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The coupling of Richtmyer–Meshkov instability (RMI) and Kelvin–Helmholtz instability
(KHI), referred to as RM-KHI, on a shock-accelerated inclined single-mode air–SF6
interface is studied through shock-tube experiments, focusing on the evolution of the
perturbation distributed along the inclined interface. To clearly capture the linear (overall
linear to nonlinear) evolution of RM-KHI, a series of experiments with a weak (relatively
strong) incident shock is conducted. For each series of experiments, various θi (angle
between incident shock and equilibrium position of the initial interface) are considered.
The nonlinear flow features manifest earlier and develop faster when θi is larger and/or
shock is stronger. In addition, the interface with θi > 0◦ evolves obliquely along its
equilibrium position under the effect of KHI. RMI dominates the early-time amplitude
evolution regardless of θi and shock intensity, which arises from the discrepancy in the
evolution laws between RMI and KHI. KHI promotes the post-early-stage amplitude
growth and its contribution is related positively to θi. An evident exponential-like
amplitude evolution behaviour emerges in RM-KHI with a relatively strong shock and
large θi. The linear model proposed by Mikaelian (Phys. Fluids, vol. 6, 1994, pp.
1943–1945) is valid for RM-KHI within the linear period. In contrast, the adaptive vortex
model (Sohn et al., Phys. Rev. E, vol. 82, 2010, p. 046711) can effectively predict both
the interface morphology and overall amplitude evolutions from the linear to nonlinear
regimes.
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1. Introduction

The physical process of a shock wave obliquely interacting with an interface separating
two fluids with different densities (inclined shock-interface interaction) widely exists in
applications such as inertial confinement fusion (ICF) (Nuckolls et al. 1972; Lindl et al.
2014; Betti & Hurricane 2016), scramjet (Billig 1993; Yang, Kubota & Zukoski 1993) and
supernova explosion (Maeda et al. 2010; Kuranz et al. 2018). For example, in ICF, the
shocks (interfaces) are typically non-centrosymmetric (perturbed) due to the asymmetric
drive (limited machining accuracy) (Smalyuk et al. 2005; Edwards et al. 2011; Smalyuk
et al. 2020), leading to the occurrence of inclined shock–interface interaction. The waves
and interface instability resulting from the inclined shock–interface interaction could
significantly influence the implosion of ICF, thus affecting the energy gain and even
leading to ignition failure. In scramjet, oblique shock waves reflected between boundaries
would interact with the perturbed interface separating fuel from air (Yang et al. 1993;
Ren et al. 2019), resulting in the emergence of complex wave configurations and interface
instability. The waves would increase the temperature, while the interface instability would
enhance the mixing of fuel and air, thereby enhancing the combustion efficiency of the
fuel. Therefore, studying the inclined shock–interface interaction is of great significance.

During the inclined shock–interface interaction, shock refraction is a classical physical
phenomenon that has been extensively studied for decades. Taub (1947) and Polachek &
Seeger (1951) provided the theoretical framework for describing the regular refraction.
Subsequently, Jahn (1956) conducted shock-tube experiments on shock refraction with
diverse initial conditions, and several irregular shock refraction patterns were observed and
discussed. Following up, comprehensive theoretical (Henderson 1966, 2014), experimental
(Abd-El-Fattah, Henderson & Lozzi 1976; Abd-El-Fattah & Henderson 1978a,b) and
numerical (Henderson, Colella & Puckett 1991; Nourgaliev et al. 2005; Xiang & Wang
2019; de Gouvello et al. 2021) studies on the inclined interaction of a shock wave with a
plane or non-planar interface were conducted, and the shock refraction patterns and their
transitions have been widely investigated.

The post-shock interface instability resulting from the inclined shock–interface
interaction is also a longstanding research focus. Presently, most relevant studies focus on
the large-scale perturbation growth, which is regarded as Richtmyer–Meshkov instability
(RMI) (Richtmyer 1960; Meshkov 1969) on an inclined interface (inclined-interface
RMI). For the inclined-interface RMI, as shown in figure 1(a,b), the equilibrium position
of the interface is considered to be perpendicular to the incident-shock-propagation
direction, and the initial perturbation is regarded as the entire interface with respect to
the equilibrium position, including the perturbations applied to it. Based on a series of
numerical studies (McFarland, Greenough & Ranjan 2011, 2013, 2014a), experiments on
the inclined-interface RMI at a plane interface, as sketched in figure 1(a), with reshock
were conducted using a shock-tube facility at Texas A&M University (McFarland et al.
2014b; Reilly et al. 2015). The membraneless plane interface inclined with respect to
the direction of the incident shock propagation was created by tilting the shock tube at
an angle relative to the horizontal, while the observation of the pre- and post-reshock
flows with high spatiotemporal resolution was realized using the planar laser Mie
scattering technique. The dimensionless mixing width was observed to grow linearly
in the pre-reshock regime and then level off at the onset of reshock, after which it
varies linearly again (McFarland et al. 2014b). In addition, it was found that a more
developed pre-reshock interface generally results in a more mixed post-reshock interface
(Reilly et al. 2015). Afterwards, by imposing shear and buoyancy on the inclined plane
interface to create multi-mode perturbation, experiments on the inclined-interface RMI
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Figure 1. Sketches of various shock-driven hydrodynamic instabilities. (a) RMI induced by a shock wave
interacting obliquely with a plane interface; (b) RMI resulting from the oblique interaction of a shock wave
with a multi-mode interface; (c) RMI triggered by a shock wave interacting with a ‘V’-shaped interface;
(d) RM-KHI resulting from the inclined interaction between a shock wave and a perturbed interface;
(e) RM-KHI resulting from the vertical interaction between a shock wave and a perturbed interface. Red and
blue solid lines represent waves and interface, respectively; blue dashed lines denote the interface equilibrium
position regarded in relevant research; IS, incident shock; II, initial interface; TS, transmitted shock; RW,
reflected wave; SI, shocked interface; a0 and a, perturbation amplitudes of II and SI, respectively.

at a multi-mode interface, as shown in figure 1(b), were performed (Mohaghar et al.
2017, 2019). The evolving density and velocity fields were successfully measured using
planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) techniques
simultaneously. Based on this, the dependencies of the turbulent mixing transition on the
initial perturbation (Mohaghar et al. 2017) and incident shock intensity (Mohaghar et al.
2019) were explored.

