
Combinatorics, Probability and Computing (2021), 30, pp. 1–16
doi:10.1017/S0963548320000218

ARTICLE

On the subgraph query problem
Ryan Alweiss1,∗†, Chady Ben Hamida1, Xiaoyu He2,‡ and Alexander Moreira1

1Department of Mathematics, Princeton University, Princeton, NJ 08541, USA and 2Department of Mathematics, Stanford
University, Stanford, CA 94305, USA
∗Corresponding author. Email: alweiss@math.princeton.edu

(Received: 14 November 2019; revised 24 March 2020; first published online 27 July 2020)

Abstract
Given a fixed graph H, a real number p ∈ (0, 1) and an infinite Erdős–Rényi graph G∼G(∞, p), how
many adjacency queries do we have to make to find a copy of H inside G with probability at least
1/2? Determining this number f (H, p) is a variant of the subgraph query problem introduced by Ferber,
Krivelevich, Sudakov and Vieira. For every graph H, we improve the trivial upper bound of f (H, p)=
O( p−d), where d is the degeneracy ofH, by exhibiting an algorithm that finds a copy ofH in time o( p−d) as
p goes to 0. Furthermore, we prove that there are 2-degenerate graphs which require p−2+o(1) queries, show-
ing for the first time that there exist graphs H for which f (H, p) does not grow like a constant power of
p−1 as p goes to 0. Finally, we answer a question of Feige, Gamarnik, Neeman, Rácz and Tetali by showing
that for any δ < 2, there exists α < 2 such that one cannot find a clique of order α log2 n in G(n, 1/2) in nδ

queries.

2020 MSC Codes: Primary: 05C57 games on graphs; 05C80 random graphs; 05D10 Ramsey theory

1. Introduction
The subgraph query problem, introduced by Ferber, Krivelevich, Sudakov and Vieira [7], has been
the subject of recent attention in extremal combinatorics and theoretical computer science. The
problem is to determine the smallest number of adaptive queries of the form ‘is (u, v) ∈ E(G)?’ that
need to be made to an Erdős–Rényi random graph G∼G(n, p) to find a copy of a given subgraph
H with probability at least 1/2.

Several variants of the problem appear in the literature. Ferber, Krivelevich, Sudakov and Vieira
[7, 8] first studied the subgraph query problem whenH is a long path or cycle of order comparable
to n, exhibiting asymptotically optimal algorithms for finding long paths and cycles. For example,
as long as

p� log n+ log log n+ ω(1)
n

is above the threshold for Hamiltonicity in G(n, p), they showed that a Hamiltonian cycle can be
found by the time one reveals (1+ o(1))n edges. Here and henceforth we write log for the natural
logarithm and lg for the base-2 logarithm.

†Research supported by an NSF Graduate Research Fellowship.
‡Research supported by an NSF Graduate Research Fellowship.

© The Author(s), 2020. Published by Cambridge University Press.

https://doi.org/10.1017/S0963548320000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000218
mailto:alweiss@math.princeton.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0963548320000218&domain=pdf
https://doi.org/10.1017/S0963548320000218


2 R. Alweiss, C. Ben Hamida, X. He and A. Moreira

In connection with the online Ramsey number, Conlon, Fox, Grinshpun and He [5] studied
the case where H =Km is a fixed complete graph, p→ 0, and the number of vertices n is allowed
to be arbitrarily large. They defined the function f (H, p) to be the number of queries needed to
find a copy ofH in the countably infinite random graphG(∞, p) with probability 1/2, and proved
that

p−(2−√
2)m+O(1) � f (Km, p)� p−(2/3)m−O(1). (1.1)

In this paper, we study the behaviour of f (H, p) as p→ 0 for an arbitrary fixed graph H. We
will use the phrases ‘buildH in T time’ and ‘findH in T queries’ interchangeably for the statement
f (H, p)� T.

Recall that a graph H is d-degenerate if every subgraph of H contains a vertex of degree at
most d, and the degeneracy of H is the least d for which H is d-degenerate. Equivalently, H is d-
degenerate if and only if there is an acyclic orientation of H with maximum out-degree at most d.
Degeneracy is the natural notion of sparsity in graph Ramsey theory (see e.g. the recent proof of
the Burr–Erdős conjecture by Lee [12]).

In the subgraph query problem, a d-degenerate graph can be built by adding one vertex at a
time so that each new vertex has degree at most d at the time it is built. Since a common neighbour
of d given vertices can be found in O( p−d) queries, this shows that f (H, p)=OH( p−d) whenever
H is d-degenerate.

Our first main result is that this trivial bound is never tight when d� 2. Define the depth �

of a graph H with degeneracy d to be the smallest � for which there exists an acyclic orientation
of H with maximum out-degree at most d and longest directed path of length at most � (we use
the convention that the length of the path with n+ 1 vertices is n). Let logt (x) denote the t-fold
iterated logarithm of x.

Theorem 1.1. If H is a graph with degeneracy d� 2 and depth �� 1, then

f (H, p)=OH

(p−d log�+1 ( p−1)
log� ( p−1)

)
.

Roughly speaking, one of the main innovations is to exploit the observation that in a random
graph G(n, 1/n), the degrees of vertices are approximately Poisson with mean 1. Thus the maxi-
mum degree is �( log n/ log log n) despite the fact that the average degree is constant. Repeatedly
finding these vertices of exceptionally large degree allows us to find H slightly faster.

We will also show that the behaviour in Theorem 1.1 can be correct up to the polylogarithmic
factor. Let the triforce graph be the graph obtained from the triangle K3 by adding a common
neighbour to each pair of vertices (see Figure 1 in Section 2).

Theorem 1.2. If H is the triforce graph and

� = log (1/p)
2 log log (1/p)

,

then
f (H, p)= �( p−2/�4).

Note that the triforce is 2-degenerate, so Theorems 1.1 and 1.2 together prove that f (H, p)=
o( p−2) and f (H, p)= �( p−2+ε) for every ε > 0. This is the first example of a graph for which it is
known that f (H, p) does not grow like a power of p−1.

