ0),

where m runs over a set of representatives for M0(Qp)-conjugacy classes contained in
the G0(Qp)-conjugacy class of g. The main step for (i), whose proof will be omitted
as it is essentially the same as in [11, Lemma V.5.2], is to prove that W satisfies the
characterizing properties of orbital integrals in [39, Theorem B]. It is worth noting that
for the proof we need to make use of the fact that φ0 ∈ C∞

c (M0(Qp)) is supported on ν-
acceptable elements. As a result of the main step there exists a function φ̃ ∈ C∞

c (G0(Qp))
such that W (g) = OG0(Qp)

g (φ̃). Corollary 3.8 finishes the proof of (i).
Part (ii) follows from part (i) combined with Lemma 3.4, the Weyl integration formula

and [5, Theorem 5.2]. One may argue exactly as in [11, p. 189–190], noting that there is
a difference by δ−1

P (ν) between our normalization and theirs as we replaced φ with φ0 in
the course of the proof. �

Corollary 3.10. Let φ and φ̃ be as in Lemma 3.9. Let g ∈ G0(Qp) be a semisimple
element. If there is no ν-acceptable element m ∈ M0(Qp) such that m ∼st g in G0(Qp)
then SOG0(Qp)

g (φ̃) = 0. If there does exist such an element m,

SOG0(Qp)
g (φ̃) = δP (ν)(m)−1 · SOM0(Qp)

m (φ),

where compatible Haar measures are chosen on ZM0(m)0(Qp) and ZG0(g)0(Qp).

Proof. Immediate from Lemma 3.5 and Lemma 3.9. �

4. Pre-stabilized counting point formula

In this section we recall the definition of Igusa varieties and related notions. We state
the ‘counting point’ formula for Igusa varieties in § 4.4. We fix a prime p once and for
all, until the end of the paper.

4.1. Igusa varieties

We give a brief summary of the material covered in [36, § 5] (see also [29]). Consider
a tuple (B, ∗, V, 〈· , ·〉, h), called a PEL (Shimura) datum, where

• B is a finite-dimensional simple Q-algebra,

• ∗ is a positive involution on B,

• V is a finite semisimple B-module,

• 〈· , ·〉 : V × V → Q is a non-degenerate alternate pairing such that 〈bv1, v2〉 =
〈v1, b

∗v2〉 for all b ∈ B, v1, v2 ∈ V , and
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• h : C → EndB(V )R is an R-algebra homomorphism such that ∀z ∈ C, h(zc) =
h(z)∗ and that the bilinear pairing (v, w) �→ 〈v, h(i)w〉 is symmetric and positive
definite.

Put F := Z(B) and define a Q-group G by the relation

G(R) = {g ∈ EndB⊗QR(V ⊗Q R) | ∃�(g) ∈ R×,

〈gv1, gv2〉 = �(g)〈v1, v2〉 for all v1, v2 ∈ V ⊗Q R}

for any Q-algebra R. We define a C-group morphism µ = µh : Gm → G as the composite

C× ↪→ C× × C× � (C ⊗R C)× (h,id)−−−→ (EndB(V ) ⊗Q C)×,

where the first map is z �→ (z, 1) and the inverse of the second map is induced by the
algebra map given by z1 ⊗ z2 �→ (z1z2, z1z̄2). Often µ is viewed as a Q̄p-morphism by
making a choice of ιp : Q̄p � C. The datum (B, ∗, V, 〈· , ·〉, h) falls into type (A), (C)
or (D) [21, § 5]. We will consider only type (A) and (C) throughout this paper. This has
the following consequences.

• Gder and Ĝder are simply connected. So are Mder and M̂der for each Qp-Levi sub-
group M of GQp

.

• GR has an elliptic torus and (AG)R = AGR
canonically.

• For any semisimple γ0 ∈ G(Q) and I0 := ZG(γ0), the canonical map

ker1(Q, Z(Ĝ)) → ker1(Q, Z(Î0))

is injective.

Lemma 4.1. The last assertion in the list above is true.

Proof. Write Iab
0 := I0/Ider

0 and Gab := G/Gder. It suffices to prove that ker1(Q, Iab
0 ) →

ker1(Q, Gab) is surjective by dualization [14, (1.8.3), (4.2.2)]. The following commutative
diagram is induced by the obvious commutative diagram of morphisms between groups:

ker1(Q, Z(G)) ��

��

ker1(Q, G) �� ker1(Q, Gab)

ker1(Q, Z(I0)) �� ker1(Q, I0) ��

��

ker1(Q, Iab
0 )

��

The right arrow in the top row is a bijection by [14, Lemma 4.3.1]. According to [21,
p. 393–394], ker1(Q, G) = 1 or ker1(Q, Z(G)) → ker1(Q, G) is a bijection. Therefore,
ker1(Q, Iab

0 ) → ker1(Q, Gab) is surjective. �
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The PEL datum determines a Shimura variety Sh which is a projective system of quasi-
projective varieties ShU defined over the reflex field E where U runs over sufficiently small
open compact subgroups of G(A∞) [21, § 5]. Here E is a number field determined by the
PEL datum. Let ξ be a finite-dimensional irreducible representation of G over Q̄l. We
obtain from ξ an l-adic local system Lξ on each ShU .

We suppose that (B, ∗, V, 〈· , ·〉, h) can be extended to a p-unramified integral Shimura
datum [36, Definition 5.2] and fix one such extension. In particular p is unramified in F

and GQp is unramified. The p-unramified integral Shimura datum determines a hyperspe-
cial subgroup Uhs

p of GQp
. The Shimura variety ShUp := ShUp×Uhs

p
has an integral model

with smooth fibre ShUp over F̄p, which in turn has a Newton polygon stratification

ShUp =
∐
b

Sh
(b)
Up

parametrized by b ∈ B(GQp ,−µ).
From here on, fix b once and for all and also fix a representative b̃ as in § 3.2. Let Σb be a

Barsotti–Tate group over F̄p of isogeny type b, satisfying the additional conditions (i)–(iv)
in § 5 of [36]. We briefly remark that Σb comes equipped with the compatible structure
of a Qp-algebra morphism B ⊗Q Qp ↪→ End(Σb) ⊗Zp Qp and a polarization Σb → Σ∨

b ,
and that Jb(Qp) is isomorphic to the group of self-quasi-isogenies of Σb preserving these
additional structures [36, Lemma 4.14]. The Igusa variety IgΣb

is a projective system
{IgΣb,Up,m} over open compact subgroups Up (which are small enough) and positive
integers m. Each IgΣb,Up,m is a finite Galois covering of the locus in Sh

(b)
Up where the fibres

of the universal abelian scheme have their associated Barsotti–Tate groups isomorphic
to Σb. The representation ξ determines an l-adic local system on each IgΣb,Up,m, to be
written as Lξ by abuse of notation. Define

Hc(IgΣb
,Lξ) :=

∑
k

(−1)k lim−→
Up,m

Hk
c (IgΣb,Up,m,Lξ),

where we use the étale cohomology with compact support. As the summand is an admis-
sible representation of G(A∞,p)×Jb(Qp) for each k, we may view Hc(Igb,Lξ) as a virtual
representation in Groth(G(A∞,p) × Jb(Qp)).

4.2. Kottwitz triples and Kottwitz invariant

Definition 4.2. By a Kottwitz triple (of type b), we mean a triple (γ0; γ, δ) where

• γ0 ∈ G(Q) is semisimple, and elliptic in G(R),

• γ ∈ G(A∞,p) and γ ∼ γ0 in G(Ā∞,p),

• δ ∈ Jb(Qp) is νb-acceptable and δ ∼ γ0 in G(Q̄p) via any Q̄p-embedding Jb ↪→ G

whose G(Q̄p)-conjugacy class is canonical (§ 3.2); we will simply write δ ∼st γ0 for
the last condition.

Two triples (γ0; γ, δ) and (γ′
0; γ

′, δ′) are considered equivalent if γ0 ∼st γ′
0 in G(Q),

γ ∼ γ′ in G(A∞,p), and δ ∼ δ′ in Jb(Qp).
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Let (γ0; γ, δ) be a Kottwitz triple. We briefly recall the definition of α(γ0, γ, δ) ∈
K(I0/Q)D, leaving details to [36, § 10]. For each place v of Q, we can define αv(γ0; γ, δ) ∈
X∗(Z(Î0)Γ (v)), which will be written temporarily as αv for simplicity. For v �= p, ∞, the
invariant αv equals invv(γ0, γv) of [19, p. 169]. The definition of αp is reproduced below
in § 4.3. See [36, § 10] for α∞.

Recall that αp (respectively α∞) restricts to −µ1 in X∗(Z(Ĝ)Γ (p)) (respectively µ1 in
X∗(Z(Ĝ)Γ (∞))). Also note that αv|Z(Ĝ)Γ (v) is trivial for v �= p, ∞. For each place v

we extend αv to an element α̃v of X∗(Z(Î0)Γ (v)Z(Ĝ)) such that

α̃v(γ0, γ, δ)|Z(Ĝ) =

⎧⎪⎨⎪⎩
1 if v �= p, ∞,

−µ1 if v = p,

µ1 if v = ∞.

(4.1)

In view of (2.2), we make the following definition. It makes sense to view α̃v (v �= p, ∞)
and α̃pα̃∞ as characters of K(I0/Q) since each of them is trivial on Z(Ĝ):

α(γ0; γ, δ) :=
( ∏

v 
=p,∞
α̃v|K(I0/Q)

)
· (α̃pα̃∞)|K(I0/Q). (4.2)

To clarify what input α̃ depends on, it is helpful to write α̃v (v �= p, ∞), α̃p, α̃∞ as
α̃v(γ0, γ) (v �= p, ∞), α̃p(γ0, δ), α̃∞(γ0), respectively. Put αv(γ0; γ) := α̃v|K(I0/Q).

If (γ0; γ, δ) and (γ′
0; γ

′, δ′) are equivalent then I0 and I ′
0 := ZG(γ′

0) are inner forms over
Q. In that case α(γ0; γ, δ) and α(γ′

0; γ
′, δ′) are identified using the canonical Γ -equivariant

isomorphism Z(Î0)
∼−→ Z(Î ′

0).
Denote by KTb the set of equivalence classes of Kottwitz triples. Let KTeff

b denote the
subset of KTb consisting of (γ0; γ, δ) such that α(γ0; γ, δ) is trivial.

4.3. Definition of α̃p(γ0, δ)

We will give a definition of the Kottwitz invariant at p which is convenient for our
purpose. It is not hard to see that our definition is equivalent to the one given by [36,
§ 10]. Let us freely use the notation of § 3.2. In particular, ψ : Jb

∼−→ Mb is an isomorphism
over Ls and satisfies ψψ−σ = Int(b̃). Let (γ0; γ, δ) ∈ KTb such that γ0 ∈ Mb(Qp). Then
there exists y ∈ Mb(L) such that ψ(δ) = yγ0y

−1. (First find x ∈ Mb(L̄) such that
ψ(δ) = xγ0x

−1. Since Steinberg’s vanishing theorem says H1(L, I0) = 1, we can replace
x by some y ∈ Mb(L).) In fact, we could find y in Mder

b (L) by the same argument. It is
easy to see that b̃δ := y−1b̃yσ belongs to I0(L), thus yields an element bδ ∈ B(I0), which
is independent of the choice of y. Define

αp(γ0, δ) := κI0(bδ).

Lemma 4.3. The above element bδ is basic in B(I0).