In addition, RMI that occurs when a planar shock interacts with a ‘V’-shaped interface
(as shown in figure 1c), which is highly similar to the inclined-interface RMI at a plane
interface, has also been studied widely. The dependencies of amplitude evolution on the
shock intensity and initial amplitude are the focus of relevant research, and previous works
(Sadot et al. 2003; Luo et al. 2016; Guo et al. 2019) indicated that the high-amplitude
effect is more significant than the high-Mach-number effect in inhibiting the amplitude
growth. In addition, Liang et al. (2019) found that for a shock-accelerated ‘V’-shaped
interface, perturbation modes other than the fundamental one also affect the linear growth
rate, leading to the failure of the impulsive model (Richtmyer 1960).

The aforementioned investigations have provided valuable insights into the
inclined shock–interface interaction from the perspectives of shock refraction and
inclined-interface RMI. In addition, the post-shock evolution of the small-scale
perturbations distributed along the inclined interface is also interesting. Mikaelian (1994)
pointed out that when a shock wave obliquely interacts with a perturbed interface,
as depicted in figure 1(d), the normal component of the shock triggers RMI, while
its parallel component induces Kelvin–Helmholtz instability (KHI) (Helmholtz 1868;
Thompson 1871). The evolution of the small-scale perturbation distributed along the
inclined interface, induced by the coupling of RMI and KHI, is referred to as RM-KHI
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in this work. To avoid confusion, there are several issues that need further clarification.
First, the inclined-interface RMI occurs whether the interface is planar or disturbed,
whereas RM-KHI can only occur when the interface is perturbed. Second, studies on
the inclined-interface RMI consider the inclined interface itself as a component of the
initial perturbation, and mainly focus on the large-scale perturbation evolution. In contrast,
research on RM-KHI only treats the disturbances distributed along the inclined interface
as the initial perturbation, and focuses on the small-scale perturbation evolution. In other
words, inclined-interface RMI and RM-KHI could exist simultaneously in the physical
process of the inclined shock–interface interaction, but relevant research has different
descriptions of physics and different specific objects of concern. Third, when a shock wave
propagates vertically along a perturbed interface, RM-KHI, instead of pure shock-driven
KHI (Hurricane 2008; Harding et al. 2009; Hurricane et al. 2012; Zhou et al. 2019), still
occurs since the transmitted shock induces a velocity normal to the interface as depicted
in figure 1(e). Actually, RMI must occur with a shock-driven KHI, though it may be weak
when the angle between the shock wave and the equilibrium position of the initial interface
(θi) approaches 90◦. Investigating RM-KHI holds great practical significance due to its
widespread presence in ICF and scramjet. It is also significant and interesting to study the
perturbation evolution driven by RM-KHI, since the KHI-induced perturbation amplitude
growth has a remarkably different law from the RMI-induced one (Richtmyer 1960; Kelly
1965; Harding et al. 2009).

Theoretically, referring to the concept of Richtmyer (1960), Mikaelian (1994) treated
the shock as an instantaneous acceleration and developed a linear amplitude evolution
model for RM-KHI (the M-L model). Banerjee et al. (2012) studied the bubble (lighter
fluids penetrating heavier ones) evolution of RM-KHI in viscous flow using the model
of Layzer (1955), and found that the amplitude growth rate of the bubble approaches a
finite asymptotic value in the late stages. Experimentally, Rasmus et al. (2018) investigated
RM-KHI under High-Energy-Density (HED) conditions on the Omega laser system by
obliquely accelerating a sinusoidal C22H14O4N2–CH foam interface using a laser-driven
shock. Based on the X-ray radiographs, it was observed that the perturbation amplitude
successively undergoes linear and nonlinear evolution periods. Subsequently, Rasmus
et al. (2019) found that neither the discrete vortex model (D-V model) (Hurricane 2008)
nor a modified vortex model (M-V model), which additionally considers the vorticity
distribution along the interface relative to the D-V model, could accurately predict the
amplitude growth observed in HED experiments (Rasmus et al. 2018). The failure of these
two models, as pointed out by Pellone et al. (2021), may be largely due to the ignoring
of the self-induced evolution and transport of vorticity. Recently, Pellone et al. (2021)
theoretically studied RM-KHI under HED conditions using the adaptive vortex model
(A-V model) (Sohn, Yoon & Hwang 2010) which overcomes the major shortcomings of
the D-V and M-V models. By applying a scaling approach proposed based on the M-L
model, Pellone et al. (2021) found that RMI dominates the early-time amplitude growth
under various θi conditions, and the dynamics dominated by KHI occur earlier and are
more pronounced in RM-KHI with larger θi. Additionally, the A-V model was shown to be
capable of predicting the interface morphology and amplitude evolution observed in the
HED experiment (Rasmus et al. 2018) when the deceleration and decompression caused
by laser turn-off were considered.

Previous studies have shed some light on the evolution law of RM-KHI. In the
laser-driven experiment, the materials forming the initial interface are in the solid state
and, accordingly, the perturbation on the initial interface can be accurately controlled.
However, the perturbation evolution in laser-driven experiments is not solely influenced
by hydrodynamic instabilities. For instance, experiments conducted on the Omega laser
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system generally involve additional physical processes such as the preheat of pre-shocked
material (Glendinning et al. 2003), phase transition of solid materials (Malamud et al.
2013) and plasma diffusion (Haines et al. 2014). In addition, the deceleration and
decompression caused by laser turn-off also strongly affect the perturbation growth
(Rasmus et al. 2018; Pellone et al. 2021). Consequently, isolating the contribution of
RM-KHI to the perturbation growth in the laser-driven experiment is challenging. In
contrast to the laser-driven experiment, the shock-tube experiment can provide a relatively
‘simple’ physical environment and has therefore become one of the major ways to study
shock-driven hydrodynamic instabilities over the last decades (Zhou 2017a,b). Until now, a
fine shock-tube experimental study on RM-KHI, focusing on the small-scale perturbation
development, is still desirable. The behaviour of RM-KHI under various θi conditions and
the applicability of existing theoretical models for describing its evolution remain unclear,
which motivates the current study.

