
Journal of the Inst. of Math. Jussieu (2005) 4(2), 281–316 c© Cambridge University Press 281
DOI:10.1017/S147474800500006X Printed in the United Kingdom

MULTIPLICATIVE SUBGROUPS OF J0(N) AND
APPLICATIONS TO ELLIPTIC CURVES

V. VATSAL

Department of Mathematics, University of British Columbia,
1984 Mathematics Road, Vancouver, British Columbia V6T 1Z2,

Canada (vatsal@math.ubc.ca)

(Received 7 July 2002; accepted 14 April 2003)

Abstract In this paper, we prove a certain maximality property of the Shimura subgroup amongst the
multiplicative-type subgroups of J0(N), and apply this to verify conjectures of Stevens on the existence
of certain canonical parametrizations of rational elliptic curves by modular curves. We are also able to
verify some of Stevens’s conjectures on the characterization of the elliptic curve in an isogeny class with
minimal Faltings–Parshin height.

Keywords: elliptic curves; modular curves; complex multiplication

AMS 2000 Mathematics subject classification: Primary 11G05; 11G18

1. Introduction

The goal of this paper is to study two related problems. The first is a certain maximality
property of the Shimura subgroup among multiplicative-type subgroups of the Jacobian
J0(N). The second is a conjecture of Stevens, which characterizes the unique curve of
minimal Faltings–Parshin height in an isogeny class of elliptic curves over Q. As a con-
sequence, we obtain a number of arithmetic applications to elliptic curves with positive
µ-invariant, and to the existence of canonical parametrizations by modular curves.

To explain the first object of our study, we let X1(N) = Γ1(N) \ H∗ and X0(N) =
Γ0(N) \ H∗ denote the usual modular curves. We fix models for these curves over Q,
for example, the canonical models of Shimura. Since Γ0(N) ⊂ Γ1(N), there is a finite
map π : X1(N) → X0(N) given over the complex numbers by the natural projection
Γ1(N) \ H∗ → Γ0(N) \ H∗. In fact, π is defined over Q, and gives a finite map of the
canonical Q-models.

By Picard functoriality, we deduce a morphism of Jacobians π∗ : J0(N) → J1(N). The
kernel of π∗ is a finite subgroup V of J0(N)(Q̄), known as the Shimura subgroup. Since
π∗ is a Q-rational map, the subgroup V is stable under the action of Gal(Q̄/Q). It is
known that V is of multiplicative type, meaning that the Cartier dual W = hom(V, Gm)
is trivial for the action of Galois. Furthermore, it is known that V is Eisenstein for
the action of the Hecke algebra T, in the sense that it is annihilated by the operators
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Tp − p − 1, for p � N . For this, and other details about the structure of V (including a
formula for the order), we refer the reader to the paper [LO91].

Mazur proved in 1977 that the Shimura subgroup is the maximal multiplicative type
subgroup of J0(N), when N is a prime. Specifically, he proved that if N is a prime, and
X is any finite flat subgroup of J0(N) isomorphic to µn, then X ⊂ V . This is part of
his detailed study of the kernel in J0(N) of the Eisenstein ideal I ⊂ T, where I is the
ideal generated by the operators Tp −p− 1, for p � N . For the details, we refer the reader
to [Maz77, Chapter 3, § 1]. Our goal here is to understand the extent to which such
a result may be generalized to non-prime N . Specifically, we shall prove the following
result.

Theorem 1.1. Let W denote any finite Q-rational subgroup of J0(N)(Q̄) such that

(i) W ∼= µn for some odd integer n; and

(ii) J0(N) has semi-stable reduction at � for each prime � dividing n.

Then W is contained in the Shimura subgroup.

We will sketch the proof of this theorem below, as the techniques are entirely different
from those used by Mazur. We also point out that this theorem does not help to identify
the full kernel of the Eisenstein ideal in J0(N), and that it does not say anything about
the Gorenstein property for Hecke algebras at Eisenstein primes. Since these questions
are tangential to the present work, we will not discuss them here.

Next we would like to describe the conjecture of Stevens from [Ste89], and explain the
relation with the theorem above. Thus, let C denote an isogeny class of (modular) elliptic
curves over Q. As is well known, isogenous elliptic curves give rise to isomorphic Galois
representations, and have identical L-series. However, the arithmetic of isogenous curves
might be quite different, especially at primes � dividing the degree of an isogeny between
them. For example, the coincidence of the L-series does not imply the coincidence of the
individual terms appearing in the Birch–Swinnerton–Dyer formula (although the formula
as a whole is, of course, invariant under isogeny). One way to see this is as follows. If
E and E′ are isogenous elliptic curves, then an isogeny φ : E′ → E induces a map
of Tate modules Tp(E′) → Tp(E), for each prime p. There is an induced identification
Vp(E′) = Tp(E′)⊗Q ∼= Tp(E)⊗Q = Vp(E), and the subsets Tp(E) and Tp(E′) are Galois-
stable lattices in Vp(E) = Vp(E′). The Birch–Swinnerton–Dyer numbers are encoded
in the Selmer groups defined by these lattices, but the lattices corresponding to non-
isomorphic curves will, in general, be non-isomorphic themselves, as will be the Selmer
groups.

In short, there is no evident way to choose a canonical invariant lattice starting from the
representation space Vp. Equivalently, there is no obvious way to choose a representative
for the isogeny class C. The only plausible candidate is the so-called strong-Weil curve
in C (see Lemma 1.5 below for the definition), but even in very simple cases it is clear
that this choice is not the best.