The question of querying for subgraphs in random graphs was also studied by Feige, Gamarnik,
Neeman, Rácz and Tetali [6], and by Rácz and Schiffer in the related planted clique model [14].
Feige et al. restricted their attention to the balanced random graph G(n, 1/2) and asked for the

https://doi.org/10.1017/S0963548320000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000218


Combinatorics, Probability and Computing 3

Figure 1. The triforce graph.

minimum number of queries needed to find a clique of order (2− o(1)) lg n (which approaches
the clique number) with probability at least 1/2. For δ < 2, define α	(δ) to be the supremum over
α � 2 for which a clique of order α lg n can be found with probability at least 1/2 in at most
nδ queries for all n sufficiently large. They showed under the additional assumption that only a
bounded number of rounds of adaptiveness are used that α	(δ)< 2 for all δ < 2, and asked if this
could be proved unconditionally.

Our last theorem answers this question affirmatively. We are grateful to Huy Pham [13] for
communicating to us the main idea of the proof.

Theorem 1.3. For all 2/3< δ < 2,

α	(δ)� 1+
√
1− (2− δ)2

2
< 2.

The proof is an adaptation of the lower bound proof for (1.1) by [5] to take the size of the vertex
set into account. The exact value of α	(δ) remains open for all δ, and the best known lower bound
is α	(δ)� 1+ δ/2 when 1� δ < 2 (see [6, Lemma 6]).

Organization. In Section 2 we describe a new algorithm for finding any d-degenerate graph and
prove that it achieves the runtime described in Theorem 1.1. In Section 3 we give a new argument
for proving lower bounds on f (H, p), proving Theorem 1.2. In Section 4 we give a short proof of
Theorem 1.3, using a variation of the methods in [5]. Finally, Section 5 highlights a few of the
many open questions that remain about f (H, p).

We will write b= p−1 for the expected number of queries needed to find a single edge in
G(∞, p). No attempt will be made to optimize the implicit constants in any of our proofs. We
use A<∼ B to mean A=O(B). For the sake of clarity of presentation, we systematically omit floor
and ceiling signs whenever they are not crucial.

2. Upper bounds
2.1 An illustrative example
As mentioned in the Introduction, there is a straightforward algorithm for finding any d-
degenerate graph H in OH(bd) time. In this section we prove Theorem 1.1 by providing a new
algorithm that beats the trivial algorithm by an iterated logarithmic factor.

We begin by illustrating how the algorithm works with a specific 2-degenerate graph.

Definition 1. The triforce is the graph on six vertices and nine edges obtained from the triangle K3
by adding a common neighbour to each pair of vertices. See Figure 1.

The key step in building the triforce quickly is to build a large book.

Definition 2. The book Bd,t is the graph on d + t vertices obtained by removing the edges of a clique
Kt from a complete graph Kd+t . The t vertices of the removed clique are called the pages of the book
and the remaining d vertices are called its spine. See Figure 2.

https://doi.org/10.1017/S0963548320000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000218


4 R. Alweiss, C. Ben Hamida, X. He and A. Moreira

Figure 2. The book B2,3.

Note that when d and t are fixed positive integers, Bd,t is d-degenerate and thus we have
f (Bd,t , p)=Ot(bd). The key observation is that this can be improved substantially even if we allow
t to grow slowly as p tends to 0.

Lemma 2.1. If d� 2 and

� = log b
2 log log b

,

then f (Bd,�, p)=O(bd�−1/2).

Proof. Wewill exhibit an algorithmwhich finds Bd,� inG(∞, p) with constant probability (w.c.p.)
in O(bd�−1/2) time. The algorithm has three steps.

First we find w.c.p. d − 1 vertices v1, . . . , vd−1 of the spine forming a clique in O(bd−2) time,
which is possible because Kd−1 is (d − 2)-degenerate. Assume this step succeeds.

Next we build a large pool S of common neighbours of v1, . . . , vd−1, which will serve as can-
didates for the remaining vertex vd of the spine and for the pages of the book. In d − 1=O(1)
queries we can check a single new vertex u to see if it is a common neighbour of v1, . . . , vd−1, and
u has a probability pd−1 of being such a common neighbour. We check a total of 4bd�−1/2 pos-
sible u, and each common neighbour successfully found is added to S. Since the outcomes of all
queries are independent, |S| is distributed like the binomial random variable Bin(4bd�−1/2, pd−1)
with mean 4b�−1/2, so w.c.p. |S|� 2b�−1/2.

For the last step, assuming the previous two steps succeed, we will find a star K1,� contained
in S. Along with vertices v1, . . . , vd−1 already chosen, this forms the desired book.

To find this star, remove vertices from S until it has size exactly 2b�−1/2, and then query all
pairs of vertices in S inO(b2�−1) time. The induced subgraph on S is just an Erdős–Rényi random
graph G(2b�−1/2, p). It suffices to show that w.c.p. there exists a vertex of degree at least � therein.
This fact is a consequence of the observation that the degrees are approximately Poisson.

To give a quick proof of this fact, divide S into two sets S1, S2 of size r = b�−1/2, let u1, . . . , ur
be the vertices of S1, and let Xi be the number of neighbours of ui in S2. Then {Xi}ri=1 are r i.i.d.
random variables distributed like Bin(r, p), so

P[Xi � �]�
(
r
�

)
p�(1− p)r−� � (r − �)�p�(1− p)r

�! .

As p→ 0, we can bound r − � > b�−1/2/2, (1− p)r → 1 and �! < ��. Thus

P[Xi � �]��

(
1

2��3�/2

)
.

When

� = log b
2 log log b

,

this fraction is certainly �(b−4/5). In particular, since there are r = b1−o(1) independent random
variables Xi, w.c.p. some Xi is at least �, as desired.