In this work, some significant parameters directly related to the perturbation growth
of RM-KHI are first clarified. Subsequently, RM-KHI is studied through shock-tube
experiments using well-defined inclined single-mode gaseous interfaces formed by the
soap-film technique (Luo et al. 2016; Liang et al. 2019). Since RM-KHI enters the
nonlinear phase rapidly, to sufficiently capture the linear evolution of RM-KHI and verify
the linear model, a series of experiments with a weak incident shock is conducted. In
addition, a series of experiments with a relatively strong incident shock is performed to
clearly obtain the overall evolution law of RM-KHI from the linear to nonlinear stages
under diverse θi conditions. Finally, the interface morphology and amplitude evolution
under various initial conditions are discussed and analysed, and existing models are
examined.

2. Clarification of significant parameters

The interaction of a planar incident shock (IS) with an inclined small-amplitude
single-mode light-heavy initial interface (II), as depicted in figure 2(a), is considered.
Regular refraction is assumed to occur during the IS–II interaction and, accordingly, there
are five flow regions (regions 1–5) in the vicinity of the IS–II interaction point. Note that
the shock compression alters the perturbation wavelength (λ), wavenumber (k = 2π/λ)
and amplitude (a), and their pre- and post-shock values will be denoted by subscripts
‘0’ and ‘1’, respectively. Four significant parameters directly related to the perturbation
growth, including λ1, a1, velocity jump that triggers RMI (�VRM) and velocity difference
that induces KHI (�VKH), will be clarified for better understanding RM-KHI.

(1) λ1. The shock-compression process of the fluid in region 2 will be analysed to
determine λ1. Because k0a0 is small, the compression of a is a ‘microscopic’ process
compared with the compression of λ. Hence, the perturbed shocks and interfaces can be
approximated as their equilibrium positions when solving λ1. As shown in figure 2(b),
when IS moves a distance of λ0 along II from points A to B, the pre-shock fluid enclosed
by right triangle BAC is compressed by the transmitted shock (TS) into the post-shock
fluid enclosed by right triangle BDC. Consequently, we have

λ1

λ0
= cos(θi − θt)

cos(θs − θt)
, (2.1)

where θt (θs) represents the angle between the equilibrium position of TS (shocked
interface SI) and the extension line of IS, which can be determined via shock-polar
analysis. Here, θt and θs are related to θi and the shock Mach number (M). Accordingly, λ1
is correlated with λ0, θi and M.
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Figure 2. (a) Interaction of a planar shock with an inclined small-amplitude single-mode light–heavy
interface; (b,c) schematics of the determination methods for (b) λ1 and (c) a1. Solid and dashed lines represent
discontinuities and corresponding equilibrium positions, respectively; line E-IS, extension line of IS; lines
FG and HI, auxiliary lines; RS, reflected shock; a1, post-shock perturbation amplitude; λ0 and λ1, pre- and
post-shock perturbation wavelengths, respectively; θi, angle between IS and the equilibrium position of II;
θs (θt), angle between line E-IS and the equilibrium position of SI (TS); θti (θts), angle between lines EG (EI)
and E-IS; u, flow velocity; superscripts 4 and 5 represent the flow regions, and subscripts ‘sn’ and ‘st’ represent
the normal and tangential directions to the equilibrium position of SI, respectively.

(2) a1. A section of II with a quarter wavelength, which is approximated as a straight
line EG as shown in figure 2(c), is considered to explore the determination method of
a1 in RM-KHI. Points E and G are located at the equilibrium position and trough of
II, respectively, and point F is the projection of point G onto the equilibrium position.
The angle between line EG and the extension line of IS, referred to as θti, equals to
θi − arctan(4a0/λ0). SI is approximated as a straight line EI, in which point I corresponds
to the trough of SI and point H is the projection of point I onto the equilibrium position.
According to the geometric relation, a1 can be determined as

a1 = λ1

4
tan(θs − θts), (2.2)

where θts is the angle between line EI and the extension line of IS, which can be obtained
by shock-polar analysis if θti is provided. Here, θts is correlated with a0, λ0, θi and M and,
accordingly, a1 is also related to these parameters.

(3) �VRM . Previous studies (Mikaelian 1994; Pellone et al. 2021) stated that RMI in
RM-KHI is induced by the shock acceleration perpendicular to the interface. However,
it remains unclear whether the interface refers to II or SI. As shown in figure 2(a), the
components of the mean velocities of the fluids in regions 4 and 5 (u4 and u5) in the
direction normal to SI (u4

sn and u5
sn) must be equal due to the interface velocity boundary

condition. In contrast, the components of u4 and u5 in the direction tangential to SI (u4
st

and u5
st) are different owing to the different acoustic impedances of the fluids in regions

1 and 2. Accordingly, the components of u4 and u5 in the direction normal to II (u4
in and

u5
in) cannot be equal. Since �VRM should be equal for fluids on both sides of the interface,

�VRM in RM-KHI should be u4
sn or u5

sn rather than u4
in or u5

in.
(4) �VKH . KHI occurs when there is a difference in the tangential velocities of the fluids

on either side of the interface. For RMI with θi = 0◦, a shear velocity across the interface
always exists as long as there is a perturbation creating a misalignment. From another
perspective, KHI is an ‘inherent’ part of RMI, which would result in the generation of the
roll-up structure at the nonlinear stage. However, �VKH for RM-KHI refers specifically
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Figure 3. Variations of (a) λ0/λ1 and a0/a1, (b) �VRM and �VKH with θi.

to the mean velocity difference between fluids on both sides of the interface along the
direction of the interface equilibrium position: the difference between u4

st and u5
st, i.e.

u4
st-u

5
st.

The variations of λ0/λ1, a0/a1, �VRM and �VKH with θi are calculated via shock-polar
analysis, considering an air–SF6 interface accelerated by shock waves with different M
(1.05, 1.20 and 2.00). The initial pressure and temperature of the pre-shock gases on both
sides of II are set as 101.3 kPa and 298.15 K, respectively. As shown in figure 3(a), λ0/λ1
is weakly positively related to both M and θi. Nevertheless, when M is 2.0 and θi is large,
the compression of λ by IS is non-negligible. Here, a0/a1 is strongly positively related
to M, and weakly negatively correlated with θi when M is 1.05 or 1.20. When M is 2.0,
the correlation of a0/a1 with θi is significant. Overall, with the increase of M and θi, a1
in RM-KHI increasingly differs from that calculated using the method adopted in RMI
and λ1 also gradually deviates from λ0. As illustrated in figure 3(b), �VRM and �VKH are
also strongly positively related to M, and the former (latter) is weakly negatively (strongly
positively) correlated to θi. Consequently, it can be inferred that RM-KHI evolves faster
when M is higher, and the contribution of RMI (KHI) to the amplitude growth of RM-KHI
is similar (significantly different) under various θi conditions.

