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Abstract

A critical branching process {Zk, k = 0, 1, 2, . . .} in a random environment is considered.
A conditional functional limit theorem for the properly scaled process {logZpu, 0 ≤ u <

∞} is established under the assumptions that Zn > 0 and p � n. It is shown that the
limiting process is a Lévy process conditioned to stay nonnegative. The proof of this
result is based on a limit theorem describing the distribution of the initial part of the
trajectories of a driftless random walk conditioned to stay nonnegative.
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1. Introduction

We consider a branching process in a random environment specified by a sequence of inde-
pendent and identically distributed (i.i.d.) random laws. Denote by � the space of probability
measures on N0 = {0, 1, 2, . . . }. Equipped with the metric of total variation, � becomes a
Polish space. Let Q be a random variable taking values in �. Then, an infinite sequence

� = (Q1,Q2, . . .) (1)

of i.i.d. copies of Q is said to form a random environment. A sequence of N0-valued random
variables Z0, Z1, . . . is called a branching process in the random environment �, if Z0 is
independent of � and given � the process Z = (Z0, Z1, . . .) is a Markov chain with

L(Zn | Zn−1 = z, � = (q1, q2, . . .)) = L(ξn1 + · · · + ξnz | qn)
for every n ≥ 1, z ∈ N0, and q1, q2, . . . ∈ �, where ξn1, ξn2, . . . are i.i.d. random variables
with distribution qn.

We assume that Z0 = 1 almost surely (a.s.) for convenience and denote the corresponding
probability measure on the underlying probability space by P (and expectation by E). (If we
refer to other probability spaces, then we use notation P and E (maybe with some indices) for
the respective probability measures and expectations and laws.)

As it turns out, the properties of Z are first of all determined by its associated random walk
S := {Sn, n ≥ 0}. This random walk has initial state S0 = 0 and increments Xn = Sn − Sn−1,
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Path to survival for branching processes in a random environment 589

n ≥ 1, defined as

Xn := log

( ∞∑
y=0

yQn({y})
)
,

which are i.i.d. copies of the logarithmic mean offspring number

X := log

( ∞∑
y=0

yQ({y})
)
.

Following [8], we call the process Z := {Zn, n ≥ 0} critical if and only if the random walk S
is oscillating, that is, lim supn→∞ Sn = ∞ and lim infn→∞ Sn = −∞ with probability 1. It
was shown in [8] that the extinction moment of the critical branching process in a random
environment is finite with probability 1, and, moreover, if

lim
n→∞ P (Sn > 0) = ρ ∈ (0, 1), (2)

then (under some mild additional assumptions to be specified later on)

P (Zn > 0) ∼ θP (min(S0, S1, . . . , Sn) ≥ 0) = θ
l(n)

n1−ρ , (3)

where l(n) is a slowly varying function and θ is a known positive constant whose explicit
expression is given by (15) below.

Let

A = {0 < α < 1; |β| < 1} ∪ {1 < α < 2; |β| < 1} ∪ {α = 1, β = 0} ∪ {α = 2, β = 0}
be a subset in R

2. For (α, β) ∈ A and a random variable X, write X ∈ D(α, β) if the
distribution ofX belongs to the domain of attraction of a stable law with characteristic function

Hα,β(t) := exp

{
−c|t |α

(
1 + iβ

t

|t | tan
πα

2

)}
, c > 0, (4)

and, in addition, EX = 0 if this moment exists. Note that for X ∈ D(α, β), the quantity ρ
in (2) may be calculated explicitly; see, for instance, [29].

Denote N+ := {1, 2, . . .} and let {cn, n ≥ 1} be a sequence of positive integers specified by
the relation cn := inf{u ≥ 0 : G(u) ≤ n−1}, where

u2G(u) := EX2 1{|X| ≤ u},
and 1{D} is the indicator of the event D. It is known (see, for instance, [18, Chapter XVII,
Section 5]) that, if X ∈ D(α, β) then there exists a function l1(n), slowly varying at ∞, such
that cn = n1/αl1(n). In addition, the scaled sequence {Sn/cn, n ≥ 1} converges in distribution,
as n → ∞, to the stable law given by (4).

