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INTUITIONISTIC ANALYSIS AT THE END OF TIME

JOAN RANDMOSCHOVAKIS

Abstract. Kripke recently suggested viewing the intuitionistic continuum as an expansion
in time of a definite classical continuum. We prove the classical consistency of a three-sorted
intuitionistic formal system IC, simultaneously extending Kleene’s intuitionistic analysis I
and a negative copy C◦ of the classically correct part of I, with an “end of time” axiom
ET asserting that no choice sequence can be guaranteed not to be pointwise equal to a
definite (classical or lawlike) sequence. “Not every sequence is pointwise equal to a definite
sequence” is independent of IC. The proofs are by Crealizability interpretations based on
classical �-modelsM = (�, C) of C◦.

§1. Introduction. L. E. J. Brouwer agreed with Kant that the intuition of
time is a priori, but unlike Kant he considered it the basis of all mathemat-
ical reasoning. The intuitionistic continuum is composed of point cores or
equivalence classes of convergent sequences of rational segments or rational
numbers. The reduced continuum consists of definite, “lawlike” fundamental
sequences, all of whose values are determined in advance. The full continuum
also includes point cores determined by indefinite, unfinished convergent
sequences whose rational values are generated by successive, more or less
free, choices.
Brouwer abstracted from the full continuum to the “universal spread,”
his intuitionistic version of Baire space. An arbitrary choice sequence α of
natural numbers is potentially infinite; at any given time, only a finite initial
segment of α may have been determined. This intuition justifies Brouwer’s
controversial continuity principles.
By contrast, as Troelstra observed in [7], lawlike sequences may allow
classical logic. Now Kripke has proposed considering the intuitionistic full
continuum as an expansion in time of the classical continuum, depending
on the actions of a creating subject.
Kleene’s formal system I of intuitionistic analysis, including countable
choice, bar induction and a classically false continuity principle, is consistent
relative to its neutral subsystem B by [4] and consistent with “there are no
nonrecursive sequences” by [6]. “Every sequence is recursive” is inconsistent
with B by Lemma 9.8 of [4].
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Classical analysis with countable choiceC (≡B+¬¬A→ A) is classically
equivalent to its negative translation, which is consistent with I. Negative
formulas (no∃or∨) are stable under double negation evenwith intuitionistic
logic. LetM = (�, C) be an �-model of a negative version C◦ of C. We
define Crealizability to prove classically that a three-sorted extension IC of I
and C◦ asserting “there are no indefinite sequences” is consistent, and does
not decide “not every sequence is definite” provided C may �= �� .1

§2. Just the basics. For Brouwer a statement A was in general stronger
than its double negation ¬¬A, since intuitionistic negation expresses incon-
sistency. Thus (A → ¬¬A) holds in general, as does (¬¬¬A → ¬A), but
not always (¬¬A → A). Even ¬¬(A ∨ B)→ ¬¬A ∨ ¬¬B fails under the
constructive interpretation of disjunction; and while ∃xA(x) asserts that a
witness can be designated,¬¬∃xA(x) says only that∀x¬A(x) is inconsistent.
Classical logic, on the other hand, canbe formulated in a negative language
with only &,¬,→ and ∀, since A ∨ B and ∃xA(x) are classically equivalent
to¬(¬A&¬B) and¬∀x¬A(x), respectively. The languageL(C◦) of classical
analysis C◦ has two sorts of variables: i, j, . . . , p, q,w, x, y, z, i1, . . . intended
to range over natural numbers, and a, b, c, d, e, a1, b1, c1, . . . intended to
range over sequences of natural numbers; constants for primitive recursive
functions; Church’s �; parentheses, used both to denote function applica-
tion and also to indicate the scopes of &,¬,→, ∀x and ∀b in formulas;
and equality = between number terms. For ease of reading we sometimes
abbreviate

¬(¬A&¬B) by A ◦∨ B, ¬∀x¬A(x) by ∃◦xA(x), and ¬∀b¬A(b) by ∃◦bA(b).

The Peano axioms are negative in form when the schema of mathematical
induction is restricted to formulas of the negative language. The equality
axiom x = y→ b(x) = b(y) is negative. Primitive recursive functions have
negative definitions. The axiom of countable choice is represented by its
negative translation. Even with intuitionistic logic the classical law of double
negation ¬¬E→ E holds for formulas E of this language.
The three-sorted axiomatic system IC combines Kleene and Vesley’s
intuitionistic formal system I, which has variables α, �, �, . . . ranging over
arbitrary choice sequences, with the formal system resulting from C◦ by
extending its language and logic to include ∨, ∃x, ∃b and their intuition-
istic postulates. The only new axiom explicitly connecting the two sorts of
sequence variables is ∀α¬∀b¬∀x α(x) = b(x), or equivalently

∀α¬¬∃b∀x α(x) = b(x).
The idea is that when mathematical activity has ended and all values of
an arbitrary choice sequence α have been specified, it will turn out that α

1C andC◦ have the same classical�-models. C can be thought of informally as representing
either classical Baire space or Brouwer’s species of lawlike sequences. See also the last section
of this paper.
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coincides with some definite (classical or “lawlike”) sequence.2 This correla-
tion may not be made in advance; IC proves neither ¬∀α∃b∀x α(x) = b(x)
nor ¬¬∀α∃b∀x α(x) = b(x). However, IC proves

∀b∃α∀x α(x) = b(x).
Thus every definite sequence is extensionally equal to a choice sequence,
and “at the end of time” intuitionistic and classical Baire space will be
indistinguishable.
In order to establish the consistency of IC, we assume a classical�-model

M = (�, C) of C◦ exists and use it to define a modified Crealizability inter-
pretation. The potential Crealizers belong to �� and the actual Crealizers
belong to the recursively closed set C. All theorems of IC are Crealizable but
0 = 1 is not, so IC is consistent.
Kleene observed (Lemma 8.4a of [4]) that true negative sentences of the
language of I have primitive recursive realizers. All sentences of the language
of C◦ which are true inM are Crealized by primitive recursive functions,
and thus are consistent with IC.

§3. The formal systems C◦, B, I and IC.