3. Experimental methods

To realize the inclined interaction between shock wave and perturbed interface in
shock-tube experiments, the soap-film technique, which has been extensively verified
in previous works (Liu et al. 2018; Li et al. 2023), is employed to create the inclined
single-mode air–SF6 interface. As illustrated in figure 4, the transparent interface
formation devices (devices A and B) with an inner cross-sectional area of 140 mm × 6 mm
are manufactured by combining two acrylic plates with pedestals. The adjacent boundaries
of the two devices are machined into the profile of the initial interface perturbation, and
two constraint strips, with the same shape as the device boundaries, are affixed to the
pre-carved grooves on device B to constrain the soap film. According to our previous work
(Wang et al. 2022), when the height ratio of the constraint strips protruding into the flow
field to the entire flow field ( f ) is 10 %, they would not significantly affect the main part of
the shocked interface and the perturbation evolution on it. In the present work, to minimize
the potential influence of the constraint strips on interface evolution, f is controlled to be
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Figure 4. Schematic for the formation of inclined single-mode air–SF6 interface. SHOS,
super-hydrophobic-oleophobic surfaces.

3 %. To generate the soap film, the constraint strips are first wetted by the soap solution
(78 % pure water, 2 % sodium oleate and 20 % glycerin by mass), and then a rectangular
frame with the soap solution attached is pulled carefully along the constraint strips. Since
θi is an acute angle, the soap film near the upper pedestal may deviate from its intended
position due to the surface tension effect (Wang, Si & Luo 2013). To address this issue,
super-hydrophobic-oleophobic surfaces (Li et al. 2023) are created on the inner edges of
two acrylic plates adjacent to the upper pedestal, thus effectively constraining the soap
film. For creating an air–SF6 interface, air in device B needs to be replaced with SF6 using
the following procedure. First, a thin membrane is used to seal the downstream side of
device B, and two pipes are inserted through the membrane into device B. Then, SF6 is
charged slowly into device B through the inlet pipe and air is released through the outlet
pipe. An oxygen concentration detector is placed at the outlet pipe to monitor the oxygen
concentration in device B. Once the volume fraction of oxygen drops below 0.5 %, the
pipes are removed, and then the holes on the membrane are sealed. Subsequently, devices
A and B are carefully connected and an inclined single-mode air–SF6 interface is formed.

A horizontal shock tube, which has been extensively used in prior investigations (Liu
et al. 2018; Liang et al. 2019), is applied to generate the planar incident shock wave.
Previous studies (Rangel & Sirignano 1988, 1991) showed that the roll-up structure, which
is a sign that the interface instability has entered the strongly nonlinear stage, would rapidly
emerge in KHI, indicating that the linear evolution of RM-KHI is likely to last only a
short period. Therefore, to capture more clearly the linear evolution of RM-KHI and to
examine the M-L model, a series of experiments in which a weak IS (M = 1.05 ± 0.01)
is adopted to lower the interface evolution rate is first conducted. Note that to produce
such a weak IS, the employed polyester membrane for separating air in the driver and
driven sections of the shock tube is very thin (with a thickness of 3.8 μm). Then, to obtain
the overall evolution law of RM-KHI from the linear to nonlinear stages and to examine
the applicability of the A-V model for RM-KHI, a series of experiments with a relatively
strong IS (M = 1.20 ± 0.01) is performed, in which the membrane is of a thickness of
12.5 μm. Note that shock waves with M ≈ 1.20 are described as relatively strong ones
in this work to distinguish them from the weaker shock waves with M ≈ 1.05. Actually,
in many applications involving shock-driven interface instability and related scientific
research (Zhou 2017a,b; Zhou et al. 2019; Zhou 2021), these are all very weak shock waves.
For each series of experiments, four different θi of 0◦, 10◦, 30◦ and 50◦ are considered, in
which the experiment with θi = 0◦ serves as the reference case to demonstrate the effect of
KHI on interface evolution. Here, a0 and λ0 are fixed as 0.27 and 20.00 mm, respectively.
Accordingly, II (with k0a0 ≈ 0.085) satisfies the small-amplitude criterion (ka � 1). Note
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that the experiment with a weak (relatively strong) IS will be referred to as ‘case W-θi’
(‘case S-θi’) for clarity.

The evolution of the flow field is captured using a high-speed schlieren system. The
schlieren optical arrangement adopted is identical to the one illustrated in the previous
work (Chen et al. 2023). In experiments with a weak IS, the high-speed video camera
(FASTCAM SA5, Photron Limited) operates at a frame rate of 42 000 frames per second,
with the spatial resolution of the schlieren images of approximately 0.21 mm pixel−1. In
experiments with a relatively strong IS, the camera operates at a frame rate of 50 000
frames per second, with the spatial resolution of the schlieren images of approximately
0.39 mm pixel−1. The exposure time of the camera is fixed as 1 μs. The temperature and
pressure of the pre-shock gases in the test section (air and SF6) are identical to their
ambient counterparts: 101.3 ± 0.1 kPa and 298.4 ± 0.5 K, respectively.