Proof. Clearly, bδ maps to b under the map B(I0) → B(Mb) induced by the inclusion
I0 ↪→ Mb. Since b is basic in B(Mb) (as noted in § 3.2), bδ must be basic in B(I0). The
last implication easily follows from [33, Proposition 1.12.(i)]. �
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4.4. Point-counting formula for Igusa varieties

Put Khs
p := Uhs

p (§ 4.1). For each finite place v �= p where GQv is unramified, choose
a hyperspecial subgroup Khs

v ⊂ G(Qv). These data enable us to define C∞
c (G(A∞,p) ×

Jb(Qp)) via restricted product. An acceptable function φ ∈ C∞
c (G(A∞,p) × Jb(Qp)) is

defined in [36, Definition 6.2] to be a finite linear combination of functions of the form
φp × φp such that φp is supported on νb-acceptable elements of Jb(Qp) and a few other
conditions hold. These other conditions ensure that Fujiwara’s fixed point formula (also
known as Deligne’s conjecture) for algebraic correspondences is applicable in the course
of the proof of Theorem 4.4, but do not concern us in the stabilization process. In this
section φ takes values in Q̄l, but will have values in C starting from § 5.

We introduce some notation. Let γ0 ∈ G(Q) be an R-elliptic semisimple element. Write
I0 for ZG(γ0) as usual and I∞ for a compact-mod-centre inner form of I0 over R. Denote
by I0(A)1 the kernel of the map I0(A) → R×

>0 given by x �→ |�(x)|A× where � : G → Gm

is the multiplier map. Define G(A)1 similarly and set G(R)1 := G(A)1 ∩ G(R).
Let us explain the choice of Haar measures in Theorem 4.4 below. Fix Haar measures on

G(A∞,p) and Jb(Qp) once and for all. Choose the Tamagawa measure on I0(A)1 and any
Haar measure on I0(R)1, and give I0(A∞) the quotient measure via the exact sequence

1 → I0(R)1 → I0(A)1 → I0(A∞) → 1.

Haar measures on ZG(γ)(Qv) (v �= p, ∞), Iδ(Qp) and I∞(R)1 are defined compatibly
with those on I0(Qv), I0(Qp) and I0(R)1, respectively. (In fact, our notation G(A)1

coincides with that of [2, p. 16], where Arthur gives a natural decomposition G(A) =
G(A)1 × AG(R)0. In our case AG(R)0 � R×

>0. The same applies to I0 in place of G.)

Theorem 4.4 (Shin [36, Theorem 13.1]). If φ ∈ C∞
c (G(A∞,p)×Jb(Qp)) is acceptable,

then

tr(φ | Hc(IgΣb
,Lξ))

=
∑

(γ0;γ,δ)∈KTeff
b

vol(I∞(R)1)−1|AQ(I0)| · tr ξ(γ0) · OG(A∞,p)×Jb(Qp)
(γ,δ) (φ). (4.3)

Even though Theorem 4.4 is valid with any Haar measures on G(A∞,p) and Jb(Qp), we
make a particular choice of measures for future convenience. Choose Haar measures µv on
G(Qv) for each v so that whenever GQv

is unramified, µv(Khs
v ) = 1. For any finite set S of

places of Q, take the Haar measure
∏

v/∈S µv on G(AS). Choose the Tamagawa measure
on G(A)1. The measure on G(R)1 is determined by the condition that the quotient
measure on G(A∞) via the exact sequence 1 → G(R)1 → G(A)1 → G(A∞) → 1 is equal
to

∏
v 
=∞ µv. We can arrange that the measure on G(R) induces the usual measure dx/x

on AG(R)0 = R×
>0 via the exact sequence 1 → G(R)1 → G(R) → AG(R)0 → 1. The Haar

measure on Mb(Qp) is chosen such that Khs
p ∩ Mb(Qp) has measure 1. The measure on

Jb(Qp) is chosen to be compatible with that on Mb(Qp).
With Theorem 4.4 as a starting point, our main goal is to obtain a stable trace formula

for tr(ϕ|Hc(IgΣb
,Lξ)). This means that we rewrite the right-hand side of (4.3) in terms

of stable orbital integrals on elliptic endoscopic groups for G.
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5. Stabilization away from p

In this section, we assume that the function φ ∈ C∞
c (G(A∞,p) × Jb(Qp)) is acceptable

and has the form

φ =
∏

v 
=∞
φv for φv ∈ C∞

c (G(Qv)) (v �= p, ∞), φp ∈ C∞
c (Jb(Qp)). (5.1)

Put φp :=
∏

v 
=p,∞ φv. From here on, every test function including φ will assume values
in C (rather than Q̄l). Fix ιl : Q̄l

∼−→ C once and for all.

5.1. A first step in stabilization

We know from (1.2) and (2.3) (cf. Lemma 4.1) that

|AQ(I0)| · |K(I0/Q)|−1 = τ(G) · |ker1(Q, G)|.

As K(I0/Q) is a finite abelian group, we have

|K(I0/Q)|−1
∑

κ∈K(I0/Q)

〈α(γ0; γ, δ), κ〉 =

{
1, α(γ0; γ, δ) is trivial,

0, otherwise.

Hence (4.3) can be rewritten as

tr(φ|ιlHc(IgΣb
,Lξ)) = τ(G)|ker1(Q, G)|

∑
(γ0;γ,δ)∈KTb

vol(I∞(R)1)−1

×
∑

κ∈K(I0/Q)

〈α(γ0; γ, δ), κ〉 tr ξ(γ0) · OG(A∞,p)×Jb(Qp)
(γ,δ) (φ).

(5.2)

As remarked in § 2.1, we fix once and for all a representative (H, s, η) in each isomor-
phism class of elliptic endoscopic triples for G and view Eell(G) as the set of such repre-
sentatives. For each (H, s, η) ∈ Eell(G), we also fix an L-group morphism η̃ : LH → LG

extending η once and for all. Fix Haar measures on H(Qv) for each v in the same way
as we did for G(Qv) in the paragraph below Theorem 4.4.

Each pair (γ0, κ) in the sum of (5.2) can be viewed as an element of SSell(G), which cor-
responds by Lemma 2.8 to (H, s, η, γH) whose isomorphism class in EQell(G) is uniquely
determined. Define κ̃ ∈ K̃(I0/Q) as in Remark 2.7. By (4.2),

〈α(γ0; γ, δ), κ〉 =
( ∏

v 
=p,∞
〈αv(γ0, γ), κ〉

)
〈α̃p(γ0, δ), κ̃〉〈α̃∞(γ0), κ̃〉.

If v is a finite place where G is unramified (except finitely many v with small residue
characteristics), the transfer factor ∆v(γH , γ0) is pinned down by the formula in Conjec-
ture 2.14 (with K = Qv) as the relevant Haar measures are fixed. At the other places v,
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the factors ∆v(γH , γ0) are well-defined only up to constant, but will be chosen compatibly
so that the following global constraint is satisfied whenever γ0 ∈ G(Q) [27, § 6]:∏

v

∆v(γH , γ0) = 1. (5.3)

Note that ∆v(γH , γ0) �= 1 for only finitely many v. For any γ′ ∈ G(A) such that γ′ ∼ γ0

in G(Ā), transfer factors satisfy

∆v(γH , γ′) = 〈invv(γ0, γ
′), κ〉∆v(γH , γ0). (5.4)

Put Iδ := ZJb
(δ) and Iv := ZGQv

(γ) for v �= p, ∞.

Lemma 5.1. Suppose that (γ0; γ, δ) ∈ KTb. Then ev(Iv) = 1 for all but finitely many
v �= p, ∞. If moreover α(γ0; γ, δ) is trivial, then( ∏

v 
=p,∞
ev(Iv)

)
ep(Iδ)e∞(I∞) = 1.

Proof. As (I0)Qv is isomorphic to Iv for all but finitely many v �= p, ∞, the first asser-
tion is verified. Now assume that α(γ0; γ, δ) is trivial. By Lemma 12.3 of [36], there is
((A, λ, i), [a]) ∈ FPAV

b corresponding to (γ0; γ, δ) in the notation there. Take the Q-group
I ′ to be the centralizer of a in End0

B(A). Then we see that I ′
Qv

is isomorphic to Iv, Iδ and
I∞ when v �= p, ∞, v = p and v = ∞, respectively. It is a standard fact [13, Proposition,
p. 297] that

∏
v ev(I ′

Qv
) = 1. �

Let SSKT(G) denote the subset of SS(G) consisting of the pairs (γ0, κ) for which
there exist γ and δ such that (γ0; γ, δ) ∈ KTb. Observe that SSKT(G) ⊂ SSell(G). Let
∆p(γH , γ0) denote

∏
v 
=p,∞ ∆v(γH , γ0). To break up the summand of (5.2) into three

parts, we consider pairs (γ0, κ) ∈ SSKT(G) and make the following definitions:

Op(γ0, κ, φp) := ∆p(γH , γ0) ·
∏

v 
=p,∞

∑
γv∼stγ0

〈αv(γ0, γ), κ〉−1 · ev(Iv) · OG(Qv)
γv

(φv),

Op(γ0, κ̃, φp) := ∆p(γH , γ0) ·
∑

δ∼stγ0

〈α̃p(γ0, δ), κ̃〉−1 · ep(Iδ) · OJb(Qp)
δ (φp),

O∞(γ0, κ̃) := ∆∞(γH , γ0) · vol(I∞(R)1)−1〈α̃∞(γ0), κ̃〉−1 · e∞(I∞) · tr ξ(γ0).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(5.5)

The first (respectively second) sum in (5.5) runs over the set of semisimple conjugacy
classes of γv in G(Qv) (respectively δ in Jb(Qp)). We generalize the definition in (5.5) to
the case where (γ0, κ) is contained in SS(G) but not necessarily in SSKT(G), as follows.
The same definition of Op(γ0, κ, φp) works in this generality. The expression Op(γ0, κ̃, φp)
makes sense if we define Op(γ0, κ̃, φp) := 0 in case there is no δ such that δ ∼st γ0. Finally,
O∞(γ0, κ̃) makes sense if γ0 is elliptic in G(R) and is defined to be zero otherwise.

By (5.2), (5.3), (5.5) and Lemma 5.1, we have

tr(φ|ιlHc(IgΣb
,Lξ))

= τ(G)|ker1(Q, G)|
∑

(γ0,κ)∈SSKT(G)

Op(γ0, κ, φp)Op(γ0, κ̃, φp)O∞(γ0, κ̃). (5.6)
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The right-hand side does not get new contributions if the sum is taken over all (γ0, κ) in
SSell(G), or in SS(G).

5.2. The functions hH,p and hH
∞

As before, let (H, s, η) ∈ Eell(G). The reference for this subsection is [19, pp. 178–179,
182–186], where Kottwitz works out stabilization for the terms away from p assuming the
validity of Conjecture 2.13 and 2.14 (cf. Proposition 2.17). His method may be adapted
to stabilize our terms away from p without change. We state the results of Kottwitz on
the functions hH,p and hH

∞, which are needed to stabilize (5.6).
Since αv(γ0, γv) equals invv(γ0, γv) for v �= p, ∞,

∆p(γH , γ0) ·
∏

v 
=p,∞
〈αv(γ0, γ), κ〉−1 = ∆p(γH , γ).

(Here we use the Langlands–Shelstad definition of transfer factors whereas invv(· , ·) is as
in [19, § 2].) We write ep(ZG(γ)) :=

∏
v 
=p,∞ ev(ZG(γ)). The usual transfer of κ-orbital

integrals yields the following lemma.

Lemma 5.2. There exists a function hH,p ∈ C∞
c (H(A∞,p)) such that whenever a (G, H)-

regular semisimple γH ∈ H(A∞,p) and a semisimple γ0 ∈ G(A∞,p) have matching stable
conjugacy classes,

SOH(A∞,p)
γH

(hH,p) =
∑

γ∼stγ0

∆p(γH , γ) · ep(ZG(γ)) · OG(A∞,p)
γ (φp) (5.7)

and SOH(A∞,p)
γH

(hH,p) = 0 if the (G, H)-regular semisimple element γH ∈ H(A∞,p) does
not transfer to G(A∞,p). The sum in (5.7) is taken over a set of representatives for
G(A∞,p)-conjugacy classes which are G(Ā∞,p)-conjugate to γ0.