Letting the vertex of degree � be the last vertex vd of the book’s spine and its � neighbours in S
be the pages of the book, we have found a copy of Bd,� w.c.p. inO(bd) total queries, as desired.

We are now ready to prove a stronger version of Theorem 1.1 when H is the triforce.

https://doi.org/10.1017/S0963548320000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000218


Combinatorics, Probability and Computing 5

Theorem 2.2. If H is the triforce graph and

� = log b
2 log log b

,

then f (H, p)=O(b2�−1/2).

Proof. We exhibit an algorithm for finding H w.c.p. in O(b2�−1/2) time.
Using Lemma 2.1 with d = 2, build a copy of B2,�. Let x and y be the two vertices of its spine

and let Z be its pages. In O(b2�−1/2) time we can w.c.p. find two sets of vertices Sx, Sy, each of size
b�−1/2, so that everything in Sx is adjacent to x and everything in Sy is adjacent to y. Now we will
query all pairs between Sx and Z as well as all pairs between Sy and Z. This takes only O(b�1/2)
time, which is negligible.

We claim that w.c.p. there exist x′ ∈ Sx, z ∈ Z and y′ ∈ Sy so that x′ ∼ z and z ∼ y′. This follows
because w.c.p., 
(�1/2) vertices of Z have a neighbour in Sx, and among these vertices w.c.p. at
least one has a neighbour in Sy. Now let z′ be any common neighbour of x and y in Z other than
z. It follows that the six vertices x, y, z, x′, y′, z′ form a triforce, and we have found it in O(b2�−1/2)
queries w.c.p., as desired.

2.2 The general upper bound
Roughly speaking, the main trick in the proofs of Lemma 2.1 and Theorem 2.2 is that we can find
vertices of much larger than average degree in a random graph with constant average degree. We
will iterate this trick many times to prove the general statement in Theorem 1.1.

Wewill construct an arbitrary d-degenerate graphH recursively. If the vertices ofH are ordered
v1, . . . , vn in the degeneracy order, the algorithm will maintain a ‘cloud’ of candidates Ci for the
image of vertex vi, which shrinks as the algorithm progresses. On step i, the algorithm chooses vi
from Ci and then shrinks the clouds corresponding to neighbours of vi to stay consistent with this
choice.

Proof of Theorem 1.1. LetH be a graph on n vertices with degeneracy d� 2 and depth �. Order
its vertices v1, . . . , vn so that each vi has at most d neighbours vj with j< i, and the longest left-
to-right path vi0 , . . . , vir with i0 < · · · < ir has length r = �. Let �i be the length (in edges) of the
longest left-to-right path ending at vi, so that �i �� for all i. Finally, define

L(x)= log x
3n log log x

and �i = L(�i)(b) is obtained from b by iterating L �i times.
We describe an algorithm for finding an injection φ from H to G(∞, p) in a series of rounds,

assuming p is sufficiently small. There are many points at which the algorithm may fail. However,
each round succeeds with probability�H(1) conditional on the success of all previous rounds, and
there are n=OH(1) rounds, so the entire algorithm succeeds with �H(1) probability. The algo-
rithm can then be repeated a number of times depending only on H until its success probability
reaches 1/2; this only changes the implicit constant in f (H, p).

We begin by setting aside n disjoint sets (‘clouds’) C1, . . . , Cn which will change throughout
the algorithm. We initialize these to C(0)

1 , . . . , C(0)
n of order |C(0)

i | = bd/�i, so that C(0)
i is the set

of candidates for φ(vi). We proceed in n rounds, so that C(k)
j will refer to the state of cloud Cj

after round k. After the kth round we will have non-empty disjoint sets C(k)
j , and we always have

C(k−1)
j ⊃ C(k)

j . In the round k a number of queries are made to decide the value of φ(vk) ∈ C(k−1)
k .

Thus C(k)
k is the singleton {φ(vk)} and Ck remains a singleton until the end. For each j with j> k

https://doi.org/10.1017/S0963548320000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000218


6 R. Alweiss, C. Ben Hamida, X. He and A. Moreira

and vj ∼ vk, the set C(k−1)
j is updated to a subset C(k)

j consisting of all elements of C(k−1)
j adjacent

to φ(vk). We say that a vertex vj is living after round k if j> k and dead otherwise.
Two properties are maintained. The first is that after round k, for any i� k and j� n and any

ui ∈ C(k)
i and uj ∈ C(k)

j , ui ∼ uj if vi ∼ vj. In other words, the adjacency relations are correct within
the dead vertices and between the dead vertices and the clouds C(k)

i for the living ones.
The second property is that the size of the set C(k)

j must be

c(k)j :=

⎧⎪⎨
⎪⎩
bd−m/�j if vj is living and hasm< d dead left-neighbours,
�j if vj is living and has exactly d dead left-neighbours,
1 if vj is dead.

The queries on round k are made to guarantee two properties. First, on round k, vertices are
thrown out of C(k−1)

k until it has exactly �k vertices (this is possible because c
(k−1)
k � �k when b is

sufficiently large). Then consider the j so that j> k and vj ∼ vk. If such a vj has exactly d − 1 dead
left-neighbours, then j is called active on round k and otherwise j is called inactive. For each active
j, all pairs in C(k−1)

k × C(k−1)
j are queried.

Each round is divided into an active portion, which happens first, and then an inactive portion.
The active portion of round k succeeds if a candidate uk ∈ C(k−1)

k is found to have at least c(k)j

neighbours in C(k−1)
j for all the active j. One such candidate uk is picked for φ(vk) and C(k)

j is
chosen to be exactly c(k)j neighbours of uk in C(k−1)

j .
Then, for all inactive j, all pairs {uk} × C(k−1)

j are queried. The inactive portion of round k
succeeds if, after these queries, a total of c(k)j neighbours are found for uk in C(k−1)

j for each of the
inactive j as well. We say that the round succeeds if both the active and inactive portions succeed.
The algorithm only continues past round k if round k succeeds.