Table 1 presents some significant parameters of eight experimental cases with various
initial conditions, in which superscripts ‘e’ and ‘t’ denote the experimental and theoretical
results, respectively, and similarly hereinafter. Experimentally, the velocity of IS (vIS), θs
and θt are first measured from schlieren photographs. Then, the velocity of TS (vTS) and
�VRM can be calculated using geometric relationships. Theoretically, assuming that the
fluid in region 1 is pure air, the composition of the fluid in region 2 and the post-shock
Atwood number (A1 = (ρ5 − ρ4)/(ρ5 + ρ4), with ρ4 and ρ5 being the densities of the
fluids in regions 4 and 5, respectively) are determined by matching ve

TS and vt
TS. Other

significant parameters are also determined through shock-polar analysis. The relative error
between �Ve

RM and �Vt
RM is less than 4.3 %, indicating that the constraint strips have

limited effect on the post-shock flow. Subsequently, considering the good agreement
between �Ve

RM and �Vt
RM , the hard-to-obtain �Ve

KH is deduced to be approximately equal
to �Vt

KH determined through shock-polar analysis. The constraint strips embedded on the
interface formation device cause II to appear thick (see figures 5 and 6). In experiments
with a weak IS, SI moves slowly and takes a while to separate from the dark area
caused by constraint strips (112, 115, 67 and 69 μs for cases W-0, W-10, W-30 and W-50,
respectively), causing the difficulty in accurately extracting λe

1 and ae
1. Therefore, λe

1 and
ae

1 have not been provided to compare with the theoretical counterparts. For experiments
with a relatively strong IS, λe

1 and ae
1 are provided since the relatively fast movement of SI

enables relatively accurate extraction of them. The good agreement between λe
1 and λt

1 (ae
1

and at
1) verifies the theoretical determination method of λ1 (a1).

4. Results and discussion

4.1. Interface morphologies and flow features
Figures 5 and 6 show the schlieren images of experimental cases with a weak IS and
a relatively strong IS, respectively. For clarity, the constraint strips are removed from the
images through image processing once the IS–II interaction ends. In experiments with θi >

0◦, the perturbations on SI exhibit different evolution states, depending on the moment at
which IS interacts with them. In this study, we will focus on the evolution of the specific
periodic perturbation (SPP) depicted in figures 5 and 6, and the temporal origin is defined
as the moment when the whole SPP is affected by IS.

For experiments with a weak IS, cases W-0 and W-30 are taken as examples to illustrate
the evolution features. In case W-0, the interaction of IS with II generates TS and RS
(208 μs). RS can barely be observed due to its weak intensity. Subsequently, SI evolves
slowly and maintains a quasi-single-mode shape throughout the experiment (208–874 μs).
Note that since the interface evolution is driven solely by RMI, the interface remains
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Figure 5. Schlieren photographs of four experimental cases with a weak IS: (a) W-0; (b) W-10; (c) W-30;
and (d) W-50. SPP, specific periodic perturbation; RTS, reflected shock wave of TS from the wall. Numbers
represent time in μs.
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Figure 6. Schlieren photographs of experimental cases with a relatively strong IS: (a) S-0; (b) S-10; (c) S-30;
and (d) S-50.

symmetrical with respect to its crest or trough, in which the crest (trough) represents
the upstream (downstream) point on the interface furthest from the equilibrium position.
In case W-30, regular refraction occurs when IS meets II, resulting in the generation of
inclined TS and RS (162 μs), in which RS cannot be identified due to its weak intensity.
In the early stages, SI grows nearly symmetrically with respect to its crest or trough and
maintains a quasi-single-mode shape (233–400 μs). Subsequently, SI gradually tilts with
respect to its crest or trough under the effect of KHI (733 μs). Meanwhile, the nonlinear
features of interface evolution, such as bubble and spike (heavier fluids penetrating lighter
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ones), emerge on SI. Overall, the nonlinear flow features in cases with larger θi manifest
earlier and develop faster compared with those in cases with smaller θi, which should be
attributed to the larger contribution of KHI to perturbation evolution.

For experiments with a relatively strong IS, the IS–II interaction and interface evolution
trend are similar to those in experiments with a weak IS, and the nonlinear flow features
also manifest earlier and develop faster when θi is larger. However, the flattening of the
bubble and the thinning of the spike are considerably faster relative to those in experiments
with a weak IS. Specifically, in cases S-30 and S-50, an inclined developed roll-up
structure, which is a typical nonlinear flow feature in KHI, emerges in the late stages.
In cases W-50 and S-50, a reflected shock generated when the inclined TS encounters the
upper boundary (RTS) and its interaction with SPP can be observed. The evolution of RTS
is a complex shock-dynamic problem, and quantifying its effect on the interface evolution
is challenging. Therefore, for cases W-50 and S-50, the effective experimental time ends
when SPP is affected by RTS.

4.2. Amplitude evolution
Temporal variations of perturbation amplitude a in dimensionless form for experiments
with a weak IS and a relatively strong IS are shown in figure 7(a,b), respectively, in
which t is normalized as τ=kt

1ȧRMt, with ȧRM (= kt
1A1at

1�Vt
RM) being the amplitude

growth rate predicted by the linear model for RMI, and a is normalized as α = kt
1(a − at

1).
Additionally, the predictions of the linear models for RMI and KHI (LP-RMI and LP-KHI)
are provided as references. The linear model for RMI is the well-known impulsive model
(Richtmyer 1960) which can be written as

aRM(t) = at
1 + kt

1A1at
1�Vt

RMt. (4.1)

The linear model of shock-induced KHI (Kelly 1965; Wang et al. 2021) can be expressed
as

aKH(t) = at
1 cosh(εt), (4.2)

where ε = kt
1�Vt

KH

√
1 − A1

2/2. Note that due to the scaling approach employed, LP-RMI
for different cases are the same in dimensionless form. It can be found that the scaling
approach, which has been proven to apply to RMI on a small-amplitude single-mode
interface (Liu et al. 2018), can also collapse the amplitude evolutions of RM-KHI under
diverse θi and M conditions in the early stages. In addition, the early-time results of all
experimental cases agree reasonably with LP-RMI, indicating that RMI dominates the
early-time amplitude evolution of RM-KHI regardless of θi and M. This phenomenon
arises from the disparity in the evolution laws between RMI and KHI: the amplitude
growth rate (ȧ) induced by RMI increases rapidly from zero to an asymptotic value
(Richtmyer 1960; Velikovich, Herrmann & Abarzhi 2014), whereas KHI-induced ȧ follows
an exponential law rising slowly from zero during the early stages (Kelly 1965; Drazin &
Reid 1981).