Remark 5.3. If (H, s, η, γH) �→ (γ0, κ) over Q (from EQell(G) to SSell(G)) then the
right-hand side of (5.7) equals Op(γ0, κ, φp) by (5.4).

We explain the construction of hH
∞. Assume that the elliptic maximal tori of GR come

from those of HR; otherwise simply put hH
∞ := 0. Under this assumption there are

canonical isomorphisms among (AG)R, AGR
, (AH)R and AHR

. The representation ξ of G

yields a (quasi-)character χξ : AG(R)0 → C× by restricting the central character of ξ.
Consider the composition

WR → LHR → LGR → L(AG)R,

where the first map is the standard inclusion, the second is given by η̃ and the third by
dualizing AG ↪→ G. The above composition map determines a character of AG(R)0, say
χ. Set χH := χχξ, viewed as a character of AH(R)0 = AG(R)0. Kottwitz constructed
hH

∞ ∈ C∞
c (H(R), χH) as a sum of the pseudo-coefficients of certain discrete series repre-

sentations of H(R) via Shelstad’s theory of real endoscopy. (See [19, p. 186] for the explicit
formula.) In particular hH

∞ is stable cuspidal in the sense of [1, p. 270]. (See [24, § 5.5]
and [19, p. 186] for the fact that hH

∞ transforms under χH .) Observe that if H = G∗ and
η̃ = id then χH = χξ.
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Lemma 5.4. There exists a function hH
∞ ∈ C∞

c (H(R), χH) such that whenever
(H, s, η, γH) �→ (γ0, κ) over R,

SOH(R)
γH

(hH
∞) =

{
O∞(γ0, κ̃), γH : elliptic in H(R),

0, otherwise,
(5.8)

and SOH(R)
γH

(hH
∞) = 0 if the (G, H)-regular semisimple γH does not transfer to G(R).

Remark 5.5. We use the convention of Langlands and Shelstad for transfer factors,
but Kottwitz [19] uses a different normalization from theirs in that he replaces s with
s−1, as explained on p. 178 of that paper. (This is why we put exponents −1 in (5.5),
which are not seen in Kottwitz’s article.) So the formula for hH

∞ on p. 186 of [19] needs
to be adjusted in our situation, but the validity of Lemma 5.4 remains intact. In case of
PEL datum of type (A), we may take s as an order two element so that the distinction
between two conventions disappears.

Remark 5.6. In fact, Kottwitz’s function hH
∞ has the property that SOH(R)

γH
(hH

∞) = 0
for every non-(G, H)-regular semisimple γH [31, Proposition 3.3.4, Remark 3.3.5].

However, Kottwitz’s stabilization method does not work for Op(γ0, κ̃, φp). (Compare
Op(γ0, κ̃, φp) with the right-hand side of the formula (7.3) of [19].)

6. Stabilization at p

Our goal in this section is to rewrite Op(κ̃, γ0, φp) in terms of stable orbital integrals on
endoscopic groups of G. This should be more than an abstract statement. For applications
of our stable trace formula it is necessary to have a reasonably concrete construction of
the test function hH

p on each endoscopic group H.

6.1. Definition of various sets

Define SSef
p (Mb, G) to be the subset of SSp(Mb, G) which contains exactly those

(γ0, κ) such that γ0 ∈ Mb(Qp) is νb-acceptable. Similarly define the subset SSeff
p (Jb, G) of

SSp(Jb, G) so that it consists of the pairs (δ, κ) with νb-acceptable δ. The transfer of stable
conjugacy classes canonically identifies SSeff

p (Jb, G) with a subset of SSef
p (Mb, G), which

will be denoted by SSeff
p (Mb, G). The injection Mb ↪→ G induces a map from SSef

p (Mb, G)
(respectively SSeff

p (Mb, G)) to SSp(G), which is an injection by Lemma 3.6. We denote
the images of SSef

p (Mb, G) and SSeff
p (Mb, G) by SSef

p (G) and SSeff
p (G), respectively.

Let EQef
p (G) (respectively EQeff

p (G)) denote the image of SSef
p (G) (respectively

SSeff
p (G)) under the bijection SSp(G) ↔ EQp(G) in Lemma 2.8. Let EQef

p (Mb, G)
(respectively EQeff

p (Jb, G)) denote the image of SSef
p (Mb, G) (respectively SSeff

p (Jb, G))
under the bijection SSp(Mb, G) ↔ EQp(Mb, G) (respectively SSp(Jb, G) ↔ EQp(Jb, G))
coming from Lemma 2.10. Similarly let EQeff

p (Mb, G) denote the image of SSeff
p (Mb, G).

The sets EQeff
p (Mb, G) and EQeff

p (Jb, G) are canonically identified. The discussion so far
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is put together in the following diagrams:

SSef
p (G)
��

1–1
��

�� 1–1 �� EQef
p (G) (γ0, κ)

��

��

�� �� (H, s, η, γH)

SSef
p (Mb, G) �� 1–1 �� EQef

p (Mb, G) (γ′
0, κ) �� �� (MH , sH , ηH , γMH

)

(6.1)

SSeff
p (G)

��

1–1
��

�� 1–1 �� EQeff
p (G) (γ0, κ)

��

��

�� �� (H, s, η, γH)

SSeff
p (Mb, G) �� 1–1 ��

��

1–1
��

EQeff
p (Mb, G)

��

1–1
��

(γ′
0, κ)
��

��

�� �� (MH , sH , ηH , γMH
)

��

��
SSeff

p (Jb, G) �� 1–1 �� EQeff
p (Jb, G) (δ, κ) �� �� (MH , sH , ηH , γMH

)

(6.2)

The top two rows of (6.2) come from the restriction of the diagram (6.1) to subsets.

6.2. Study of the triple (MH , sH , ηH)

Throughout § 6.2 we fix (H, s, η) ∈ Ep(G). Define Eef
p (Mb, G; H) to be the set of those

isomorphism classes of (MH , sH , ηH) in Ep(Mb, G) for which there exist γMH
∈ MH(Qp)

and γH ∈ H(Qp) such that

(i) (MH , sH , ηH , γMH
) ∈ EQef

p (Mb, G) and (H, s, η, γH) ∈ EQef
p (G), and

(ii) (MH , sH , ηH , γMH
) and (H, s, η, γH) correspond under the bijections in (6.1).

Similarly define the subset Eeff
p (Jb, G; H) of Ep(Jb, G). We will explain below how we will

fix a representative (MH , sH , ηH) for each isomorphism class in Eef
p (Mb, G; H). Moreover,

we will pin down certain additional data η̃H , l̃Mb
, l̃MH

, iMH
, νMH

for each (MH , sH , ηH)
and give a more direct way to view the bijection EQef

p (G) ↔ EQef
p (Mb, G) given by

(6.1) (cf. Lemma 6.2). The representatives of isomorphism classes for Eef
p (Mb, G; H) will

also serve as representatives for Eeff
p (Jb, G; H), in view of the injection Eeff

p (Jb, G; H) ↪→
Eef

p (Mb, G; H).
Consider a triple (TH , T, j) where

• TH is a maximal torus of H defined over Qp,

• T is a maximal torus of Mb defined over Qp and

• j : TH
∼−→ T is a Qp-isomorphism.

From (T, TH , j) we would like to construct a Qp-morphism ν : D → H and (Hν , sν , ην) ∈
Ep(Mb, G) in the next few paragraphs.
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Define ν : D → H by

D
νb−→ AMb

↪→ T
j−1

∼−−→ TH ↪→ H. (6.3)

Put Hν := ZH(ν) and let iν : Hν ↪→ H denote the natural embedding. We are going
to complete Hν into a G-endoscopic triple for Mb but need some preparation first. Use
j to identify X∗(TH) with X∗(T ) and X∗(TH) with X∗(T ) as Z-modules. (Here we do
not consider Galois actions.) We view ν and νb as elements of X∗(T )Q and X∗(TH)Q,
respectively, which are identified via j. There are the following inclusions.

R(Mb, T ) ⊂ R(G, T ) ⊂ X∗(T )
∪ ‖

R(Hν , TH) ⊂ R(H, TH) ⊂ X∗(TH)

The set R(H, TH) (respectively R(Mb, T )) consists of the elements α ∈ R(G, T ) satisfying
α∨(s) = 1 (respectively α ◦ νb = 1). Since R(Hν , TH) is the set of α ∈ R(H, TH) such
that α ◦ ν = 1, we know that R(Hν , TH) ⊂ R(Mb, T ). Similar consideration shows that
R∨(Hν , TH) is the subset of R∨(Mb, T ) consisting of those α∨ satisfying

α∨(s) = 1. (6.4)

Now choose a maximal torus T′
H ⊂ Ĥ and put T′ := η(T′

H). (These are not part of
the splitting data used in the definition of LG or LH.) Choose a Borel subgroup B′ of
Ĝ containing T′, which determines a Borel subgroup B′

H of Ĥ via η. With the choice
of Borel subgroups BH ⊂ H containing TH and B ⊂ G containing T over Q̄p, we are
given isomorphisms ιH : T̂ ′

H � T′
H and ι : T̂ ′ � T′ as C-tori. Without loss of generality,

we may assume that the previous isomorphism j : TH
∼−→ T was chosen such that the

dual map T̂
∼−→ T̂H of j is given by ι−1

H η−1ι (cf. § 2.1). Let us identify X∗(TH) = X∗(T′
H)

and X∗(T ) = X∗(T′) via ιH and ι. Then the identification X∗(TH) = X∗(T ) via j

is transported to the identification X∗(T′
H) = X∗(T′) via η. These allow us to iden-

tify R∨(Hν , TH) = R(Ĥν , T′
H), R∨(H, TH) = R(Ĥ, T′

H), R∨(Mb, T ) = R(M̂ b, T′) and
R∨(G, T ) = R(Ĝ, T′).

So there is an embedding lMb
: M̂b ↪→ Ĝ (respectively lHν : Ĥν ↪→ Ĥ) corresponding

to the inclusion of the sets of roots of T′ (respectively T′
H). The images of lMb

and lHν

are Levi subgroups of Ĝ and Ĥ, respectively. It follows from the construction that the
Ĝ-conjugacy orbit of lMb

(respectively Ĥ-conjugacy orbit of lHν
) is exactly the orbit

determined by the given embedding Mb ↪→ G (respectively Hν ↪→ H) in the sense of
the paragraph above Lemma 2.12. In particular the Ĝ-conjugacy class of lMb

and Ĥ-
conjugacy class of lHν

are well-defined regardless of the choice of T′, T′
H , B, B′, B and

BH . (Moreover, the Ĝ-conjugacy class of lMb
is independent of the choice of (TH , T, j) but

the Ĥ-conjugacy class of lHν depends on this choice.) Condition (6.4) ensures that the
image of Ĥν ↪→ Ĥ

η→ Ĝ is precisely the centralizer of η(s) in lMb
(M̂b). (This centralizer

is connected since M̂der
b is simply connected.) So there is a unique inclusion Ĥν ↪→ M̂b,

which we call ην , making the diagram (6.5) commute. Let sν be the inverse image of
s under lHν . Observe that ην(Ĥν) = ZM̂b

(ην(sν)). It is a routine matter to verify that
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(Hν , sν , ην) is a G-endoscopic triple for Mb:

M̂b

lMb �� Ĝ

Ĥν

ην

��

lHν �� Ĥ

η

�� (6.5)

So far we attached to (TH , T, j) a morphism ν : D → H and (Hν , sν , ην) ∈
Ep(Mb, G). Actually we are only interested in triples (TH , T, j) arising from a quadru-
ple (H, s, η, γH) ∈ EQef

p (G) in the following way. Let (γ0, κ) ∈ SSef
p (G) be the image

of (H, s, η, γH). There are maximal tori TH ⊂ H, T ⊂ G defined over Qp and a Qp-
isomorphism j : TH