By induction on k, the algorithm maintains all the required properties and produces a valid
injection φ : H →G(∞, p) if it succeeds on every round. It remains to show that the probability
of success on each round is �H(1).

For each u ∈ C(k−1)
k and j> k for which vj ∼ vk, let dj(u) be the number of neighbours u has in

C(k−1)
j . Note that dj(u) is distributed like Bin(c(k−1)

j , p), since each vertex of C(k−1)
j is adjacent to u

independently with probability p.
Suppose j is active in round k, so that c(k−1)

j = b/�j. This time we get

P[dj(u)� c(k)j ]= P[Bin(b/�j, p)� �j]�
(
b/�j
�j

)
p�j(1− p)b/�j−�j .

Using the facts that 1− x� e−2x for all x ∈ [0, 1/2] and that �j → ∞ as p→ 0+, we see that (1−
p)b/�j−�j � e−2/�j → 1. Also,

(a
b
)
� (a/b)b for all a� b� 1, and thus

P[dj(u)� c(k)j ]�
(
b/�j
�j

)
p�j(1− p)b/�j−�j = �(�−2�j

j ).

There are at most n total j, so taking a product over all active j, we arrive at a lower bound

P[dj(u)� c(k)j for all active j]��H(�
−2n�j
j ).

https://doi.org/10.1017/S0963548320000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000218


Combinatorics, Probability and Computing 7

Since each u ∈ C(k−1)
k is individually a successful candidate for φ(vk) with this probability, and

these are �k independent events, it follows that

P[active portion round k succeeds]��H( min (1, �k�
−2n�j
j )).

Finally, we observe that for every j active in round k, �j ��k + 1 since every left-to-right path
ending at k extends to a longer one ending at j. Thus �j � L(�k), and the function L was chosen
so that L(x)2nL(x) � x for x sufficiently large. It follows that the active portion of round k succeeds
with probability �H(1), as desired.

Now we look at the inactive j in round k. Then c(k)j = pc(k−1)
j , so

P[dj(uk)� c(k)j ]= P[Bin(c(k−1)
j , p)� pc(k−1)

j ]= �(1).

Thus, conditional on the success of the active portion of round k, the inactive portion succeeds
with probability �H(1) as well.

We have now shown that the algorithm, iterated OH(1) times, succeeds with probability 1/2. It
remains to bound the total number of queries made. In the active portion of each round, queries
are only made between sets C(k−1)

k and C(k−1)
j if j is relevant, which implies that c(k)j = b/�j. Also,

elements of C(k−1)
k were thrown out until it had size exactly �k =O(b), so the number of queries

made in the active portion of any round is at most O(b2/L(�)(b))=O(bd/L(�)(b)).
In the inactive portion of each round, queries are made between a single vertex uk and sets

C(k−1)
j of size at most bd/�j each. Thus the number of queries made in the inactive portion of any

round is also O(bd/L(�)(b)).
Since there are at most n=OH(1) rounds and at most n choices of j involved in each round, we

find that

f (H, p)=OH

(
bd

L(�)(b)

)
=OH

(p−d log�+1 ( p−1)
log� ( p−1)

)
,

as desired.

3. Lower bounds
3.1 Preliminaries
In this section we will prove lower bounds for f (H, p). Because N queries necessarily involve at
most 2N vertices, it suffices to prove lower bounds for finding a copy ofH in G(2N, p) rather than
inG(∞, p). Following [5], we will lower-bound the number of queries it takes to build a copy ofH
by showing that the expected number of copies of H we can build in some given amount of time
is not too large.

Definition 3. If H is a graph without isolated vertices, define t(H, p,N) to be the maximum (over all
querying strategies) expected number of copies of H that can be found in G(∞, p) in N queries. Since
we are working on G(2N, p), if H =H′ ∪ {v1, . . . , vt} has t isolated vertices, define t(H, p,N) :=
(2N)t · t(H′, p,N).

If we show that we cannot build so many copies of H (in expectation) in some given time, this
gives us a lower bound on how long it takes to build a single copy of H.

Lemma 3.1. If N � f (H, p), then

f (H, p) · t(H, p,N)�N/4.

https://doi.org/10.1017/S0963548320000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000218


8 R. Alweiss, C. Ben Hamida, X. He and A. Moreira

Thus upper bounds on t(H, p,N) will yield lower bounds on f (H, p). The proof of Lemma 3.1
is straightforward, but we include it for completeness.

Proof. By definition, there exists a strategy which finds H with probability 1/2 in f (H, p) queries.
Given N queries, we can iterate this strategy �N/f (H, p)� independent times on disjoint vertex
sets. By linearity of expectation, this implies

t(H, p,N)�
⌊

N
f (H, p)

⌋
· 1
2
� N

4f (H, p)
.

Thus it suffices to produce upper bounds on t(H, p,N). Fortunately, we can recursively bound
t(H, p,N) in terms of t(H′, p,N) for some subgraphs H′. The following bounds are proved in [5].

Lemma 3.2. [5]. If H is any graph, p ∈ (0, 1), and N � p−1−ε for some ε > 0, then the following
inequalities hold:

t(H, p,N)� min
e∈E(H)

t(H\e, p,N), (3.1)

t(H, p,N)<∼ p max
e∈E(H)

t(H\e, p,N), (3.2)

t(H, p,N)<∼ pN min
e∈E(H)

t(H\{u, v}, p,N), (3.3)

where u, v are the vertices of e in (3.3). In the latter two inequalities, the implicit constants are
allowed to depend only on H.

In general, the bounds of Lemma 3.2 are not tight. In certain cases we will improve these
bounds using the crucial observation that large enough sets of vertices in a random graph have few
common neighbours. For any vertex subset U ⊆V(G) of a graph G, write d(U) for the number of
common neighbours of every vertex in U.

Lemma 3.3. Let

� = log b
2 log log b

,

let k, n� 2 be absolute constants, and let G=G(2N, p).