To better understand the post-early-stage amplitude evolution, the initial vortex-sheet
strength distribution (IVSD) is calculated by predicting the local deposited vortex-sheet
strength (γ ) using the formula proposed by Samtaney & Zabusky (1994) via shock-polar
analysis:

γ = 2c
Q + 1

(1 − σ−(1/2))(1 + M−1 + 2M−2)(M − 1) sin θd, (4.3)

where c is the sound speed of the fluid in region 1; σ and Q are the density ratio and
average specific heat ratio of the fluids in regions 1 and 2, respectively; θd is the local angle
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Figure 7. (a,b) Experimental amplitude evolutions (Exp) and predictions of linear models for RMI and KHI
(LP-RMI and LP-KHI); (c,d) initial vortex-sheet strength distributions (IVSDs) for different cases.

between IS and II. IVSDs for experiments with a weak IS and a relatively strong IS are
shown in figures 7(c,d), respectively, in which �γmax and �γmin represent the deviations
of the maximum and minimum values of γ from its average value (γKHI), respectively,
and x denotes the coordinate along the direction tangential to the equilibrium position of
SI. Here, γKHI (γRMI = (�γmax + �γmin)/2) represents the strength (mean strength) of
the vortex sheet driving KHI (RMI), and the magnitudes for different cases are listed in
table 1. Interestingly, for a given θi, γKHI /γRMI in the two series of experiments are almost
identical, indicating that γKHI /γRMI is mainly determined by θi and is insensitive to M.
The amplitude evolution in cases W-0 and S-0 exhibits a quasi-linear behaviour, which
aligns with the interface morphologies shown in figures 5(a) and 6(a). For case W-10, the
amplitude evolution is almost identical to that in case W-0. For case S-10, the amplitude
evolution exhibits a comparable quasi-linear behaviour to that in case S-0, and their
discrepancy is negligible until the late stages. Moreover, LP-KHI is limited within the time
period considered. These results indicate that the effect of KHI on amplitude evolution is
weak when γKHI is comparable to γRMI . For cases W-30 and W-50, the amplitude growth
deviates gradually from that in case W-0, and the deviation occurs earlier when θi is
larger. For cases S-30 and S-50, the amplitude growth deviates significantly from that in
case S-0 and exhibits an evident exponential-like behaviour shortly after the initial stages.
In addition, LP-KHI becomes significant rapidly. These observations illustrate that when
γKHI is significantly higher than γRMI , KHI would considerably promote the amplitude
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growth and even alter the amplitude evolution law. In the late stages of cases S-30 and
S-50, ȧ reduces due to nonlinearity, as evidenced by the significant nonlinear features of
the interface shown in figure 6(c,d).

In addition to the small-scale perturbation evolution driven by RM-KHI, the large-scale
perturbation growth of the inclined-interface RMI is also of significance for understanding
the interface evolution. In the present experiments, due to the spatial constraints of
the observation windows, the upper and lower boundaries of the flow field are not
included within the observation region, and the large-scale perturbation evolution cannot
be obtained. Therefore, the large-scale perturbation growth is discussed via numerical
simulations, as presented in Appendix A.

4.3. Model evaluation

4.3.1. Linear model
In the series of experiments with a weak IS, k0a0 satisfies the small-amplitude criterion
and a sufficient amount of experimental data is obtained within a sufficiently small τ .
Therefore, these experiments are suitable for validating the linear model of RM-KHI. The
linear model proposed by Mikaelian (1994), i.e. the M-L model, can be written as

aML(t) = at
1

[
cosh(εt) + kt

1A1�Vt
RM

ε
sinh(εt)

]
. (4.4)

It is worth mentioning again that the M-L model addresses the linear regime and is not
expected to be valid when nonlinearity becomes significant. Therefore, to examine the
M-L model, it is essential to know when RM-KHI enters the nonlinear evolution phase.
It is very challenging to determine when the linear-to-nonlinear transition occurs from the
amplitude evolution because RMI and KHI, which have significantly different amplitude
evolution patterns, exist simultaneously. Qualitatively, in RMI, when the interface grows
asymmetrically with respect to its equilibrium position (as shown in figure 8a), i.e. the
amplitude growths of the spike and bubble exhibit a certain difference, the interface
evolution is considered to enter the nonlinear regime (Collins & Jacobs 2002; Niederhaus
& Jacobs 2003; Liu et al. 2018). In KHI, when the interface becomes asymmetric with
respect to its crest or trough (as shown in figure 8b), with bubble flattening and spike
thinning, the interface evolution is considered to be within the nonlinear regime (Pullin
1982; Wang et al. 2009). According to previous works on KHI (Rangel & Sirignano 1988,
1991) and RMI (Niederhaus & Jacobs 2003; Vandenboomgaerde et al. 2014), the interface
perturbation is smaller in the presence of significant nonlinearity in KHI compared with
that in RMI. In other words, in RM-KHI, the nonlinear interface feature caused by KHI
is likely to occur earlier than that caused by RMI. Therefore, it is reasonable to determine
the linear-to-nonlinear transition of RM-KHI using the qualitative criterion of KHI (i.e.
the interface becomes asymmetric with respect to its crest or trough).

The comparison between the amplitude evolutions obtained from experiments with a
weak IS and predicted by the M-L model is illustrated in figure 9(a). For case W-0 in
which only RMI exists initially, the M-L model degenerates into the impulsive model.
A good agreement between the experimental and theoretical results is reached since the
interface evolution is still within the linear stage when τ < 0.3 (Niederhaus & Jacobs
2003; Liu et al. 2018). For case W-10, the M-L model predicts the amplitude evolution
well throughout the effective experimental time. In contrast, the M-L model overestimates
the results of cases W-30 and W-50 in the late stages. For cases W-30 and W-50, the
interface contour corresponding to the experimental data point where the M-L model
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Figure 8. Sketches of the qualitative feature of an interface as it enters the nonlinear evolution period:
(a) RMI; (b) KHI.
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Figure 9. (a) Comparison between amplitude evolutions obtained from experiments with a weak IS and
predicted by the M-L model (ML); (b) experimental interface contour corresponding to the last data point
or the data point where the M-L model significantly overestimates the experimental result.

overestimates the experimental amplitude by over 10 % is extracted from the schlieren
image and shown in figure 9(b), where y denotes the coordinate along the direction
normal to the equilibrium position of SI, and the results for different cases are shifted to
different y coordinates for better comparison. The interface morphology corresponding to
the last effective experimental data point in case W-10 is also provided for comparison.
A parameter β (= 2LCT/λ1) is introduced to characterize the degree of the interface
asymmetry with respect to the crest or trough. As shown in figure 9(b), LCT represents
the distance between the highest point near the crest and the lowest point in the vicinity
of the trough along the interface equilibrium position. Note that if β > 0.9 (β < 0.8), it
indicates that the interface is almost symmetrical (evidently asymmetrical) with respect to
its crest or trough. Here, β of the interface contours corresponding to cases W-10, W-30
and W-50 shown in figure 9(b) are 0.94 ± 0.04, 0.79 ± 0.06 and 0.73 ± 0.09, respectively,
indicating that the M-L model is accurate within the linear regime and loses accuracy after
the interface evolution enters the nonlinear stage. To the authors’ knowledge, this is the
first direct validation of the M-L model.