3.1. A negative formal system C◦ for classical analysis with count-
able choice. The two-sorted language L(C◦) was described briefly in
the preceding section. Now we adopt Kleene’s finite list f0, . . . , fp
of constants representing selected primitive recursive functions, with
f0 = 0, f1 = ′, f2 = +, f3 = · and f4(x, y) = xy. The list, including bounded
sum and bounded product, may be expanded by definition as needed.
C◦-terms (type-0 terms) and C◦-functors (type-1 terms) are defined
simultaneously inductively. The number variables and the constant 0 are
C◦-terms. The lawlike sequence variables, the successor symbol ′, and con-
stants representing primitive recursive functions of one type-0 argument
are C◦-functors. If fi is a constant representing a primitive recursive func-
tion of ki type-0 and mi type-1 variables, and if t1, . . . , tki are C

◦-terms
and u1, . . . , umi are C

◦-functors, then fi(t1, . . . , tki , u1, . . . , umi ) is a C
◦-term.

If u is a C◦-functor and t is a C◦-term then (u)(t) (sometimes written u(t)) is
a C◦-term. If x is a number variable and s is a C◦-term then �x(s) (sometimes
written �x.s) is a C◦-functor. This completes the definition.
The prime formulas are the expressions of the form s = t where s, t are
C◦-terms. Equality at type 1 is defined extensionally, with a = b abbreviating
∀x(a(x) = b(x)). Compound formulas are built from prime formulas and
both sorts of variables using &,¬,→, ∀, and parentheses as usual. (A↔ B)
abbreviates (A→ B)& (B→ A). All formulas of L(C◦) are negative (they
contain neither ∨ nor ∃).
The logical axioms and rules are Kleene’s ([2, 4]) adapted to L(C◦), so
A,B,C,A(x) and A(b) are negative formulas. We retain Kleene’s numbers
for comparison.

2This addresses an objection, from a member of the audience after Kripke’s talk in
Amsterdam, to the effect that the classical continuum is already complete.

https://doi.org/10.1017/bsl.2017.25 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2017.25


282 JOAN RANDMOSCHOVAKIS

1a. A→ (B→ A).
1b. (A→ B)→ ((A→ (B→ C))→ (A→ C)).
2. (Modus Ponens) A, A→ B / B.
3. A→ (B→ A&B).
4a. A&B→ A.
4b. A&B→ B.
7. (A→ B)→ ((A→ ¬B)→ ¬A).
8I. ¬A→ (A→ B).
9N. B→ A(x) / B→ ∀xA(x), where x is not free in B.
10N. ∀xA(x)→ A(t), where t is a C◦-term free for x in A(x).
9C◦. B→ A(b) / B→ ∀bA(b), where b is not free in B.
10C◦. ∀bA(b)→ A(u), where u is a C◦-functor free for b in A(b).

Mathematical axioms assert that = is an equivalence relation, 0 is
not a successor, ′ is one-to-one, and x = y→ a(x) = a(y). The prim-
itive recursive defining equations for +, · and f4, . . . , fp (Postulate
Group D of [3, 4]) are axioms, as is the mathematical induction
schema A(0) & ∀x(A(x)→ A(x′))→ A(x) for formulas A(x) ofL(C◦). For
C◦-terms r(x), t the �-reduction schema is

(�x.r(x))(t) = r(t),

where r(t) results by substituting t for all free occurrences of x in r(x). The
axiom schema of countable choice, for formulas A(x, b) of L(C◦) with a, x
free for b, is

ACC
◦
01 . ∀x¬∀b¬A(x, b)→ ¬∀a¬∀xA(x, �y.a(2x · 3y)).

3.2. Properties of C◦. To avoid unnecessary formal reasoning, first
observe that the Deduction Theorem (Theorem 1 on p. 97 of [2]) holds
for C◦ (using the same arguments for the relevant cases), so the Hilbert-
style logical axioms and rules can be replaced by natural deduction rules for
→, & ,¬ and ∀ (as in Theorem 2 on pp. 98–99 of [2]).
Lemma 3.2.1. For all C◦-terms s, t and all formulas A,B of L(C◦), C◦

proves

(a) ¬¬s = t→ s = t.
(b) A→ A.
(c) A→ ¬¬A.
(d) (A→ B)→ (¬B→ ¬A).
(e) ¬¬A→ A.
Proofs. (a) follows (by ∀-introduction and then ∀-elimination) from

¬¬x = y→ x = y which is provable by double mathematical induction.
(b)–(d) are exercises in negative propositional logic. (e) is by formula
induction from the axioms and (a), (c), and (d). 	
Note that (e) is Kleene’s classical negation-elimination axiom schema 8◦,
restricted in this case to negative formulas. All the logical postulates which
were omitted because they contain ∨ or ∃ have negative versions provable
in C◦.
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Lemma 3.2.2. For all formulas A,B,C,A(x),A(b) of L(C◦), C◦ proves

5a◦. A→ A ◦∨ B.
5b◦. B→ A ◦∨ B.
6◦. (A→ C)→ ((B→ C)→ (A ◦∨ B→ C)).

11N◦. A(t) → ∃◦xA(x) if t is a C◦-term free for x in A(x).
11C◦. A(u)→ ∃◦bA(b) if u is a C◦-functor free for b in A(b).

Moreover, for all formulas A(x),A(b),B of L(C◦), C◦ obeys the rules

12N◦. A(x)→ B / ∃◦xA(x)→ B, where x is not free in B and x is held
constant in the deduction of A(x)→ B.

12C◦. A(b)→ B / ∃◦bA(b) → B, where b is not free in B and b is held
constant in the deduction of A(b)→ B.

Proofs. 5a◦ follows from an instance ¬A&¬B→ ¬A of axiom 4a
by Lemma 3.2.1(c,d) and 5b◦ follows from an instance of axiom 4b.
For 6◦, assume A→ C and B→ C; then ¬C→ ¬A and ¬C→ ¬B, so
¬C→ ¬A&¬B using axiom 3, so ¬(¬A&¬B)→ C by Lemma 3.2.1(d,e).
Similarly, 12N◦ follows from 9N, and 12C◦ follows from 9C◦. 	