Denote

Mn := max(S1, . . . , Sn), Lk,n := min
k≤j≤n Sj , Ln := L0,n = min(S0, S1, . . . , Sn),

and introduce a right-continuous function

V (x) := 1{x ≥ 0} +
∞∑
k=1

P (−Sk ≤ x,Mk < 0).
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590 V. VATUTIN AND E. DYAKONOVA

The fundamental property of V is the identity

E[V (x +X); x +X ≥ 0] = V (x), x ≥ 0, (5)

which holds for any oscillating random walk. The function V gives rise to further probability
measures P +

x , x ≥ 0, specified by corresponding expectations E+
x . The construction procedure

of this measure is explained in [10] in detail. This was also carried out in [8] for the branching
processes setting. We only recall that if the random walk S = (Sn, n ≥ 0) with S0 = x ≥ 0 is
adapted to some filtration F = (Fn) and ζ0, ζ1, . . . is a sequence of random variables, adapted
to F , then for each fixed n and a bounded and measurable function gn : R

n+1 → R,

E+
x [gn(ζ0, . . . , ζn)] := 1

V (x)
Ex[gn(ζ0, . . . , ζn)V (Sn); Ln ≥ 0],

where Ex is the expectation corresponding to the probability measure Px which is generated
by S. For simplicity we write P + for P +

0 .
We now describe in brief a construction of Lévy processes conditioned to stay positive

following basically the definitions given in [15] and [13].
Let� := D([0,∞),R) be the space of real-valued càdlàg paths on the real half-line [0,∞)

and let B := {Bt , t ≥ 0} be the coordinate process defined as Bt(ω) = ωt for ω ∈ �. In the
sequel we consider also the spaces �U := D([0, U ],R), U > 0.

We endow the spaces � and �U with Skorokhod topology and denote by F = {Ft , t ≥ 0}
and by F U = {Ft , t ∈ [0, U ]} (with some misuse of notation) the natural filtrations of the
processes B and BU = {Bt , t ∈ [0, U ]}.

Let Px be the law on � of an α-stable process B, α ∈ (0, 2] started at x and let P = P0.
Denote by ρ = P(B1 ≥ 0) the positivity parameter of the process B. We now introduce an
analogue of the measure P + for Lévy processes. Namely, following [14], we specify, for all
t > 0, D ∈ Ft , the law P

+
x on � of the Lévy process starting at point x > 0 and conditioned

to stay positive by the equality

P
+
x (D) := 1

xα(1−ρ)Ex
[
B
α(1−ρ)
t 1{D} 1

{
inf

0≤u≤t Bu ≥ 0
}]
.

This definition has no sense for x = 0. However, it was shown in [15] that it is possible
to construct a law P

+ := P
+
0 and a càdlàg Markov process with the same semigroup as

(B, {P+
x , x > 0}) and such that P

+(B0 = 0) = 1.
Let P

(m) be the law on �1 of the meander of length 1 associated with (B,P), i.e.

P
(m)(·) := lim

x↓0
Px

(
·
∣∣∣ inf

0≤u≤1
Bu ≥ 0

)
. (6)

Thus, the law P
(m) may be viewed as the law of the Lévy process (B,P) conditioned to stay

nonnegative on the time-interval (0, 1), while the law P
+ corresponds to the law of the Lévy

process conditioned to stay nonnegative on the whole real half-line (0,∞).
It was proved in [15] that P

(m) and P
+ are absolutely continuous with respect to each other:

for every event D ∈ F1,
P

+(D) = C0E
(m)[1{D}Bα(1−ρ)

1 ],
where (see, for instance, Equations (3.5), (3.6), and (3.11) in [13])

C0 := lim
n→∞V (cn)P (Ln ≥ 0) = 1

E(m)[Bα(1−ρ)
1 ]

∈ (0,∞). (7)
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Set

ζ(b) :=
∑∞
y=b y2Q({y})

(
∑∞
y=0 yQ({y}))2

, b ∈ N0.

In what follows we say that

• condition (A1) is valid if X ∈ D(α, β);

• condition (A2) is valid if
E(log+ ζ(b))α+ε < ∞

for some ε > 0 and b ∈ N0;

• condition (A) is valid if conditions (A1) and (A2) hold and, in addition, the parameter
p = p(n) tends to ∞ as n → ∞ in such a way that

lim
n→∞ n

−1p = lim
n→∞ n

−1p(n) = 0. (8)

Introduce two processes

Hp :=
{

logZ[pu]
cp

, 0 ≤ u < ∞
}
, Gn :=

{
logZ[nt]
cn

, 0 ≤ t ≤ 1

}
.

We are now ready to formulate two main results of the paper.
The first theorem describes the initial evolutionary stage of the critical branching process in

a random environment that provides survival of the process for a long time.