4.3.2. Vortex model
Up to now, RM-KHI still lacks an analytical nonlinear model due to the complexity of
its physical process and the inadequacy of physical understanding. In this study, the A-V
model (Sohn et al. 2010), which considers the evolution of SI as a pure vortex dynamics
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process, is examined for its capability in describing the overall linear to nonlinear evolution
of RM-KHI via the series of experiments with a relatively strong IS. The A-V model
has been applied in theoretical studies on KHI (Sohn et al. 2010) and RM-KHI (Pellone
et al. 2021), which, in principle, is capable of forecasting the interface evolution to a
strongly nonlinear stage at which the roll-up structure emerges. The steps employed in
the present study to apply the A-V model to RM-KHI are outlined as follows. First, IVSD
is determined using the method described in § 4.2. Then, the evolution of γ is solved using
the equation derived by Tryggvason (1988):

dγ

dt
= 2A1

dU
dt

· s + φ + A1

4
∂γ 2

∂s
− (1 + φA1)γ

∂U
∂s

· s, (4.5)

where φ is an artificial weighting parameter; s is the unit tangent vector at SI; U = (ui −
u j)/2, with ui and u j being the velocity vectors of the fluids in regions 4 and 5 at SI,
respectively. Subsequently, the vortex-sheet velocity, as well as the interface morphology,
are given by the ‘δ equations’ (Krasny 1986) as

u = 1
2λt

1

∫ λt
1

0

sinh(kt
1y − kt

1y′)
cosh(kt

1y − kt
1y′) − cos(kt

1x − kt
1x′) + δ2 γ ′ ds′, (4.6)

v = − 1
2λt

1

∫ λt
1

0

sin(kt
1x − kt

1x′)
cosh(kt

1y − kt
1y′) − cos(kt

1x − kt
1x′) + δ2 γ ′ ds′, (4.7)

where u and v are the velocity components in the x and y directions, respectively;
δ is a desingularization parameter. When numerically solving the system of equations
to obtain the temporal evolutions of interface morphology and perturbation amplitude, all
variables are operated in the dimensionless form (Sohn et al. 2010; Pellone et al. 2021).
The coordinates x and y are scaled as x/λt

1 and y/λt
1, respectively, while the time t and γ

are normalized as γmaxt/λt
1 and γ /γmax, respectively, in which γmax is the maximum value

of IVSD calculated by (4.3). The vortex sheet is discretized into 400 Lagrangian points,
and the dimensionless time step is set to 0.0002. To address simulation failure caused by
significant non-uniformity in the distribution of point vortices, a point vortex insertion
method is applied when the arclength between two point vortices exceeds a threshold of
0.0125 (Sohn et al. 2010). Here, δ and φ are respectively set as 0.15 and −A2

1 (Kerr 1988;
Matsuoka & Nishihara 2006; Sohn et al. 2010) to ensure prediction accuracy and sufficient
effective simulation time.

The comparison between the interface contours extracted from experimental schlieren
photographs and predicted by the A-V model is shown in figure 10, in which the
results corresponding to different moments are shifted to different y coordinates for clear
presentation. The A-V model can reasonably predict the overall evolution of the interface
morphology for all cases, even the interface has entered the strongly nonlinear evolution
period. The discrepancies in the details of the roll-up structure between experimental and
theoretical results can be partially attributed to the limited resolution and sensitivity of
the high-speed schlieren photography compared with advanced diagnostic methods such
as PLIF (Collins & Jacobs 2002; Jacobs & Krivets 2005) and simultaneous PLIF/PIV
techniques (Mohaghar et al. 2017, 2019). The comparison between the amplitude
evolutions obtained from experiments and predicted by the A-V model is shown in
figure 11. The predictions of the M-L model are also provided. For cases with θi > 0◦,
the deviation of the experimental data from the prediction of the M-L model is significant
at the late stages, indicating that the interface evolution has entered the nonlinear stage.
A good agreement between the experimental data and predictions of the A-V model is
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Figure 10. Interface contours extracted from experiments with a relatively strong IS (solid lines) and
predicted by the A-V model (dashed lines): (a) S-0; (b) S-10; (c) S-30; and (d) S-50.
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Figure 11. Comparison between amplitude evolutions obtained from experiments with a relatively strong IS
and predicted by the M-L model (ML) and A-V model (AV).

reached, indicating that the A-V model is capable of predicting the amplitude evolution
from the linear to nonlinear stages. Overall, the A-V model describes the linear to nonlinear
evolution of RM-KHI well in both qualitative and quantitative terms, indicating that the
vortex dynamics is the dominant physical mechanism of RM-KHI.
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5. Conclusions

The coupling of Richtmyer–Meshkov instability (RMI) and Kelvin–Helmholtz instability
(KHI), referred to as RM-KHI in the present work, is finely studied in a shock-tube
facility by accelerating an inclined single-mode air–SF6 interface using a planar shock
wave. We aim to explore the instability behaviour under different angles θi (angle between
incident shock wave and equilibrium position of the initial interface), and to evaluate the
existing theories. The soap-film and super-hydrophobic-oleophobic surface techniques are
employed to create well-defined desirable inclined initial interfaces. Since RM-KHI enters
the nonlinear stage rapidly, to clearly capture the linear evolution of RM-KHI, a series
of experiments in which a weak incident shock is employed to slow down the interface
evolution is conducted. In addition, a series of experiments with a relatively strong incident
shock is performed to obtain the overall linear to nonlinear evolution of RM-KHI.