3.3. Kleene’s intuitionistic formal systems B and I. The neutral basic
system B has axioms for two-sorted intuitionistic logic and arithmetic,
countable choice and bar induction. Intuitionistic analysis I is B together
with Brouwer’s classically false principle of continuous choice, which is
consistent relative to B by function-realizability.
The language resembles a richer version of L(C◦). Instead of variables
a, b, c, d, e, a1, . . . over classical sequences, L(B) (≡ L(I)) has variables
α, �, �, �, α1, . . . intended to range over arbitrary choice sequences. In addi-
tion to =, �, parentheses and the logical symbols &,¬,→, and universal
quantifiers ∀x, ∀α, L(B) has disjunction ∨ and existential quantifiers ∃x, ∃α
of both sorts. With the same constants f0, . . . , fp representing the same prim-
itive recursive functions, the simultaneous inductive definition of term and
functor is like that of C◦-term and C◦-functor but with α, �, . . . in place
of a, b, . . . .
Prime formulas are expressions of the form s = t where s, t are terms.
Compound formulas are built from prime formulas and both sorts of vari-
ables using &,¬,→,∨, ∀, ∃, and parentheses as needed. α = � abbreviates
the negative formula ∀x(α(x) = �(x)).
The logical rules and axioms include 1a–8I and 9N–12N, as for C◦ except
that now A,B,C, and A(x) may be any formulas of L(B); t is a term free
for x in A(x); ∨ and ∃ replace ◦∨ and ∃◦, respectively; and 5a, 5b, 6, 11N and
12N are postulates rather than theorems. In the following replacements for
9C◦–12C◦, A(�) and B may be any formulas of L(B):
9F. B→ A(�) / B→ ∀�A(�) if � is not free in B.
10F. ∀�A(�)→ A(u) if u is a functor free for � in A(�).
11F. A(u)→ ∃�A(�) if u is a functor free for � in A(�).
12F. A(�)→ B / ∃�A(�)→ B if � is not free in B.
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The mathematical axioms of B include those of C◦, but with α, �, . . .
instead of a, b, . . . and with the following adaptations. For the mathematical
induction schema, A(x) may be any formula of L(B). For the �-reduction
schema (�x.r(x))(t) = r(t) both r(x) and t are terms of L(B). The axiom
schema of countable choice for B is

AC01. ∀x∃αA(x, α)→ ∃�∀xA(x, �y.�(2x · 3y)),
where A(x, α) is any formula of L(B) with �, x free for α.
Brouwer’s most important contributions to the foundations of intuition-
istic mathematics were his “bar theorem,” which is classically valid, and
his continuity principle, which is not. An axiom schema of bar induction
completes Kleene’s neutral system B, and the full intuitionistic system I
comes from B by adding a principle of continuous choice. These are more
complicated to state.
Finite sequences of natural numbers are coded formally using the func-
tion constants of L(B). In [4] f19(i) = pi denotes the ith prime, with
p0 = 2; f20(y, i) = (y)i denotes the exponent of pi in the prime factor-
ization of y; and 〈x0, . . . , xk〉 abbreviates Πi<kpxii . Let Seq(y) abbreviate
∀i < lh(y) (y)i > 0, where lh(y) is a term denoting the number of nonzero
exponents in the prime factorization of y. Then 〈 〉 = 1 codes the empty
sequence; 〈x0 + 1, . . . , xk + 1〉 codes the sequence (x0, . . . , xk); the concate-
nation of the finite sequences coded by w and z (assuming Seq(w)&Seq(z))
is coded by w ∗ z; and w ∗ α codes the sequence defined by prefixing the
finite sequence coded by w to α.
Let α(n) abbreviate the code Πi<np

α(i)+1
i of the initial segment of α of

length n (so α(0) = 1). The last axiom schema of B is the principle of
bar induction (with a thin bar, essentially x26.3c on p. 55 of [4]), where
∃!xR(α(x)) abbreviates ∃x(R(α(x)) & ∀y(R(α(y))→ y = x)):
BI!. ∀α∃!xR(α(x)) & ∀w[Seq(w) & (R(w) ∨ ∀nA(w ∗ 〈n + 1〉))→ A(w)]→ A(〈 〉).
This description of Kleene’s neutral basic system B of intuitionistic analysis
summarizes Postulate Groups A–D, Sections 1–6 of [4].
The full intuitionistic system I comes from B by adding a principle of
continuous choice (“Brouwer’s principle for a function,” cf. x27.1 on p. 73
of [4]):

CC11. ∀α∃�A(α, �)→ ∃�∀α(∀x∃!y�(〈x + 1〉 ∗ α(y)) > 0 &
∀�(∀x∃y�(〈x + 1〉 ∗ α(y)) = �(x) + 1→ A(α, �))).

Definition 3.3.1. The classical version C of B is the formal system of
classical analysis with the axiom of countable choice which results from B
by omitting BI! and replacing 8I (ex falso sequitur quodlibet) by 8◦.¬¬E→ E
for all formulas E of L(B). Because BI! follows from AC01 by classical logic
(∗26.1◦ on p. 53 of [4]), B is a subsystem of C.

ClearlyC is inconsistent with I. The negative translation of AC01, which is
consistent with I by Kleene’s function-realizability, is not a theorem schema
of B so C cannot be interpreted negatively in its subsystem B.
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Proposition 3.3.2. There is a faithful negative translation A 
→ Atr of C
to C◦.

Proof. In each formula A of L(C) (≡ L(B)) first replace ∨, ∃x, ∃� by
◦∨, ∃◦x, ∃◦� to obtain A′, then replace α, �, . . . by a, b, . . . to obtain Atr.
Clearly C proves A′ ↔ A.
The translation Etr of each axiom E of C is an axiom of C◦, or a theorem
of C◦ by Lemma 3.2.1(e) or Lemma 3.2.2. Since the translation of every
logical rule of C is an admissible rule of C◦, deductions in C can be replaced
by corresponding deductions in C◦. It follows that Atr is a theorem of C◦ if
and only if A is a theorem of C. 	

3.4. The formal system IC. In order to compare the intuitionistic contin-
uum with a definite (either classical or “reduced”) continuum, two sorts of
sequence variables are needed. One sort of number variables suffices, but
in IC even arithmetical formulas will not always be provably equivalent to
their negative translations.
The three-sorted languageL(IC) extending bothL(C◦) andL(I) has three
sorts of variables with or without subscripts, also used as metavariables:

i, j, k, . . . , p, q,w, x, y, z over natural numbers,

a, b, c, d, e over definite (classical or “lawlike”) sequences,

α, �, �, . . . over arbitrary choice sequences;

finitely many constants f0 = 0, f1 = ′ (successor), f2 = +, f3 = ·, f4 = exp,
f5, . . . , fp for primitive recursive functions and functionals; the binary pred-
icate constant =; Church’s � denoting function abstraction; parentheses
(,) denoting function application; and the logical symbols & ,∨,→,¬ and
quantifiers ∀ and ∃ over each sort of variable.
Terms and functors are defined simultaneously inductively as for B, except
that now all definite sequence variables and all arbitrary choice sequence
variables are functors. Prime formulas are of the form s = t where s, t are
terms. If u, v are functors then u = v abbreviates ∀x u(x) = v(x). Composite
formulas are formed as usual.
Terms, functors and formulas with no occurrences of arbitrary choice
sequence variables are C-terms, C-functors, and C-formulas, respectively.
The logical axioms and rules of I carry over to IC, where the
A,B,C,A(x),A(�) may now be any formulas of L(IC). In addition, IC
has logical rules 9C and 12C, and axiom schemas 10C and 11C, for all
formulas B,A(b) of L(IC):
9C. B→ A(b) / B→ ∀bA(b) where b is not free in B.
10C. ∀bA(b)→ A(u) where u is a C-functor free for b in A(b).
11C. A(u)→ ∃bA(b) where u is a C-functor free for b in A(b).
12C. A(b)→ B / ∃bA(b)→ B where b is not free in B.