∼−→ T , which (after being composed with T ↪→ G) belongs to the
canonical G(Q̄p)-conjugacy class of embeddings TH ↪→ G, such that j(γH) and γ0 are
G(Q̄p)-conjugate. There also exists a νb-acceptable element γ′

0 ∈ Mb(Qp) such that
γ′
0 = gγ0g

−1 for some g ∈ G(Q̄p). We can arrange that T ′ := gTg−1 and Int(g) : T
∼−→ T ′

are defined over Qp. Therefore, it is harmless to assume that T is contained in Mb and
that γ′

0 = γ0 = j(γH). Now that (TH , T, j) is among the triples that we considered ear-
lier, we have ν and (Hν , sν , ην) attached to (TH , T, j). Observe that γH ∈ Hν(Qp). We
claim that (Hν , sν , ην , γH) is equivalent in EQp(Mb, G) to (MH , sH , ηH , γMH

) where the
latter corresponds to (H, s, η, γH) in (6.1). Indeed, j induces an embedding TH ↪→ Mb

whose Mb(Q̄p)-conjugacy class coincides with the one determined by (Hν , sν , ην) (as
in § 2.1), so (Hν , sν , ην , γH) maps to (γ0, κ) ∈ SSef

p (Mb, G). Since (γ0, κ) is also the image
of (MH , sH , ηH , γMH

), the claim follows from Lemma 2.10. By the claim, (Hν , sν , ην)
belongs to Eef

p (Mb, G; H).
In the last paragraph, when γH is fixed, the choice of (TH , T, j) is not unique. Let

us investigate the dependence of ν on the choice of (TH , T, j). Suppose that (T ′
H , T ′, j′)

is used to construct ν′ : D → H. Then T ′ = mTm−1 and T ′
H = hTHh−1 for some

m ∈ Mb(Q̄p) and h ∈ H(Q̄p). Let j′′ = Int(m−1) ◦ j′ ◦ Int(h). We know that j and j′′

are in the same G(Q̄p)-conjugacy class. Since j(γH) and j′′(γH) are νb-acceptable, j and
j′′ are in fact Mb(Q̄p)-conjugate. Since the Mb(Q̄p)-conjugate action is the identity on
AMb

, it is easy to see that ν′ = Int(h−1) ◦ ν in view of (6.3).
On the other hand, for α ∈ AutQp(H, s, η) we may replace γH by α(γH) without chang-

ing the equivalence class of (H, s, η, γH). Changing α by an inner automorphism of H if
necessary, we may assume that α(TH) = TH . Under j0 = j ◦α−1 we see that α(γH) maps
to a νb-acceptable element γ0 in T . The morphism D → H constructed from j0 in (6.3)
is given by α ◦ ν. To sum up our discussion, the AutQp

(H, s, η)-orbit of ν depends only
on the equivalence class of (H, s, η, γH).

In fact, we can remove the dependence on γH in the following sense. Consider
(H, s, η, γ′

H) ∈ Eef
p (G). Let (MH , sH , ηH , γMH

) and (M ′
H , s′

H , η′
H , γ′

MH
) correspond to

(H, s, η, γH) and (H, s, η, γ′
H), respectively. Construct ν : D → H (respectively ν′ : D →

H) from (H, s, η, γH) (respectively (H, s, η, γ′
H)) by choosing a triple (TH , T, j) (respec-

tively (T ′
H , T ′, j′)).
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Lemma 6.1. The map ν′ is contained in the AutQp
(H, s, η)-orbit of ν if (MH , sH , ηH)

and (M ′
H , s′

H , η′
H) are isomorphic in Eef

p (Mb, G; H).

Proof. Arguing as in a few paragraphs above Lemma 6.1, we have that T ′ = mTm−1

and T ′
H = hTHh−1 for some m ∈ Mb(Q̄p) and h ∈ H(Q̄p) and that j′′ := Int(h−1) ◦ j′ ◦

Int(m) belongs to the Ω(G, T )-orbit of j. (Unlike the previous situation we do not know
whether j′′ is in the Ω(Mb, T )-orbit of j.) Write j′′ = wj for w ∈ Ω(G, T ).

When u acts on T , we write û for its dual action on T̂ . If u ∈ Ω(G, T ) then u �→ û

yields an isomorphism Ω(G, T ) ∼−→ Ω(Ĝ, T) (once an isomorphism T̂ � T is determined
by B and the choice of a Borel B ⊃ T ). If the G-endoscopic triples (MH , sH , ηH) and
(M ′

H , s′
H , η′

H) are isomorphic, then ĵ(s) and ĵ′′(s) are M̂ b-conjugate in T̂ /Z(Ĝ). This
happens if and only if ŵ = ŵ0ŵH for some w0 ∈ Ω(Mb, T ) and wH ∈ Ω(G, T ) such that
ŵH(η(s)) ∼= η(s) mod Z(Ĝ).

On the other hand, let us view ν and ν′ as maps from D to TH . The relation j′′ = wj

implies ν′ = wν. Since wν = ν if and only if w ∈ Ω(Mb, T ) (acting on TH via j), we
deduce that ν′ is in the AutQp

(H, s, η)-orbit of ν if and only if w = wHw0 for some w0 ∈
Ω(Mb, T ) and wH ∈ Ω(G, T ) such that wH acts on TH (via j) is the same way as some
α ∈ AutQp

(H, s, η) fixing TH . Such a wH is precisely characterized by the condition that
ŵH(η(s)) ∼= η(s) mod Z(Ĝ) in view of (ii) of Definition 2.5. So the proof is complete. �

This is a good moment to fix a representative for each isomorphism class, say Ω,
in Eef

p (Mb, G; H). (This has the effect of fixing a representative for each isomorphism
class in Eef

p (Jb, G; H) since Eef
p (Mb, G; H) = Eef

p (Jb, G; H).) Choose any γH as in the very
beginning of § 6.2 as well as (TH , T, j), thus obtain ν : D → H and (Hν , sν , ην) ∈ Ω.
We will fix such ν and (Hν , sν , ην), and use the latter as the representative for the
isomorphism class Ω. The maps lMb

and lHν in (6.5) will also be fixed for (Hν , sν , ην).
From now on, the representative (Hν , sν , ην) will be denoted by (MH , sH , ηH) to save

notation, and Eef
p (Mb, G; H) will be identified with the set of the representatives we just

fixed. Write iMH
for iν and ν0

MH
for ν. Lemma 6.1 tells us that the AutQp(H, s, η)-orbits

of iMH
and ν0

MH
are canonical in that they depend only on the isomorphism class of

(MH , sH , ηH) in Eef
p (Mb, G; H). Define νMH

: D → MH by

D
νb−→ AMb

↪→ AMH
↪→ MH ,

where AMb
↪→ AMH

is the canonical embedding. (See the first paragraph below Remark
2.6.) This embedding is compatible with j−1 : T

∼−→ TH , so ν0
MH

= iMH
◦ νMH

by the
definition of ν in (6.3).

We claim that (6.5) can be extended to a commutative diagram of L-morphisms
(Ĥν being rewritten as M̂H). Let us prove the claim. The map ηH induces an injec-
tion (Z(M̂b)Γ (p))0 ↪→ (Z(M̂H)Γ (p))0 of groups. Using Lemma 2.12 we can choose an
L-morphism l̃Mb

(respectively l̃MH
) extending lMb

(respectively lMH
) such that the Ĝ-

conjugacy class of l̃Mb
(respectively Ĥ-conjugacy class of l̃MH

) corresponds to the Levi
embedding Mb ↪→ G (respectively iMH

: MH ↪→ H) in the way described in § 2.5.
The same lemma tells us that the image of l̃Mb

(respectively l̃MH
) is the central-

izer of (Z(M̂b)Γ (p))0 in LG (respectively (Z(M̂H)Γ (p))0 in LH). The commutativity
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of (6.5) shows that η̃ ◦ l̃MH
(LMH) ⊂ l̃Mb

(LMb), hence there is a unique L-morphism
η̃H : LMH → LMb which makes the following diagram commute. We will fix such an η̃H

henceforth:

LMb

l̃Mb �� LG

LMH

η̃H

��

l̃MH �� LH

η̃

�� (6.6)

There is a natural embedding

ιMH ,H : OutG
Qp

(MH , sH , ηH) ↪→ OutQp
(H, s, η)

defined as follows. (In the following we often omit the subscript if the field of definition
is Qp.) For each β̄ ∈ OutG(MH , sH , ηH), choose a lift β ∈ AutG(MH , sH , ηH) and also
m̂ ∈ M̂ b such that Int(m̂) ◦ ηH = ηH ◦ β̂ (cf. Definition 2.5 (i)). Note that β̂ and β̂σ

are M̂H -conjugate since β is defined over Qp. There is a unique α̂0 ∈ AutC(Ĥ) such that
η ◦ α̂0 = Int(lMb

(m̂)) ◦ η. Since α̂σ
0 ◦ lMH

and lMH
◦ β̂σ are Ĥ-conjugate, we see that α̂0

and α̂σ
0 are Ĥ-conjugate. Thus the Ĥ-conjugacy orbit of α̂σ

0 α̂−1
0 is defined over Qp. Choose

a Q̄p-automorphism α0 : H
∼−→ H such that the outer automorphisms defined by α0 and

α̂0 correspond via the canonical isomorphism OutQ̄p
(H) � OutC(Ĥ). Then the H(Q̄p)-

conjugacy class of α0 is defined over Qp and we deduce that there is some α ∈ AutQp(H)
which is H(Q̄p)-conjugate to α0. The properties of α̂0 imply that α actually lies in
AutQp(H, s, η). Finally, we define ιMH ,H(β̄) to be the image of α in OutQp(H, s, η). It is
not hard to show that ιMH ,H is well-defined.

Suppose that α ∈ Aut(H, s, η) and β ∈ AutG(MH , sH , ηH) are representatives for
ᾱ ∈ Out(H, s, η) and β̄ ∈ OutG(MH , sH , ηH), respectively. If ιMH ,H(β̄) = ᾱ then we
claim that α ◦ iMH

and iMH
◦ β are H(Q̄p)-conjugate. Note that α (respectively β)

induces α̂ ∈ Aut(Ĥ) (respectively β̂ ∈ Aut(M̂H)) which is well-defined up to Int(Ĥ)
(respectively Int(M̂H)) and that there exists ĝ ∈ Ĝ (respectively m̂ ∈ M̂ b) such that
Int(ĝ)◦η = α̂◦η (respectively Int(m̂)◦ηH = β̂ ◦ηH) and Int(ĝ) (respectively Int(m̂)) pre-
serves η(s) (respectively ηH(sH)) up to Z(Ĝ) (cf. Definitions 2.5 and 2.9). The condition
ιMH ,H(β̄) = ᾱ means that Int(lMb

(m̂)) and Int(ĝ) induce the same outer automorphism
on Ĥ. In other words, there exists ĥ ∈ Ĥ such that

Int(ĝ) = Int(lMb
(m̂)) ◦ Int(η(ĥ)) on η(Ĥ). (6.7)

On the other hand, the Ĥ-conjugacy class of lMH
corresponds to the H(Q̄p)-conjugacy

class of iMH
in the sense of § 2.5. So the H(Q̄p)-conjugacy class of α ◦ iMH

(respec-
tively iMH

◦ β) corresponds to the Ĥ-conjugacy class of Int(ĝ−1) ◦ lMH
(respectively

lMH
◦ Int(m̂−1)). (Here Int(ĝ−1) and Int(m̂−1) act on Ĥ and M̂H via η and ηH , respec-

tively.) Since Int(ĝ−1) ◦ lMH
and lMH

◦ Int(m̂−1) are Ĥ-conjugate by (6.7), we see that
α ◦ iMH

and iMH
◦ β are H(Q̄p)-conjugate.