Example 1.2. Consider the isogeny class consisting of the three elliptic curves of con-
ductor 11. The corresponding representation space is the one associated to the modular
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form η(z)η(11z) on Γ0(11). We will write A, B, C to denote the curves 11A, B, C, respec-
tively, with the notation of the Antwerp tables. Then one has A ∼= X1(11), B ∼= X0(11)
and C is the quotient of X0(11) by the cyclic group of order 5 generated by the cusps.
We have the sequence of isogenies

A = X1(11) → B = X0(11) → C,

where the arrows are as follows. The first is the natural projection X1(11) → X0(11), as
described above. The kernel is a cyclic group of order 5, with trivial action of Gal(Q̄/Q).
The second arrow is the projection of X0(11) onto the quotient by the subgroup of order 5
generated by the cusps. Once again, the kernel is isomorphic to Z/5Z as a Galois module.

Let us write ΩE = Ω+
E for the real Néron period attached to E, for any elliptic curve E

over Q. Let χ denote an even quadratic Dirichlet character, of conductor prime to 11, and
let L(E, χ, s) denote the L-series of E, twisted by the character χ. Then it is a classical
fact that the special values L(E, χ, 1)/ΩE are rational, for every χ, where E is one of the
curves A, B, C. It was shown by Mazur in [Maz77] that

L(B, χ, 1)/ΩB ≡ 0 (mod 5),

for every non-trivial even quadratic character χ, where B is the elliptic curve X0(11). If
we consider instead the elliptic curve C, the same congruences hold modulo 25. On the
other hand, if we take the curve A = X1(11), then the special values on the left of the
formula above are typically 5-adic units. Thus the Birch–Swinnerton–Dyer numbers of
even twists of A, B, C are all entirely different.

From the viewpoint of Iwasawa theory, the difference is even more clear. The 5-adic
Selmer groups defined by the lattices coming from the Tate modules of B and C have
positive µ-invariant, equal to 1 and 2, respectively. On the other hand, the µ-invariant
of A is trivial. See [GV00] for a discussion from the viewpoint of Iwasawa theory.

Finally, one can calculate the period lattices of A, B and C. One finds that the period
lattice of A is minimal, contained inside the lattices of B and C with index 5 and 25,
respectively.

In short, it seems reasonable to consider A = X1(11) as being the ‘minimal’ curve in
the isogeny class C, at least as far as integrality and divisibility properties are concerned.
However, it is not apparent a priori, why this should be the case. In particular, the strong
Weil curve X0(11) is not the minimal curve to study in this context.

The essence of Stevens’s conjecture is that there is indeed a canonical isomorphism
class of curves in any isogeny class, and therefore a canonical lattice in the associated
representation space. Indeed, given an isogeny class of elliptic curves, Stevens defines a
canonical curve E∗ ∈ C (which he calls the minimal curve) and shows that any other
E ∈ C is given as the quotient of E∗ by an étale isogeny (over Z). The novelty of this
construction is that the definition of the minimal curve makes no reference at all to
‘modular’ properties of elliptic curves; one does not even need to make the assumption
of modularity for the purposes of the definition. Rather, the minimal curve E∗ is defined
in terms of its Faltings–Parshin height, which is a purely arithmetic invariant. Stevens’s
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conjecture then relates this minimal curve, defined in terms of heights, to curves defined
by modular parametrizations.

We will state the conjecture more precisely below. But before doing this, we need to
fix some notation and terminology. Thus let the isogeny class C be fixed. For any E ∈ C,
we let EZ denote the Néron model over Z. Note that H0(EZ, Ω1) ∼= Z for any elliptic
curve over Q. Write ωE for a Néron differential on E, so that H0(EZ, Ω1) = ZωE . Let

φ : E′ → E

be an isogeny with E′, E ∈ C. We say that φ is étale if the extension E′
Z → EZ to

Néron models is étale. Equivalently, φ is étale if the induced morphism on Z-differentials
φ∗ : H0(EZ, Ω1) → H0(E′

Z, Ω1) is an isomorphism.
Finally, we want to recall a simple fact about étale isogenies of elliptic curves, which

we will use often in the sequel. If φ : E′ → E is any isogeny over Q, then we have
φ∗(ωE) = nωE′ , for some n = nφ ∈ Z. Since φ induces an isogeny over Q, the integer nφ is
non-zero. The isogeny φ is étale if and only if nφ = ±1. If φ : E → E is the multiplication
by an integer m, then φ∗(ωE) = mωE . Thus, if φ is any isogeny of degree p, for a prime
number p, we must have nφ = 1 or nφ = p. Indeed, if φ̂ denotes the dual isogeny, then
φ̂ ◦ φ = [p] is the multiplication by p. It follows that precisely one of φ and φ̂ is étale.

Now recall that for any elliptic curve E over Q, the Faltings–Parshin height h(E) is
defined by

h(E) =
(

1
2πi

∫
EC

ωE ∧ ω̄E

)−1/2

.

Note that h(E)−2 = covolume(L(E)), where L(E) is the lattice of Néron periods of
E. One can show that, for any isogeny class C of elliptic curves over Q, there is a unique
curve E∗ ∈ C with minimal height h(E∗). Indeed, Stevens proved the following striking
result. To state the theorem, we shall write L(E) to denote the lattice of Néron periods
of E. Thus L(E) ⊂ C denotes the image of H1(EC, Z) under the map γ 	→

∫
γ

ωE .

Theorem 1.3 (Stevens). Let C denote an arbitrary isogeny class of elliptic curves
over Q. Then there exists a unique curve E∗ ∈ C satisfying the following equivalent
conditions.

(1) For every E ∈ C, we have h(E∗) � h(E).

(2) For every E ∈ C, there is an étale isogeny E∗ → E.

(3) For every E ∈ C, we have L(E∗) ⊂ L(E).

The curve E∗ is called the minimal curve in C.