Themathematical axioms of I, and ACC
◦
01 for negative C-formulas A(x, b),

become axioms of IC. For the �-reduction schema, r(x) and t may be any
terms of L(IC). A(x) in the mathematical induction schema, A(x, α) in
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AC01, R(w) and A(w) in BI!, and A(α, �) in CC11 may be any formulas of
L(IC) satisfying the conditions of the schemas.
Lemma 3.4.1. For terms s, t and formulas A,B of L(IC), parts (a)–(d ) of
Lemma 3.2.1 also hold for IC. In addition, IC proves
(e) ¬¬A→ A if A is negative (no ∃ or ∨).
(f) A ∨ ¬A if A is quantifier-free.
Lemma 3.4.2. IC proves ∀b∃α∀x[b(x) = α(x)].
Proof. An easy consequence of AC01 is

AC00. ∀x∃yA(x, y)→ ∃α∀xA(x, α(x)).
From b(x) = b(x) conclude ∃y[b(x) = y], then use ∀x-introduction, AC00,
Modus Ponens and ∀b-introduction. 	
Brouwer’s arbitrary choice sequences included his lawlike sequences. In
IC each definite sequence, all of whose values are fixed in advance, can be
imitated by a choice sequence under construction.
The most distinctive axiom of IC is the end of time axiom:

ET. ∀α¬∀b¬∀x[α(x) = b(x)],
which is equivalent in IC to ∀α¬¬∃b∀x α(x) = b(x). The intuitionistic dou-
ble negation expresses persistent consistency; as the values of an arbitrary
choice sequence α are chosen one by one, the possibility that αmay coincide
with a definite (classical or lawlike) sequence can never be excluded.
If ET were strengthened to ∀α∃b∀x α(x) = b(x) and ¬¬E→ E was
assumed for all C-formulas E, the result would be inconsistent by the
following result.

Proposition 3.4.3. IC proves
(a) ∀b¬¬(∀xb(x) = 0 ∨ ¬∀xb(x) = 0).
(b) ¬∀α(∀xα(x) = 0 ∨ ¬∀xα(x) = 0).
Proofs. (a) holds because¬¬(A ∨ ¬A) is a theorem of intuitionistic logic.
(b) holds because IC proves A ∨ ¬A→ ∃y(y = 0↔ A) and “Brouwer’s
principle for a number” (∗27.2 of [4]):

CC10. ∀α∃xA(α, x)→ ∃�∀α(∃!y�(α(y)) �= 0 &
∀x∀z(∃y�(α(y)) = z + 1→ A(α, z))).

§4. Crealizability and the consistency of IC.

4.1. From now on, assume thatM = (�, C) is a classical �-model of C◦.
ThenM is also an �-model of B and C (cf. Section 3.3.1 above) under the
classical interpretation of ∨ and ∃. Observe that C is closed under “recursive
in,” i.e., if � is recursive in finitely many elements of C then � ∈ C, so
C-functors represent elements of C.
For the proof that IC is consistent it is not necessary to assume C is
countable, or even that C �= ��. The proof that IC is consistent with
¬∀α∃b∀x α(x) = b(x), on the other hand, will depend on the additional
assumption C �= �� .
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Kleene’s curly bracket and 	 notations are described in Section 8 of [4].
Briefly, {α}[�](x) is defined and equal to y ({α}[�](x) � y) if for some z:
α(〈x + 1〉 ∗ �(z)) = y + 1 and α(〈x + 1〉 ∗ �(j)) = 0 for all j < z. Thus
{α}[�] is a recursive partial functional of α and � . In general, {α}[x] will
abbreviate {α}[�t.x], and {α} will abbreviate {α}[0].
If 
[α, �, x, y] is a partial functional of the indicated variables which
is recursive in functions Δ, by Kleene’s enumeration theorem there are
index functions 	α
[α, �, x, y], 	x 
[α, �, x, y], 	 
[α, �, x, y] primitive
recursive in Δ such that for all α, �, x, y, z:

({	α
[α, �, x, y]}[α])(z) � (
[α, �, x, y])(z) � ({	x
[α, �, x, y]}[x])(z)
and {	 
[α, �, x, y]} � 
[α, �, x, y]. Similarly for
[α1, . . . , αj, x1, . . . , xk,
y1, . . . , ym].
The fundamental difference between modified and plain realizability was
described elegantly by van Oosten: modified realizability requires two sets
of realizers, the potential realizers and the actual realizers. As in [6] we
avoid explicitly assigning types to our potential realizers via a notion of
“agreement” which makes the types implicit.

Definition 4.2. By induction on the logical form of a formula E ofL(IC),
we define when ε ∈ �� agrees with E, as follows, where (ε)i abbreviates
�y.(ε(y))i .

(1) ε agrees with a prime formula s = t, for each ε.
(2) ε agrees with A & B, if (ε)0 agrees with A and (ε)1 agrees with B.
(3) ε agrees with A ∨ B, if (ε(0))0 = 0 implies that (ε)1 agrees with A,
while (ε(0))0 �= 0 implies that (ε)1 agrees with B.

(4) ε agrees with A→ B, if, whenever α agrees with A, {ε}[α] is
completely defined and agrees with B.

(5) ε agrees with ¬A, if ε agrees withA→ 1 = 0 by the preceding clause.
(6) ε agrees with ∃xA(x), if (ε)1 agrees with A(x).
(7) ε agrees with ∀xA(x), if, for each x, {ε}[x] is completely defined and
agrees with A(x).

(8) ε agrees with ∃bA(b), if {(ε)0} is completely defined and belongs to
C, and (ε)1 agrees with A(b).

(9) ε agrees with ∀bA(b), if, for each � ∈ C, {ε}[�] is completely defined
and agrees with A(b).

