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Abstract. For a path connected space X , the homology algebra H∗(QX ; Z/2) is a
polynomial algebra over certain generators QI x. We reinterpret a technical observation,
of Curtis and Wellington, on the action of the Steenrod algebra A on the � algebra in
our terms. We then introduce a partial order on each grading of H∗QX which allows us
to separate terms in a useful way when computing the action of dual Steenrod operations
Sqi∗ on H∗(QX ; Z/2). We use these to completely characterise the A-annihilated genera-
tors of this polynomial algebra. We then propose a construction for sequences I so that
QI x is A-annihilated. As an application, we offer some results on the form of potential
spherical classes in H∗QX upon some stability condition under homology suspension. Our
computations provide new numerical conditions in the context of hit problem.

1991 Mathematics Subject Classification. Primary 55S10, 55S12, 55P47

1. Introduction and statement of results.

1.1. Motivation and programme. The aim of this section is to justify the case for
studying the action of Aop on H̃∗QX . We work at the prime p = 2; see Subsection 1.2 for
the relevant notation and definitions.

The hit problem. The Steenrod algebra A and its dual A∗ are very important objects
in algebraic topology, both from structural point of view as an important Hopf algebra and
from the point of view of applications. It is the second point of view which we deal with.
The algebra A acts on the Z/2-cohomology of any space which allows to codify important
information about the stable structure of CW-complexes. This is understood in terms of
Adams spectral sequence ExtA(H̃∗Y , Z/2) which converges to the 2-component of π s∗Y
[15, Theorem 2.1.1]. From this point of view, and in order to construct a minimal projection
resolution of H̃∗Y over A, having a description of H̃∗Y as a module over the Steenrod
algebra, or finding a basis for the Z/2-vector space Z/2 ⊗A H̃∗Y becomes very important.
This latter problem leads to the hit problem of Peterson which is mainly concerned with
the case of Y = RP×k where RP is the infinite dimensional projective space, and (−)×k

takes a space to its k-fold product. The problem in the case of Y = BO(k) is known as the
symmetric hit problem (see [19, 20] for a very recent treatment of the subject).

The dual hit problem. Sometimes it is more convenient to study the hit problem in
homological settings. The equivalent problem is that given a space Y , we determine the
submodule of A-annihilated classes in H̃∗Y (see Definition 1.1). This dual problem has
already captured interest (see, e.g., [3, 7, 16]). One of the main motivations and justifi-
cations for the present work was formed in Manchester after talks by Grant Walker and
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Reg Wood on the hit problem and helpful conversations with Grant Walker; I was hopeful
that the action of the Steenrod algebra on the Dyer–Lashof algebra could give interesting
information on the hit problem. In a very vague sense, while working with H∗QX when
X is an infinite loop space such as X = RP×k or X = BO, it seemed that the Dyer–Lashof
algebra is a kind of ‘orthogonal’ to H̃∗X . In this approach, while some numerical condi-
tions as expressed in Theorem 1.2 allow to identify A-annihilated classes QI x in H∗QX , the
structure map of X [14], say θX : QX → X , allows to send these to A-annihilated classes in
H∗X . We have applied this work to obtain new examples of A-annihilated classes in H∗BO
[24].

Spherical classes and bordism of immersions. For a space Y , determining the image
of the Hurewicz homomorphism h : π∗Y → H∗Y is one of the important and often difficult
problems in homotopy theory. It is immediate from the definition of spherical class, i.e.,
a class belong to the image of h, that a spherical class has to be A-annihilated. If Y =
QX = colim �i�iX for some space X , then the adjointness between �∞ and �∞ yields
π∗QX � π s∗X and determining the image of h : π∗QX → H∗QX even for the case of X = Sn

with n � 0 is still an open problem (see, e.g., [5, 10, 11, 22]). The interest in computing
spherical classes in H∗QX is also justified by its applications in the bordism theory of
immersions [1] (see also [2, 9]); spherical classes in Hn+kQT(ξ) allow to determine normal
Stiefel–Whitney numbers, and consequently bordism classes, of codimension k immersion
into Rn+k with a ξ -structure on their normal bundle; here ξ is a k-dimensional vector
bundle and T(−) is the Thomification functor.

Programme. This paper provides the step which allows to identify A-annihilated
monomials QI x in H∗QX . The main observation is to provide necessary and sufficient con-
ditions for QI x ∈ H∗QX to be A-annihilated which extends the existing results, which prove
results only in one direction (see [5, 22]), far beyond the case of X = Sn and generalises it
to every path connected space X (see Theorem 1.2 below).

1.2. Statement of results. The focus of this paper is on the action of Aop on Z/2-
homology of infinite loop spaces of the form QX = colim �i�iX . Consequently, we work
at the prime p = 2 and write H∗ for H∗(−; Z/2) (likewise H∗ for H∗(−; Z/2)); we write
H̃∗ for the reduced Z/2-homology and likewise H̃∗ for the reduced Z/2-cohomology. We
use A for the mod 2 Steenrod algebra and Aop for its opposite algebra, and R for the Dyer–
Lashof algebra (the algebra of Kudo–Araki operations and their iterations). The topological
spaces have base points and are localised at 2 if necessary. We write X+ for X with an added
disjoint base point.

