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Abstract

The load current multiplier concept (LCM) was suggested for improving the energy transfer efficiency from pulse power
generators to loads. The concept was initially demonstrated at atmospheric pressure and dielectric insulation on a compact,
100 kA, microsecond capacitor bank. This paper reports on the LCM design criteria for mega-ampere vacuum pulse power
when the LCM comprises a large-inductance magnetic flux extruder cavity without a magnetic core. The analytical and
numerical design approach presented was experimentally validated on GIT12 mega-ampere inductive energy storage
generator with a constant-inductance load. The LCM technique increased the peak load current from typically 4.6 MA
at 1.87 ms on this generator, to 6.43 MA at 2.0 ms. The electromagnetic power into a �10 nH load increased from 100
GW to 230 GW. This result is in good agreement with the presented numerical simulations and it corresponds to a
95% increase of the achievable magnetic pressure at 8 cm radius in the load. The compact, LCM hardware allows the
GIT12 generator to operate more efficiently without modifying the stored energy or architecture. The demonstrated
load power and energy increase using the LCM concept is of importance for further studies on power amplification in
vacuum and high energy density physics.
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INTRODUCTION

Inductive energy storage (IES) generators are used to obtain
microsecond-duration mega-ampere currents in capacitor-to-
inductor electrical discharges. Further electromagnetic (EM)
power multiplication in vacuum is possible with application
of different plasma technologies of magnetic flux com-
pression/redistribution to a useful load with sharpening of
the current pulse rise-time (Mesyats, 2005) from typically
1–2 ms to 100–200 ns. Successful validation of these tech-
niques would allow cost-effective and compact nanosecond
EM pulse power for inertial confinement fusion and high
energy density physics research (Matzen et al., 2005), as
compared to the pulse forming line design approach
(Miller, 1982). Alternative approach using the linear

transformer driver technology (Kovalchuk et al., 2009)
enabled to achieve �100 ns rise time output pulse without
intermediate pulse forming sections. Recently, conventional
generators have also been used for direct microsecond mag-
netic compression of plasmas in radiation physics research,
without intermediate stages of EM power conditioning
(Labetsky et al., 2006; Lassalle et al., 2007). In this latter
case, the power multiplication is accomplished through con-
version of the EM energy into kinetic/internal plasma energy
and X-radiation.

In the methods of EM power conditioning with parallel
connection of the plasma power multiplication element
through vacuum convolutes (Bastrikov et al., 1999;
Chuvatin et al., 2006a), the nanosecond pulse power load
is defined geometrically as a small volume (� few cc) down-
stream of the convolute. Similarly, for direct microsecond
plasma acceleration/compression and further energy conver-
sion (Labetsky et al., 2006; Lassalle et al., 2007) the load
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inductance is also geometrically defined as that between the
initial plasma position and the opposite current return con-
ductor. In all these cases, the inductance of the load
volume with high energy density, constant or varying in
time, has typical maximum values of Ld � 10 nH.

In the approaches to microsecond power conditioning, the
time t0 to the peak current provided by an IES generator
should not considerably exceed the value of �1–2 ms.
Higher t0 values result in poorer plasma power multiplication
for physical and technological reasons that can be different for
each method. Consider typical load current (LC) circuit for
IES generators, if active losses are neglected, i.e., considers
the discharge of a capacitor C0 through an inductance Ltot, so
that the generator current is I0. The maximum I0 value is thus

Imax
0 = 2U0t0/pLtot , (1)

where U0 is the initial voltage on the capacitor and t0 ¼
p(LtotC0)1/2/2 is the discharge current quarter-period. The
inductance is conventionally divided here between that of a
small-volume load inductance Ld and that of the rest of dis-
charge circuit, L0, that we attribute to the generator, Ltot¼

L0 + Ld.
If both Ld and t0 are specified, increase of the generator

current for further power conditioning using either EM
pulse shortening plasma techniques or energy conversion
techniques is possible either though the increase of generator
stored energy (0.5C0(U0)2) or though a decrease of the induc-
tance L0. On the other hand, at a given operating voltage
U0, the generator inductance value L0 has a minimum
value that is determined by the electric breakdown strength
of dielectric-insulated or vacuum-insulated high voltage
gaps in the current generator, as well as by the inductance
of electrical connections between the larger-diameter
(meters) initial energy storage and a smaller diameter, high
energy density power conditioning plasma (centimeters).
The specific value of L0

min(U0) is defined by the architecture
of the microsecond generator (Kovalchuk et al., 1997;
Lassalle et al., 2007), but commonly results in values not
smaller than L0 � 50–100 nH. This is referred to as an “irre-
ducible” inductance.