(10) ε agrees with ∃αA(α), if {(ε)0} is completely defined and (ε)1 agrees
with A(α).

(11) ε agrees with ∀αA(α), if, for each sequence α ∈ �� , {ε}[α] is
completely defined and agrees with A(α).

Lemma 4.2.1.

(a) If s is a term free for y in A(y), then ε agrees with A(y) if and only if ε
agrees with A(s). Similarly if v is a functor free for � in A(�), or u is a
C-functor free for b in A(b).

(b) ε agrees with E if and only if ε agrees with the result of replacing each
part of E of the form ¬A by (A→ 1 = 0).
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(c) For each formula E of L(IC), there is a primitive recursive function εE
which agrees with E.

Proofs. By induction on the logical form of E. Only (c) is nontrivial. If E
is prime then εE is �t.0. Given εA and εB agreeing with A and B, respectively,
let εA&B = 〈εA, εB〉, εA∨B = 〈�t.0, εA〉, εA→B = 	α εB and ε¬A = 	��t.0.
Given εA(x) agreeing with A(x), let ε∃xA(x) = 〈�t.0, εA(x)〉 and ε∀xA(x) =
	x εA(x). Given εA(b), let ε∃bA(b) = 〈	 �t.0, εA(b)〉 and ε∀bA(b) = 	� εA(b).
Given εA(α), let ε∃αA(α) = 〈	 �t.0, εA(α)〉 and ε∀αA(α) = 	α εA(α). 	
Definition 4.3. By induction on the logical form of a formula E ofL(IC)
containing free at most the distinct variables Ψ, we define when a sequence
ε, belonging to C, Crealizes-
 E, where 
 are elements of �, C and C
corresponding, respectively, to the number, lawlike sequence, and choice
sequence variables in the list Ψ, as follows.

(1) ε Crealizes-
 a prime formula P, if P is true-
 inM.
(2) ε Crealizes-
 A & B, if (ε)0 Crealizes-
 A and (ε)1 Crealizes-
 B.
(3) ε Crealizes-
 A ∨ B, if either (ε(0))0 = 0 and (ε)1 Crealizes-
 A, or
(ε(0))0 �= 0 and (ε)1 Crealizes-
 B.

(4) ε Crealizes-
 A→ B, if ε agrees with A→ B and, whenever α ∈ C
andα Crealizes-
 A, {ε}[α] is completely defined and Crealizes-
 B.

(5) ε Crealizes-
 ¬A, if ε Crealizes-
 A→ 1 = 0 by the preceding
clause.

(6) ε Crealizes-
 ∃xA(x), if (ε)1 Crealizes-
, (ε(0))0 A(x).
(7) ε Crealizes-
 ∀xA(x), if, for each natural number n, {ε}[n] is
completely defined and Crealizes-
, n A(x).

(8) ε Crealizes ∃bA(b), if {(ε)0} is completely defined (hence belongs to
C) and (ε)1 Crealizes-
, {(ε)0} A(b).

(9) ε Crealizes-
 ∀bA(b), if, for each sequence � ∈ C, {ε}[�] is
completely defined and Crealizes-
, � A(b).

(10) ε Crealizes ∃αA(α), if {(ε)0} ∈ C and (ε)1 Crealizes-
, {(ε)0} A(α).
(11) ε Crealizes-
 ∀αA(α), if ε agrees with ∀αA(α) and, for each � ∈ C,

{ε}[�] (is completely defined and) Crealizes-
, � A(α).
A sentence E of L(IC) is Crealizable if and only if E is Crealized by some
general recursive sequence ε, and a formula is Crealizable if and only if its
universal closure is Crealizable.

Lemma 4.3.1. Let 
 be a list of numbers and elements of C.
(a) If ε Crealizes-
 a formula E of L(IC), then ε agrees with E and ε ∈ C.
(b) ε Crealizes-
 a formula E of L(IC) if and only if ε Crealizes-
 the
result of replacing each part of E of the form ¬A by (A→ 1 = 0).

(c) For no formula E of L(IC) and no sequences ε1, ε2 ∈ C is it the case
that ε1 Crealizes-
 E and ε2 Crealizes-
 ¬E.

Lemma 4.3.2.

(a) Let A(y) be a formula of L(IC) containing free at most the distinct
variables Ψ, y, let s be a term containing free at most Ψ, y and free for
y in A(y), and let s(
, y) be the number expressed by s whenΨ, y take
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the values 
, y in C and �. Let ε ∈ C. Then ε Crealizes-
, y A(s) if
and only if ε Crealizes-
, s(
, y) A(y).

(b) Let A(�) be a formula of L(IC) containing free at most the distinct
variables Ψ, � , let u be a functor containing free at most Ψ, � and free
for � in A(�), and let u[
, �] be the element of C expressed by u when
Ψ, � take the values 
, � in C and �. Let ε ∈ C. Then ε Crealizes-
,
� A(u) if and only if ε Crealizes-
, u[
, �] A(�). Similarly for A(b)
where u is a C-functor free for b.

Lemma 4.3.3. Let E ≡ E(α1, . . . , αj, b1, . . . , bk, y1, . . . , ym) be a formula
of L(IC) with only the indicated distinct variables free. Then E
is Crealizable if and only if there is a recursive partial functional

[α1, . . . , αj, �1, . . . , �k, y1, . . . , ym] such that, for all α1, . . . , αj ∈ �� , all
�1, . . . , �k ∈ C and all y1, . . . , ym ∈ �:
(a) 
[α1, . . . , αj, �1, . . . , �k, y1, . . . , ym] is defined (so belongs to ��) and
agrees with E(α1, . . . , αj, b1, . . . , bk, y1, . . . , ym).

(b) If also α1, . . . , αj ∈ C then 
[α1, . . . , αj, �1, . . . , �k, y1, . . . , ym]
belongs to C and Crealizes-α1, . . . , αj, �1, . . . , �k, y1, . . . , ym E.