Choose a finite subset {αr}r∈R of Aut(H, s, η) such that the natural projection from
{αr}r∈R to Out(H, s, η)/ OutG(MH , sH , ηH) is a bijection of sets. We may assume
that there exists r ∈ R such that αr is the identity. Define I(MH , H) to be the set
{αr ◦ iMH

}r∈R.
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Lemma 6.2.

(i) For each γMH
∈ MH(Qp) such that (MH , sH , ηH , γMH

) ∈ EQef
p (Mb, G; H), the

quadruples (H, s, η, i(γMH
)) are equivalent for all i ∈ I(MH , H) and lie in EQef

p (G).
If (MH , sH , ηH , γMH

) ∈ EQeff
p (Mb, G; H) then (H, s, η, i(γMH

)) ∈ EQeff
p (G) for

every i ∈ I(MH , H).

(ii) Suppose that γMH
∈ MH(Qp) and γH ∈ H(Qp). If (MH , sH , ηH , γMH

) and
(H, s, η, γH) belong to EQef

p (Mb, G; H) and EQef
p (G), respectively, and correspond

to each other as in (6.1), then there exists a unique i ∈ I(MH , H) such that the
elements i(β(γMH

)) and γH are H(Q̄p)-conjugate for some β ∈ AutG(MH , sH , ηH).

(iii) If γMH
∈ MH(Qp) is such that (MH , sH , ηH , γMH

) ∈ EQef
p (Mb, G; H) then γMH

is
iνMH

-acceptable with respect to any i : MH ↪→ H in I(MH , H).

Proof. Let us prove (i). Suppose that (MH , sH , ηH , γMH
) maps to (γ0, κ) ∈ SSef

p (Mb, G)
which may also be viewed as an element of SSef

p (G). We can choose TM ⊂ Mb,
TMH

⊂ MH and jM : TMH

∼−→ TM defined over Qp such that γ0 ∼ jM (γMH
) in Mb(Q̄p).

Let jM,G : TMH
↪→ G be the composition of jM with the natural injection TM ↪→ G.

The Ω(G, T )-orbit of jM,G and the G(Q̄p)-conjugacy class of jM,G(γMH
) are indepen-

dent of i ∈ I(MH , H). The commutativity of (6.5) ensures that jM,G belongs to the
G(Q̄p)-conjugacy class of the embeddings determined by (H, s, η) (§ 2.1). Therefore,
(γ0, κ) ∈ SSef

p (G) is the image of (H, s, η, i(γMH
)) for every i ∈ I(MH , H). From this the

first two assertions of (i) follow. The last assertion is proved similarly.
To prove (ii), observe that (H, s, η, γH) and (H, s, η, iMH

(γMH
)) are equivalent as they

have the same image in SSef(G) by the proof of (i). So there exists α ∈ Aut(H, s, η) such
that γH = α(iMH

(γMH
)). It is possible to find αr ∈ Aut(H, s, η) which has the same

image in Out(H, s, η)/ OutG(MH , sH , ηH) as α. We can also find β ∈ AutG(MH , sH , ηH)
such that α is H(Q̄p)-conjugate to αr ◦ ιMH ,H(β). Here ιMH ,H(β) ∈ Aut(H, s, η) denotes
any automorphism whose image in Out(H, s, η) is ιMH ,H(β̄) where β̄ is the image of β in
OutG(MH , sH , ηH). On the other hand, ιMH ,H(β) ◦ iMH

is H(Q̄p)-conjugate to iMH
◦ β

by the discussion above Lemma 6.2. Therefore, γH and αr ◦ iMH
◦ β(γMH

) are H(Q̄p)-
conjugate.

It remains to prove (iii). Write i = α ◦ iMH
for α ∈ Aut(H, s, η). Let (γ0, κ) ∈

SSef
p (Mb, G; H) be the image of (MH , sH , ηH , γMH

). We can choose maximal tori TH ⊂
H, T ⊂ G and an isomorphism j : TH

∼−→ T over Qp such that γ0 = j(γH), where
Mb(Q̄p)-conjugacy of j is determined by ηH . Set Mα

H := α(MH), Tα
H := α(TH) and

jα := jα−1. What must be shown is that α(γMH
) is iνMH

-acceptable with respect to the
inclusion Mα

H ⊂ H. If we identify X∗(T ) = X∗(Tα
H) via jα then R(Mα

H , Tα
H) ⊂ R(Mb, T )

and R(H, Tα
H) ⊂ R(G, T ). So the νb-acceptability of γ0 = jα(α(γMH

)) implies the iνMH
-

acceptability of α(γMH
). �

6.3. Stabilization at p

Consider (H, s, η) ∈ Ep(G) such that Eeff
p (Jb, G; H) is non-empty. We then fix

(MH , sH , ηH) ∈ Eeff
p (Jb, G; H) until we get to (6.10). Suppose that (γ0, κ), (γ′

0, κ), (δ, κ),
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(H, s, η, γH) and (MH , sH , ηH , γMH
) are as in diagram (6.2) and correspond to each other.

Without loss of generality we can take γ′
0 = γ0 and γMH

= γH . We would like to express
Op(γ0, κ̃, φp) defined in (5.5) in terms of stable orbital integrals on H(Qp).

The first step is to write Op(γ0, κ̃, φp) in terms of stable orbital integrals on MH(Qp)
using the endoscopic transfer between Jb and MH with respect to the L-morphism
LMH

η̃H−−→ LMb = LJb. We will need to relate the transfer factor ∆p(γH , δ)Jb

MH
to

∆p(γH , γ0)G
H . Fix a Haar measure on MH(Qp). In view of diagram (6.6), according to

the definition of transfer factors by Langlands–Shelstad, we may and will normalize
∆p(· , ·)Mb

MH
so that

∆p(γH , γ0)Mb

MH
= |DG

Mb
(γ0)|−1/2

p |DH
MH

(γH)|1/2
p ∆p(γH , γ0)G

H (6.8)

for every γH and γ0 such that (MH , sH , ηH , γH) ∈ EQef
p (Mb, G) maps to (γ0, κ) ∈

SSef
p (Mb, G). (This remains true if the superscript ‘ef’ in the last sentence is dropped.)

The factor |DG
Mb

(γ0)|−1/2
p |DH

MH
(γH)|1/2

p comes from ∆IV of [27, § 3.6]. Here DH
MH

is taken
with respect to iMH

: MH ↪→ H.

Lemma 6.3. There is a non-zero constant cMH
, depending on the normalization of the

transfer factor ∆p(· , ·)Jb

MH
, such that

cMH
· ∆p(γH , δ)Jb

MH
= 〈α̃p(γ0, δ), κ̃〉−1∆p(γH , γ0)Mb

MH
(6.9)

for every γH , γ0 and δ related to each other as in (6.2) (with γH = γMH
).

We postpone the proof of Lemma 6.3 to § 6.4. In § 8 we will give another proof of
Lemma 6.3 in some special case and compute the constant cMH

under a certain normal-
ization of ∆p(· , ·)Jb

MH
.

Remark 6.4. Lemma 6.3 is easily verified when (γ0, κ) comes from (H, s, η, γH) for
(H, s, η) = (G∗, 1, id). Note that there is a unique isomorphism class in Eeff

p (Jb, G; G∗)
which is represented by (MH , sH , ηH) = (Mb, 1, id). Take η̃ = id and η̃H = id. In (6.9),
〈α̃p(γ0, δ), κ̃〉 = 1 and we may naturally take

∆p(· , ·)Mb

MH
≡ 1 and ∆p(· , ·)Jb

MH
≡ ep(Jb).

Then Lemma 6.3 is satisfied with cMH
= ep(Jb).

Let us go back to the task of rewriting Op(γ0, κ̃, φp). The identities (6.8) and (6.9) tell
us that

Op(γ0, κ̃, φp) =
∑

δ∼stγ0

cMH
·∆p(γH , δ)Jb

MH
·e(Iδ)·|DG

Mb
(γ0)|1/2

p |DH
MH

(γH)|−1/2
p ·OJb(Qp)

δ (φp).

Since we assume γ0 is νb-acceptable, |DG
Mb

(γ0)|p = δP (νb)(γ0) by Lemma 3.4. Define
a character δ̄P (νb) : Jb(Qp) → C× by the formula δ̄P (νb)(δ) = δP (νb)(γ0) where γ0 ∈
Mb(Qp) is the element whose stable conjugacy class matches that of δ. The function
φ0

p := φp · δ̄
1/2
P (νb)

belongs to C∞
c (Jb(Qp)). Let φMH

p ∈ C∞
c (MH(Qp)) be a matching func-

tion for φ0
p via Conjecture 2.13 (and Proposition 2.17). Then

Op(γ0, κ̃, φp) = cMH
· |DH

MH
(γH)|−1/2

p · SOMH(Qp)
γH

(φMH
p )

https://doi.org/10.1017/S1474748010000046 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000046


882 S. W. Shin

and SOMH(Qp)
γ′

H
(φMH

p ) = 0 if the (Jb, MH)-regular semisimple element γ′
H transfers to

δ ∈ Jb(Qp) which is not νb-acceptable or if γ′
H does not transfer to Jb(Qp). The last fact

and Lemma 6.2 (iii) imply that

SOMH(Qp)
γ′

H
(φMH

p ) = 0

unless the (Jb, MH)-regular semisimple γ′
H is iνMH

-acceptable for every i : MH ↪→ H

in I(MH , H). Since the set of iνMH
-acceptable elements is open in MH(Qp) for every

i ∈ I(MH , H) (Lemma 3.4), it is possible to choose φMH
p so that φMH

p (γ′
H) = 0 unless

γ′
H (not necessarily semisimple) is iνMH

-acceptable for every i ∈ I(MH , H). Define
φMH ,i

p ∈ C∞
c (MH(Qp)) by φMH ,i

p := φMH
p · δ

−1/2
P (iνMH

). For every i ∈ I(MH , H), γH is
iνMH

-acceptable by Lemma 6.2 (iii) and

|DH
MH

(γH)|p = δP (ν0
MH

)(γH) = δP (iνMH
)(γH)

where the first equality follows from Lemma 3.4 and the second is obvious. Applying
Lemma 3.9 to φMH ,i

p with respect to each i : MH ↪→ H, we find a function φ̃MH ,i
p ∈

C∞
c (H(Qp)) and get

Op(γ0, κ̃, φp) = cMH
· SOH(Qp)

i(γH) (φ̃MH ,i
p ). (6.10)

Note that φ̃MH ,i
p depends on φp, (MH , sH , ηH) and i but not on γ0, δ and γH . (As long

as (δ, κ) and (γ0, κ) give rise to the same (MH , sH , ηH) in diagram (6.2).)
Define a function hH

p ∈ C∞
c (H(Qp)) by

hH
p :=

∑
(MH ,sH ,ηH)

∑
i

cMH
· φ̃MH ,i

p ,

where the first sum runs over Eeff
p (Jb, G; H) and the second over I(MH , H). The upshot

of § 6 is the following lemma.

Lemma 6.5. Suppose that (H, s, η) ∈ Ep(G) is such that Eeff
p (Jb, G; H) is non-empty.

For every (G, H)-regular semisimple γH ∈ H(Qp),

SOH(Qp)
γH

(hH
p ) = Op(γ0, κ̃, φp) (6.11)

if (H, s, η, γH) ∈ EQeff
p (G) and

SOH(Qp)
γH

(hH
p ) = 0 (6.12)

otherwise.