Aop-module structures. For a given space Y , the Steenrod operations Sqi : H∗Y →
H∗+iY induce an action of the mod 2 Steenrod algebra on H∗Y which furnishes H∗Y
with the structure of an A-module. The duality of H∗Y and H∗Y over Z/2, provided by
the Universal Coefficient Theorem, allows to consider dual operations Sqi∗ : H∗Y → H∗−iY
which could be evaluated using Kronecker pairing. This induces a right A-action on H∗Y
or equivalently a left action of Aop on H∗Y which turns H∗Y into a left Aop-module.

DEFINITION 1.1. An element y ∈ H∗Y is called A-annihilated if and only if Sqi∗y = 0
for all i > 0.

For a given space X , let QX = colim �i�iX be the infinite loop space associated
with the suspension spectrum �∞X , and Q0X its base point component corresponding
to 0 ∈ π0QX � π s

0X ; in particular if X is path connected, then Q0X = QX . If X is path
connected, then H∗QX is a polynomial algebra over generators of the form QI x where
x ∈ H̃∗X is a homogeneous basis element and I = (i1, . . . , is) ranges over certain sequence
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of positive integers, called admissible sequences which includes the empty sequence
[4, Part I] (see Section 3 for precise definitions). For a nonempty sequence I = (i1, . . . , is)
define its excess by excess(I) = i1 − (i2 + · · · + is) and let excess(QI x) = excess(I) −
dim x. Also define length of I by l(I) = s. For the empty sequence φ we set excess(φ) =
+∞ and l(φ) = 0. Define ρ : N −→ N ∪ {0} by ρ(n) = min{i : ni = 0} for n = ∑∞

i=0 ni2i

with ni ∈ {0, 1}. As our main observation, we give a complete characterisation of those
classes QI x which are A-annihilated, which reads as follows.

THEOREM 1.2. Suppose X is path connected. Let QI x be a generator of H∗QX with
I = (i1, . . . , is). The class QI x is A-annihilated if and only if (1) x ∈ H̃∗X is A-annihilated,
(2) excess(QI x) < 2ρ(i1) and (3) 0 � 2ij+1 − ij < 2ρ(ij+1), 1 � j � s − 1. If s = 1, then the
first two conditions determine all A-annihilated classes of the form Qix of positive excess.

Theorem 1.2 generalises work of Curtis and Wellington on iterated loop spaces of
spheres to iterated loop spaces of any path connected space.

REMARK 1.3. As we have mentioned earlier, Theorem 1.2 has applications to the
symmetric and unsymmetric hit problems. We have showed in [24, Theorem 1.1] that if
I = (i1, . . . , is) is a sequence satisfying conditions of Theorem 1.2, then we obtain an A-
annihilated class in H∗(Z × BO) whose leading term is given by

e0eexcess0 e2
excess1

· · · e2s−1

excesss−1
.

Here, for I as above we have excessj = ij+1 − (ij+2 + · · · + is) for 0 � j < s. Moreover, this
class pulls back to an A-annihilated class in H∗BO(2s − 1). The technical outcome is that
we obtain a new family of A-annihilated classes of elements in H∗(Z × BO) as well as
H∗BO which depends on only three combinatorial conditions. Moreover, these classes can
be pushed forward to H∗RP2s−1 using transfer map [24, Theorem 1.4].

Next, recall that if X is path connected, then H∗Q0(X+) is a polynomial algebra
over certain generators QI x ∗ [−2l(I)] where x ∈ H̃∗X is an element of an additive basis,
∗ denotes Pontrjagin product in H∗Q(X+) and [−2l(I)] ∈ H0Q(X+) [4, Part I, Lemma 4.10].
The above theorem has the following corollary.

COROLLARY 1.4. Let QI x ∗ [−2l(I)] be a monomial generator of H∗Q0(X+) with I =
(i1, . . . , is). This class is A-annihilated if and only if the following conditions are satisfied:
(1) x ∈ H̃∗X is A-annihilated; (2) excess(QI x) < 2ρ(i1) and (3) 0 � 2ij+1 − ij < 2ρ(ij+1), 1 �
j � s − 1. If s = 1, then the first two conditions determine all A-annihilated classes of the
form Qix ∗ [−2] of positive excess.

The proof is very short, so we include it here.

Proof. If X is path connected, then π0Q(X+) � Z. We may label the path components
of QX accordingly, writing QmX for the path component of Q(X+) corresponding to m ∈
π0Q(X+), i.e., Qm(X+) is the space of all elements S0 → X+ which induce multiplication
by m on H0(−; Z). This induces certain translation maps in homology ∗[m] : H∗Qn(X+) →
H∗Qn+m(X+) [4, Part I]. Using these translation maps, H∗Q0(X+) is a polynomial algebra
and has generators of the form QI x ∗ [−2l(I)] with x being a homogeneous basis element
of H̃∗X+ � H∗X [4, Part I, Lemma 4.10] (see also [6, Section 3.4] for a description of
H∗Q0(X+)). The claim now follows from Cartan formula for Sqi∗ operations (see Section 3
below) and Theorem 1.2.
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It is possible to use Theorem 1.2 to derive a construction for sequence I considered
in the theorem. The following provides an example of such construction. For this purpose,
our method below provides a method to construct sequences I = (i1, . . . , is) which satisfy
condition (3) of Theorem 1.2.