Theorem 1. If condition (A) is valid then, as n → ∞,

L(Hp | Zn > 0, Z0 = 1)
w−→ P

+(B),

where the symbol ‘
w−→’ stands for the weak convergence in the space D([0,∞),R) of càdlàg

functions in [0,∞) endowed with the Skorokhod topology. In particular,

lim
n→∞ P

(
logZp
cp

≤ z | Zn > 0, Z0 = 1

)
= P

+(B1 ≤ z) = C0E
(m)[1{B1 ≤ z}Bα(1−ρ)

1 ]

for any z > 0.

Remark 1. This theorem complements Corollary 1.6 in [8], which states that under condi-
tions (A1) and (A2),

L(Gn | Zn > 0, Z0 = 1)
w−→ P

(m)(B1) as n → ∞.

In particular,

lim
n→∞ P

(
logZn
cn

≤ z | Zn > 0, Z0 = 1

)
= P

(m)(B1 ≤ z) = E
(m)[1{B1 ≤ z}]

for any z > 0.
Let, for U > 0,

H
p
U :=

{
logZ[pu]
cp

, 0 ≤ u ≤ U

}
.
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Corollary 1. If condition (A) is valid then, for any U > 0,

L((H
p
U ,G

n) | Zn > 0, Z0 = 1)
w−→ P

+(BU)× P
(m)(B1) as n → ∞.

We have seen by (3) that the asymptotic behavior of the survival probability of the process Z
is primarily determined by the random walk S, since only the constant θ depends on the fine
structure of Z; see (15) below. Moreover, the random walk changes its properties drastically,
when conditioned on the event {Zn > 0}. The next theorem, describing the trajectories of the
random walk S that provide survival of the critical process in a random environment at the
initial stage of the development of the population, illustrates this fact.

For U ∈ (0,∞], let

Q
p
U :=

{
S[pu]
cp

, 0 ≤ u ≤ U

}
, Qp = Q

p∞,

SnU :=
{
SpU+[(n−pU)t]

cn
, 0 ≤ t ≤ 1

}
, Sn := Sn0 .

Theorem 2. If condition (A) is valid then, as n → ∞,

L(Qp | Zn > 0, Z0 = 1)
w−→ P

+(B).

Remark 2. This theorem complements Theorem 1.5 in [8], which states that under condi-
tions (A1) and (A2),

L(Sn | Zn > 0, Z0 = 1)
w−→ P

(m)(B1) as n → ∞.

Corollary 2. If condition (A) is valid then, for any U > 0,

L((Q
p
U ,S

n) | Zn > 0, Z0 = 1)
w−→ P

+(BU)× P
(m)(B1) as n → ∞.

The usage of the associated random walks to study branching processes in a random environ-
ment has a long history. It seems that Kozlov [20] was the first who observed that to investigate
properties of the critical branching processes in a random environment it is convenient to use
ladder epochs of the associated random walks. This fact has been used in various situations
for the case of the associated random walks with zero or negative drift and finite variance
of increments; see [1]–[5] [19], [21], and [23]. The first steps to overcome the assumption
of a finite variance random walk in the driftless case were taken in [17] and [25]. In recent
years the authors in [6]–[9], [12], [26], and some others provide a systematic approach to the
study of branching processes in a random environment under rather general assumptions on the
properties of the associated random walk; see [24] and [28] for a detailed exposition.

2. Auxiliary results

We will use the symbols K,K1,K2, . . . to denote different constants. They are not neces-
sarily the same in different formulas.

2.1. Properties of the associated random walk

To prove the main results of the paper we need to know the asymptotic behavior of the
function V (x) as x → ∞. The following lemma yields the desired asymptotics.

https://doi.org/10.1017/jpr.2017.19 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.19


Path to survival for branching processes in a random environment 593

Lemma 1. (See Lemma 13 in [27] and Corollary 8 in [16].) If X ∈ D(α, β) then there exists
a slowly varying function l0(x) such that

V (x) ∼ xα(1−ρ)l0(x) as x → ∞. (9)

Our next result is a combination (with a slight reformulation) of Lemma 2.1 in [8] and
Corollaries 3 and 8 in [16].

Lemma 2. If X ∈ D(α, β) then there exist positive constants K , K1, and K2 such that, as
n → ∞,

P (Ln ≥ −w) ∼ V (w)P (Ln ≥ 0) ∼ KV (w)nρ−1l(n) (10)

uniformly for 0 ≤ w � cn, and

P (Ln ≥ −w) ≤ K1V (w)n
ρ−1l(n) ≤ K2V (w)P (Ln ≥ 0), w ≥ 0, n ≥ 1. (11)

For further references we prove the following simple statement.