Proof. See [Ste89, Theorem 2.3]. �

Remark 1.4. Note that any étale isogeny is necessarily cyclic. Furthermore, one checks
that any two cyclic étale isogenies E∗ → E are necessarily equal up to an automorphism.
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Now recall the other basic way to construct a distinguished curve in the isogeny class C,
using modular parametrizations rather than heights. Thus we need to know that C is an
isogeny class of modular elliptic curves over Q. Letting N denote the common conductor
of the curves in C, we know from work of Taylor and Wiles and Breuil et al . that there
exists a non-constant map X0(N) → E, for any curve E ∈ C. We say that a non-constant
map π : X0(N) → E is a modular parametrization if it is defined over Q, and carries
the zero cusp to the identity element in E. Since N is the conductor of the curves
in C, we see that π∗(ωE) = c(π)ωf , where ωf = f(q) dq/q is the differential 1-form
associated to a normalized newform f of level N . The number c(π) is non-zero and
rational; it is called the Manin constant of the parametrization π. Since there is a finite
Q-rational map X1(N) → X0(N), we deduce that there is a non-constant Q-rational
map X1(N) → E which carries the zero cusp to the identity, and one can then make the
analogous definitions for modular parametrizations of E by the curve X1(N) as well.

Using this, we can define the strong Weil curves associated to a modular parametriza-
tion. Indeed, the following lemma is easy to prove (see [Maz], for example).

Lemma 1.5. Let C denote an isogeny class of modular elliptic curves with conductor N .
Let X denote one of the modular curves X0(N) or X1(N). Then there is a unique
curve EX ∈ C and a parametrization πX : X → EX satisfying the following equivalent
conditions.

(1) For any E ∈ C and any parametrization π′ : X → E, there is an isogeny φ : EX → E

such that φ ◦ πX = π′.

(2) The induced map on homology H1(X, Z) → H1(EX , Z) is surjective.

(3) The induced map on Pic0 : EX
∼= Pic(EX) → Pic0(X) is injective.

The curve EX is called the strong Weil curve for X.

Remark 1.6. By property (3) above, the strong Weil curve is the unique representa-
tive of C that occurs in the Jacobian J(X). This will be useful in the proofs (see also
Remark 1.8 below).

Remark 1.7. The strong Weil curve EX really does depend on X. For example, in the
case of curves of conductor 11 discussed above, the strong Weil curve for X0(11) is X0(11)
itself. The analogous statement is true for X1(11), since all these curves have genus 1.
The curve usually called the strong Weil curve in the literature is the strong Weil curve
for X0(N). But, as the example of N = 11 shows, the lattice associated to the strong
Weil curve for X0(N) is not always the minimal choice.

Remark 1.8. We want to introduce some notations that we will use in the rest of this
paper. Fix an isogeny class C of elliptic curves over Q. We will write E∗ to denote the
minimal curve in the isogeny class, as defined in Theorem 1.3. We shall also write E0 and
E1 to denote the strong Weil curves for X0(N) and X1(N), respectively. Note that it is
easy to describe the relationship between E0 and E1; since Ei is the unique member of C
that occurs in Ji(N), we find that E1 is the quotient of E0 by the subgroup V0 = E0 ∩V ,
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for the Shimura subgroup V . Thus E0 ∼= E1 if and only if E0 has trivial intersection with
the Shimura subgroup. Since the Shimura subgroup is of multiplicative type, we see that
there is an isogeny E1 → E0 with kernel equal to a constant group scheme. We shall
refer to E1 → E0 as the Shimura cover.

The basic conjecture we shall study is the following.

Conjecture 1.9 (Stevens). We have an isomorphism E∗ → E1 over Q. Equivalently,
the strong Weil curve for X1(N) is the curve of minimal height.

We are unable to prove this conjecture in full generality. However, we can still make
a good deal of progress. We know from Theorem 1.3 that there exists an étale isogeny
φ : E∗ → E1, and the conjecture states that φ has degree 1. Let � be any prime number.
We shall say that Stevens’s conjecture is true at � if the degree of φ is prime to �. Then
it suffices to prove the conjecture is true at every �. With this convention, we can state
the following result.

Theorem 1.10. Suppose that the isogeny class C consists of semi-stable curves, and
let � denote an odd prime. Then Stevens’s conjecture is true at �. Equivalently, the cyclic
étale isogeny E∗ → E1 given by Theorem 1.3 has degree a power of two.

The theorem above is quite restrictive. For example, it is known that any elliptic curve
admitting a non-trivial 13-isogeny cannot be semi-stable. However, we can remedy this
defect to a reasonable extent.

Theorem 1.11. Let � � 7. Let C denote an isogeny class of elliptic curves over Q, such
that E[�] is reducible for some (and hence all) E ∈ C. Suppose E is ordinary at �. Then
Stevens’s conjecture is true for the isogeny class C.

Remark 1.12. In contrast to Theorem 1.10, there is no restriction on the prime 2, or,
indeed, at any prime p �= �, in the statement above. This is pure serendipity: Mazur’s list
of rational isogenies, as completed by Kenku (see [Maz78,Ken82]), implies that there
are only finitely many isomorphism classes (up to twist) of elliptic curves E such that
E[p] and E[�] are both reducible, when � � 7, and p is a prime distinct from �. In fact, the
only time this occurs is when �p = 14 or �p = 21. In the former case, the curve X0(14)
has two non-cuspidal rational points, and the corresponding j-invariants and isogenies
may be exhibited as complex multiplication (CM) curves of level 49. In the latter, the
curve X0(21) has four non-cuspidal rational points, and the corresponding j-invariants
occur at level 162. For explicit constructions of such isogenies of degree 14 and 21, we
refer the reader to [BK75, p. 79].