It was recently suggested that with the above limitations on
Ld, t0, and L0, the increase of the current in high-energy-
density volume Ld is possible without the increase of the
generator stored energy. This new method, the load current
multiplier (LCM) introduced in Chuvatin et al. (2005), inten-
tionally ensures the inequality Ld ≪ L0 by incorporating
additional hardware with additional current paths through a
convolute positioned as close as possible to the Ld volume.
First experimental testing of a dielectric-insulated LCM at
moderate currents demonstrated considerable load current
increase when compared to the direct discharge through
Ltot ¼ L0 + Ld described by Eq. (1). Here we report first
results on the development of a vacuum-insulated LCM at
multi-mega-ampere currents allowing higher currents and

higher current derivatives in the load without changing the
generator’s stored energy or architecture.

This technique, if experimentally validated for high
vacuum pulsed power, would make possible generation of
higher magnetic fields on existing IES generators both for
fundamental studies of the field-plasma interaction in differ-
ent power conditioning devises, and for useful applications,
such as studies of material properties at high dynamic press-
ures or X-radiation production (Mesyats, 2005; Matzen et al.,
2005; Labetsky et al., 2006; Lassalle et al., 2007).

GIT 12 GENERATOR

Take as an example, the GIT12 IES generator described in
Kovalchuk et al. (1997) with simplified electrical circuit pre-
sented in Figure 1. Figure 2 shows the generic GIT12 output
section with a short-circuit load.

In Figure 1, C0, R0, and L1 denote the effective capaci-
tance, resistance, and inductance of 12 modules representing
Marx generators connected in parallel to the central junction
J in Figure 2. C0 ¼ 14.4 mF, L1 ¼ 89 nH. Marx generators
are resistively dumped to limit fault currents and capacitor
voltage reversal. R0 value in Figure 1 is the sum of
dumping resistances and of the other resistances of electrical
contacts in the circuit of 12 modules, R0 ¼ 43 mV. LU is the

Fig. 2. Generic presentation of standard GIT12 output, see also Figure 1.
Positions of Bdots measuring the current I0 is also shown.

Fig. 1. Simplified electrical circuit of GIT12 generator (see the text). The
arrows denote directions of currents in the circuit.
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large-inductance armature for mechanical support of the
central junction unit, LU ¼ 636 nH. L2 is the experiment-
dependent inductance of connection to the load, L2 ¼ 10
nH for the output geometry in Figure 2.

S is a closing switch representing the gas closing switches
in 12 Marx generators. Previous studies on GIT12 showed
that the best fit of experimental currents could be obtained
when S represented a resistance added in series to R0 and
decreasing hyperbolically in time during 500 ns from the
initial value 1 V to the final constant value of 1024V.

The load is experiment-dependent on this generator and it
is defined here as the volume above the A-A plane in
Figure 2. The load is thus formed by the Ø 37/32 cm vertical
coaxial line and by a 16-cm diameter short-circuit cylinder.
The major part of the analysis in this paper treats the load
as a constant inductance Ld and constant resistance Rd.
Ld ¼ Ld0 ¼ 8.2 nH in Figure 2, and we assume Rd ≈ 2 mV

to be the resistance of electrical contacts.
The circuit of Figure 1 is described by the following set of

equations:

R0Iin0 + L1
dIin0

dt
+ LU

dIU0

dt
= q

C0
,

Iin0 = IU0 + I0,

L2 + Ld0( ) dI0

dt
+ RdI0 = LU

dIU0

dt
,

(2)

where q is the charge on the capacitor C0, Iin0 ; dq/dt.
Analytical solution of Eq. (1) is quite tedious and we do
not present it here.