THEOREM 1.5. Let s > 1 and let (ρ1, . . . , ρs) be a sequence of integers 0 � ρ1 � ρ2 �
· · ·� ρs. Let Ns be a nonnegative integer, and inductively, having chosen Nj+1, choose Nj,
for 1 � j < s, such that

2ρj+1−ρj+1Nj+1 + 2ρj+1−ρj−1 � Nj < 2ρj+1−ρj+1Nj+1 + 2ρj+1−ρj .

For 1 � j � s, let ij = 2ρj+1Nj + 2ρj − 1. Then I = (i1, . . . , is) satisfies condition (3) of
Theorem 1.2, i.e.,

0 � 2ij+1 − ij < 2ρ(ij+1),

for all 1 � j � s − 1.

The above construction is possible for all s > 1. If we are given a path connected space
X which we know the A-annihilated elements of H̃∗X , then in order to construct an A-
annihilated generator QI x with l(I) = s > 1, one first has to use the above construction to
construct all possible sequences I , and then check conditions (1) and (3). On the other
hand, we may consider condition (2) of Theorem 1.2 as a condition which tells us when to
terminate the process. The above theorem to provide some algorithms to find A-annihilated
monomials QI x which is under investigation [8].

On similar previous results. Our motivation for studying A-annihilated classes comes
from the problem of determining spherical classes in H∗QX . A spherical class in particular
should be A-annihilated and primitive [2, Lemma 2.5]. Hence, determining the submodule
of A-annihilated classes in H∗QX is helpful in this direction. The latter problem has been
studied by means of unstable Adams spectral sequences (ASS), most notably by Curtis
[5] and Wellington [22] (see also [21]); in this approach, the edge homomorphism on the
0-line of a suitable unstable ASS was meant to determine the Hurewicz homomorphism
π∗QS0 → H∗QS0 [5, Section 4]. By certain computations in the �-algebra, conditions of
our Theorem 1.2 have first appeared in [5, Lemma 6.2 and Theorem 6.3] for loop spaces
on spheres �iSi+n. The result was also generated to odd primes by Wellington as well [21,
Theorem 5.6]. We note that we do not claim to provide a basis for the submodule of A-
annihilated classes since as noted by Wellington there are counter examples of classes of
the form say x + y where the sum is A-annihilated but neither of the terms are [22, Section
11]. Finally, we note that taking Wellington’s counter example into account, the work of
Wellington and Curtis seems to offer a proof of our Theorem 1.2 only in one direction by
showing that having conditions of Theorem 1.2 we have annihilation under the action of A.
We must also mention the work of Snaith and Tornehave [17] (see also [18, Chapter 2 and
Lemma 1.5]) where a so-called H(j) condition is introduced: if QI x satisfies H( j), then it
is annihilated by Sqt for all t < 2j+1. The conditions therein do not seem so explicit as ours,
and we believe our description is more applicable. Here, we include a full proof which we
believe to be an economic one compared to what we offered in [26, Theorem 2]; our proof
in the reverse direction partly depends on the partial order that we have defined which could
be of independent interest. We mostly rely on the computations of Curtis and Wellington,
and our main computational tool, namely Lemma 2.1, is derived using their computations
and we do not provide a direct proof which we believe would be quite a mess, and not as
neat as one would hope for. Finally, we note that studying the submodule of A-annihilated
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classes, in cohomological setting, is equivalent to the famous hit problem of Wood [23],
and our computations have direct applications to the hit problem for H∗QX providing new
numerical conditions in the context of hit problem; we refer the reader to [24] for more
applications of these results.

2. The action of the A on R. The aim of this section is to record a proof of the fol-
lowing lemma; the lemma has to be well known to Curtis [5] and Wellington [22], although
not expressed in terms we do, and the proof we offer is built upon their observations.

LEMMA 2.1. Suppose I = (i1, . . . , is) is an admissible sequence such that 2ij+1 − ij <
2ρ(ij+1) for all 1 � j � s − 1. Let N(Sqa∗, QI) = ∑

Kadmissible QK. Then

excess(K)� excess(I) − 2ρ(i1).

Moreover, ρ(i1)� ρ(i2)� · · ·� ρ(is).

Here, N(Sqa∗, QI) refer to Nishida relations for the action of Aop on R which is
described below. The proof that we offer follows from the interaction between the dif-
ferential of the � algebra and the action of Aop on �. For this purpose, we include a brief
description of these algebras and recall the desired properties. We assume the reader has a
basic knowledge on the Steenrod algebra A. We mostly follow Wellington [22, Chapter 7]
for the material on the subject (see also [5]).