Let us show how to reduce the proof of Stevens’s conjecture in the case that E[�] and
E[p] are both reducible to finite amount of computation. There are two cases to consider,
namely, �p = 21 and �p = 14. We begin with the former. In this event, we look at the
isogeny class C denoted by 162B in Cremona’s tables (see [Cre92], or the more extensive
version available on the web). One checks from the tables in [BK75] that the four curves
in this isogeny class correspond to the four non-cuspidal rational points on X0(21), and
that each curve in C = 162B admits a cyclic isogeny of degree 21. Now, if E′ is any curve
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admitting a cyclic isogeny of degree 21, it follows that E is a quadratic twist of a curve
in 162B, so that

E′ = E ⊗ χD

for some curve E ∈ 162B, and some quadratic Dirichlet character χ of conductor D.
(Note here that the curves in 162B do not have any non-trivial endomorphisms.)

But Stevens has proven that if his conjecture for any given curve E, it is also true for
quadratic twists E ⊗ χD of E, provided that D is not divisible by any prime of additive
reduction for E (see [Ste89, Theorem 5.1]). Thus the conjecture would follow for the
isogeny class of E′ if it were known for the class 162B, and if the character χD satisfied
(D, 3) = 1 (since 162 = 2 · 34, the curves in 162B are semi-stable at 2 and additive at 3).
On the other hand, if D = 3D′ with (3, D′) = 1, we can write χD = χ3 · χD′ , where χ3

denotes the unique quadratic character of conductor 3. Thus we get

E′ = (E ⊗ χ3) ⊗ χD′ ,

and D′ is not divisible by any prime of additive reduction for E⊗χ3. In view of Stevens’s
theorem, the conjecture would follow for the given E′ if one knew it for the cases of 162B
and its twist by the character χ3. It turns out that this twisted isogeny class is nothing
more than 162C. Thus we have only to compute the minimal and optimal curves in the
isogeny classes 162B and 162C to get Stevens’s conjecture for curves admitting isogenies
of degree 21. This was, in fact, done by Stevens (see [Ste89]), who checked all curves of
conductor less than 200. We were able to confirm his results for the curves of interest by
making use of William Stein’s elliptic curve calculator to determine the period lattices
and the degrees of the modular parametrizations. In the case of 162B, for instance, the
minimal is the optimal curve, as both turn out to be 162B − 1. In the case of 162C, the
minimal curve and optimal curve are both given by 162C − 1. We omit the verification
of these claims, as they are easy but somewhat tedious.

One can do a similar check to handle all isogenies of degree 14 (we omit the details).
Thus we reduce the proof Theorem 1.11 to the case where E[�] is reducible for � � 7,
and E[p] is irreducible for all p �= �. In this case, Stevens’s conjecture is trivial at p �= �.
Furthermore, the list of possible isogenies also implies that there are no cyclic isogenies
of degree �r, where r � 2. Therefore, to prove the theorem above, one needs only to prove
that the conjecture is true at �, and here the only possible isogeny is one of degree �.
This we can accomplish exploiting the ordinariness hypothesis (see proposition 5.3).

We can also extract from our results cases of a conjecture of Greenberg giving lower
bounds on the Iwasawa µ-invariant of an elliptic curve with reducible mod � representa-
tion. To state the result, we let E denote any elliptic curve over Q. Let � denote any odd
prime number such that E has ordinary reduction at �. Since E is ordinary, the construc-
tion of Mazur and Swinnerton and Dyer yields an �-adic L-function LE(T ) ∈ Z�[[T ]] ⊗ Q�.
It is not known in general whether the �-adic L-function has integral coefficients, nor how
to calculate the µ-invariant. (The µ-invariant is the unique positive integer µ such that
�−µLE(T ) is an integral power series with at least one unit coefficient.)
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Let us briefly recall what is known (and not known) about integrality properties and
the µ-invariant of the �-adic L-functions. There are two basic cases to consider, depending
on whether E[�] is reducible or not.

Theorem 1.13. Suppose that � is a prime of ordinary reduction, and that E[�] is irre-
ducible. Then LE(T ) is integral.

The proof of this result is easy, and may be found in [GV00]. Nothing is known about
the µ-invariant when E[�] is irreducible, although one could guess that it vanishes.

It remains to consider the case when E[�] is reducible. In this case, write E[�]ss for the
semi-simplification of E[�]. Then there is a decomposition of GQ-modules

E[�]ss = C ⊕ D, (1.1)

where GQ acts on C and D via F×
� -valued characters χ and ψ = χ−1ω, respectively.

Here ω denotes the Teichmüller character. The module E[�] itself may or may not be
semi-simple, but since � is an ordinary prime, we see that precisely one of χ and ψ = χ−1ω

is unramified at �. Furthermore, since ω is odd, we see that precisely one of χ and ψ is
even.

The following conjectures are part of the folklore, and motivated by Greenberg’s bounds
on the µ-invariants of the corresponding Selmer groups.

Conjecture 1.14. Suppose that E is an elliptic curve over Q. Let � denote a prime of
ordinary reduction for E such that E[�] is reducible. Then the following statements hold.

(1) The L-function LE(T ) is integral.

(2) The invariant µ is characterized as the largest positive integer such that E[�∞] con-
tains a cyclic Q-rational subgroup K of order �µ with the property that Gal(Q̄/Q)
acts on K via a character that is odd, and ramified at �.

To understand this more concretely, observe that we may split the case where E[�]
is reducible into two mutually exclusive subcases. We write χ and ψ for the characters
appearing in the decomposition (1.1), as before. Without loss of generality, we fix the
notation so that χ is unramified and ψ is ramified. Then we get two subcases as follows.