Lemma 3. Let An ⊂ R, n ∈ N, be a family of subsets and let bn(x), n ∈ N, be a sequence of
functions such that, for any fixed sequence {an, n ∈ N} such that an ∈ An for all n ∈ N,

lim
n→∞ bn(an) = 0. (12)

Then limn→∞ supa∈An
|bn(a)| = 0.

Proof. Assume that the conclusion of the lemma does not hold. Then, there exists ε > 0
such that, for all N , there exist n(N) ≥ N and an(N) ∈ An(N) such that

|bn(N)(an(N))| ≥ ε.

This, clearly, contradicts (12). �
In the sequel we agree to consider the expressions of the form limA(p, n) or lim supA(p, n)

without lower indices as the lim or lim sup of the triangular array {A(p, n), p ≥ 1, n ≥ 1}
calculated under the assumption that pn−1 → 0 as p, n → ∞. We also write an � bnif
limn→∞ an/bn = 0.

Let φ1 : �1 → R be a bounded uniformly continuous functional and {εn, n ∈ N} be a
sequence of positive numbers vanishing as n → ∞.

Lemma 4. If condition (A1) is valid then

E[φ1(S
n) | Ln ≥ −x] → E

(m)[φ1(B
1)] (13)

as n → ∞ uniformly in 0 ≤ x ≤ εncn.

Proof. It was shown in Theorem 1.1 of [13] that, given condition (A1), convergence (13)
holds for any sequence x = xn meeting the restriction 0 ≤ xn � cn as n → ∞. This and
Lemma 3 with An := {0 ≤ x ≤ εncn} imply the desired statement. �

Now we are ready to demonstrate the validity of the following result.

Lemma 5. If conditions (A1) and (8) are valid then, for U > 0 and any r ≥ 0,

L((Q
p
U ,S

n) | Ln ≥ −r) w−→ P
+(BU)× P

(m)(B1) as n → ∞.
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Proof. Consider the processes Sk,n and S̃k,n, 0 ≤ k ≤ n, given by

S
k,n
t := S[nt]∧k

cn
, S̃k,n := 1

cn
(S[nt] − S[nt]∧k), 0 ≤ t ≤ 1.

Clearly,

Sn = Sk,n + S̃k,n.

Let S∗ := {S∗
n, n ≥ 0} be a probabilistic and independent copy of the random walk S =

{Sn, n ≥ 0} and

L∗
n := min(S∗

0 , S
∗
1 , . . . , S

∗
n), (S∗)nU :=

{
S∗

[(n−pU)t]
cn

, 0 ≤ t ≤ 1

}
.

For a fixed N > 0 set

IN(x) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ N−1,

Nx − 1 if x ∈ (N−1, 2N−1),

1 if 2N−1 ≤ x ≤ N ,

N + 1 − x if N < x ≤ N + 1,

0 if x > N + 1,

and let

φ : �U → R and φ1 : �1 → R

be two continuous and bounded functionals.
Then, for fixed positive U and N and pU = nεn, where ε ≥ εn ↓ 0 as n → ∞, we have

(with a slight abuse of notation)

E

[
φ(Q

p
U )IN

(
SpU

cp

)
φ1(S

n); Ln ≥ −r
]

= E

[
φ(Q

p
U )IN

(
SpU

cp

)
1{LpU ≥ −r}

× E[φ1((S
∗)nU + SpU,n) 1{L∗

n−pU ≥ −SpU − r}]
]
.

Here and in what follows we agree to consider pU and n − pU as [pU ] and [n − pU ],
respectively. Since cp/cn → 0 as n → ∞, it follows that, given LpU ≥ −r ,

SpU

cn
IN

(
SpU

cp

)
→ 0 a.s.

and SpU,n vanishes as n → ∞. This observation, Lemma 4, and the continuity of φ1 imply
that

E[φ1((S
∗)nU + SpU,n) | L∗

n(1−εn) ≥ −SpU − r] → E
(m)[φ1(B

1)]
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as n → ∞ uniformly for 0 ≤ SpU ≤ Ncp � cn. On the other hand, by (7), (9), (10), and
properties of regularly varying functions (see, for instance, [22]), we deduce that, asp, n → ∞,

P (L∗
n−pU ≥ −SpU − r)IN

(
SpU

cp

)
∼ V (SpU )IN

(
SpU

cp

)
P (Ln ≥ 0)

= V (SpU )

V (cp)
IN

(
SpU

cp

)
V (cp)P (Ln ≥ 0)

∼
(
SpU

cp

)α(1−ρ)
IN

(
SpU

cp

)
C0P (Ln ≥ 0)

P (Lp ≥ 0)

∼
(
SpU

cp

)α(1−ρ)
IN

(
SpU

cp

)
C0P (Ln ≥ −r)
P (Lp ≥ −r) .