Proof of (6.12) when (H, s, η, γH) /∈ EQeff
p (G). We prove SOH(Qp)

γH
(φ̃MH ,i

p ) = 0 for
each (MH , sH , ηH) ∈ Eeff

p (Jb, G; H) and i ∈ I(MH , H). We assume that there exists an
iνMH

-acceptable element γMH
∈ MH(Qp) such that i(γMH

) ∼ γH in H(Qp) as otherwise
SOH(Qp)

γH
(φ̃MH ,i

p ) = 0 by Lemma 3.9. Let (γ0, κ) be the image of (MH , sH , ηH , γMH
) under

EQp(Mb) → SSp(Mb). (Note that we do not know whether (γ0, κ) defines an element of
SSp(Mb, G) as we do not know whether γ0 is (G, Mb)-regular.) Consider the injection
SSp(Jb) ↪→ SSp(Mb). Since (MH , sH , ηH , γMH

) /∈ EQeff
p (Mb, G) by Lemma 6.2 (i), there

are two cases that can occur:
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(i) there exist no (δ, κ) ∈ SSp(Jb) mapping to (γ0, κ), or

(ii) there exists (δ, κ) ∈ SSp(Jb) mapping to (γ0, κ) but δ is not νb-acceptable.

By the construction of φ̃MH ,i
p ,

SOH(Qp)
γH

(φ̃MH ,i
p ) =

∑
δ′

∆p(γH , δ′)Jb

MH
· e(ZJb

(δ′)) · OJb(Qp)
δ′ (φ0

p),

where δ′ runs over the set of conjugacy classes of Jb(Qp) such that δ′ ∼st δ. The right
side is viewed as zero if there is no (δ, κ) mapping to (γ0, κ). It is now clear that
SOH(Qp)

γH
(φ̃MH ,i

p ) vanishes in the cases (i) and (ii) alike, noting that the orbital integral
of φ0

p is non-zero only on νb-acceptable elements. �

Proof of (6.11) when (H, s, η, γH) ∈ EQeff
p (G). Suppose that (MH , sH , ηH) and

(M ′
H , s′

H , η′
H) belong to Ep(Jb, G; H). Let i ∈ I(MH , H) and i′ ∈ I(M ′

H , H). Assum-
ing that SOH(Qp)

γH
(φ̃MH ,i

p ) and SOH(Qp)
γH

(φ̃M ′
H ,i′

p ) are both non-zero, we will prove that
(MH , sH , ηH) � (M ′

H , s′
H , η′

H) and i = i′. Once we have done it, (6.11) follows
from (6.10).

According to Lemma 3.9, there exist γMH
∈ MH(Qp) and γM ′

H
∈ M ′

H(Qp) such that
i(γMH

), i′(γM ′
H

) and γH are stably conjugate in H(Qp). Let (γ0, κ0) (respectively (γ′
0, κ

′
0))

be the image of (MH , sH , ηH , γMH
) (respectively (M ′

H , s′
H , η′

H , γM ′
H

)) in SSp(Mb, G).
The images of (γ0, κ0) and (γ′

0, κ
′
0) in SSp(G) are equivalent since both correspond to

(H, s, η, γH) via the bijection SSp(G) ↔ EQp(G). In particular, γ0 ∼st γ′
0 in G(Qp).

We know that (MH , sH , ηH , γMH
) ∈ Eeff

p (Mb, G; H). Indeed, if this were not true,
the argument in the previous part of the current proof shows that SOH(Qp)

γH
(φ̃MH ,i

p )
vanishes. Similarly (M ′

H , s′
H , η′

H , γ′
MH

) ∈ Eeff
p (Mb, G; H). So both γ0 and γ′

0 are νb-
acceptable in Mb(Qp). Lemma 3.5 shows that γ0 ∼st γ′

0 in Mb(Qp), which implies
that (γ0, κ0) and (γ′

0, κ
′
0) are equivalent in SSp(Mb, G). Therefore, (MH , sH , ηH , γMH

)
and (M ′

H , s′
H , η′

H , γ′
MH

) are equivalent in Eeff
p (Mb, G; H). Finally, we deduce i = i′ from

Lemma 6.2 (ii). �

So far we assumed that Eeff
p (Jb, G; H) is non-empty for (H, s, η). Now for arbitrary

(H, s, η) ∈ Ep(G) such that Eeff
p (Jb, G; H) is empty, we define hH

p := 0. The conclusion of
Lemma 6.5 holds in this case since (H, s, η, γH) never lies in EQeff

p (G).

6.4. Proof of Lemma 6.3

Subsection 6.4 is devoted to the proof of Lemma 6.3. We recall the setting. Fix

(H, s, η) ∈ Ep(G), (MH , sH , ηH) ∈ Eef
p (Mb, G; H).

Suppose that (γ0, κ), (γ̄0, κ̄) ∈ SSeff
p (Mb, G) and (δ, κ), (δ̄, κ̄) ∈ SSeff

p (Jb, G) correspond
via the bijection SSeff

p (Mb, G) ↔ SSeff
p (Jb, G), respectively. Also suppose that (γ0, κ)

and (γ̄0, κ̄) correspond to (MH , sH , ηH , γH) and (MH , sH , ηH , γ̄H) via (6.2), respectively
(by setting γ′

0 = γ0, γMH
= γH , etc.).
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Regular case

First we consider the case of regular elements and later extend the proof to the gen-
eral case. Suppose that γ0 and γ̄0 are regular in Mb. Set T0 := ZMb

(γ0), T̄0 := ZMb
(γ̄0),

T := ZJb
(δ), T̄ := ZJb

(δ̄), TH := ZMH
(γH), T̄H := ZMH

(γ̄H).∗ Also set T der
0 := T0∩Mder

b ,
T̄ der

0 := T̄0 ∩ Mder
b and Zder := Z(Mder

b ). Recall from § 3.2 that the Ls-isomorphism
ψ : Jb

∼−→ Mb satisfies ψψ−σ = Int(b̃) for the arithmetic Frobenius σ. We can choose
x, x̄ ∈ Mder

b (Q̄p) and y, ȳ ∈ Mder
b (L) such that

ψ(δ) = xγ0x
−1 = yγ0y

−1, ψ(δ̄) = x̄γ̄0x̄
−1 = ȳγ̄0ȳ

−1. (6.13)

(To find such y and ȳ, use the argument of § 4.3.) Set

c = x−1y, c̄ = x̄−1ȳ. (6.14)

It can be seen from (6.13) that c ∈ T der
0 (L̄) and c̄ ∈ T̄ der

0 (L̄).
Recall that κ̃ and ˜̄κ were defined as the images of s under the canonical Γp-equivariant

isomorphisms T̂H
∼−→ T̂ and ˆ̄TH

∼−→ ˆ̄T . Without danger of confusion, we write s for
κ̃ and ˜̄κ. (Of course s is viewed as elements of T̂H and ˆ̄TH via Z(Ĥ) ↪→ T̂H and
Z(Ĥ) ↪→ ˆ̄TH .) For the proof of Lemma 6.3 in the regular case, by [27, Corollary 4.2.B],
it suffices to show that

〈α̃p(γ̄0, δ̄), s〉
〈α̃p(γ0, δ), s〉

=
〈

inv
(

γH , δ

γ̄H , δ̄

)
, sU

〉
, (6.15)

where we use the notation of [27, § 3.4] on the right-hand side. We recall the definitions
after setting up more notation.

Let a := (τ �→ aτ ) be a cocycle in Z1(Ls/Qp, M
ad
b ) such that aσ has the same image

in Mad
b (Q̄p) as b̃, so that a represents the cohomology class attached to Jb. By inflation a

cocycle τ �→ bτ in Z1(Γp, M
ad
b ) is obtained from a. For each τ ∈ Γp, let bder

τ ∈ Mder
b (Q̄p)

be any element whose image in Mad
b (Q̄p) is the same as bτ . (We warn the reader that

τ �→ bder
τ is not a cocycle in Z1(Γp, M

der
b ) in general.) Similarly, let b̃der ∈ Mb(L) be any

element which has the same image in Mad
b (L) as b̃. Obviously,

b̃der = zb̃ (6.16)

for some z ∈ Z(Mb)(L). Let b̃ad denote the image of b̃ in Mad
b (Ls). For each m ∈ Z>0,

define
(b̃der)(m) := b̃der(b̃der)σ · · · (b̃der)σm−1

and similarly define (b̃ad)(m). For each τ ∈ W (L̄/Qp) (or τ ∈ Γ (p)), define |τ | ∈ Z such
that the image of τ in W (L/Qp) is σ|τ |. Now define bder

τ := bder
pr(τ) for each τ ∈ W (L̄/Qp)

where pr : W (L̄/Qp) → Γ (p) is the natural projection. For τ ∈ W (L̄/Qp) with |τ | > 0,
∗ As Gder is simply connected, we know ZG(γ0) is connected. From this (and [17, Lemma 3.2]) it is

not hard to see that T0, T̄ 0, T , T̄ , TH and T̄ H are connected. In other words, γ0, γ̄0, δ, δ̄, γH and γ̄H

are automatically strongly regular.
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it is elementary to check that both (b̃der)|τ | and bder
τ have image (b̃ad)|τ | in Mad

b (L̄). In
other words, we can find zτ ∈ Z(Mb)(L̄) such that

(b̃der)|τ | = zτbder
τ . (6.17)

We need to define the terms on the right-hand side of (6.15). Define a torus

U := (T der
0 × T̄ der

0 )/{(z−1, z) | z ∈ Zder}. (6.18)

By definition,

inv
(

γH , δ

γ̄H , δ̄

)
is the element of H1(Qp, U) given by

τ �→ ((x−1bder
τ xτ )−1, x̄−1bder

τ x̄τ ).

Now we recall the definition of sU . Consider the following commutative diagram
where every arrow is Γ (p)-equivariant. By definition, Z(M̂b)der := Z(M̂b) ∩ (M̂b)der,
T̂ der := T̂ ∩ (M̂b)der, and T̂ ad is the image of T̂ in M̂ad

b . Similarly, define ˆ̄T der and ( ˆ̄T )ad.
We have Z(M̂b)der = Z(M̂b) ∩ T̂ der = Z(M̂b) ∩ ˆ̄T der:

Z(M̂H) � � diag. �� T̂H × ˆ̄TH

∼
��

Z(M̂b)
��

��

� � diag. ��
T̂ × ˆ̄T

Z(M̂b)der
��

��

� � diag. ��
T̂ der × ˆ̄T der

��

��

(6.19)

We can choose z ∈ Z(M̂b) such that the image (sz, sz) ∈ T̂ × ˆ̄T of sz ∈ Z(M̂H) belongs to
T̂ der × ˆ̄T der. (Find one such z so that sz ∈ T̂ der, by using the fact that T̂ der · Z(M̂b) = T̂ .
Then sz ∈ ˆ̄T der is automatic.) Note that (sz, sz) and (s, s) have the same image, say
(sad, sad), in T̂ ad × ( ˆ̄T )ad. Then sU ∈ Û is defined as the image of (sz, sz) in Û . It turns
out that sU is Γ (p)-invariant and independent of the choice of z [27, p. 246]. By abuse
of notation, the image of sU in π0(Û) will be again denoted by sU . Then the right-hand
side of (6.15) is given by the Tate–Nakayama pairing H1(Qp, U) × π0(Û) → C×.

Consider the following diagram, which is commutative by the functoriality of the map
κ(·) (see [33, Theorem 1.15.(i)] or [22, 4.9.1]):

B(T × T̄ )

(κT ,κT̄ )
��

B(T der × T̄ der)

(κ
Tder ,κ

T̄der )
��

���� B(U)

κU

��
X∗(T̂Γ (p) × ˆ̄TΓ (p)) X∗((T̂ ad)Γ (p) × (( ˆ̄T )ad)Γ (p)) ���� X∗(ÛΓ (p))

(6.20)
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Recall from § 4.3 that

α̃p(γ0, δ) = κT (y−1b̃yσ), α̃p(γ̄0, δ̄) = κT̄ (ȳ−1b̃ȳσ).