(1) If pkN <∼ 1, then there exists C > 0 so that

P

[
max
|U|=k

d(U)> C�
]
< pn,

where the maximum is taken over all k-subsets U of V(G).
(2) If pkN = (1/N)�(1), then there exists C > 0 so that

P

[
max
|U|=k

d(U)> C
]
< pn.

Proof. For an arbitrary set of k vertices U, note that d(U)∼ Bin(2N − k, pk) as there are 2N − k
other vertices of G(2N, p) and each vertex has a pk chance of being adjacent to all members of U.
Hence we find that

P[d(U)� t]= P[Bin(2N − k, pk)� t]�
(
2N − k

t

)
ptk �

(
2Ne
t

pk
)t
. (3.4)

https://doi.org/10.1017/S0963548320000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000218


Combinatorics, Probability and Computing 9

If pkN <∼ 1, then (3.4) implies P[d(U)� t]� (O(1/t))t . Next we take a union bound over at
most (2N)k choices of U, which shows that, if we take t = C� for a sufficiently large C depending
on n,

P

[
max
|U|=k

d(U)� t
]
� (O(1/t))t ·Nk < pn.

This proves the first part of the lemma.
If pkN = (1/N)�(1), then (3.4) implies the stronger bound P[d(U)� t]=N−�(t). For any

fixed n, if C is a large enough constant, the probability that max|U|=k d(U)> C will be below
N−�(C)Nk � pn by the union bound.

The power of Lemma 3.3 is that the final graph that we find after N queries is a subgraph of
G(2N, p), so we can bound the number of common numbers of any vertex set U of constant size
without even seeing the graph. It allows us to prove new upper bounds on t(H, p, bd).

Lemma 3.4. Let

� = log b
2 log log b

,

let H be a graph, let v ∈V(H), and let H′ =H \ {v}.
(1) If d(v)= d, then

t(H, p, bd)<∼ �t(H′, p, bd).

(2) If d(v)> d, then

t(H, p, bd)<∼ t(H′, p, bd).

Proof. Let k= d(v), and let the neighbours of v in H be v1, . . . , vk. Fix a query strategy that
maximizes t(H, p, bd).

For any subset U = {u1, . . . , uk} of k vertices of the final graph G⊂G(2bd, p) that is found, let
H′(U) be the number of maps H′ →G so that, for all 1� i� k, vi maps to ui. Then we have that

t(H, p, bd)=E

[ ∑
|U|=k

d(U)H′(U)
]
�E

[(
max
|U|=k

d(U)
)( ∑

|U|=k
H′(U)

)]
, (3.5)

where the sum is taken over all k-sets of vertices U.
Assume d(v)= d. By the first part of Lemma 3.3, there is a large constant C = C(H) so that

P

[
max
|U|=k

d(U)> C�
]
< pd|V(H′)|+1.

We will break up the expectation in (3.5) depending on the size of max|U|=k d(U). If
max|U|=k d(U)� C�, the contribution to the right side of (3.5) is O(�t(H′, p, bd)). Now it holds
that max|U|=k d(U)> C� with probability at most pd|V(H′)|+1, so the contribution from these
terms is bounded by pd|V(H′)|+1(2bd)|V(H′)| = o(1).

Likewise, when d(v)> d, by the second part of Lemma 3.3 there is a C so that the
case of maxU d(U)� C contributes O(t(H′, p, bd)) to the right side of (3.5), and the case of
max|U|=k d(U)> C contributes o(1).

https://doi.org/10.1017/S0963548320000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000218


10 R. Alweiss, C. Ben Hamida, X. He and A. Moreira

Figure 3. The eight subgraphs (up to isomorphism) with seven edges of the triforce.

Figure 4. The “diamond graph”, a subgraph of Hi for i= 1, 2, 7, 8.

3.2 Proof of Theorem 1.2
We now begin the proof of Theorem 1.2. The main idea is to use Lemma 3.4 to obtain new
upper bounds on t(H, p,N) for various subgraphs H of the triforce, and then combine these with
Lemma 3.2 to bound t(H, p,N) for the triforce itself.

We describe the subgraphs of the triforce to which we will apply Lemma 3.4. Any copy of
the triforce must arise from a copy of one of the graphs formed by deleting two edges from the
triforce. There are eight such graphs up to isomorphism, which we denote byHi for 1� i� 8 (see
Figure 3).

We will prove that the first six of these graphs are hard to construct quickly, although it turns
out that there is no need to analyseH1,H2, orH7. The last subgraphH8 is more difficult to handle,
and we will bound copies of it using a different analysis.

Proposition 3.5. For all Hi such that 1� i� 6, t(Hi, p, b2)<∼ b2�2.

Proof. For each graph Hi with 1� i� 6, it is possible to remove two vertices of degree at least
two to arrive at the path P3 on four vertices. Thus we may apply the first part of Lemma 3.4 twice
to show that

t(Hi, p, b2)<∼ �2t(P3, p, b2),

for all 1� i� 6. Lastly, note that t(P3, p, b2)<∼ bt(K2, p, b2)<∼ b2 by applying (3.3) from
Lemma 3.2.

Hence, for Hi with 1� i� 6,

t(Hi, p, b2)<∼ �2t(P3, p, b2)<∼ �2b2

as desired.

We must now deal with H8, on which the reductions of Lemma 3.4 and Lemma 3.2 are not
sufficient to provide the bounds that we want.

We need one last definition. Given a graph H with a distinguished vertex u, let tu(H, p,N) be
the maximum expected number of copies of H we can build in time N so that umaps to the same
vertex in each copy. It is important to emphasize that the image of u is not determined ahead of
time, and we may pick it adaptively based on the queries made so far.

Lemma 3.6. Let D be the diamond graph depicted in Figure 4. Then tu(D, p, b2)<∼ �3.

https://doi.org/10.1017/S0963548320000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000218


Combinatorics, Probability and Computing 11

Figure 5. The three subgraphs formed by removing an edge from the diamond graph, up to isomorphisms fixing u.