Hence, after evident but awkward transformations, we have, as p, n → ∞,

E

[
φ(Q

p
U )φ1(S

n)IN

(
SpU

cp

) ∣∣∣∣ Ln ≥ −r
]

∼ C0E
(m)[φ1(B1)]E

[
φ(Q

p
U )

(
SpU

cp

)α(1−ρ)
IN

(
SpU

cp

) ∣∣∣∣ LpU ≥ −r
]
.

By Theorem 1.1 of [13], as p → ∞,

E

[
φ(Q

p
U )

(
SpU

cp

)α(1−ρ)
IN

(
SpU

cp

) ∣∣∣∣ LpU ≥ −r
]

→ E
(m)[φ(BU)B

α(1−ρ)
U IN(BU)]

= E
+[φ(BU)IN(BU)].

Thus, under conditions (A1) and (8),

lim E

[
φ(Q

p
U )IN

(
SpU

cp

)
φ1(S

n)

∣∣∣∣ Ln ≥ −r
]

= C0E
+[φ(BU)IN(BU)]E(m)[φ1(B

1)].

Letting now N → ∞, we obtain

L((Q
p
U ,S

n) | Ln ≥ −r) w−→ P
+(BU)P(m)(B1) for any U > 0. �

Corollary 3. If conditions (A1) and (8) are valid then

L(Qp | Ln ≥ −r) w−→ P
+(B) as n → ∞.

Proof. It follows from Lemma 5 that

L(Q
p
U | Ln ≥ −r) w−→ P

+(BU) for any U > 0.

This fact combined with Theorem 16.7 in [11] completes the proof of the corollary. �

3. Conditional limit theorems

For convenience we introduce the notation

Au.s. = {Zn > 0 for all n ≥ 0}, τn := min{j : Sj = Ln},
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596 V. VATUTIN AND E. DYAKONOVA

where ‘u.s.’ denotes ultimate survival. Recall that P +(Au.s.) > 0 by Proposition 3.1 in [8] and
that, as n → ∞,

P (Zn > 0) ∼ θP (Ln ≥ 0) ∼ θn−(1−ρ)l(n) ∼ θC0

V (cn)
(14)

by Corollary 1.2 in [8], (3), and (7), where

θ =
∞∑
k=0

E[P +
Zk
(Au.s.); τk = k]. (15)

Let
L̂k,n := min

0≤j≤n−k(Sk+j − Sk)

and let F̃k be the σ -algebra generated by the tuple {Z0, Z1, . . . , Zk;Q1,Q2, . . . ,Qk}; see (1).
For further references we formulate two statements borrowed from [8].

Lemma 6. (See Lemma 2.5 in [8].) Assume that condition (A1) holds. Let Y1, Y2, . . . be a
uniformly bounded sequence of real-valued random variables adapted to the filtration F̃ =
{F̃k, k ∈ N}, which converges P +-a.s. to some random variable Y∞. Then, as n → ∞,

E[Yn | Ln ≥ 0] → E+[Y∞].
Lemma 7. (See Lemma 4.1 in [8].) Assume that conditions (A1) hold and let l ∈ N0. Suppose
that ζ1, ζ2, . . . is a uniformly bounded sequence of real-valued random variables, which, for
every k ≥ 0, meets the equality

E[ζn; Zk+l > 0, L̂k,n ≥ 0 | F̃k] = P (Ln ≥ 0)(ζk,∞ + o(1)), P -a.s. as n → ∞
with random variables ζ1,∞ = ζ1,∞(l) and ζ2,∞ = ζ2,∞(l), . . . . Then

E[ζn; Zτn+l > 0] = P (Ln ≥ 0)

( ∞∑
k=0

E[ζk,∞; τk = k] + o(1)

)
as n → ∞,

where the right-hand side series is absolutely convergent.