Lemma 4.3.4. For every negative C-formula E of L(IC) (so for every for-
mula of L(C◦)) with only the distinct variables Ψ free there is a primitive
recursive function �E such that �E agrees with E, and for each interpretation

 ofΨ by elements of C and �:
(a) If E is Crealized-
 by some ε ∈ C then E is true-
 inM.
(b) If E is true-
 inM then �E Crealizes-
 E.
Proof. For each negative C-formula E let �E be the primitive recursive
function εE defined in proving Lemma 4.2.1(c). �E agrees with E by the
lemma, and satisfies (a) and (b) by formula induction. We give the case
for E ≡ ¬A. Assume �A satisfies (a) and (b) for A. If (ε ∈ C and) ε
Crealizes-
 ¬A, then (since 0 = 1 is false inM) no � ∈ C can Crealize-

A, so A is false-
 inM by (b) for �A, so ¬A is true-
 inM, so (a) holds
for ¬A. If ¬A is true-
 inM then A is false-
 inM, so no ε ∈ C can
Crealize-
 A by (a) for �A, so �¬A = 	� �t.0 Crealizes-
 ¬A, so (b) holds
for ¬A. 	
Theorem 4.4. If F1, . . . ,Fn,E are formulas of L(IC) such that
F1, . . . ,Fn �IC E and F1, . . . ,Fn are all C realizable, then E is Crealizable.
Therefore, IC is consistent.
Proof. For each axiom or axiom schema of IC containing free at most
the distinct variables in the list Ψ = α1, . . . , αj, b1, . . . , bk, y1, . . . , ym, we give
a Crealizing functional 
[
 ] = 
[α1, . . . , αj, �1, . . . , �k, y1, . . . , ym], as in
Lemma 4.3.3; and assuming that such a 
′[
 ′] exists for each premise of a
rule of inference, we provide a 
[
 ] for the conclusion.
Logical Axioms 1a, 1b, 3–7, 10N, 11N, 10F, 11F (exactly as in [4]) and
10C, 11C:

1a. A→ (B→ A). 	α	� α.
1b. (A→ B)→ ((A→ (B→ C))→ (A→ C)).	�	�	α{{�}[α]}[{�}[α]].
3. A→ (B→ A & B). 	α	� 〈α, �〉.
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4a. A & B→ A. 	α(α)0.
4b. A & B→ B. 	α(α)1.
5a. A→ A ∨ B. 	α 〈�t.0, α〉.
5b. B→ A ∨ B. 	α 〈�t.1, α〉.
6. (A→ C)→ ((B→ C)→ (A ∨ B→ C)).
	�	�	� �t.(1−̇(�(0))0){�}[(�)1](t) + (�(0)0){�}[(�)1](t).

7. (A→ B)→ ((A→ ¬B)→ ¬A). Same as for 1b.
8. ¬A→ (A→ B). 	�	α εB.

10N. ∀xA(x)→ A(t) where t(Ψ) is a term free for x inA(x).	� {�}[t(
)].
11N. A(t)→ ∃xA(x) where t(Ψ) is a term free for x in A(x).

	� 〈�y.t(
), �〉.
10C. ∀bA(b)→ A(u) where u[Ψ] = u[b1, . . . , bk, y1, . . . , ym] is a C-

functor free for b in A(b). 	� {�}[u(�1, . . . , �k, y1, . . . , ym)].
11C. A(u)→ ∃bA(b) where u[Ψ] = u[b1, . . . , bk, y1, . . . , ym] is a C-

functor free for b in A(b). 	�〈	u[�1, . . . , �k, y1, . . . , ym], �〉.
10F. ∀αA(α)→ A(u) where u[Ψ] is a functor free for α in A(α).

	� {�}[u[
 ]].
11F. A(u)→ ∃αA(α) where u[Ψ] is a functor free for α in A(α).

	� 〈	u[
 ], �〉.
Axioms for 3-sorted intuitionistic number theory. As in [4], �t.0, 	��t.0
and 	�	��t.0 take care of the prime axioms, including (�x.r(x))(t) = r(t);
x = y→ α(x) = α(y) and axioms 14, 15, 17 from [2]; and axiom 16 from
[2], respectively.
The mathematical induction schema (13 in [2]) is A(0) & ∀x(A(x)→
A(x′))→ A(x). A Crealizing functional is 	��[x, �] where � is defined by
the functional recursion �[0, �] = (�)0 and �[x′, �] = {{(�)1}[x]}[�[x, �]]
(cf. [4], page 106).
Axiomof countable choice.AC01.∀x∃αA(x, α)→ ∃�∀xA(x, �y.�(2x · 3y)).
Exactly as in [4], 	�〈	�z.{({�}[(z)0])0}((z)1), 	x ({�}[x])1〉. Agree-
ment is obvious. Assume � ∈ C and � Crealizes-
 ∀x∃αA(x, α).
Then 〈	�z.{({�}[(z)0])0}((z)1), 	x ({�}[x])1〉 is in C and Crealizes-

∃�∀xA(x, �y.�(2x · 3y)).
Countable choice forC◦.ACC

◦
01 . ∀x¬∀b¬A(x,b)→ ¬∀a¬∀xA(x, �y.a(2x · 3y))

where A(x, b) is a (negative) formula of L(C◦). Use Lemma 4.3.4.
End of time axiom. ET. ∀α¬∀b¬∀x[α(x) = b(x)]. ε∀α¬∀b¬∀x[α(x)=b(x)] =
	α	� �t.0 agrees with the axiom by Lemma 4.2.1(b,c) and Crealizes
the axiom because if α ∈ C then 	� �t.0 is in C and Crealizes-α
¬∀b¬∀x[α(x) = b(x)], since no � ∈ C Crealizes-α, α ¬∀x[α(x) = b(x)] so
no � ∈ C Crealizes-α ∀b¬∀x[α(x) = b(x)].
Bar induction BI!. 	��[�, 1] where �[�,w] is a recursive partial function
defined using the recursion theorem as follows. LetG(�,w) abbreviate “w =
(w ∗ �t.0)(({(�)0}[w ∗ �t.0](0))0),”H (�,w) abbreviate “Seq(w)& lh(w) ≥
({(�)0}[w ∗ �t.0](0))0,” and J (�,w) abbreviate “G(�,w)&∀u, v < w(u ∗
v = w → ¬G(�, u)).” If � Crealizes-
 the hypothesis of BI! then
∀α∃!xαJ (�, α(xα)) (because yα ≡ ({(�)0}[α](0))0 is determined by a
finite initial segment of α, and (({(�)0}[α])1)0 realizes-
,α(yα) R(w), so
G(�, α(yα))). Let
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�[�, w] =

⎧⎨
⎩
εA(〈 〉) if H (�, w)&¬G(�, w)
{{(�)1}[w]}[〈�t.0, 〈�t.0, (({(�)0}[w ∗ �t.0])1)0] if G(�, w)
{{(�)1}[w]}[〈�t.0, 〈�t.1, 	n�[�,w ∗ 〈n + 1〉]〉〉] otherwise, if Seq(w).