Rather, we neglect current in the mechanical support
inductance, i.e., IU0 ¼ 0 (LU � 1), Iin0 ¼ I0. We define L0

; L1 + L2, Ltot ; L0 + Ld and Rtot ; R0 + Rd. Eq. (2) then
describes a simple RLC circuit with capacitance C0, resist-
ance Rtot and inductance Ltot, all connected in series, so we
can rewrite it:

RtotI0 + Ltot
dI0

dt
= q

C0
. (3)

Solution of Eq. (3) is

I0 = q0V 1 + g/V
( )2

[ ]
e−gt sin Vt( ),

V ;
���������
v2 − g2

√
,

(4)

where q0 ¼ C0U0 is the initial charge, v ; 1/(C0Ltot)
1/2 and

g ; Rtot/2Ltot. The maximum current is achieved at t0 ¼
arctan(V/g)/V. At the Marx charging voltage u0 ¼ 50 kV
(U0 ; 12u0 ¼ 0.6 MV) and with the generator and load para-
meters defined above, Eq. (4) yields the maximum current
I0
max ¼ 4.89 MA at t0 ¼ 1.68 ms.

For comparison, numerical solution of Eq. (2) with the
switch S model described in the text accompanying
Figure 1 (this solution is shown in Fig. 7 below) yields
rather close values of I0

max ¼ 4.6 MA at t0 ¼ 1.87 ms and

corresponds well to the typical experimental result at this
charging voltage of GIT12 firing into a short-circuit load
(Labetsky et al., 2006).

Finally, as discussed in the Introduction, the inductance L0

is irreducible (at least the L1 part, corresponding to the
internal inductance of GIT12 modules in Fig. 1) and higher
currents I0 upon Eq. (4) seem to be possible only if the gen-
erator charging voltage is increased (the maximum measured
current of 6.2 MA is reported in Kovalchuk et al. (1997) for
u0 ¼ 70 kV charging voltage).

VACUUM LCM ON AN IDEAL IES GENERATOR

Let us now show how higher currents are achievable. Taking
as reference the GIT12 output section above the A-A plane in
Figure 2, consider additional hardware as shown in Figure 3.
This is a current multiplier configuration corresponding to
Figure 1b in Chuvatin et al. (2005). The LCM is formed
by two coaxial, concentric toroids. Inductance of the inner
toroid L (magnetic flux extruder) should be large compared
to the load inductance Ld. L here is a large vacuum volume
without magnetic cores, I is the current inside the volume.
Ig and Id are the generator and load currents in the modified
circuit. Bypass inductance between the toroids is Lv.

The toroids are connected to the load through a convolute
C. From preliminary analysis, the general recipe for substan-
tial current increase in the load is to position the convolute C
as close as possible to the high energy density volume Ld in
order to have Ld ≪ L0. One should note here that in contrast
with standard configuration of Figure 2, where the Ld0

volume definition was somewhat arbitrary and depended on
the specific high energy density experiment, the LCM con-
figuration unambiguously defines the load as the overall
volume downstream of the LCM convolute.

Fig. 3. LCM arrangement in vacuum on a pulse power generator when
taking as example the initial output configuration of Figure 2. Dots and
dashes denote contours for definition of the circuit equations.
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Let us analyze electrical behavior of the added hardware. To
start with, consider this hardware to be powered by an ideal LC
generator, i.e., which has the inductance L0, capacitance C0 and
does not have resistance in the circuit. This is equivalent to LU

� 1 and Iin¼ Ig in Figure 1. We totally neglect dissipation in
the circuit, R0 ¼ Rd ¼ 0, and consider Ld ¼ constance.

Now, the dotted contour in Figure 3 includes C0 and L1 in
the generator circuit and all the volumes shown in Figure 3,
i.e., L2, Lv, L, and Ld. Flux conservation inside this contour
corresponds to the equation (L0 ; L1 + L2):

L0 + Lv( ) dIg

dt
+ L

dI

dt
+ Ld

dId

dt
= q

C0
. (5)

Then, the magnetic flux inside the dashed contour in Figure 3
is equal to LI – LdId. This flux is initially zero because the
currents are zero. This flux then remains zero during the
capacitor discharge because we neglected dissipation any-
where. Therefore, at any time moment,

LdId − LI = 0. (6)

For the chosen directions of currents in Figure 3, the
in-flowing and out-flowing currents into the convolute
posts C are 2Ig and I + Id accordingly. The current continuity
at the convolute C thus implies

I = 2Ig − Id. (7)

Eqs. (6) and (7) provide us with the load-to-generator current
ratio in the new hardware:

k ;
Id

Ig
= 2L

L + Ld
. (8)

Therefore, in the limit L ≫ Ld the load current in the load is
twice the generator current.