The nonlinear flow features manifest earlier and develop faster when θi is larger and/or
incident shock is stronger. In addition, the interface in RM-KHI with θi > 0◦ tilts gradually
with respect to its crest or trough under the effect of KHI. Specifically, an inclined
developed roll-up structure, which is a typical nonlinear flow feature in KHI, emerges
in the late stages of experiments with a relatively strong incident shock and large θi. RMI
dominates the amplitude evolution in the early stages regardless of θi and shock intensity,
which arises from the discrepancy in the evolution laws between RMI and KHI. KHI
promotes the post-early-stage amplitude growth and its contribution is related positively
to θi. An evident exponential-like amplitude evolution behaviour emerges in RM-KHI with
a relatively strong incident shock and large θi. By determining the linear-to-nonlinear
transition of RM-KHI from the degree of the interface asymmetry with respect to the
crest or trough, the linear model proposed by Mikaelian (1994) (M-L model) is proven
to be valid in describing the linear amplitude evolution of RM-KHI. Encouragingly,
the adaptive vortex model (A-V model) (Sohn et al. 2010) is capable of forecasting
the large-scale interface structures and amplitude evolution from the linear stage to the
strongly nonlinear stage, indicating that the vortex dynamics is the dominant physical
mechanism of RM-KHI. To the authors’ knowledge, this is the first direct validation of
the M-L model and the first application of the A-V model to RM-KHI on a single-mode
light–heavy interface accelerated obliquely by a shock wave.

In the following work, more shock-tube experiments will be conducted considering
different initial conditions, and the evolution law of a heavy–light perturbed interface
accelerated obliquely by a shock wave will be explored. Furthermore, for shock-driven
interface instability, the schlieren technique is capable of capturing the evolution of the
interface and waves. However, it is still challenging to obtain flow information such as
the global velocity and vorticity fields through the schlieren results. Therefore, more
advanced measurement techniques, such as the PIV and PLIF techniques, will be applied
to experiments on shock-driven interface instability, hoping that our experiments can be
more useful to numerical developers.
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from experiments and simulations.
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Appendix A. Large-scale perturbation growth of inclined-interface RMI

To obtain the large-scale perturbation growth of inclined-interface RMI from the linear to
nonlinear stages of RM-KHI, cases with a relatively strong IS are simulated. The numerical
solver HOWD (Ding et al. 2017), which has been well validated in shock–interface
interactions (Ding et al. 2017; Feng et al. 2021; Wang et al. 2023), is adopted. HOWD
combines the high-order weighted essentially non-oscillatory construction (Jiang & Shu
1996) and the double-flux algorithm (Abgrall & Karni 2001) to capture material interfaces
and wave patterns with high resolution and high-order accuracy. The schematic of the
computational domain is shown in figure 12(a), in which xe and ye denote the coordinates
along the directions tangential and normal to the propagation direction of IS, respectively.
For examining the mesh convergence, case S-30 is simulated using different uniform
meshes with sizes of 0.8, 0.4, 0.2 and 0.1 mm, respectively. The density profiles along
the symmetry line of the computational domain at 329 μs after IS interacts with SPP,
extracted from simulations using different meshes, are plotted in figure 12(b), in which ρ0
is the density of the pre-shock air. It can be found that the density profiles converge as the
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Figure 13. Schlieren images obtained from the numerical simulations, where the solid blue lines represent the
interface contours extracted from the experimental schlieren pictures: (a) S-0; (b) S-10; (c) S-30; and (d) S-50.

mesh size reduces. To save the computational time as much as possible on the premise of
ensuring accuracy, the mesh with the size of 0.2 mm is adopted.

Schlieren images obtained from the numerical simulations are shown in figure 13, in
which the interface profiles extracted from the experimental schlieren images, denoted
by solid blue lines, are superimposed for comparison. It can be observed that the
numerical simulation well reproduces the experimental interface morphologies. Then, the
temporal variations of the small-scale perturbation amplitude obtained from simulations
and experiments are compared, as shown in figure 12(c), and a good agreement is
reached between them. This also illustrates that the constraint strips adopted in the present
experiments do not significantly affect the interface evolution.

Subsequently, the large-scale perturbation growth of the inclined-interface RMI is
discussed. The definitions of the amplitude and wavelength of the large-scale perturbation
(a∗ and λ∗) (McFarland et al. 2011, 2013) are illustrated in figure 12(a), which are different
from those of the small-scale perturbation of RM-KHI. As shown in figure 13, after IS
interacts with II, a∗ increases gradually. In cases S-30 and S-50, the inclined TS and RS
will interact with the wall boundaries, producing complex wall-reflected waves. These
waves would interact with the interface, introducing the secondary compression effect
(McFarland et al. 2011, 2013; Luo et al. 2016). For the inclined-interface RMI, the M-L
model degenerates into the impulsive model and can be rewritten as

ȧML = k∗a∗
1A1�Vt

RM, (A1)

where k∗ (= 2π/λ∗) is the wavenumber of the large-scale perturbation and a∗
1 is a∗ at

t = t∗1, with t∗1 being the moment when IS passes completely through II. The temporal
variations of a∗ in dimensionless form are shown in figure 14, in which t and a∗ are
normalized as τ ∗ = k∗ȧML(t − t∗1) and α∗ = k∗(a∗ − a∗

1), respectively. The prediction
of the M-L model is also provided for comparison. It can be found that a∗ first grows
linearly and then its growth rate decreases gradually as nonlinearity becomes significant,

996 A37-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

71
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.710


Coupled Richtmyer–Meshkov and Kelvin–Helmholtz instability

0.8

S-10

M
-L

 m
odel

S-30

S-50

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.5 1.0 1.5 2.0

α∗

τ∗

Figure 14. Temporal variations of the large-scale perturbation amplitude a∗ in dimensionless form.

indicating that the evolution law of the inclined-interface RMI is significantly different
from that of RM-KHI. Moreover, the M-L model exhibits poor performance under all
considered conditions. Specifically, the M-L model underestimates the linear growth rate
of a∗ in case S-10. Liang et al. (2019) pointed out that all the high-order modes of the
‘V’-shaped interface have the same sign as the fundamental one and they would promote
the perturbation growth. Therefore, the failure of the M-L model in case S-10 may be
attributed to the non-single-mode shape effect of the inclined interface. For cases S-30
and S-50, the M-L model overestimates the linear growth rate of a∗, which may be mainly
attributed to the significant high-amplitude effect when θi is large (Rikanati et al. 2003;
Sadot et al. 2003; Luo et al. 2016). In addition, the effect of the small-scale perturbation
on the large-scale perturbation evolution may also be a potential reason of the failure of
the M-L model (Mohaghar et al. 2017, 2019).
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