If � Crealizes-
 the hypothesis of BI! then �[�, 1] Crealizes-
 A(〈 〉) by an
informal bar induction with J (�,w) determining the thin bar and K(�,w)
(abbreviating “(�[�,w] Crealizes-
,w A(w))&∀u, v < w(u ∗ v = w →
¬G(�, u))”) as the inductive predicate.
Continuous choice CC11. As in [4, 6]: 	�〈	 �,	α〈�, �〉〉 where � =
	α{({�}[α])0}, � = 	x〈�y(�(2x+1 ∗ α(y)) > 0), 〈�t.0, 	z	��t.0〉〉 and
� = 	�	�({�}[α])1.
Rules of inference. Modus ponens and 9N, 12N, 9F, 12F (as in [4]) and
9C, 12C:

2. If 
′[
 ′] is a Crealizing functional for A, 
′′[
 ] is a Crealizing
functional for A→ B and 
 ′ ⊆ 
 , then 
[
 ] = {
′′[
 ]}[
′[
 ′]]
is a Crealizing functional for B.

9N. If 
′[
 ′] is a Crealizing functional for B→ A(x), where 
 ′ = 
,x
and x is not free inB, then
[
 ] =	�	x {
′[
,x]}[�] is a Crealizing
functional for B→ ∀xA(x).

12N. If 
′[
 ′] is a Crealizing functional for A(x)→ B, where 
 ′ = 
,x
and x is not free in B, then 
[
 ] = 	� {
′[
, (�(0))0]}[(�)1] is a
Crealizing functional for ∃xA(x)→ B .

9C. If 
′[
 ′] is a Crealizing functional for B→ A(b), where 
 ′ = 
, �
andb is not free inB, then
[
 ] =	�	� {
′[
, �]}[�] is a Crealizing
functional for B→ ∀bA(b).

12C. If 
′[
 ′] is a Crealizing functional for A(b)→ B, where 
 ′ = 
, �
and b is not free in B, then 	�{
′[
, {(�)0}]}[(�)1] is a Crealizing
functional for ∃bA(b) → B.

9F. If 
′[
 ′] is a Crealizing functional for B→ A(α), where
 ′ = 
,α
and α is not free in B, then 
[
 ] = 	�	α {
′[
,α]}[�] is a
Crealizing functional for B→ ∀αA(α).

12F. If 
′[
 ′] is a Crealizing functional for A(α)→ B, where
 ′ = 
,α
and α is not free in B, then 	� {
′[
, {(�)0}]}[(�)1] is a Crealizing
functional for ∃αA(α)→ B .

This completes the proof that every theorem of IC is Crealizable. By assump-
tionM is a classical model of C◦ so 0 = 1 is not true inM, and therefore
not Crealizable. 	
Corollary 4.4.1. IC is consistent with all sentences of L(C◦) which are
true inM.
Proof. By the theorem with Lemma 4.3.4, every formula of L(IC) which
is provable in IC from sentences of L(C◦) true inM is Crealizable. 	
Corollary 4.4.2. If C = �� then ∀α∃b∀xα(x) = b(x) is Crealizable,
and if C �= �� then ¬¬∀α∃b∀xα(x) = b(x) is not Crealizable. Hence if
both (�,��) and some (�, C) with C �= �� are classical models of C◦ then
¬∀α∃b∀xα(x) = b(x) is independent of IC.
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Proof. If C = �� then ε agrees with ∀αB(α) if and only if ε agrees with
∀aB(a), so 	α〈	α,	x�t.0〉 Crealizes ∀α∃b∀xα(x) = b(x).
If C �= �� then ¬¬∀α∃b∀xα(x) = b(x) is not Crealizable. Since C is dense
in ��, if {ε}[α] is defined for all α ∈ �� and {ε}[�] = � for all � ∈ C then
{ε}[α] = α for all α ∈ �� , so no ε ∈ C can Crealize ∀α∃b∀xα(x) = b(x),
so	� �t.0 Crealizes¬∀α∃b∀xα(x) = b(x), so ¬¬∀α∃b∀xα(x) = b(x) is not
Crealizable. 	

Definition 4.4.3. A formula E of L(IC) is Crealizable/C if and only if its
universal closure is Crealized by some element of C.

Lemma 4.4.4. If the truth function κ for classical arithmetic is an element
of C, then to each arithmetical formula E of L(IC) with at most the distinct
variables y1, . . . , yk free there is a partial functional�E[y1, . . . , yk] recursive in
κ which agrees with E and satisfies, for all y1, . . . , yk ∈ � and corresponding
numerals y1, . . . , yk:

(a) If E(y1, . . . , yk) is Crealizable/C then E(y1, . . . , yk) is true inM.
(b) IfE(y1, . . . , yk) is true inM then�E[y1, . . . , yk] CrealizesE(y1, . . . , yk).
Proof. SinceM is a classical �-model of C◦ and hence of C, an arith-
metical sentence A is classically true if and only if it is true inM, if and only
if κ(�A�) = 1. By Lemma 4.3.2(a), ε Crealizes E(y1, . . . , yk) if and only if ε
Crealizes-y1, . . . , yk E.
We use induction on the logical form of E. Prime formulas, &,∨,→,¬,
and ∀x follow the proof of Lemma 4.3.4; e.g., if E(y) ≡ ∀xA(x, y) has only
y free and (a), (b) hold for A with �A[x, y] recursive in κ, then (a) and (b)
hold for E with �E[y] = 	x�A[x, y].
Suppose E(x, y) ≡ A(x, y) ∨ B(x, y) where (a), (b) hold for A,B with �A,
�B recursive inκ. Let�E[x, y] = 〈0, �A[x, y]〉 ifκ(�A(x, y)�) = 1, otherwise
�E[x, y] = 〈1, �B[x, y]〉. If E(x, y) is Crealizable/C, then A(x, y) or B(x, y)
is Crealizable/C so true inM. If E(x, y) is true inM then A(x, y) or B(x, y)
is true inM so �E[x, y] Crealizes E(x, y).
Suppose E(y) is ∃xA(x, y) where (a) and (b) hold for A(x, y) with �A
recursive in κ. Let �E[y] = 〈�t.z, �A[z, y]〉 where z � �xκ(�A(x, y)�) = 1.
If E(y) is Crealizable/C then A(n, y) is Crealizable/C and so true inM for
some n ∈ �, so E(y) is true inM. If E(y) is true inM then A(n, y) is true
inM for some least n, so �E[y] Crealizes E(y). 	
Corollary 4.4.5. IC is consistent with all classically true arithmetical
sentences.