For U > 0 and q ≤ p, pU ≤ n, let

X
q,p
U := {Xq,pu = e−Sq+[u(p−q)]Zq+[u(p−q)], 0 ≤ u ≤ U},

Xq,p := {Xq,pu = e−Sq+[u(p−q)]Zq+[u(p−q)], 0 ≤ u < ∞},
Y
p,n
U := {Yp,nt = e−SpU+[(n−pU)t]ZpU+[(n−pU)t], 0 ≤ t ≤ 1}, Yp,n := Y

p,n
0 .

The next statement is an evident corollary of Theorem 1.3 in [8] and we present its proof for
completeness only.

Lemma 8. Assume that conditions (A1) and (A2) hold. Let (q1, p1), (q2, p2), . . . be a sequence
of pairs of positive integers such that qn � pn as n → ∞. If pn � n then, for any U > 0,

L((X
qn,pn
U ,Y

pn,n
U ) | Zn > 0, Z0 = 1)

w−→ L((Wu, 0 ≤ u ≤ U), (W̆t , 0 ≤ t ≤ 1))
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as n → ∞, where
P (Wu = W̆t = W, 0 ≤ u ≤ U, 0 ≤ t ≤ 1) = 1

for some random variable W such that

P (0 < W < ∞) = 1.

Proof. We follow (with minor changes) the line of the proof of Theorem 1.3 in [8]. According
to Proposition 3.1 in [8], there exists a strictly positive and finite random variable W+ such
that, as n → ∞,

e−SnZn → W+, P +-a.s. (16)

and
{W+ > 0} = {Zn > 0 for all n}, P +-a.s. (17)

Fix U > 0 and let φ be a bounded continuous function on the space �U = D([0, U ],R) of
càdlàg functions and let φ1 be a bounded continuous function on the space �1. For s ∈ R, let
W s
U := {Ws

u, 0 ≤ u ≤ U} and W̌ s := {W̌ s
t , 0 ≤ t ≤ 1} denote the processes with constant

paths coinciding (formally) within the time-interval [0,min{U, 1}], i.e.

Ws
u := e−sW+, 0 ≤ u ≤ U, W̌ s

t := e−sW+, 0 ≤ t ≤ 1.

From (16), it follows that, for fixed s ∈ R, the two-dimensional process

(e−sXqn,pn
U , e−sYpn,nU )

converges, as n, pn → ∞ with qn ≤ pn � n, to (W s
U , W̌

s) in the metric of uniform
convergence and, consequently, in the Skorokhod metric on the space �U × �1 P +-a.s.,
and

Kn := φ(e−sXqn,pn
U )φ1(e

−sYpn,nU ) 1(Zn > 0)

→ K∞ := φ(W s
U )φ1(W̌

s) 1{W+ > 0}, P +-a.s.

For q ≤ p ≤ n and z ∈ N0, define

ψ(z, s, q, p, n) := Ez[φ(e−sXq,p
U )φ1(e

−sYp,nU ); Zn > 0, Ln ≥ 0]
= Ez[φ(e−sXq,p

U )φ1(e
−sYp,nU ) 1(Zn > 0) | Ln ≥ 0]P (Ln ≥ 0).

Since Kn → K∞, P +-a.s. as n → ∞, from Lemma 6, it follows that

ψ(z, s, qn, pn, n) = P (Ln ≥ 0)(E+
z [φ(W s

U )φ1(W̌
s); W+ > 0] + o(1)).

Observe now that, for k ≤ q ≤ p ≤ n,

E[φ(e−sXq,p
U )φ1(e

−sYp,nU ); Zn > 0, L̂k,n ≥ 0 | Fk] = ψ(Zk, Sk, q − k, p − k, n− k).

Therefore, we may apply Lemma 7 to the random variables

ζn = φ(e−sXqn,pn
U )φ1(e

−sYpn,nU ) 1{Zn > 0}, ζk,∞ = E+
Zk

[φ(WSk
U )φ1(W̌

Sk ); W+ > 0]
with l = 0.
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Using (14), we obtain

E[φ(Xqn,pn
U )φ1(Y

pn,n
U ) | Zn > 0] →

∫
φ(m)φ1(n)λ(dm × dn) as n → ∞,

where λ is the measure on the product space of càdlàg functions on �U ×�1 specified by

λ(dm × dn) := 1

θ

∞∑
k=0

E[λZk,Sk (dm × dn); Zk > 0, τk = k]

with
λz,s(dm × dn) := P +

z [W s
U ∈ dm, W̌ s ∈ dn, W+ > 0].