The � and Dyer–Lashof algebras. Let 
 be the free-graded associated algebra over
Z/2 generated with generators λi in grading i � 0. For a > 2b, let

R�(a, b) = λbλa +
∑

a+b�3t

(
t − b − 1

2t − a

)
λtλa+b−t. (2.1)

We define the � algebra by � := 
/〈R�(a, b) : a > 2b〉. We keep using λi for the image of
λi in �. Hence, whenever a > 2b we have the relations

λbλa =
∑

a+b�3t

(
t − b − 1

2t − a

)
λtλa+b−t

in � which we refer to them as the Adem relations for the � algebra. For a sequence
of nonnegative integers I = (i1, . . . , is), we write λI for λis · · · λi1 . We shall refer to I as
admissible if ij � 2ij+1 for all 1 � j � s − 1. We shall refer to l(I) = s and excess(I) = i1 −
(i2 + · · · + is) as length and excess of I respectively. The Dyer–Lashof algebra R is defined
by

R := �/〈λI : excess(I) < 0〉.
The elements of R are known as the Kudo–Araki or Kudo–Araki–Dyer–Lashof operations.
We write Qi1 · · · Qis for the image of λis · · · λi1 in R under the natural projection � → R.
We set excess(QI) = excess(I) and l(QI) = l(I). In this algebra, whenever a > 2b, we have
Adem relations as

QaQb =
∑

a+b�3t

(
t − b − 1

2t − a

)
Qa+b−tQt. (2.2)

We shall refer to QI as admissible whenever I = (i1, . . . , is) is admissible. If I is not
admissible, then the Adem relations (2.2) allow to write QI as a sum of admissible terms.

https://doi.org/10.1017/S0017089519000090 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089519000090


286 HADI ZARE

The action of the Steenrod algebra. We follow Wellington [22, Chapter 7], and begin
by formally introducing the Nishida relations which allows to define a right A-module
structure on �, hence a left Aop-module structure on �. Formally, define the Nishida
relations for the � algebra by

λbSqa =
∑
t�0

(
b − a

a − 2t

)
Sqtλb−a+r. (2.3)

We may use Nishida relations to define a right action N� : � ⊗ A → � by

N�(λi, Sq j) := (i−j
j

)
λi−j,

N�(λI , Sqa) := ∑ (i1−a
a−2t

)
λi1−a+tN�(λI1 , Sqt),

where I = (i1, I1). That is, if iterated application of Nishida relation above yields λI Sqa∗ =∑
SqaK

λK with aK ∈ Z�0, then

N�(λI , Sqa) =
∑
aK=0

λK .

In an obvious manner, we may define a left Aop-module structure on � which by abuse of
notion we denote by N� : Aop ⊗ � → �. On the other hand, � admits a boundary map ∂

which on the generators is defined by

∂λi =
∑
j�1

(
i − j

j

)
λi−jλj−1.

Note that by the above definition we have

∂λi =
∑
j�1

N�(λi, Sq j)λj−1.

This appears to be true in general if λi is replaced by I with l(I) > 1. Reformulating [22,
Theorem 7.11(i)] in terms of the action N� we have the following.

THEOREM 2.2. The differential ∂ of the � algebra is related to the Steenrod
operations when excess(I)� 0 and I is admissible by

∂λI =
∑
j�1

N�(λI , Sq j)λj−1.

Next, we describe a left Aop-module structure for R. For the Kudo–Araki operations,
formally set the Nishida relations to be [4, Part I, Theorem 1.1]

Sqa
∗Qb =

∑
t�0

(
b − a

a − 2t

)
Qb−a+rSqt

∗. (2.4)
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According to Madsen [13, Equation (3.2)], we may use Nishida relations to define a left
action N : Aop ⊗ R −→ R by

N(Sqa
∗, Qb) =

(
b − a

a

)
Qb−a, (2.5)

N(Sqa
∗, QI) =

∑ (
i1 − a

a − 2t

)
Qi1−a+tN(Sqt

∗, QI1), (2.6)

where I = (i1, I1). In other words, if Sqa∗QI = ∑
QKSqaK

∗ with K admissible and aK ∈ Z,
then

N(Sqa
∗, QI) =

∑
aK=0

QK .

If we write q : � → R for the natural projection, and if I is given with excess(I)� 0, then

N(Sqa
∗, QI) = qN�(λI , Sqa).

The second result that we recall from [22, Theorem 7.12] is on the relation between the
differential of the � algebra and the Aop-module structure of R. We state the result in �

bearing in mind that the element λI ∈ � with excess(I)� 0 and I admissible, projects onto
the nontrivial element QI ∈ R.

THEOREM 2.3. Let I be admissible, excess(I)� 0 and suppose that

∂λI =
∑

Kadmissible

αKλK,

where αK ∈ Z/2. Then

N�(λI , Sqj) =
∑

αKλK ′ ,

where K = (K ′, j − 1) and excess(K ′)� 0. In particular, K ′ is admissible.

The final result that we need is the following that we recall from [5, Lemma 6.2] and
[22, Lemma 12.5].

LEMMA 2.4. Let λI be given with excess(I)� 0 such that I = (i1, . . . , is) is an
admissible sequence such that 2ij+1 − ij < 2ρ(ij+1) for all 1 � j � s − 1. Assume

∂λI =
∑

Kadmissible

αKλK

with αK ∈ Z/2. Then for those K = (K ′, k) with excess(K ′)� 0, we have that

excess(K)� excess(I) − 2ρ(i1).

Moreover, ρ(i1)� ρ(i2)� · · ·� ρ(is).