Even subcase. χ is unramified and even. This case arises (for instance) when E or
some isogenous curve has a rational point of order �. (So χ = 1.)

Odd subcase. χ is unramified and odd. This occurs when E is a an odd quadratic
twist of a curve in the even subcase.

It turns out that these two subcases behave rather differently. Indeed, an equivalent
statement of part 2 of the conjecture may be given as follows.

(i) If χ is even, then µ = 0 if and only if there is a non-split exact sequence 0 → χ →
E[�] → ψ → 0.

(ii) If χ is odd, then µ = 0 in general.
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Greenberg’s conjecture was completely proven for χ odd in the paper [GV00].

Theorem 1.15 (cf. [GV00]). Suppose that the character χ is odd. Then LE(T ) is
integral, and the µ-invariant is trivial.

In this paper, we prove results toward Greenberg’s conjecture for even χ, in the special
situation (sub-subcase!) that the unramified even character χ is actually trivial. Specifi-
cally, we can offer the following result.

Theorem 1.16. Let the notation and hypotheses be as above. Suppose that the char-
acter χ is trivial, so that E[�]ss = 1 ⊕ ω. Then LE(T ) is integral. If K ⊂ E[�∞] is the
largest subgroup of order �r such that the action of GQ on K is via an odd ramified
character, then the µ-invariant of LE(T ) is at least r.

For the convenience of the reader, we summarize what remains to be done to complete
the proof of Greenberg’s conjecture. Firstly, nothing is known about the µ-invariant when
E[�] is irreducible. In the reducible case, nothing is known when χ is even and χ �= 1.
When χ = 1, it is not known that the lower bound given by our Theorem 1.16 is actually
sharp.

1.1. Sketch of the proofs

We want to describe the proof of Theorem 1.1, and explain how to deduce Theo-
rem 1.10, starting with the former. Thus suppose that W is a subgroup of J0(N), iso-
morphic to µn. For simplicity, we will assume in this introduction that n = �r is a power
of an odd prime �. Our goal is to prove that W is contained in the Shimura subgroup V .

The first thing to note is that subgroups of the Jacobian variety JX of a curve X

parametrize certain kinds of unramified covers of X, at least over a suitable class of fields.
This is simply class field theory for curves, since JX

∼= Pic0(X). Specifically, suppose
that k is either a finite field or a field of characteristic zero, and that X is a smooth,
proper and geometrically irreducible curve over k, equipped with a k-rational point x.
Assume that X is embedded into JX via the point x. We want to define the notion of a
k-rational cover of X, following Serre’s book [Ser59, § VI.2.7]. Thus a curve Y defined
over k and equipped with a non-constant k-rational map π : Y → X is said to be a cover
of X if Y is proper, smooth and geometrically connected over the algebraic closure k̄ of k,
and if the extension k(Y )/k(X) of function fields induced by the map π is separable.
If k(Y )/k(X) is Galois (respectively, abelian), we say that Y is Galois (respectively,
abelian). Observe that Y/X may well be Galois over k̄ without being Galois over k. In
this case, the group Gal(k̄(Y )/k̄(X)) is endowed with a natural action of Gal(k̄/k). Note
also that one could drop the requirement that Y be geometrically connected, simply by
requiring k̄(Y ) to be a separable algebra over k̄(X). In any case, we shall say that Y/X

is unramified if the morphism Y → X is unramified.
With these conventions, we have the following theorem, which will be used frequently

in the sequel.

Theorem 1.17. Suppose that k is algebraically closed. Then there is a bijective cor-
respondence between finite subgroups W ⊂ JX and isomorphism classes of unramified
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and geometrically connected covers XW → X. Explicitly, the correspondence is given by
the following recipe. If W ⊂ JX is a finite subgroup, and JW denotes the abelian variety
dual to JX/W , then XW is the curve which renders the following square Cartesian:

XW −−−−→ JW⏐⏐�
⏐⏐�

X −−−−→ JX

Proof. This is the corollary of [Ser59, p. 128]. �

Remark 1.18. It is part of the theorem that the curve XW is connected (which is
perhaps not obvious from the definition). Note also that if k is not algebraically closed,
the same definition allows us to associate a k-curve XW to any finite k-rational subgroup
W ⊂ JX(k̄). The curve XW is geometrically connected by the theorem, and the Galois
group Autk̄(XW /X) is canonically isomorphic as a Gal(k̄/k)-module to hom(W, Gm). In
particular, XW /X is Galois if and only if hom(W, Gm) is a constant group scheme over k,
at least if k has characteristic zero (see [LO91, Proposition 6, p. 191]), or if k is a finite
field (see [Ser59, Théorème 1, p. 135]).

From the viewpoint of the theorem above, the Shimura subgroup, which is the kernel
of the map J0(N) → J1(N) induced by Picard functoriality from the natural projection
X1(N) → X0(N), corresponds precisely to those unramified covers of X0(N) which
become trivial (meaning isomorphic to the disjoint union of copies of the base) upon
pullback to X1(N). Reformulated in these terms, the claim of Theorem 1.1 that the
given subgroup W is contained in the Shimura subgroup becomes the assertion that the
cover XW → X0(N) deduced from W becomes trivial over X1(N).

Let us now specialize these ideas to the context of Theorem 1.1. Our hypothesis on the
subgroup W is that W ∼= µn, as group schemes over Q. Writing JW = (J0(N)/W )dual

as in Theorem 1.17, there is an isogeny JW → J0(N), with kernel hom(W, Gm) = Z/nZ,
and we deduce the existence of a curve XW over Q, and a Galois cover XW → X0(N)
with Galois group Z/nZ (over Q). As we have seen, W is contained in the Shimura group
if and only if the pullback X1(N) ×X0(N) XW → X1(N) is trivial as a cover of X1(N).