In turn, using Eqs. (7) and (8), Eq. (5) can be rewritten in
the following form to calculate Ig:

L∗
tot

dIg

dt
= q

C0
, (9)

where

L∗
tot ; L0 + Lv +

4LLd

L + Ld
, (10)

so that Ig
max ¼ 2U0td/pL*

tot is the maximum generator current
in Eq. (9) and the peak generator and load current time td is
now defined as td ¼ p(L*

tot × C0)1/2/4. The maximum gen-
erator current amplitude Ig

max does not change very much
with respect to the no-LCM current I0

max of Eq. (1) under con-
dition Lv + 4LLd/(L + Ld) ≪ L0.

To investigate potential gain in the load current amplitude
with respect to the standard LC circuit, let us introduce a nor-
malized peak load current id

max ; Id
max/I0

max and a normalized

current rise-time t ; td/t0. We also normalize all the induc-
tances to the generator inductance L0, x ; L/L0, d ; Ld/L0

and we also define a new parameter x ; L/Lv. Eqs. (1),
(8), and (9) result in

t ;
td
t0
=

����
L∗

tot

Ltot

√
=

�������������������������
1 + x/x+ 4xd/ x + d( )

1 + d

√

imax
d ;

Imax
d

Imax
0

= 2x

x + d

1
t

. (11)

These relationships coincide with those of Eq. (11) in
Chuvatin et al. (2005) except now we do not neglect the
bypass inductance Lv between the toroids (Fig. 3). Indeed,
high current multiplication coefficients k in Eq. (8) are achiev-
able at high extruder cavity inductance L. At the same time, the
interelectrode gaps between the toroids cannot be made too
small to avoid electron current leakage and shortening of the
gaps by plasma formed on electrode surfaces at high current
densities. Therefore, the higher L, the higher Lv and concrete
LCM design corresponds to some fixed ratio x.

If the load current rise-time is constrained, one could intro-
duce normalized load current with LCM at the time moment
t0, when the no-LCM current is maximum (see Eq. (1)). We
use the solution of Eq. (9) and the relationship of Eq. (8) to
obtain Id(t0), using Eq. (11):

id ;
Id t0( )
Imax
0

= imax
d sin

p

2t

( )
. (12)

At a given x, we have id
max � 0 and id � 0 in Eqs. (11) and

(12) both for x � 0 and for x � 1, so that there exists an
optimum value of the extruder inductance x ¼ L/L0 corre-
sponding to the maximum id

max(x) and id(x). The LCM
design procedure thus should consist in proper choice
of the large inductance L for a given load inductance Ld

when the load-to-generator current ratio is maximized and
when the parasitic inductance Lv added to the generator induc-
tance L0 in Eq. (9) does not decrease considerably the generator
current amplitude with respect to I0

max from Eq. (1). Figure 4
illustrates this logic for several dimensionless load inductances
d and several fixed ratios x.

The values of id
max, id, and t depending on the normalized

large extruder cavity inductance x ; L/L0 are calculated in
Figure 4 for different normalized load inductances d ; Ld/
L0 and for different extruder-to-bypass inductances ratios x
; L/Lv (inserts in Fig. 4).

The result of Figure 4 is that the values x ¼ 1–2 could be
chosen as those giving maximum possible id

max and id for the
considered normalized load inductances. Again, the load cur-
rents with LCM id

max and id refer, respectively, to the new
maximum achievable amplitude and to the new load
current value taken at t ¼ t0, where t0 is the current rise-time
in the standard configuration before changes.

The peak load current time with LCM corresponding to
x ¼ 1–2 increases by 20–40%, t ¼ 1.2–1.4 in Figure 4a.
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Lower x values correspond to higher current leakage I in the
extruder volume, Eq. (7), and lower current into the load, Eq.
(8). In turn, too high x values at fixed x ; L/Lv correspond to
high parasitic inductance Lv added to the generator induc-
tance in Eq. (9), and to the decrease of the generator and
load currents. Also, relatively high load inductances, e.g.,
d ¼ 0.4 or Ld ¼ 0.4L0 in Figure 4, considerably increase
Ltot* and decrease the generator current in Eq. (9), so that
application of the LCM technique does not provide consider-
able gain any more (id

max and id become close to unity). This
is why the recommendation of Chuvatin et al. (2005) was to
position the LCM convolute close to the Ld volume in order
to satisfy in general the inequality d ≪ 1, Ld ≪ L0.