Let us note that in [5] for I = (i1, . . . , is), λI is written for λi1 · · · λis , whereas we write
λI for λis · · · λi1 . The part ρ(i1)� ρ(i2)� · · ·� ρ(is) is also implicit in Curtis’s proof.
These considerations are helpful while comparing the above lemma to [5, Lemma 6.2].
Lemma 2.1 follows immediately, but we include a short proof.
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Proof of Lemma 2.1. From the equality N(Sqa∗, QI) = qN�(λI , Sqa) we deduce that if
N�(λI , Sqa) = ∑

Kadmissible λK , then

N(Sqa
∗, QI) =

∑
Kadmissible,excess(K)>0

λK .

Now, the lemma follows from Theorem 2.3 and Lemma 2.4.

3. The Aop-module H∗QX . The space QX is an infinite loop space, so its homology
is a commutative algebra. If X is path connected, then as an algebra it is described as [4,
Part I, Lemma 4.10]

H∗QX � Z/2[QI xμ : I is admissible , excess(I) > dim(xμ)],
where {xμ} is an additive basis for H̃∗X and I = (i1, . . . , is) is admissible if ij � 2ij+1 for all
0 < j < s − 1; the empty sequence I = φ is declared to be admissible with excess(φ) = +∞
and Qφx = x.

Moreover, the infinite loop structure of QX furnishes H∗QX with an R-module struc-
ture which is described by the following requirements: For any i � 0, the Kudo–Araki
operation Qi : H∗QX → H∗+iQX is an additive homomorphism so that
(1) Qiξ = ξ 2, if i = dim ξ ;
(2) Qiξ = 0, if i < dim ξ for any ξ ∈ H∗QX ;
(3) Qi satisfies Cartan formula, so that Qi(xy) = ∑

i+j=k(Q
jx)(Qky).

Condition (2) is to be interpreted that QI xμ = 0, if excess(I) < dim xμ. Moreover, the
action R ⊗ H∗QX → H∗QX sends (Qi, QI xμ) to Q(i,I)xμ modulo the above requirements
and the Adem relations for the Kudo–Araki operations [4, Part I, Theorem 1.1]. These
together describe the R-module structure of H∗QX . The action of Aop on H∗QX is described
as follows. On the generators QI xμ ∈ H∗QX , the evaluation of Sqt∗QI xμ is done by (iterated)
application of Nishida relations (see Nishida relations for the Dyer–Lashof algebra (2.4))
together with the action of A on H̃∗X . The action on decomposable elements of H∗QX is
determined by Nishida relations together with Cartan formula [22, Chapter 5]

Sqr
∗(ξη) =

∑
(Sqr−i

∗ ξ)(Sqi
∗η).

Noting that Sqt∗ is a group homomorphism, the above relations completely determine the
action of Aop on H∗QX .

4. Ordering monomials. Let X be path connected. Since H∗QX is a polynomial
algebra, then it is more convenient to fix some partial order on the monomial generators of
this algebra. More precisely, we define a partial order on HiQX for a given i > 0 as follows.
For an additive basis {xμ} of H̃∗X , given generators QI xμ and QJ xμ′ , define QI xμ > QJ xμ′

if and only if excess(QI xμ) > excess(Q J xμ′). Moreover, if excess(QI xμ) = excess(QKxν)

define QI xμ > QKxν if l(I) < l(K). Finally, if excess(QI xμ) = excess(QKxν) and l(I) =
l(K), then writing the operations in lower indices, say QI xμ = QExμ and QKxν = QFxν ,
we define QI xμ > QKxν if the first nonzero entry of E − F from left is positive. Here,
the lower indexed operations Qi is defined by Qix = Qi+dim xx and QE = Qe1 · · · Qes for
E = (e1, . . . , es). We refer to this order, as the total-partial order on H∗QX .

REMARK 4.1. It may seem for terms QI xμ as l(I) increases the excess will decrease.
This does not hold in general, however. As an example, for Q15Q13g1, Q16Q8Q4g1 ∈

https://doi.org/10.1017/S0017089519000090 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089519000090


A NOTE ON A-ANNIHILATED GENERATORS OF H∗QX 289

H29QS1 we see that the term of shorter length is also of lower excess. One could construct
counter examples for other similar statements to the above.

5. Proof of Theorem 1.2. We break the proof into separate lemmata.

LEMMA 5.1. Let x ∈ H̃∗X be A-annihilated, and I an admissible sequence such that
(1) 0 < excess(QI x) < 2ρ(i1); (2) 2ij+1 − ij < 2ρ(ij+1) for all 1 � j � s − 1. Then QI x is A-
annihilated.

Proof. Let a > 0. Since x is A-annihilated, then

Sqa∗QI x = ∑
QKSqaK

∗ x = ∑
aK=0 QKx,

where K is admissible. But, notice that according to Lemma 2.1

excess(QKx)� excess(QI x) − 2ρ(i1) < 0.

Hence the above sum is trivial, and we are done.

This proves the Theorem 1.2 in one direction. Next, we show if any of the conditions
(1)–(3) of Theorem 1.2 does not hold, then QI x will be not-A-annihilated. Note that it is
enough to work with operations of the form Sq2s

with s � 0.

REMARK 5.2. By looking at the binary expansions, it is easy to see that given a
positive integer n, then ρ(n) is the least integer t such that(

n − 2t

2t

)
≡ 1 mod 2.