The point of this kind of tautological reformulation is that there is a very explicit
criterion, due to Ihara, for determining whether a cover of X0(N) is trivial over X1(N),
in terms of the splitting of super-singular points in characteristic q, where q is any prime
such that q � N . Thus let Sq ⊂ X0(N)(F̄q) denote the set of super-singular points. It is
well known that all points of Sq are rational over Fq2 . Given a degree d cover Xq → X0(N)
over Fq, we say that a point x ∈ Sq splits completely in Xq if the fibre over x consists
of d distinct points, each rational over the same field Fq2 . Then a theorem of Ihara
(Theorem 4.4 below) states that if Xq is a smooth and geometrically connected curve,
and the cover Xq → X0(N) is unramified and defined over Fq, then the pullback of Xq

to X1 is trivial if all super-singular points split completely in Xq.
Thus our strategy is the obvious one: we reduce the cover XW → X0(N) to character-

istic q, and attempt to study the splitting pattern of the super-singular points. The main
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issue is to make a good choice of q, so as to make applicable the theorem of Ihara. This,
of course, is a global question, since X0(N) has plenty of unramified covers in positive
characteristic, coming from the fundamental group∗. Any successful argument has to be
global, and so we study the super-singular points by choosing an auxiliary imaginary
quadratic field K, and an auxiliary prime p, and then studying the splitting patterns of
CM points defined over the anti-cyclotomic tower H∞ of conductor p∞. (Recall here that
we are dealing with a cover of degree �r.) As is well known (see the results of [Vat02]), the
CM points defined over H∞ lift the super-singular points in characteristic q, for every q

which remains inert in K. Given a CM point P ∈ X0(N)(H∞), we see that the points
over P in the cover XW are defined over an extension L/H∞, of degree dividing �r. The
main point of our strategy is to show that the field generated by the fibres above all the
CM points is finite over H∞.

Indeed, we will prove in § 4 below the following results. The notation in the statements
is as above. We fix an auxiliary imaginary quadratic field K of discriminant D, such that
all primes dividing N� are split in K, and write H∞ to denote the compositum of all
anti-cyclotomic fields over K of conductor pn, as n tends to ∞. Here p is a prime such
that p � ND�.

Theorem 1.19. Let L/H∞ be the compositum of all extensions of H∞ of degree divid-
ing �r which are unramified outside the set Σ consisting of primes above r | N , with
r �= �. (In particular, L is unramified at primes above �, and all the primes in Σ are split
in K.) Then the extension L/H∞ is finite.

Theorem 1.20. Let N be a positive integer, and let XW → X0(N) be a cover arising
from an isogeny JW → J0(N), where W ⊂ J0(N) is a finite Q-rational subgroup isomor-
phic to µn as a Galois module. Let P ∈ X0(N)(H∞) be any CM point. Then any point
in the fibre over P in XW is rational over the extension L/H∞ defined above.

In light of Ihara’s criterion, it is clear that the two theorems above imply Theorem 1.1.
Indeed, using the Tchebotarev density theorem, one shows that there exist infinitely
many primes q which are inert in K and split completely in L/K. Note that any inert
prime automatically splits in H∞/K, since the latter is anti-cyclotomic, and that L/H∞
is finite by Theorem 1.19. Thus L/Q is locally of degree 2 at primes above such q. But now
Theorem 1.20 implies that the fibres over the CM points are rational over L, and reducing
mod q shows that the fibres above the super-singular points are rational over Fq2 .

We will briefly discuss the proofs of Theorems 1.19 and 1.20, starting with the former.
Basically, one needs to control the �-part of the class group in the p∞-anti-cyclotomic
tower over K; this is an anti-cyclotomic analogue of a theorem of Washington [Was78].
We accomplish this by using recent results of Hida [Hid03] on the indivisibility of special
values of Hecke L-functions, and the main conjecture for Hecke characters that was
proved by Rubin [Rub94]. However, the required bounds for the class groups do not
follow directly from the results of Hida and Rubin, as the orders of the class groups are

∗ We need to explain at some point what is meant by reducing a given cover XW → X0(N) to
characteristic q, since the given XW is defined only over Q. Since this is a somewhat technical point, we
postpone the discussion to § 4.
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not given by critical values of L-functions. Indeed, if Hn denotes the ring class field of
conductor pn and χ is a character of Hn/K, then the L-function L(s, χ) is the L-function
of a theta series associated to a weight one modular form, and so admits no critical
values at all. Thus we proceed by a slightly circuitous route, replacing the character χ

by a congruent character χξ which does admit critical values, and studying the �-adic
Iwasawa theory of χξ.

To complete the proof of Theorem 1.19, we have to control the possibilities for ramifi-
cation at the specified finite set of primes. This is easy, since we only allow ramification at
split primes (which are finitely decomposed in H∞), and we are excluding the possibility
of ramification above �. Note that the theorem is false if we allow ramification at inert
primes, or at primes above �. The proof of Theorem 1.19 may be found in § 3.

On the other hand, Theorem 1.20 is geometric, and boils down to a certain property
of isogenies of semi-stable abelian varieties over unramified extensions of Qp. The main
result states that if A′ → A is an isogeny of abelian varieties over an unramified extension
of Qp, with kernel isomorphic to Z/�Z, then the induced map A′(E) → A(E) is surjective,
where E denotes the maximal unramified extension of Qp, provided either that A and A′

have good reduction at p, or are semi-stable at p and � = p. The latter case is crucial to
ensure that the fields appearing in Theorem 1.19 are unramified above �. Note also that
A′(E) → A(E) is not necessarily surjective if the isogeny A′ → A has kernel isomorphic
to Z/�Z, with � �= p. (We would like to point out to the reader that the p appearing
in this discussion is not the same p as the conductor of the ring class extensions above.
However, since �, p and q are all already assigned, we are forced to recycle.)