By (17), the total mass of λz,s is equal to P +
z (Zn > 0 for all n ≥ 0). Therefore, the

representation of θ in (15) shows that λ is a probability measure. Again using (17), we see that
λz,s is concentrated on strictly positive constant functions only. Hence, the same is true for the
measure λ. �
Corollary 4. Assume that conditions (A1) and (A2) hold. Let (q1, p1), (q2, p2), . . . be a
sequence of pairs of positive integers such that qn � pn � n and qn → ∞ as n → ∞.
Then

L(Xqn,pn | Zn > 0, Z0 = 1)
w−→ L({Wu, 0 ≤ u < ∞}).

Proof of Theorem 2. Let U > 0 be fixed. Consider the processes

Q
q,p
U = {Sq,pu , 0 ≤ u ≤ U}, Q̃

q,p
U = {S̃q,pu , 0 ≤ u ≤ U}, 0 ≤ q ≤ pU,

given by

S
q,p
u := S[pu]∧q

cp
, S̃

q,p
u := 1

cp
(S[pu] − S[pu]∧q), 0 ≤ u ≤ U.

Take k, l ≥ 0 with k + l ≤ pU . We may decompose the stochastic process Q
p
U as

Q
p
U := Q

k+l,p
U + Q̃

k+l,p
U .

Let φ be a bounded continuous functional on �U . Define

ψ(m, r) := E[φ(m + Q̃
k+l,p
U ); L̂k+l,n ≥ −r]

for m ∈ D[0, U ] and r ≥ 0. If p, n → ∞ in such a way that pn−1 → 0 then, according to
Corollary 3,

L({Sk+l,pu , 0 ≤ u < ∞} | L̂k+p,n ≥ −r) w−→ P
+({Bu, 0 ≤ u < ∞})

for each fixed pair k and l. Hence, if the càdlàg functions mp ∈ �U converge uniformly to the
zero function as p → ∞, then, given (8),

ψ(mp, r) = P (Ln−(k+l) ≥ −r)(E+[φ(BU)] + o(1))

= V (r)P (Ln ≥ 0)(E+[φ(BU)] + o(1)) as p, n → ∞,
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where for the second equality we have applied (10). Using the representation

{L̂k,n ≥ 0} = {L̂k,k+l ≥ 0} ∩ {L̂k+l,n ≥ −(Sk+l − Sk)} (18)

and taking into account that Q
k+l,p
U converges uniformly to 0, P -a.s. as p → ∞, we have,

under condition (A),

E[φ(Qp
U ); Zk+l > 0, L̂k,n ≥ 0 | Fk+l]

= ψ(Q
k+l,p
U , Sk+l − Sk) 1{Zk+l > 0, L̂k,k+l ≥ 0}

= V (Sk+l − Sk)P (Ln ≥ 0)(E+[φ(BU)] + o(1)) 1{Zk+l > 0, L̂k,k+l ≥ 0}, P -a.s.
(19)

This representation combined with (11) and (18) allows us to deduce the chain of estimates

|E[φ(Qp
U ); Zk+l > 0, L̂k,n ≥ 0 | Fk+l]|

≤ sup |φ|P (L̂k,n ≥ 0 | Fk+l )
= sup |φ|P (L̂k+l,n ≥ −(Sk+l − Sk) | Fk+l ) 1{L̂k,k+l ≥ 0}
≤ K1V (Sk+l − Sk)P (Ln−(k+l) ≥ 0) 1{L̂k,k+l ≥ 0}, P -a.s. for some K1 > 0.

Observe that, according to (5),

E[V (Sk+l − Sk); L̂k,k+l ≥ 0 | Fk] = V (0) < ∞, P -a.s.

Hence, using the dominated convergence theorem, (6), and the definition of P +, we obtain,
by (19),

E[φ(Qp
U ); Zk+l > 0, L̂k,n ≥ 0 | Fk]

= (E+[φ(BU)] + o(1))P (Ln ≥ 0)E[V (Sk+l − Sk); Zk+l > 0, L̂k,k+l ≥ 0 | Fk]
= (E+[φ(BU)] + o(1))P (Ln ≥ 0)P +

Zk
(Zl > 0), P -a.s.

Applying Lemma 7 to ζn := φ(Q
p
U ) and ζk,∞(l) := E

+[φ(BU)]P +
Zk
(Zl > 0) and letting

n � p = p(n) → ∞ yields

E[φ(Qp
U ); Zτn+l > 0] = (E+[φ(BU)] + o(1))P (Ln ≥ 0)

∞∑
k=0

E[P +
Zk
(Zl > 0); τk = k].