Proof. Lemma 4.3.3 andTheorem 4.4 relativize to Crealizability/C. Every
Crealizable formula is Crealizable/C. Consequences in IC of Crealizable/C
formulas are Crealizable/C. Classically true arithmetical sentences are
Crealizable/C by Lemma 4.4.4; 0 = 1 is not. 	
4.5. Markov’s Principle MP1, Weak Kripke’s Schema, WWKS, VS and
IP¬. Late in his life Brouwer introduced “creating subject” arguments to
refute e.g.,
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MP1. ¬¬∃xα(x) = 0→ ∃xα(x) = 0
(“Markov’s Principle”), which is consistent with I but not Crealizable or
Crealizable/C. Efforts to formalize Brouwer’s creating subject arguments led
to Weak Kripke’s Schema

WKS. ∃�[(∃x�(x) �= 0→ A) & (∀x�(x) = 0→ ¬A)],
where � is not free in A. If choice sequence variables are allowed to occur
free in A then WKS (with ∀xα(x) = 0 as the A) conflicts with CC11, so I +
WKS is inconsistent. A fortiori, so is IC + WKS. For arbitrary A without
� free, a classically (but not intuitionistically) equivalent version of WKS is
Weaker Weak Kripke’s Schema:

WWKS. ∃�[∀x�(x) = 0↔ ¬A],
which conflicts with CC11 by the same argument.

Proposition 4.5.1. If A(y) is a negative C-formula with at most y free,
and if the truth function �y.κ(y) for A(y) overM = (�, C) is an element
of C, then the instance of WKS for A(y) is Crealizable/C and hence consistent
with IC.
Proof. Use Lemma 4.3.4. If D(�) is [(∃x�(x) �= 0→ A(y)) &
(∀x�(x) = 0→ ¬A(y))], then � = 	y〈	κ(y), 〈	� �A(y), 	� �¬A(y)〉〉
Crealizes/C ∀y∃�D(�). 	
Proposition 4.5.2. For all sentences A of L(IC), WWKS is classically

Crealizable and therefore consistent with IC.
Proof. If E(�) is [(∀x�(x) = 0→ ¬A) & (¬A→ ∀x�(x) = 0)] where A
is a sentence of L(IC), then ε = 〈	�	��t.0, 	�	x�t.0〉 Crealizes-�t.0 E if
¬A is Crealizable; otherwise ε Crealizes-�t.1 E. 	
These relative consistency proofs for restricted WKS and WWKS evi-
dently have nothing to do with the stage-by-stage activity of a creating
subject.

Remark 4.5.3. Richard Vesley [9] suggested another approach to
Brouwer’s counterexamples, by proving that the axiom schema

VS. ∀w[Seq(w)→ ∃α(α(lh(w)) = w & ¬A(α))] &
∀α[¬A(α)→ ∃�B(α, �)]→∀α∃�[¬A(α)→ B(α, �)]

(with � not free in A(α)) is consistent with I and suffices to refute the
universal closure of MP1 and for other “creating subject” counterexamples.
He also proved that I is consistentwith a stronger “independence of premise”
schema (with � not free in A):

IP¬. (¬A→ ∃�B(�))→ ∃�(¬A→ B(�)).
Proposition 4.5.4. IP¬ (and therefore VS) is Crealizable.
Proof. 	�〈({�}[	��t.0])0, 	� ({�}[	� �t.0])1〉 is a Crealizing functional
for IP. 	
Corollary 4.5.5. IC + IP¬ is consistent.
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§5. Epilogue.
5.1. Choice sequences revisited. At each nth stage in the generation of a
choice sequence α, when α(n) has already been determined and α(n) is to be
chosen, Brouwer allowed (but did not require) restrictions to be placed on
all future choices, consistent with any restrictions inherited from previous
stages. Many variations of his original notion appear in the literature.
Troelstra’s “hesitant sequences” α ([8] Section 4.6.2) are related to law-
like sequences b by ¬¬∃b∀xα(x) = b(x) as the choice sequences of the
present model are related to elements of C, but with an additional restriction.
A hesitant sequence α proceeds freely until and unless at some finite stage
“in time” a particular lawlike b is deliberately correlated to α (which then
becomes lawlike).
Kreisel’s “lawless sequences” α ([8] Section 12.2), for which¬∃b∀xα(x) =
b(x) holds, are beyond the scope of our interpretation, as are projections of
lawless sequences.3

5.2. UnderstandingM. Kleene proved that while Brouwer’s fan theorem
is classically true for the arithmetical sequences, even all the hyperarithmeti-
cal sequences do not suffice to form a classical�-model ofC. Brouwerwould
have had no need for choice sequences if his reduced continuum was com-
plete. An intuitionist might reject the idea of a definite classical continuum,
a fortiori the idea of a classical �-model of C◦ or C.
However, an intuitionist might understandM = (�, C) by taking C to be
the species of Brouwer’s lawlike sequences and assuming that M satisfies
lawlike versions of all the axioms of B except AC01 and BI!, plus “unique
choice” AC00! (like AC00 but with the stronger hypothesis ∀x∃!yA(x, y)) and
the negative interpretation of AC01. By [3] these axioms could only prove the
existence of definite, in fact recursive, sequences. From this point of view, ET
simply asserts that at the nth stage in the generation of a choice sequence α,
the possibility thatαwill turn out to be pointwise equal to a lawlike sequence
cannot be excluded. This seems reasonable provided that at each stage only
lawlike restrictions on future values are allowed (for example, restriction to
a spread with a lawlike spread-law).
Evidently IC gives no further insight into the stage-by-stage activity of a
creating subject. All we can claim is that from the perspective (unattainable
by the creating subject) of the end of time,Kripke’s idea is classically feasible.

§6. Acknowledgments. Warm thanks to Saul Kripke for his Amsterdam
lecture on December 9, 2016, and to UCLA, Yiannis Moschovakis, Anne
Troelstra, Jaap van Oosten, Mark van Atten and especially two anonymous
referees.

3Apart from [6], two related earlier investigations were pointed out to me after this work
was done. V. Lifschitz [5] introduced a distinction between the constructive or “calculable”
numbers and the classical natural numbers, with a formal theory (expressing both classical
and recursive arithmetic) which proves that not every classical number is calculable but
there is no noncalculable classical number. Birkedal and van Oosten [1] abstractly described
toposes corresponding to Crealizability, with elementary subpartial combinatory algebras of
�� playing the role of C.
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