Finally, we make a few comments about the proof of Theorem 1.10. The basic idea is
very simple. Suppose that C is an isogeny class of semi-stable elliptic curves. Let E0 ∈ C
denote the strong Weil curve for X0(N), and consider any étale isogeny E′ → E0. If E1

denotes the strong Weil curve for X1, we want to show that E1 is minimal. Equivalently,
we want to show that there is an étale map E1 → E′. We know in any case from
Remark 1.8 that the Shimura cover E1 → E0 has constant kernel, and it is easy to check
that it is in fact étale, at least over Z[ 12 ].

It suffices to show that E′ → E0 is a subcover of the Shimura cover. Thus let K ⊂
E0 ⊂ J0(N) denote the kernel of the dual isogeny E0 → E′. Then we must show that K

is contained in the Shimura subgroup. Now suppose that E′ → E0 has degree �, for some
odd prime �. Then E0[�] is reducible and has composition factors Z/�Z and µ� (since E0

is semi-stable). Since E′ → E0 is étale, one checks that K ∼= µ�. But now Theorem 1.1
implies that any subgroup isomorphic to µ� is contained in the Shimura subgroup, as
required.

To handle the case of a general étale isogeny E′ → E0, one has to work a bit harder.
It suffices to consider an étale isogeny E′ → E0 of degree �r, for a number prime �, and
show that the subgroup K constructed above is contained in the Shimura subgroup. This
is not so easy, because it is false in general that the kernel of a cyclic étale �r-isogeny
is isomorphic to Z/�rZ. (For example, X1(11) admits a cyclic and étale 25-isogeny, but
there are no elliptic curves with points of order 25.) Thus one cannot apply our results on
the Shimura subgroup directly. To circumvent this problem, we show that the case r � 2
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happens only finitely often. The basic idea is to construct an étale isogeny E0 → E′′ of
degree � using a subgroup coming from the cuspidal group in J0(N) (and a multiplicity
one theorem to ensure that it is contained in E0). Then Mazur’s list of rational isogenies
implies that any cyclic étale isogeny E′ → E0 of degree �r must have r � 1, as the
composite E′ → E0 → E′′ is an étale, hence cyclic, isogeny of degree �r+1, so that
r + 1 � 2 except for finitely many explicitly known cases. One can check Stevens’s
conjecture by computer in these finitely many cases, as in Remark 1.12, so that we may
in our analysis restrict to isogenies of degree �, and these may be handled as described
above. We point out also that the proof of Theorem 1.11 follows very similar lines to
those sketched above.

2. Galois covers

In this section we want to consider the following situation. Let L/Q denote a number
field, and let A denote an abelian variety over L. We consider an isogeny A′ → A, whose
kernel is isomorphic as a group scheme to the constant group Z/nZ over L. Here n = �r

is a power of an odd prime �. Let P denote any point in A(L). Then it is clear that
the fibre above P is rational over some extension L′/L of degree dividing n, and our
goal is to control the possible ramification in L′. Not surprisingly, the answer will turn
out to depend on the reduction types of the abelian varieties A and A′, as well as the
ramification over Q in the field L. Analysing the ramification at primes of bad reduction
of A, or at primes above 2�, will require special care.

2.1. For our purposes, it suffices to work under the following simplifying assumptions.

(i) � is odd.

(ii) A is semi-stable.

Since there are still several cases to consider, and since we will actually make some more
assumptions later, the reader may wish to look immediately at Corollary 2.5 to get an
idea of the final result.

In any case, if P denotes any prime of L of residue characteristic p, we may analyse the
ramification in L′ at primes above P simply by studying the corresponding local problem
and working over the completion F = LP of L at P. Thus F is a finite extension of Qp.
We consider an abelian variety A over F , and a fixed F -isogeny φ : A′ → A such that the
kernel K is isomorphic as a GF -module to Z/nZ, where n = �r, for some odd prime �.
In order to proceed, we need to impose a further hypothesis.

(iii) If P has residue characteristic p = 2, then A and A′ have good reduction at P.
(But � is always assumed to be odd.)

Note that we have not excluded the case � = p if p is odd.
We start by considering the case where L/Q is unramified at P. Thus F/Qp is a finite

unramified extension, Write OF for the ring of integers in F . We will write E = Qunr
p to

denote the maximal unramified extension of Qp (or F , since F/Qp is unramified), and
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let R = Zunr
p denote the ring of integers in E. For an abelian variety A over F , we write

AR for the Néron model of A over R, and As for the special fibre. Here s denotes the
closed point of Spec(R). Recall also that we have assumed that our abelian varieties A

and A′ are semi-stable.

Lemma 2.2. Let A′ be a semi-stable abelian variety over F , and let K denote a subgroup
of A(F ) isomorphic to Z/nZ. Then the reduction map induces an injection K → A′

s.

Proof. If p = 2, our hypotheses require that � be odd, and that A have good reduction,
and the result is well known in this case (for any p of good reduction, and � �= p).

Thus we may assume that p is odd. Let K = KR denote the scheme theoretic closure
of (Z/nZ)F in the Néron model A′

R. Then K is a quasi-finite and flat scheme over
Spec(R), since A′ is a semi-stable abelian variety. Furthermore, we have a morphism
(Z/nZ)R → K, which is an isomorphism along the generic fibre.