So the left-hand side of (6.15) can be computed as

〈κT̄ (ȳ−1b̃ȳσ), s〉
〈κT (y−1b̃yσ), s〉

=
〈κT̄der(ȳ−1b̃derȳσ), sad〉
〈κTder(y−1b̃deryσ), sad〉

= 〈Yσ, sU 〉, (6.21)

where Yσ is the image of ((y−1b̃deryσ)−1, ȳ−1b̃derȳσ) in U(L). (The notation Yσ also
denotes its image in B(U).) The second identity in (6.21) follows from the commutativity
of the right rectangle in (6.20). To check the first identity in (6.21), use (6.16) and the
functoriality of κ(·) with respect to the diagonal embedding Z(Mb) ↪→ T × T̄ .

The proof of (6.15) boils down to showing that〈
inv

(
γH , δ

γ̄H , δ̄

)
, sU

〉
= 〈Yσ, sU 〉.

In light of the left rectangle of (3.1) for U , the above identify follows if we show that

inv
(

γH , δ

γ̄H , δ̄

)
�→ Yσ

under the map H1(Qp, U) → B(U) of (3.1).
The last map is defined as the composition of the following:

H1(Qp, U) ∼−→ H1(W (L̄/Qp), U(L̄)) ∼←− H1(W (L/Qp), U(L)) = B(U),

where the first two arrows are inflation maps. The image of Yσ in H1(W (L̄/Qp), U(L̄))
is represented by the cocycle for which

τ �→ ((y−1(b̃der)(|τ |)yτ )−1, ȳ−1(b̃der)(|τ |)ȳτ ) (6.22)

whenever |τ | > 0. (The images of τ with |τ | > 0 uniquely determine the cocycle.) On the
other hand,

τ �→ ((x−1bder
τ xτ )−1, x̄−1bder

τ x̄τ ) (6.23)

represents the image of

inv
(

γH , δ

γ̄H , δ̄

)
in H1(W (L̄/Qp), U(L̄)). By (6.14) and (6.17), the cocycle in (6.22) can be rewritten as

τ �→ ((c−1x−1bder
τ xτ cτ )−1, c̄−1x̄−1bder

τ x̄τ c̄τ ) · (z−1
τ , zτ ).

Noting that (z−1
τ , zτ ) = 1 in U(L̄) (see (6.18)), it is now obvious that (6.22) and (6.23)

define the same cohomology class in H1(W (L̄/Qp), U(L̄)). Hence the proof of Lemma 6.3
is complete in case γ0 is regular semisimple.
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General case

It remains to prove that the identity (6.9) of Lemma 6.3 continues to hold for the same
constant cMH

when γ0 is not regular. We imitate the argument of [23, A.3.8].
Changing notation, set

I0 := ZMb
(γ0), Iδ := ZJb

(δ), IH := ZMH
(γH).

Note that I0, Iδ and IH are connected (cf. the footnote in the current proof for the regular
case). Find y ∈ Mb(L) such that ψ(δ) = yγ0y

−1. The L-isomorphism ψ0 := Int(y−1)ψ
from Jb to Mb restricts to Iδ

∼−→ I0. Since ψψ−σ = Int(b̃), we have

ψ0ψ
−σ
0 = Int(b̃δ) = Int(y−1b̃yσ). (6.24)

Choose an elliptic torus T of I0 over Qp. Since bδ ∈ B(I0) is basic by Lemma 4.3, it
is in the image of the natural map B(T ) → B(I0) [16, Proposition 5.3]. This means
that there exists i ∈ I0(L) such that i−1b̃δi

σ ∈ T (L). It is easy to verify that k :=
ψ−1

0 ◦ Int(i) = ψ−1 ◦ Int(yi) gives a Qp-embedding from T to Iδ. (Namely k and kσ give
the same map from T to Iδ. This is checked using (6.24).) For each t ∈ T (Qp), define

γt := tγ0, δt := k(t)δ.

We assume that γt is regular in Mb so that T = ZMb
(γt).

The natural inclusion T ↪→ I0 yields the following commutative diagram:

B(T ) ��

κT

��

B(I0)

κI0

��
X∗(T̂Γ (p)) �� X∗(Z(Î0)Γ (p))

(6.25)

We claim that
α̃p(γt, δt) �→ α̃p(γ0, δ) (6.26)

via the bottom horizontal map of (6.25). To show this, it is enough to show that
b̃δ := y−1b̃yσ and b̃δt

:= y−1
t b̃yσ

t define the same element in B(I0). Here yt is any ele-
ment of T (L) such that

ψ(δt) = y−1
t γty

σ
t .

(A different choice of yt does not change the image of b̃δt in B(T ).)
Let us prove the claim. Observe that

ψ(δt) = ψ(k(t))ψ(δ) = (Int(yi)t)yγ0y
−1 = yiti−1γ0y

−1 = yitγ0i
−1y−1,

where the last identity holds as i ∈ I0(L). Hence we can take yt = yi. Then it is obvious
that b̃δt is σ-conjugate to b̃δ in I0(L). The claim is proved.

We are ready to see that (6.9) holds in general. We deduce from (6.26) that

〈α̃p(γt, δt), κ̃〉 = 〈α̃p(γ0, δ), κ̃〉
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for any t ∈ T (Qp) such that γt is regular in Mb. On the other hand, ∆p(γH , δ)Jb

MH

(respectively ∆p(γH , γ0)Mb

MH
) is defined as the value of ∆p(γH,t, δt)Jb

MH
(respectively

∆p(γH,t, γt)Mb

MH
) when t is close enough to 1 and γt is regular, where γH,t is the transfer

of γt up to stable conjugacy (see [28, § 2.4]). Since we already proved

cMH
· ∆p(γH,t, δt)Jb

MH
= 〈α̃p(γt, δt), κ̃〉∆p(γH,t, γt)Mb

MH
,

for any such t, we conclude that (6.9) is true with the same constant cMH
as in the

regular case.

7. End of stabilization

We are ready to obtain a fully stabilized expression for tr(φ|ιlHc(IgΣb
,Lξ)) when φ ∈

C∞
c (G(A∞,p)×Jb(Qp)) is acceptable. For each (H, s, η) ∈ Eell(G), put hH := hH,phH

p hH
∞.

The stable orbital integrals defined by hH depend on the choice of η̃, but are indepen-
dent of the choice of local transfer factors ∆v(· , ·)G

H , once η̃ is fixed. (Despite the fact that
each of hH,p, hH

p and hH
∞ depends on the choice.) The stable orbital integrals defined by

hH remain unchanged if (H, s, η) is replaced by an isomorphic endoscopic triple (H, sz, η)
for any z ∈ Z(Ĝ). (Note that if s is replaced by sz then κ̃ changes by z in the process,
in view of Remark 2.7.) Both of the above assertions are easy to verify.

Putting these together, we can show that hH is well-defined in the following sense:
keeping the previous notation, suppose that (H, LH, s, η̃) and (H ′, LH ′, s′, η̃′) are equiv-
alent as endoscopic data for G via a Q-isomorphism α : H

∼−→ H ′, in the terminology
of [27, 1.2]. Then the stable orbital integrals defined by hH and hH′

are the same via α.

Lemma 7.1. Suppose that (H, s, η) ∈ Eell(G). For every (G, H)-regular semisimple
γH ∈ H(Q),

(i) if (H, s, η, γH) belongs to EQell(G), let (γ0, κ) ∈ SSell(G) be its image; then

SOH(A)
γH

(hH) = Op(γ0, κ, φp) · Op(γ0, κ̃, φp) · O∞(γ0, κ̃)

if (γ0, κ) ∈ SSKT(G) and SOH(A)
γH

(hH) = 0 otherwise (see Remark 2.7 for κ̃); and

(ii) if (H, s, η, γH) /∈ EQell(G) then SOH(A)
γH

(hH) = 0.

Proof. Let us prove the assertion (i). If (γ0, κ) ∈ SSKT(G) then (γ0, κ) defines an
element of SSeff

p (G) and (H, s, η, γH) ∈ EQell(G) defines an element of EQeff
p (G). The

first assertion follows from (5.7), (5.8) and Lemma 6.5.
Now assume (γ0, κ) /∈ SSKT(G). One of the following occurs.

• There is no νb-acceptable δ ∈ Jb(Qp) such that δ ∼st γ0.

• γ0 ∈ G(Q) is not R-elliptic.

In the first case, (γ0, κ) /∈ SSeff
p (G) and (H, s, η, γH) /∈ EQeff

p (G). By Lemma 6.5 (and
the remark below its proof) we conclude that SOH(A)

γH
(hH) = 0. The same equality holds

in the second case by (5.8).
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Let us begin the proof of (ii). We may assume that elliptic maximal tori of GR come
from those of HR as hH

∞ = 0 otherwise. The condition of (ii) means that γH ∈ H(Q) does
not transfer to G(Q). Consider the case where γH as an element of H(A) transfers to some
γ0 ∈ G(A) (up to G(Ā)-conjugacy). If γ0 is not R-elliptic then SOH(A)

γH
(hH) = 0 by (5.8).

If γ0 is R-elliptic then we show that a contradiction occurs. Indeed, the argument of the
second paragraph of [19, p. 188] shows that γ0 ∈ G(A) is G(Ā)-conjugate to an element
of G(Q), which contradicts that γH does not transfer to G(Q).

It remains to deal with the case where γH does not transfer to G(A). We may assume
γH is R-elliptic as otherwise SOH(A)

γH
(hH) = 0 by (5.8). Then γH transfers to G(R). Since

G is quasi-split over Qp, γH transfers to G(Qp) as well. So our situation is that γH does
not transfer to G(A∞,p), which implies SOH(A)

γH
(hH) = 0 by Lemma 5.2. �

By Lemma 7.1 and Lemma 2.8, the identity (5.6) may be rewritten as

tr(φ|ιlHc(IgΣb
,Lξ)) = τ(G)|ker1(Q, G)|

∑
(H,s,η,γH)

SOH(A)
γH

(hH), (7.1)

where the sum runs over EQell(G). By the remark below Lemma 2.8,∑
(H,s,η,γH)

SOH(A)
γH

(hH) =
∑

(H,s,η)

|OutQ(H, s, η)|−1
∑
γH

SOH(A)
γH

(hH), (7.2)

where in the last sum γH runs over a set of representatives for R-elliptic semisimple
stable conjugacy classes in H(Q) which are (G, H)-regular.

So far we have constructed hH when φ ∈ C∞
c (G(A∞,p) × Jb(Qp)) satisfies (5.1). The

construction of hH linearly extends to the general case where φ is an arbitrary acceptable
function. Define

STH
e (hH) :=

∑
γH

τ(H) · |ZH(γH)/ZH(γH)0|−1 · SOH(A)
γH

(hH), (7.3)

where γH runs over a set of representatives for Q-elliptic semisimple stable conjugacy
classes in H(Q). (In fact there is no new contribution if we include non-Q-elliptic stable
conjugacy classes in the sum since hH

∞ has trivial stable orbital integrals over them.)
Define

ι(G, H) := τ(G)τ(H)−1|OutQ(H, s, η)|−1.

Theorem 7.2. Let φ ∈ C∞
c (G(A∞,p) × Jb(Qp)) be any acceptable function. For each

(H, s, η) ∈ Eell(G), let hH be the function constructed from φ as above. Then

tr(φ|ιlHc(IgΣb
,Lξ)) = |ker1(Q, G)|

∑
(H,s,η)

ι(G, H)STH
e (hH).