Therefore,

P (Zτn+l > 0) ∼ P (Ln ≥ 0)
∞∑
k=0

E[P +
Zk
(Zl > 0); τk = k] as n → ∞,

where the right-hand side series is convergent. Observe that

|E+[φ(BU)]P (Zn > 0)− E[φ(Qp
U ); Zn > 0]|

≤ |E+[φ(BU)]P (Zn > 0)− E[φ(Qp
U ); Zτn+l > 0]|

+ sup |φ|E| 1{Zn > 0} − 1{Zτn+l > 0}|
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and

E| 1{Zn > 0} − 1{Zτn+l > 0}|
≤ (P (Zn > 0)− P (Zn+l > 0))+ (P (Zτn+l > 0)− P (Zn+l > 0)).

These estimates and (14) lead to the inequality

|E+[φ(BU)] − E[φ(Qp
U ) | Zn > 0]|

≤ 2 sup |φ|
(

1

θ

∞∑
k=0

E[P +
Zk
(Zl > 0); τk = k] − 1

)
+ ε(p, n), (20)

where lim ε (p, n) = 0. By the dominated convergence theorem and the definition of θ in (15),
we conclude that ∞∑

k=0

E[P +
Zk
(Zl > 0); τk = k] ↓ θ as l → ∞.

Since the left-hand side of (20) does not depend on l, this gives the assertion of Theorem 2 for
an arbitrary interval 0 ≤ u ≤ U . To complete the proof of the theorem it remains to apply
Theorem 16.7 of [11]. �

Proof of Corollary 2. We use the notation of Lemma 5 and define

ψ∗(m, n,r) := E[φ(m + Q̃
k+l,p
U )φ1(n + S̃k+l,p); L̂k+l,n ≥ −r]

for (m, n) ∈ �U ×�1 and r ≥ 0. If a two-dimensional vector of càdlàg functions (mp, nn) ∈
�U ×�1 converges uniformly to the two-dimensional vector of zero functions as p = p(n) →
∞ as n → ∞, and condition (8) is valid, then, according to Lemma 5,

ψ∗(mp, nn, r) = P (Ln−(k+l) ≥ −r)(E+[φ(BU)]E(m)[φ1(B
1)] + o(1))

= V (r)P (Ln ≥ 0)(E+[φ(BU)]E(m)[φ1(B
1)] + o(1)).

Let k and l be fixed. We know that the pair (Qk+l,p, Sk+l,n) converges uniformly, as p, n → ∞
to the two-dimensional vector of zero functions P -a.s. Hence, we obtain

E[φ(Qp
U )φ1(S

n); Zk+l > 0, L̂k,n ≥ 0 | Fk+l]
= ψ∗(Qk+l,p

U ,Sk+l,n, Sk+l − Sk) 1{Zk+l > 0, L̂k,k+l ≥ 0}
= V (Sk+l − Sk)P (Ln ≥ 0)(E+[φ(BU)]E(m)[φ1(B

1)] + o(1))

× 1{Zk+l > 0, L̂k,k+l ≥ 0}, P -a.s.

Repeating now almost literally (with evident changes) the proof of Theorem 2 one can check
the validity of Corollary 2. �

Proof of Theorem 1. For each U > 0, we have

L

({
logZq+up

cp
, 0 ≤ u ≤ U

} ∣∣∣∣ Zn > 0, Z0 = 1

)

= L

({
logXq,pu
cp

+ Spu

cp
, 0 ≤ u ≤ U

} ∣∣∣∣ Zn > 0, Z0 = 1

)
.

This equality, Theorem 2, and Lemma 8, combined with Theorem 16.7 of [11] justify the desired
statement. �
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Proof of Corollary 1. The needed statement follows from the representation

L

({
logZq+up

cp
, 0 ≤ u ≤ U ; logZpU+[(n−pU)t]

cn
, 0 ≤ t ≤ 1

} ∣∣∣∣ Zn > 0, Z0 = 1

)

= L

({
Spu + logXq,pu

cp
, 0 ≤ u ≤ U ;

SpU+[(n−pU)t] + logYp,nt

cn
, 0 ≤ t ≤ 1

} ∣∣∣∣ Zn > 0, Z0 = 1

)
,

Lemma 8, and Corollary 2. �
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