Proof. As usual, we fix a query strategy maximizing tu(D, p, b2) and let G⊂G(2b2, p) be the final
graph built. Consider three subgraphs of D, which we call D1, D2 and D3 respectively, shown in
Figure 5.

Every copy of D must arise from adding an edge to a graph isomorphic to one of the Di. For
each u′ ∈V(G), let Xi(u′) be the random variable counting the number of copies of D so that
u maps to u′, and the last edge built in D is the edge missing from Di. For each 1� i� 3, the
number of copies of D we can build so that umaps to the same vertex in each copy, and so that D
arises from some copy of Di, is bounded by maxu′ Xi(u′). Thus

tu(D, p, b2)�
3∑

i=1
E

[
max
u′ Xi(u′)

]
. (3.6)

Also, define the random variable Xi(u′, j) to be the number of copies of Di with u mapping to
u′ that turn into a copy of D after query j. In particular, this number is 0 if the query j finds a
non-edge. We have that Xi(u′)= ∑

j Xi(u′, j).
By the first part of Lemma 3.3, in the random graph G(2b2, p) any two vertices have O(�) com-

mon neighbours with overwhelmingly high probability. We can assume this is the case here as the
contribution to the expectation tu(D, p, b2) from other cases is o(1). In particular, this means that
each new edge built can turn at most O(�2) copies of D1, D2 or D3 into D. For example, if an edge
(u′, v′) is built in G, then the number of copies of D2 that can be completed into D is exactly the
number of ways to choose a common neighbour w′ of u′ and v′, and then a common neighbour
of v′ and w′. As we assumed that codegrees are all O(�), there are only O(�2) total choices for this
copy of D2.

This means we may assume that Xi(u′, j) is stochastically dominated (up to a constant) by
�2Bin(1, p). As the results of all queries are independent, it follows that Xi(u′) is stochastically
dominated by a constant times �2Bin(b, p). Now it is a short computation that

P[Bin(b, p)> 100�]< p5.

In particular, there exists a C > 0 such that P[Xi(u′)> C�3]< p5 for all 1� i� 3 and all u′ ∈V(G).
Also, the maximum possible number of diamonds with a given vertex u′ is (2b)3, so

tu(D, p, b2)� 3C�3 + P[Xi(u′)> C�3 for some i, u′] · (2b)3 =O(�3),

by the union bound over all O(b2) choices of 1� i� 3 and u′ ∈V(G), as desired.

Finally, we deal with the graph H8. This graph behaves differently from the other ones, in that
it is not the case that t(H8, p, b2)=O(b2+o(1)) (in fact one can build �(b3) copies of H8 due to the
isolated vertex). We will need to add one edge to H8 and analyse the resulting graph instead.

Proposition 3.7. Let H∗ be the graph shown in Figure 6. Then t(H∗, p, b)=O(b�3).

Proof. Let u be the vertex adjacent to the leaf of H∗. For any vertex v of our final graph G⊂
G(2b2, p), let f (v) be the number of copies of the diamond D so that u maps to v. As before,
we may assume that all degrees are O(b) as the contribution to t(H∗, p, b2) is trivial otherwise.

https://doi.org/10.1017/S0963548320000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000218


12 R. Alweiss, C. Ben Hamida, X. He and A. Moreira

Figure 6. The graph H∗ obtained by removing an outer edge from the triforce.

Furthermore, we may assume that any two vertices have O(�) common neighbours, as again the
contribution is trivial from other cases by the first part of Lemma 3.3. Given any v, there are f (v)
choices for a copy of D including it, d(v) choices for the leaf off of v, and O(�) choices for the
remaining vertex of H∗, as it is the common neighbour of v and of its degree 4 neighbour in H∗.
Thus we obtain

t(H∗, p, b2)<∼ �E

[∑
v

f (v)d(v)
]

<∼ �E

[(
max
v

f (v)
)(∑

v
d(v)

)]

<∼ b�E
[
max
v

f (v)
]

<∼ b�tu(D, p, b2)
<∼ b�4,

where the last inequality follows from Lemma 3.6.

Putting all of the bounds together completes the proof of Theorem 1.2.

Proof of Theorem 1.2. We will apply (3.2) twice to the triforce H. Applying it once, we find

t(H, p, b2)<∼ p max
e∈E(H)

t(H\e, p, b2), (3.7)

and there are only two non-isomorphic subgraphs of H of the form H \ e. One of them is H∗, for
which we have t(H∗, p, b2)=O(b�4) by Proposition 3.7.

If H′ is the other subgraph of the form H \ e, where an inner edge is deleted from the triforce,
then we apply (3.2) again to find

t(H′, p, b2)<∼ p max
3�i�6

t(Hi, p, b2), (3.8)

since all the graphs H′ \ e are isomorphic to one of H3,H4,H5,H6. We have by Proposition 3.5
that t(Hi, p, b2)=O(b2�3).

It follows from (3.8) that t(H′, p, b2)=O(b�3). Together with the fact that t(H∗, p, b2)=
O(b�4) and (3.7), this proves that t(H, p, b2)=O(�4). The theorem follows by one application
of Lemma 3.1 with N = b2.

4. Cliques in G(n, 1/2)
In this section we prove Theorem 1.3 using an idea of Huy Pham [13]. The argument is a mod-
ification of the proof of Theorem 1 in [5] when the number of vertices in G(n, p) is bounded
beforehand.

Let G=G(n, 1/2). For each vertex subset U ∈V(G), let et(U) be the number of queries made
between pairs of vertices in U after query t. We will study the weight function

w(U, t)=
{
2−(|U|

2 )+et(U) if all queries so far in U succeeded,
0 otherwise.

https://doi.org/10.1017/S0963548320000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000218


Combinatorics, Probability and Computing 13

In other words, w(U, t) is exactly the probability that G[U] is a clique conditional on the
information revealed after query t. The standard method of conditional expectation proceeds by
studying the evolution of the function

wk(t) :=
∑

|U|=k
w(U, t),

which is a martingale, and has the property that a k-clique is found after query t only if wk(t)� 1.
Our modification instead studies a restricted version of this sum. Namely, definem(U, t) to be the
size of the maximum matching in the known edges of U after query t. Then

wk,m(t) :=
∑

|U|=k,m(U,t)�m
w(U, t).