LEMMA 5.3. Let X be path connected. Suppose I = (i1, . . . , is) is an admissible
sequence, and let QI x be given with excess(QI x) > 0 with j being the least positive integer
such that 2ij+1 − ij � 2ρ(ij+1). Then such a class is not A-annihilated, and we have

Sq2ρ(ij+1)+j

∗ QI x = Qi1−2ρ+j−1
Qi2−2ρ+j−2 · · · Qij−2ρ

Qij+1−2ρ

Qij+2 · · · Qis x

modulo terms of lower excess and total order.

Proof. Assume that QI x satisfies the condition above. We may write this condition as

ij − 2ρ � 2ij+1 − 2ρ+1 = 2(ij+1 − 2ρ),

where ρ = ρ(ij+1). This is the same as the admissibility condition for the pair (ij −
2ρ, ij+1 − 2ρ). In this case we use Sq2ρ+j

∗ where we get

Sq2ρ+j

∗ QI x = Qi1−2ρ+j−1
Qi2−2ρ+j−2 · · · Qij−2ρ

Qij+1−2ρ

Qij+2 · · · Qis x︸ ︷︷ ︸
A

+O.

Here, O denotes other terms which after being written in terms of admissible sequences,
using Adem relations, is given by a sum of terms of lower excess, hence of lower order
(note that these are all in the same dimension). The term A in the right-hand side of the
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above equality is admissible. Moreover,

excess(A) = (i1 − 2ρ+j−1) − (i2 − 2ρ+j−2) − (ij − 2ρ) − (ij+1 − 2ρ)

−(ij+2 + · · · + ks + dim x)

= i1 − (i2 + · · · + ks + dim x)

= excess(QI x) > 0.

First, this implies that A is nontrivial. Second, being of higher excess and total order shows
that A will not be equal to any of the terms in O. This implies that Sq2ρ+j

∗ QI x �= 0 and hence
completes the proof.

Notice that choosing the least j is necessary, as otherwise we may not get nontrivial
action. Now, assume that the above condition does hold, but condition (2) in Theorem 1.2
fails. This case is resolved in the following theorem.

LEMMA 5.4. Let X be path connected. Suppose I = (i1, . . . , is) is an admissible
sequence, such that excess(QI x)� 2ρ(i1), and 2ij+1 − ij < 2ρ(ij+1) for all 1 � j � s − 1. Then
such a class is not A-annihilated.

Proof. We use Sq2ρ

∗ with ρ = ρ(i1) which gives

Sq2ρ

∗ QI x = Qi1−2ρ

Qi2 · · · Qis x + O,

where O denotes other terms given by

O =
∑
t>0

(
i1 − 2ρ

2ρ − 2t

)
Qi1−2ρ+tSqt

∗Qi2 · · · Qis x.

Notice that excess(QI x)� 2ρ(i1) ensures that i1 is not of the form 2ρ . By iterated application
of the Nishida relations, we may write

O =
∑
α�s

ε1 · · · εαQi1−2ρ+r1 Qi2−r2+r3 · · · Qiα−rα Qiα+1 · · · Qis x,

where

ε1 =
(

i1 − 2ρ

2ρ − 2r1

)
, ε2 =

(
i2 − r1

r1 − 2r2

)
, . . . , εα−1 =

(
iα−1 − rα−2

2rα−2 − 2rα−1

)
, εα =

(
iα − rα−1

rα−1

)
,

such that 2rk � rk−1 for all k � α. The sequence I satisfies the condition of Lemma
2.1 which in particular implies that ρ(i1)� · · ·� ρ(iα)� · · ·� ρ(is). Notice that rα−1 <

2ρ(iα)−α+1 < 2ρ(iα) which together with Remark 5.2 implies that εα = 0 and therefore O = 0.
This then shows that

Sq2ρ

∗ QI x = Qi1−2ρ

Qi2 · · · Qis x �= 0.

This completes the proof.

Now we show that the condition (1) is also necessary in the proof of the Theorem 1.2.

LEMMA 5.5. Let X be path connected, and let QI x ∈ H∗QX be a term of posi-
tive excess with I admissible such that x ∈ H̃∗X is not A-annihilated. Then QI x is not
A-annihilated.
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Proof. Let t be the least nonnegative integer such that Sq2t

∗ x �= 0. For I = (i1, . . . , is),
we have

Sq2s+t

∗ QI x = Qi1−2s+t−1 · · · Qis−2s
Sq2t

∗ x + O,

where O denotes sum of the other terms which are of the form Q J x. The obvious inequal-
ity Sq2t

∗ x �= x implies that the first term in the above equality will not cancel with any
of the other terms. Notice that the first term in the above expression is admissible, and
excess(Qi1−2s+t−1 · · · Qit−2s

Sq2s

∗ x) = excess(QI x) > 0. Hence Sq2s+t

∗ QI x �= 0.

6. Constructing A-classes in H*QX . The aim of this section is to give a construc-
tion of sequences which satisfy condition (3) of Theorem 1.2. This construction, at least
in theory, will determine all such sequences. One can see that our construction here is
the most general one, obtained by properties of sequences I satisfying condition (3) of
Theorem 1.2. One observes that condition (2), i.e., excess(QI x) < 2ρ(i1), tells us when the
construction has to terminate. Hence, having conditions (2) and (3) of Theorem 1.2, one
can for example construct A-annihilated classes in H∗BO as well as H∗QBO.