Thus, Figure 4 allows preliminary parametric analysis of
LCM operation for an ideal LC generator, i.e., without
active losses, and suggests L ¼ 1–2 L0 for Ld ¼ 0.1–0.4 L0

and for the considered range of extruder-to-bypass induc-
tances ratios x.

DESIGN AND TESTING OF A VACUUM LCM ON
GIT12

We turn now to the LCM analysis and design for the GIT12
generator, when losses in damping resistors, R0, and possibly
in the load, Rd, are present. The currents Iin0, IU0 and I0 now
change in the circuit of Figure 1 because we modify the
output A-A, so we denote them Iin, IU and Ig accordingly.

The first two equations in the system Eq. (2) do not change:

R0Iin + L1
dIin

dt
+ LU

dIU

dt
= q

C0

Iin = IU + Ig

. (13)

We use the same contours as in Figure 3 for Eqs. (5) and (6)
but now include the load resistance Rd. Eqs. (5) and (6) are
now replaced by

L2 + Lv( ) dIg

dt
+ L

dI

dt
+ Ld

dId

dt
+ RdId = LU

dIU

dt

Ld
dId

dt
+ RdId − L

dI

dt
= 0

. (14)

The system (13, 14), together with the current continuity con-
dition (7) completely describes LCM operation with the
GIT12 circuit.

As for the case of Eq. (2), a simple analytical solution
can be obtained if we neglect current in the mechanical
support inductance, i.e., LU � 1, IU � 0, Iin ≈ Ig. This
allows us to simplify Eq. (13) and the first equation in
(14), cf. Eq. (5):

R0Ig + L0 + Lv( ) dIg

dt
+ L

dI

dt
+ Ld

dId

dt
+ RdId = q

C0
, (15)

where again L0 ; L1 + L2.

If we now assume Id ¼ kIg, k ¼ const, in Eqs. (7) and (15)
and in the second equation of (14), we obtain the approxi-
mate equations:

R∗
totIg + L∗

tot

dIg

dt
= q

C0

L∗
tot ; L0 + Lv + 2kLd

R∗
tot ; R0 + 2kRd

, (16)

which has the same solution as that of Eq. (3), i.e., has the
form of Eq. (4) but with new coefficients v ; 1/(C0Ltot

* )1/

2 and g ; Rtot
* /2Ltot

* . Approximate solution for Ig and Id

can be then obtained here using Eq. (8) for the current mul-
tiplication coefficient k, which is true if the magnetic flux
dissipation in the load can be neglected in Eq. (8); i.e., if
Rd

�
Iddt ,, LdId.

This analytical solution is applicable to IES generators that
have damping resistance R0 but where the current in mechan-
ical support inductance LU is totally neglected, IU ≪ Ig. Eq.
(16) with the corresponding solution (4) can be then used to
calculate new generator and load currents analytically when
the LCM technique is applied.

However, approximation IU � 0 used in Eqs. (13) and
(14) for obtaining Eq. (15) and analytical solution of Eq.

Fig. 4. (Color online) Normalized load currents (a) id
max and (b) id (solid

lines), as well as dimensionless current rise-time (a) t (dashed lines)
defined by Eqs. (11) and (12).
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(16) cannot be warranted in advance for the GIT12 generator
with an LCM because inductance and resistance downstream
of LU become higher when compared to the standard con-
figuration of Figures 1 and 2. Indeed, these values were
L2 + Ld and Rd accordingly in Eq. (3), while they become
L2 + Lv + 2kLd and 2kRd in Eq. (16). This may lead to an
increased current IU now becoming non-negligible.