Restricting to only sets with large maximum matchings has the function of radically reducing
the number of terms in the sum wk,m(t). We pay for it in that wk,m(t) is no longer a martingale
and its expectation is harder to study. Nevertheless, it remains true that if a k-clique is found after
query t, then wk,m(t)� 1 for everym� k/2.

Lemma 4.1. For any 0�m� k/2 and any fixed querying strategy that uses t�
(n
2
)
queries,

E[wk,m(t)]� t2−(2k−2m−1) ·E[wk−2,m−1(t)].

Proof. For every set U ∈ ([n]
k
)
, we say that U is m-critical at query s if s is the smallest number

for which m(U, s)�m. In particular, U does not contribute to wk,m(t) until t = s, after which it
contributes w(U, t), which is a martingale. This means that if

w∗
k,m(s) :=

∑′

|U|=k
w(U, s),

where the sum is restricted to only sets U which arem-critical at query s, then

E[wk,m(t)−wk,m(t − 1)]=E[w∗
k,m(t)],

and so

E[wk,m(t)]=
∑
s�t

E[w∗
k,m(s)]. (4.1)

Next we will show

w∗
k,m(s)� 2−(2k−2m−2)wk−2,m−1(s). (4.2)

To see this, note that every U that appears on the left side must contain the edge (u, v) built after
query s, since m(U, s)>m(U, s− 1). Furthermore, U ′ =U\{u, v} is a set with k− 2 vertices and
anm− 1 matching. Finally, every edge in U but not U ′ is incident to (u, v). It is easy to check that
if (u, v) is an edge that lies in everym-matching ofU, then at most 2m− 2 other edges are incident
to (u, v). Thus there are at least 2(k− 2)− (2m− 2)= 2k− 2m− 2 unqueried pairs in U but not
in U ′, and

w(U, t)� 2−(2k−2m−2)w(U ′, t).

Summing over allm-critical setsU, we get the desired inequality (4.2). Taking expectations of both
sides,

E[w∗
k,m(s)]� 2−(2k−2m−1)

E[wk−2,m−1(s)].

https://doi.org/10.1017/S0963548320000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000218


14 R. Alweiss, C. Ben Hamida, X. He and A. Moreira

Note that we gained another factor of 1/2 here because there is a 1/2 chance that the query (u, v)
fails and w∗

k,m(s)= 0. Plugging this into (4.1), we get

E[wk,m(t)]� 2−(2k−2m−1)
∑
s�t

E[wk−2,m−1(s)].

The expectations on the right side are non-decreasing as a function of s, so we can bound this by

E[wk,m(t)]� 2−(2k−2m−1)
∑
s�t

E[wk−2,m−1(s)]� t2−(2k−2m−1) ·E[wk−2,m−1(t)]

as desired.

Now we may iterate Lemma 4.1 untilm= 0 to prove the following general bound.

Lemma 4.2. For any 0�m� k/2 and any fixed querying strategy that uses t�
(n
2
)
queries,

E[wk,m(t)]� tmnk−2m2−(k2)+m(m−1).

Proof. We induct onm. The base casem= 0 is just the unrestricted weight function

E[wk,0(t)]=E[wk(t)]=wk(0)=
(
n
k

)
2−(k2) � nk2−(k2),

for all k, as desired. Assuming the statement is true for some m� 0 and all k� 2m, Lemma 4.1
provides the inductive step form+ 1 and all k� 2m+ 2.

It remains to prove Theorem 1.3 using Lemma 4.2.

Proof of Theorem 1.3. Recall that E[wk,m(t)] is an upper bound on the probability that one can
find a k-clique in t queries. By Lemma 4.2, we see that whenever n, k, t are such that there exists
m� k/2 for which

E[wk,m(t)]� tmnk−2m2−(k2)+m(m−1) <
1
2
,

then it is impossible to find a k-clique in t queries in G(n, 1/2) with probability at least 1/2. It is
cleaner to compute the base-2 logarithm of this quantity. Taking t = nδ and k= α lg n and writing
� = lg n as a shorthand, we get

lg
(
tmnk−2m2−(k2)+m(m−1)) = (α� −m(2− δ))� −

(
α�

2

)
+m(m− 1)

�
(

α − α2

2

)
�2 − (2− δ)m� +m2 +O(�).

Ifm= c� where c� α/2, then(
α − α2

2

)
�2 − (2− δ)m� +m2 =

(
α − α2

2
− (2− δ)c+ c2

)
�2

is minimized at c= 2− δ/2. Assuming that α � 2− δ, we find that for this choice of c,

lg (E[wk,m(t)])�
(

α − α2

2
− (2− δ)2

4

)
�2 +O(�).

In particular, this shows that whenever α � 2− δ satisfies

α − α2

2
− (2− δ)2

4
< 0,

https://doi.org/10.1017/S0963548320000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000218


Combinatorics, Probability and Computing 15

then for sufficiently large n it is impossible to find a clique with α lg n vertices in nδ queries. Thus
α	(δ) is bounded above by the (larger) solution to the above quadratic, which is

α+ = 1+
√
1− (2− δ)2

2
> 2− δ,

as desired.

5. Concluding remarks
The immediate question that arises from our work is to classify the graphs H for which f (H, p)=
bd−o(1). The natural first step is the case d = 2. To this end, we first establish a large family of
2-degenerate graphs H for which f (H, p)=O(b2−ε) for some ε > 0.

Definition 4. We call a graph H (1, 1)-degenerate if H can be vertex-partitioned into induced
subgraphs T1, . . . , Tn which are trees, such that for all k ∈ {1, . . . , n} and all v ∈ Tk,∣∣∣∣N(v)∩

k−1⋃
i=1

Ti

∣∣∣∣� 1.