Let I = (i1, . . . , ir) be a sequence satisfying condition (3), i.e.,

0 � 2ij+1 − ij � 2ρ(ij+1).

Note that a given positive integer n maybe written as n = 2ρ(n)+1Nn + 2ρ(n) − 1 for some
Nn � 0. Suppose we are given a pair of integers (m, n), m > n, such that

0 � 2n − m < 2ρ(n),

which is the same as assuming 2n − 2ρ(n) < m � 2n. From this, by looking at the binary
expansions for m and n, we deduce that

ρ(m)� ρ(n).

To construct a sequence I of length r, consider an r-tuple of nondecreasing positive
integers,

ρ1 � ρ2 � · · ·� ρr.

Choose a nonnegative integer Nr, and let ir = 2ρr+1Nr + 2ρr − 1. We want to find ir−1 =
2ρr−1+1Nr−1 + 2ρr−1 − 1 such that

2ir − 2ρr < ir−1 � 2ir.

Plugging in the value of ir−1, ir, gives the boundary conditions on Nr−1,

2ρr+2Nr + 2ρr − 1 < 2ρr−1+1Nr−1 + 2ρr−1 � 2ρr+2Nr + 2ρr+1 − 1.

This can be refined as

2ρr+2Nr + 2ρr � 2ρr−1+1Nr−1 + 2ρr−1 < 2ρr+2Nr + 2ρr+1.

Hence we have

2ρr−ρr−1+1Nr + 2ρr−ρr−1−1 � Nr−1 + 1

2
< 2ρr−ρr−1+1Nr + 2ρr−ρr−1 .
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As Nr−1 is an integer, hence one has

2ρr−ρr−1+1Nr + 2ρr−ρr−1−1 � Nr−1 < 2ρr−ρr−1+1Nr + 2ρr−ρr−1 .

This means that there are 2ρr−ρr−1−1 choices for Nr−1. By proceeding in this way, we can
construct such sequences which only will satisfy condition (3) of Theorem 1.2. Notice that

2ρi−ρi−1+1Ni + 2ρi−ρi−1−1 � Ni−1

for any 1 � i < r. This implies that having fixed a nondecreasing r-tuple of positive
integers,

ρ : ρ1 � ρ2 � · · ·� ρr,

then different choices for Ni will give different sequences in different dimensions. However,
it is possible to have two different sequences, say ρ, ρ ′, but giving two r-tuples in the
same dimensions. As an example, let r = 2. Then (17, 15) and (21, 11) both are sequences
satisfying condition (3), and both are in dimension 32. Notice that

ρ(17) = 1 < ρ(15) = 4,

ρ(21) = 1 � ρ(11) = 3.

Now we give some specific examples of constructing such sequences which seem to be
more applicable.

EXAMPLE 6.1. This is the simplest possible case when we choose

ρ : ρ1 = ρ2 = · · · = ρr.

Let us choose a specific fixed value for ρi, say ρi = 2. However, in this case we don’t restrict
ourselves to some specific length. We have ir = 23Nr + (23 − 1). Let us choose Nr = 1, then
ir = 11. Now set ir−1 = 2ir − (22 − 1), and inductively set ir−j = 2ii−j+1 − (22 − 1). Then
it is easy to see that ij ≡ 22 − 1 mod 23. For example, continuing in this way for 3 times we
obtain the sequence

(67, 35, 19, 11).

This automatically satisfies conditions (2) and (3) of Theorem 1.2, i.e., Q67Q35Q19Q11 is
an A-annihilated class in the Dyer–Lashof algebra R. This also implies that

Q67Q35Q19p′
11

is an A-annihilated class in H∗Q0S0. Notice that Q67Q35Q19p′
11 is a primitive A-annihilated

class (see [12] and [26, Chapter 5 and Page 98] for the definition of class p′
n).

As another example, let us choose ρi = ρ = 3, then ij = 24Nj + (23 − 1). Let us choose
Nr = 2, then ir = 39. Now let ij = 2ij+1 − (23 − 1). If we look for a sequence I such that
excess(I) < 2ρ = 8, we then obtain the sequence

(1031, 519, 263, 135, 71, 39),

which means Q1031Q519Q263Q135Q71Q39 is an A-annihilated class in the Dyer–Lashof alge-
bra. This is the sequence used in [22, Remark 11.26] to construct a sum of even degree
which is A-annihilated, but its terms are not.
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7. Discussion. We wish to include a short discussion on the possible applications
to the problem of determining spherical classes in H∗QX where the case of X = Sn with
n > 0 is of special interest. First, recall that the evaluation map �QX → Q�X induces
homology suspension homomorphism σ∗ : H∗QX → H∗+1Q�X . We write σ k∗ : H∗QX →
H∗+kQ�kX for its iteration, and σ∞∗ : H∗QX → H∗X for the stable suspension homomor-
phism. The homomorphism σ∗ is characterised by σ∗QI x = QI�x [4, Part I, Page 47] and
the fact that it acts trivially on decomposable elements. It is known that the kernel of
σ∗ : H∗QX → H∗+1Q�X consists of only decomposable elements [27, Lemma 3.4] (see
also [25, Lemma 2.3]). As we noted earlier, not any A-annihilated class is a sum of A-
annihilated terms. However, those A-annihilated classes that are stable under homology
suspension show some nicer behaviour. Suppose X is a path connected space and f : Sn →
QX is given so that σ 2∗ h(f ) �= 0. Since σ∗h(f ) �= 0, then we may write h( f ) = ∑