Therefore, rather than using an analytical solution of Eq.
(16), let us solve the system (13, 14) numerically in order
to perform the same analysis as in Figure 4. We take the
parameters of the GIT12 circuit, i.e., C0 ¼ 14.4 mF, R0 ¼

43 mV, L1 ¼ 89 nH, LU ¼ 636 nH, L2 ¼ 10 nH, and the
switch S as modeled and explained in the text accompanying
Figure 1. At t ¼ 0 the currents are zero and q ¼ C0U0, U0 ¼

0.6 MV (u0 ¼ 50 kV charging voltage). We now assume
Rd ¼ 2 mV and we numerically solve Eq. (2) for the basic
GIT12 configuration of Figure 2 and Eqs. (130 and (14)
for the LCM configuration of Figure 3. For a given load
inductance Ld, we vary the extruder inductance L. For each
L and for given values of x ; L/Lv, we then calculate the
maximum load current Id

max and the load current at t ¼ 1
ms, Id

1ms. Values of the load current at t ¼ 1 ms are useful
for the experiments where the current rise-time is constrained
(Bastrikov et al., 1999; Labetsky et al., 2006; Chuvatin et al.,
2006a; Lassalle et al., 2007).

The result of the above procedure is shown in Figure 5.
Solid curves in this figure are numerical solutions of Eqs.
(13) and (14) for the LCM configuration of Figure 3.
Dashed lines are numerical solutions of Eq. (2) for the
basic GIT12 configuration of Figure 2, shown for
comparison.

Interestingly, recommendations of Figure 5 for a realistic
electrical circuit with active losses and additional inductance
LU practically coincide with those from the dimensionless
analysis of Figure 4 for an ideal IES generator. For GIT12
which has L0 ; L1 + L2 ≈ 100 nH a noticeable gain in
Id
max and Id

1ms with respect to the no-LCM case is expected
for Ld ¼ 10–20 nH (d ¼ 0.1–0.2), L ¼ 100–200 nH (x ¼
1–2), and for x ; L/Lv ¼ 5–10.

Consider an intermediate value of x ¼ 7. The minimum
bypass volume Lv in Figure 3 is then defined by the
minimum interelectrode gap sizes D that would still allow
magnetic insulation in the corresponding vacuum lines. On
GIT12, however, the main constraint on the D value came
from the mechanical precision achievable on this generator,
so that the minimum gap could not be made smaller than
1.5 cm. We note that this value is much larger than that
which would suffice to ensure magnetic self-insulation;
hence it could be made considerably smaller, thereby
further decreasing the bypass inductance Lv, if greater mech-
anical precision were possible in the alignment of the vacuum
lines.

Taking into account the above consideration and searching
for L values in the range 100–200 nH with x ¼ 7 resulted in
the hardware design shown in Figure 6. The chosen gap sizes
in the bypass vacuum lines Lv1, Lv2, and Lv3 are D1 ¼ 2 cm,

D2 ¼ 2.5 cm, and D3 ¼ 1.5 cm accordingly. In this design,
L ¼ 133 nH, Lv1 ¼ 2.7 nH, Lv2 ¼ 6.6 nH, Lv3 ¼ 9.6 nH, so
that Lv ; Lv1 + Lv2 + Lv3 ¼ 18.9 nH (x ¼ 7). The convolute
C is formed by 12 posts having Ø 2.5 cm diameter and con-
necting the LCM extruder to the ground electrode through
corresponding holes. The inductive load includes the induc-
tances of 16-cm diameter short-circuit cylinder, of Ø 37/
32 cm vertical coaxial line (see Fig. 2) and of the additional
convolute inductance, Ld ¼ 10 nH.

Experimental validation of this LCM design is demon-
strated in Figure 7. Experimental currents are close to the
numerical solution of the system (13, 14) for the generator
and LCM parameters described above and for u0 ¼ 49 kV
charging voltage. Deviation of the experimental load
current from its numerical value near the maximum could
be attributed either to the measurement uncertainty or to
current losses in the LCM convolute. This requires further
investigation.

The load current amplitude is increased from I0
max ¼ 4.6

MA at t0 ¼ 1.87 ms in the standard GIT12 configuration of
Figure 2 to Id

max ¼ 6.43 MA at td ¼ 2.0 ms in the LCM con-
figuration of Figure 6. The measured load-to-generator cur-
rents ratio at t ¼ td is k ¼ 1.73. In turn, the load current at
t ¼ 1 ms is increased from I0

1ms ¼ 3.37 MA to Id
1ms ¼ 4.4

Fig. 5. (Color online) (a) Dependence of the maximum load current Id
max on

the extruder inductance L for load inductances Ld of 10, 20, and 30 nH and
for several values of x ; L/Lv (inserts). (b) The same dependencies on the
extruder inductance L for the load current at t ¼ 1 ms, Id

1ms.
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MA. These values correspond to a 70% increase of the mag-
netic pressure at the load radius of 8 cm.