It is easy to see that ifH is (1, 1)-degenerate, thenH is 2-degenerate. One can show by induction
on the number of trees n that ifH is (1, 1)-degenerate, then f (H, p)=O(b2−ε) for some ε > 0. We
prove this, and conjecture that the converse is true.

Theorem 5.1. If H is (1, 1)-degenerate, then f (H, p)=O(b2−ε) for some ε = ε(H)> 0.

Proof. We induct on the number of trees n in the (1, 1)-degenerate partition T1, . . . , Tn of H.
The explicit value of ε(H) we pick is ε(H) :=max{|V(T1)|, . . . , |V(Tn)|}−1.

If n= 1, then H is a tree so that f (H, p)=O(b), as desired. Now say n� 2 and let V(H)=
V(H′)∪V(Tn). For ε′ = ε(H′), we can build a copy of H′ with probability at least 3/4 in some
time O(b2−ε′) by the inductive hypothesis. Let ε =min{ε′, |V(Tn)|−1}. Now, for each v ∈V(Tn),
there exists at most one u ∈V(H′) so that v and u are adjacent. If there does not exist such a u,
we let Cv be a set of b1−ε previously unexplored vertices, and if there is, let Cv be a set of b1−ε

neighbours of u. We can find such a set Cv in at most O(b2−ε) queries (with constant probability).
Now query all edges between Cv and Cv′ for every pair of vertices v, v′ ∈V(Tn). This takes time

O(b2−2ε). We claim that there will exist a copy of Tn with v ∈ Cv for all v ∈V(Tn), because the
expected number of copies of Tn is of the order of b(1−ε)|V(Tn)|b|V(Tn)|−1 = 
(1), and it is a stan-
dard result that the threshold for containment of a tree is the same as the expectation threshold.
This gives that we have at least one such copy of Tn with probability at least 3/4. This copy of Tn
extends the original copy of H′ to our desired copy of H, all with probability at least 1/2 in time
O(b2−ε).

Conjecture 5.2. If H is a 2-degenerate graph that is not (1, 1)-degenerate, then f (H, p)= b2−o(1).

In the case d = 2, we were able to construct a particular 2-degenerate graph H for which
f (H, p)� bd−o(1). The existence of such graphs when d� 3 remains open.

Conjecture 5.3. For all integers d� 2, there exists a d-degenerate graph H for which f (H, p)=
bd−o(1).

There is a natural random process for constructing d-degenerate graphs on n vertices. Namely,
starting with a Kd, n− d vertices are added one at a time, and each new vertex is given d neigh-
bours uniformly at random among the previous ones. If n is sufficiently large, it is plausible

https://doi.org/10.1017/S0963548320000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000218


16 R. Alweiss, C. Ben Hamida, X. He and A. Moreira

that the random d-degenerate graph constructed in this manner should satisfy f (H, p)= bd−o(1)

asymptotically almost surely.

Acknowledgements
We would like to thank Jacob Fox, Huy Pham and Yuval Wigderson for helpful discussions. We
would also like to thank an anonymous reviewer for helpful comments.

References
[1] Ajtai, M., Komlós, J. and Szemerédi, E. (1981) The longest path in a random graph. Combinatorica 1 1–12.
[2] Alon, N. and Spencer, J. H. (2008) The Probabilistic Method, third edition, Wiley.
[3] Bollobás, B. and Erdős, P. (1976) Cliques in random graphs.Math. Proc. Cambridge Philos. Soc. 80 419–427.
[4] Burr, S. A. and Erdős, P. (1975) On the magnitude of generalized Ramsey numbers for graphs. In Infinite and Finite

Sets I, Vol. 10 of Colloquia Mathematica Societatis János Bolyai, pp. 214–240, North-Holland.
[5] Conlon, D., Fox, J., Grinshpun, A. and He, X. (2019) Online Ramsey numbers and the subgraph query problem. In

Building Bridges II, Vol. 28 of Bolyai Society Mathematical Studies, Springer.
[6] Feige, U., Gamarnik, D., Neeman, J., Rácz, M. Z. and Tetali, P. (2020) Finding cliques using few probes. Random Struct.

Algorithms 56 142–153.
[7] Ferber, A., Krivelevich, M., Sudakov, B. and Vieira, P. (2016) Finding Hamilton cycles in random graphs with few

queries. Random Struct. Algorithms 49 635–668.
[8] Ferber, A., Krivelevich, M., Sudakov, B. and Vieira, P. (2017) Finding paths in sparse random graphs requires many

queries. Random Struct. Algorithms 50 71–85.
[9] Frieze, A. and Kannan, R. (2008) A new approach to the planted clique problem. In IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science, Vol. 2, pp. 187–198, Schloss Dagstuhl–Leibniz-
Zentrum für Informatik.

[10] Hefetz, D., Krivelevich, M., Stojakovic, M. and Szabó, T. (2014) Positional Games, Birkhäuser.
[11] Krivelevich, M. (2014) Positional games. Proceedings of the International Congress of Mathematicians 3 355–379.
[12] Lee, C. (2017) Ramsey numbers of degenerate graphs. Ann. of Math. 185 791–829.
[13] Pham, H. Personal communication.
[14] Rácz, M. Z. and Schiffer, B. (2020) Finding a planted clique by adaptive probing. Random Struct. Algorithms 56 142–153.

Cite this article: Alweiss R, Ben Hamida C, He X and Moreira A (2021). On the subgraph query problem. Combinatorics,
Probability and Computing 30, 1–16. https://doi.org/10.1017/S0963548320000218

https://doi.org/10.1017/S0963548320000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000218
https://doi.org/10.1017/S0963548320000218

	On the subgraph query problem
	Introduction
	Upper bounds
	An illustrative example
	The general upper bound

	Lower bounds
	Preliminaries
	Proof of Theorem 1.2

	Cliques in G(n,1/2)
	Concluding remarks