QI x mod-
ulo decomposable terms where x may vary in an additive basis for H̃∗X , and consequently
σ∗h(f ) = ∑

QI�x where the sum involved the possible decomposable terms correspond-
ing to terms QI�x with excess(QI�x) = 0 or equivalently excess(QI x) = 1 and no other
decomposable term is involved. The fact that Nishida relations respect length implies the
following.

LEMMA 7.1. Suppose ξ = ∑
QI x modulo decomposable terms is an A-annihilated

class in H∗QX with σ 2∗ ξ �= 0. Then, for any l � 0 the sum∑
l(I)=l

QI�x

is A-annihilated.

In some cases of interest, such as X = Sn with n > 0 or X = RP∞, CP∞, it is possible
to use computations of Section 1.2 together with Lemma 7.1 to make more eliminations
to the possible expressions of σ∗h(f ) or equivalently to the ‘indecomposable part’ of h(f ).
We have the following partial observation.

LEMMA 7.2. Suppose X is a space so that H̃∗X has at most one generator in each
dimension. Suppose f : Sn → QX is given so that σ∗h(f ) �= 0. Then σ∗h(f ) = ∑

QI�x with
I running over certain admissible terms, and x running over elements of an additive basis
for H̃∗X , such that if xl

m is the element being of least dimension among other x’s involved
in QI x with l(I) = l, then xl

m is A-annihilated.

Proof. Since σ∗h(f ) �= 0, then we may write h(f ) = ∑
QI x modulo decomposable

terms where xn may vary in an additive basis for H̃∗X . Hence, σ∗h(f ) = ∑
QI�x. If xl

m is
not A-annihilated, then choose t � 0 to be the least nonnegative integer so that Sq2t

∗ xl
m �= 0.

By the above comments, since Nishida relations respect length, we may assume that l(I) = l
is fixed. By computations of Section 1.2 we may write

Sq2l+t

∗ σ∗h(f ) =
∑

Sq2l+t

∗ QI x +
∑

Qi1−2l+t−1 · · · Qil−2s
Sq2t

∗ x + O,

if I = (i1, . . . , il). Note that the second sum may involve more than one term. However, the
terms of the first sum as well as O would be of the form Q J y with dim y > dim Sq2t

∗ xm. So,
none of these terms would cancel the terms of the middle sum. On the other hand, for two
terms QI xm and QI ′

xm with I and I ′ admissible, obviously the leading terms for Sq2l+t

∗ QI xm

and Sq2l+t

∗ QI ′
xm recorded in the middle sum are distinct admissible terms, so they do not

cancel each other. Consequently, Sq2l+t

∗ σ∗h(f ) �= 0 which contradicts the fact that σ∗h(f ) as
a spherical class should be A-annihilated. This completes the proof.
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Next, we turn to our total-partial order. If QI x is written as QEx in lower indexed
operations with E = (e1, . . . , es), then

σ∗QEx = QE−1�x,

where E − 1 = (e1 − 1, . . . , es − 1). Also, note that obviously, σ∗ preserves the length of
E. An immediate consequence of this is the following.

LEMMA 7.3. The total-partial of Section 4 is stable under homology suspension in the
sense that if QI x � QJ x′, then σ∗QI x � σ∗Q J x′.

Now, let X be a path connected space and f : Sn → QX is given so that σ 2∗ h( f ) �= 0.
Since σ∗h(f ) �= 0, then we may write h(f ) = ∑

QI x modulo decomposable terms where x
may vary in an additive basis for H̃∗X . Let e = max{excess(I)}. Then

σ e−1
∗ h(f ) =

∑
excess(I)=e

QI�e−1x.

Note that all the terms of the above sum are of excess equal to 1. This class is spherical,
since for the (e − 1)-th adjoint of f as f ′ : Sn+e−1 → Q�e−1X we have h( f ′) = σ e−1∗ h(f ).
Therefore, the above sum has to be A-annihilated. On the other hand, we observe that
Nishida relations respect length. This results in the following observation.

LEMMA 7.4. Suppose f : Sn → QX is given with σ∞∗ h(f ) = 0. For e =
max{excess(I)}, and f given as above, for any l > 0,∑

excess(I)=e,l(I)=l

QI�e−1x

is A-annihilated.

The condition σ∞∗ h(f ) = 0 guarantees that h(f ) does not have any term of the form
QI x with I = φ.

The important question here which is of a more combinatorial nature is that if there
exists a partial order on H∗QX which is both stable under homology suspension and under
the action of the opposite Steenrod algebra Aop. We have not checked the answer to this
question with respect to our total-partial order. But, having such an order, even for a class
of spaces X , would result in more powerful elimination results on the form of potential
spherical classes in H∗QX .
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