The main purpose of Figure 8 is to illustrate that this current
increase could be possible on standard (no-LCM) IES genera-
tors only through a considerable increase (by ≈ 90%) of the
generator stored energy. Indeed, we take Eq. (2) with GIT12
parameters defined by the nearby text and solve it numerically
for gradually rising voltages u0 until the solution amplitude
I0
max reaches the experimentally measured peak load current

Id
max ¼ 6.43 MA. As shown in Figure 8, this becomes possible

at u0 ¼ 68 kV, i.e., at the initial generator stored energy of
E0 ¼ 4.8 MJ instead of u0 ¼ 49 kV with E0 ¼ 2.5 MJ when
we use the LCM technique.

Figure 8 also shows the achieved enhancement of EM
power into the load which is defined as Wd0 ; Ld0I0 ×
dI0/dt in nominal GIT12 output and as Wd ; LdId × dId/dt
when the arrangement of Figure 6 is installed, Ld0 ¼ 8.2
nH and Ld ¼ 10 nH. At the unchanged charging voltage
u0 ¼ 49 kV, Wd0 ≈ 100 GW, and Wd ≈ 230 GW that

corresponds to a 130% increase of the electromagnetic
power into a constant inductance load on this generator.
Such a load power multiplication can be of importance for
further application of power multiplication concepts.

As discussed in the Introduction, microsecond IES genera-
tors are usually coupled to different power conditioning
devices. If an LCM is incorporated as a part of the IES gen-
erator, different techniques for further power multiplication
are suggested and studied analytically elsewhere (Chuvatin
et al., 2006b). In particular, these techniques allow resistive
or inductive opening switches upstream or downstream of
the LCM convolute, as well as a controlled abrupt increase
of the LCM extruder inductance (Chuvatin et al., 2006b).
We defer detailed discussion of these techniques in the con-
figuration of Figure 6 on GIT12 for a later publication.

At the same time, the validated LCM can also be used
directly with imploding plasma loads, allowing further
power multiplication through EM-to-kinetic/internal/radi-
ation energy conversion (Labetsky et al., 2006; Lassalle

Fig. 6. LCM hardware (in scale) realized on GIT12 upon the suggested design criteria. Igm and Idt denote positions of the generator current
measurements, Igt ¼ Igm in the experiments. Id is the load current measurement. Other notations are the same as in Figures 2 and 3.
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et al., 2007). To illustrate this, we add in series to the constant
inductance Ld or Ld0, with or without LCM, a variable part
Ld(t) ¼ 2h × ln[r0/r(t)] of a perfectly conducting infini-
tively thin cylindrical shell having the height h ¼ 2 cm, the
initial radius of r0 ¼ 8 cm, as in Figure 2, and the time-
dependent radius r(t).

We then complete Eqs. (13) and (14) (Fig. 2) or Eq. (2)
(standard GIT12) by the equation of motion of this thin
shell accelerated by the magnetic field of the load current,
Id or I0, and having mass mshell:

mshell
d2r t( )

dt2
= I2

d

c2r t( ) h. (17)

To represent a generic microsecond experiment we vary mshell

in order to have the implosion time equal to 1 ms. We also
reduce the constant inductance between the LCM convolute
and the shell to Ld0¼ Ld ¼ 5 nH. When the shell radius r(t)
reaches the value of 0.3 cm, we calculate the kinetic energy
Ek¼

1
2mshell(dr/dt)2 at this radius and then stop the shell.

As shown in Figure 9, the designed multiplier allows us to
increase the shell kinetic energy from 80 to 130 kJ in micro-
second implosions that, in turn, would allow increase of the
soft X-ray power if the time of kinetic-to-radiated energy
conversion remains were unchanged.

CONCLUSIONS

In conclusion, we have presented a design procedure for con-
structing vacuum load current multipliers without magnetic
core for mega-ampere pulse-power. The design criteria
allow a specific engineering hardware realization on the
GIT12 microsecond IES generator. Experimental validation
of this design resulted in approximately 40% increase of
the peak load current, 95% increase of the maximum mag-
netic pressure at 8 cm radius, and in a 130% increase of elec-
tromagnetic power into constant-inductance load. The same
result could be possible on GIT12 only through almost dou-
bling of the initial stored energy.
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