Proof. We may assume that φ is as in (5.1). Note that only (G, H)-regular γH contribute
to STH

e (hH) by Remark 5.6 and that ZH(γH) is connected for any such γH . The theorem
follows from (7.1), (7.2) and (7.3). �

Remark 7.3. Theorem 7.2 is an analogue of [19, Theorem 7.2].
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8. The constant cMH
of Lemma 6.3 in special cases

The main purpose of this last section is to determine the constant cMH
which shows up

in Lemma 6.3, under a particular normalization of transfer factors as in (8.6) and (8.9).
(The computation of cMH

would be useful for applications. It is used in [37, § 5.5].) When
Jb � Mb (§ 8.2) a simpler proof of Lemma 6.3 will be given. We will work in the setting
of Lemma 6.3 without mentioning it again. As we are only concerned with Qp-groups
in § 8, we often write G for GQp and similarly for other groups in order to save notation.

8.1. The case of general linear groups

For convenience we introduce a non-standard terminology for a reductive group G0

over Qp.

Definition 8.1. We say that G0 satisfies GLp if G0 is Qp-isomorphic to∏
i∈I

RKi/Qp
GLni

for a finite index set I, positive integers ni and finite extension fields Ki of Qp. Here,
RKi/Qp

means the Weil restriction of scalars.

In this subsection we prove Lemma 6.3 under the simplifying assumption that GQp

satisfies GLp. This assumption is often satisfied for a PEL datum (B, ∗, V, 〈· , ·〉, h) of
type (A). In the case of type (A) datum, F = Z(B) is a CM field. Let F+ be the fixed
field of F under the complex conjugation. If every place of F+ above p splits in F , then
GQp

satisfies GLp.
Suppose that GQp

satisfies GLp throughout § 8.1. Then the groups H, Mb, MH , I0

and IH also satisfy GLp. All these groups and their dual groups have simply connected
derived subgroups. In particular, Z(MH) and Z(Mb) are tori.

One important task for us is to give an explicit formula (8.5) for 〈α̃p(γ0, δ), κ̃〉. Conse-
quently, its value will be easily seen to be independent of γH , δ and γ0. To this end, we
examine the character α̃p(γ0, δ) ∈ X∗(Z(Î0)Γ (p)Z(Ĝ)). Consider the following commuta-
tive diagram of Γ (p)-equivariant group homomorphisms:

Z(Ĥ) � � �� Z(M̂H) � � �� Z(ÎH) ��

∼
��

Ẑ(MH)

��
Z(Ĝ) � � ��

��

��

Z(M̂b)
� � ��

��

��

Z(Î0) �� Ẑ(Mb)

(8.1)

The two rows are given by the inclusions Z(MH) ⊂ IH ⊂ MH ⊂ H and Z(Mb) ⊂ I0 ⊂
Mb ⊂ G, respectively, using [15, 1.8] and [17, 4.2]. The vertical injections Z(Ĝ) ↪→ Z(Ĥ)
and Z(M̂ b) ↪→ Z(M̂H) are given by η and ηH , respectively. The left-most rectangle is
compatible with the diagram (6.6) and thus commutative. The commutativity of other
rectangles are straightforward. The element s ∈ Z(Ĥ) maps to sH ∈ Z(M̂H) and κ̃ ∈
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Z(Î0). We may write s = s1s2 for s1 ∈ Z(Ĥ)Γ (p) and s2 ∈ Z(Ĝ). Let κ̃1 and κ̃2 denote
the images of s1 and s2 in Z(Î0), respectively. In view of (4.1),

〈α̃p(γ0, δ), κ̃2〉 = µ1(s2)−1. (8.2)

Let us evaluate 〈α̃p(γ0, δ), κ̃1〉. Let T be a maximal torus of Mb defined over Qp con-
taining γ0. Recall from § 3.2 that b̃ satisfies (3.2) and belongs to Mb(Ls). Let us also
recall from § 4.3 that α̃p(γ0, δ) = κI0(bδ) and that b̃δ is σ-conjugate to b̃ in Mb(L). We
claim that ν̄I0(bδ) = νb as elements of X∗(T )Q/Ω(I0, T ). Indeed, ν̄Mb

(bδ) = ν̄Mb
(b) = νb

shows that ν̄I0(bδ) and νb are in the same Ω(Mb, T )-orbit, but since the Ω(Mb, T )-orbit
of νb consists of νb only, the claim is verified.

The commutativity of (3.1) shows that ρI0(α̃p(γ0, δ)) = δI0(νb) where νb is viewed as an
element of X∗(T )Q = X∗(T̂ )Q. On the other hand, δI0 is the pullback map via Z(Î0) ↪→ T̂

in this case. Since νb : D → T factors through Z(Mb), we may view νb as an element of
X∗(Ẑ(Mb))Q, which will be denoted by ν̂b. Then δI0(νb) is nothing but the pullback of
ν̂b via Z(Î0) → Ẑ(Mb).

Let α̃′
p ∈ X∗(Z(M̂H)Γ (p)) be the pullback of α̃p(γ0, δ)|Z(Î0)Γ (p) via (8.1). Then

〈α̃p(γ0, δ), κ̃1〉 = 〈α̃′
p, s1〉. (8.3)

Since ρ(·) is functorial on the category of connected reductive groups over Qp (for any
Qp-group morphisms), we see that ρMH

(α̃′
p) coincides with the pullback of δI0(νb) ∈

X∗(Z(Î0))
Γ (p)
Q to X∗(Z(M̂H))Γ (p)

Q via (8.1). Again in view of (8.1), ρMH
(α̃′

p) may also
be obtained as the pullback of ν̂b via

Z(M̂H) → Ẑ(MH) → Ẑ(Mb).

The last map comes from Z(Mb) ↪→ Z(MH) ↪→ MH , which only depends on the endo-
scopic datum (MH , sH , ηH) and not on γH , δ and γ0. Since MH satisfies GLp, ρMH

is injec-
tive. (By (3.1), ker(ρMH

) is isomorphic to H1(Qp, MH), which is trivial by Hilbert 90.)
Let ν̂MH

b denote the pullback of ν̂b via

Z(M̂H)Γ (p) → Ẑ(MH) → Ẑ(Mb).

We see from the description of ρMH
[33, p. 162] that α̃′

p is obtained as the pullback of
ρMH

(α̃′
p) via Z(M̂H)Γ (p) ↪→ Z(M̂H), hence α̃′

p coincides with ν̂MH

b . A priori ν̂MH

b is just
an element of X∗(Z(M̂H)Γ (p))Q, but it belongs to X∗(Z(M̂H)Γ (p)) as α̃′

p does.
To sum up, α̃′

p = ν̂MH

b and

〈α̃′
p, s1〉 = 〈ν̂MH

b , s1〉. (8.4)

By (8.2), (8.3) and (8.4),

〈α̃p(γ0, δ), κ̃〉 = µ1(s2)−1 · 〈ν̂MH

b , s1〉. (8.5)
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Clearly, the value on the right side is independent of γ0, δ and the choice of decomposition
s = s1s2. Therefore, Lemma 6.3 tells us that we may normalize ∆p(· , ·)Jb

MH
so that the

ratio of ∆p(γH , δ)Jb

MH
to ∆p(γH , γ0)Jb

MH
is a non-zero constant. Our normalization is that

∆p(γH , δ)Jb

MH

∆p(γH , γ0)Mb

MH

= ep(Jb). (8.6)

This choice is to be consistent with our convention that ∆p(· , ·)Jb

Mb
≡ ep(Jb) (cf.

Remark 2.20).
It follows from (8.5) and (8.6) that the constant cMH

in Lemma 6.3 is given by

cMH
= ep(Jb) · µ1(s2) · 〈ν̂MH

b , s1〉−1. (8.7)

8.2. The case Jb � Mb

Recall from § 3.2 that Jb is the Qp-inner form of Mb given by the cocycle σ → b̃ in
H1(Ls/Qp, Int(Mb)). Since G is unramified over Qp, we may assume that G ×Qp

Ls is
split, by enlarging s if necessary. (Before, s ∈ Z>0 was chosen in § 3.2.) The aim of § 8.2
is to give an explicit alternative proof for Lemma 6.3, under the assumptions that

• Jb � Mb as Qp-groups,

• Mder
H is simply connected, and

• Z(Mb) and Z(MH) are connected.

The second and third assumptions are always satisfied for a PEL datum of type (A).
The first assumption implies that the trivial element in H1(Ls/Qp, Int(Mb)) is defined

by σ �→ b̃. So there exists some b0 ∈ Mb(Ls) such that Int(b̃) = Int(b−1
0 bσ

0 ). (This is
possible since the natural map Mb(Ls) → IntLs

(Mb) is surjective. The last fact follows
from the triviality of H1(Ls, Z(Mb)) implied by Hilbert 90.) In other words,

b̃ = b−1
0 bσ

0 z (8.8)

for some z ∈ Z(Mb)(Ls).
We claim that Jb(Qp)

∼−→ Mb(Qp) as subgroups of Mb(Ls) via δ �→ b0δb
−1
0 . Let us

prove the claim. Using (3.2) it is easy to see that Jb(Qp) is contained in Mb(Ls). (See
also the proof of [34, Corollary 1.14].) As subgroups of Mb(Ls), the two groups Jb(Qp)
and Mb(Qp) are cut out by the conditions gb̃σ = b̃σg and gσ = σg, respectively. The
claim follows from this and (8.8).

We will certainly choose the transfer factor ∆(· , ·)Jb

MH
so that

∆(· , ·)Jb

MH
= ∆(· , ·)Mb

MH
(8.9)

via the isomorphism Jb(Qp) � Mb(Qp) in the last paragraph. Suppose that δ ∈ Jb(Qp)
and γ0 ∈ Mb(Qp) are semisimple elements with matching stable conjugacy classes. This
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amounts to assuming that b0δb
−1
0 is stably conjugate to γ0 in Mb(Qp). Observe that the

identity (6.9) now simplifies as

cMH
= 〈α̃p(γ0, δ), κ̃〉−1 · 〈invp(b0δb

−1
0 , γ0), κ̃〉. (8.10)

The proof of Lemma 6.3 comes down to showing that the right side of (8.10) is a con-
stant independent of γ0 and δ. As in the paragraph preceding (8.2), write s = s1s2

for s1 ∈ Z(Ĥ)Γ (p) and s2 ∈ Z(Ĝ) and let κ̃1 and κ̃2 denote the images of s1 and s2

in Z(Î0), respectively. To show Lemma 6.3, it suffices to prove that 〈αp(γ0, δ), κ̃1〉−1 ·
〈invp(b0δb

−1
0 , γ0), κ̃1〉 is constant. In view of [36, Lemma 10.9], it is enough to prove that

if γ0 = b0δb
−1
0 then 〈αp(γ0, δ), κ̃〉 is independent of δ.

In the definition αp(γ0, δ) = κI0(bδ) (§ 4.3), we may take y = b−1
0 so that

b̃δ = b0b̃b
−σ
0 = z ∈ Z(Mb)(Ls)

using (8.8). (Its image in B(I0) is bδ.) We see that αp(γ0, δ) equals the image of κZ(Mb)(z)
under the bottom horizontal arrow below:

B(Z(Mb)) ��

κZ(Mb)

��

B(I0)

κI0

��
X∗((Ẑ(Mb))Γ (p)) �� X∗(Z(Î0)Γ (p))

Note that the diagram (8.1) makes sense in our case as well. We obtain a character on
Z(M̂H)Γ (p) by pulling back κZ(Mb)(z) via (8.1). Since κ̃1 is the image of s1 ∈ Z(Ĥ)Γ (p),
we see that

〈αp(γ0, δ), κ̃1〉 = 〈κZ(Mb)(z), s1〉,

where the pairing on the right is taken between X∗(Z(M̂H)Γ (p)) and Z(M̂H)Γ (p). The
value on the right-hand side is visibly independent of δ. This finishes the proof of
Lemma 6.3 in the setting of the current subsection. Our discussion shows that (with
the identification ∆p(· , ·)Jb

MH
= ∆p(· , ·)Mb

MH
)

cMH
= µ1(s2)〈κZ(Mb)(z), s1〉−1. (8.11)
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