Since R is Henselian and K is separated, we may consider the finite part K0 of K.
Then K0 is a finite flat group scheme over Spec(R), and the complement of K0 in K

has empty special fibre. Since (Z/nZ)R is finite flat, and formation of the finite part is
functorial, the morphism (Z/nZ)R → KR factors through K0. Since (Z/nZ)R → KR is
an isomorphism along the generic fibre, and the complement of K0 in K has empty special
fibre, we see that in fact K = K0 and K is finite as well as flat. But F/Qp is unramified,
and (Z/nZ)R → K0 is an isomorphism on generic fibres. Now since p is odd, and F/Qp

is unramified, a theorem of Raynaud [Ray74] implies that (Z/nZ)R → K0 = K is an
isomorphism. Since KR is a closed subscheme of A′

R, the result follows. �

Proposition 2.3. Let F/Qp be unramified. Suppose that A′ → A is an isogeny of
abelian varieties over F with kernel isomorphic to Z/nZ, with n = �r as above. Suppose
that either of the following conditions hold.

(1) A and A′ have good reduction at p, and � is odd.

(2) A and A′ have semi-stable reduction, and � = p is odd.

Then the induced homomorphism A′(E) → A(E) of E-valued points is a surjection,
where E = Qunr

p

Proof. Suppose first that p is a prime of good reduction for A and A′. Then the sequence
0 → KR → A′

R → AR → 0 is exact, and there is a surjection of abelian varieties A′
s → As

over F̄p. Since the residue field of R is algebraically closed, Hensel’s lemma implies that
for each P ∈ A(R), there exists P ′ ∈ A′(R) such that P ′ 	→ P , modulo the kernel
A0 of the reduction map A → As. But the kernel of our isogeny is constant, and has
trivial intersection with A′

0 (the kernel of reduction in A′) by the lemma above. Since A0

and A′
0 are given by the formal groups of A and A′, respectively, one checks that there is

an isomorphism A′
0 → A0 (for example, by looking at the Tate modules), and the claim

follows in this case.
Now consider the case when A and A′ have bad reduction at p. According to our

hypotheses, this implies that � = p and that the reduction is semi-stable. Under
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these conditions, we are required to show that H0(I, A′) → H0(I, A) is surjective,
where I = IF = GE denotes the inertia group. Equivalently, we need to show that
H1(I, K) → H1(I, A′) is injective. Let κA′ denote the usual Kummer map on A′, so that
κA′(A′(E) ⊗ Qp/Zp) ⊂ H1(GE , A′[p∞]). Since A′ is semi-stable, results of Coates and
Greenberg (see [CG96, formula (4.9), p. 153]) show that the image of κA′ maps to zero
in H1(IF , A′[p∞]unr), where A′[p∞]unr is the maximal étale quotient of the p-divisible
group of A′. But Ks → A′

s being injective by the lemma above, we see that K has triv-
ial intersection with the connected part of A′[p∞], which implies that K → A′[p∞]unr

is injective. In particular, A′[p∞]unr is non-trivial. Since IF acts trivially on A′[p∞]unr

and K, we see that H1(IF , K) → H1(IF , A′[p∞]unr) is injective as well. It follows that the
image of H1(IF , K) in H1(IF , A′[p∞]) has trivial intersection with the image of κA′ . Since
the image of κA′ is the kernel of H1(IF , A′[p∞]) → H1(I, A′)p, the result follows. �

Remark 2.4. Note that the argument at the beginning of the proof is valid even if F/Qp

is ramified, provided that A and A′ have good reduction at p, and � �= p. We we will use
this below.

The following corollary is now immediate.

Corollary 2.5. Let F/Qp be any finite extension. Let A denote an abelian variety
over F , and let A′ → A denote an isogeny with kernel K isomorphic to Z/nZ (as a
GF -module), where n = �r, for an odd prime �. Let P denote any point in A(F ) and let
P ′ ∈ A′(F̄ ) denote any point in the fibre above P . Then the point P ′ is rational over an
unramified extension of F under each of the following hypotheses.

(1) A has good reduction and � �= p (p = 2 is allowed).

(2) A has semi-stable reduction, and � = p is odd, and F/Qp is unramified.

Corollary 2.6. Let F/Qp be any finite extension. Let X denote a smooth curve over F ,
and let J denote its Jacobian. Assume that X has an F -rational point y, and let J ′ → J

denote an isogeny with kernel K isomorphic to Z/nZ (as a GF -module), where n = �r,
for an odd prime �.

Let X ′ → X denote the pullback of J ′ → J , under the inclusion ι : X → J induced by
the rational point y. Let x ∈ X(F ), and let x′ ∈ X ′ denote any point in the fibre over x.
Then the point x′ is rational over an unramified extension of F under each of the two
conditions listed in Corollary 2.5 (with A = J).

Proof. The fibre in X ′ over x may be canonically identified with the fibre in J ′ over ι(x).
�

Applying this to the case of X = X0(N), and J = J0(N), we obtain the following
result.

Corollary 2.7. Let L denote a number field which is unramified at all primes dividing N ,
and let P denote any point in X0(N)(L). Let J ′ → J0(N) be any L-isogeny with kernel K

isomorphic to Z/nZ. Here n = �r for an odd prime �, where � is a prime such that �2 � N ,
and such that � is unramified in L.
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Then if X ′ → X0(N) is the induced cover of X0(N), and P ′ is any point in X ′(Q̄) lying
over P , then P ′ ∈ X ′(L′), where L′/L is a finite abelian extension of degree dividing �r,
unramified outside the primes dividing N . If N is divisible by precisely the first power
of �, then L′ is unramified at primes above �.

Proof. It is clear by Galois theory that L′ is a finite abelian extension of L, with degree
dividing �r. By the corollary above, L′ is unramified at primes above p if p is a prime
of good reduction, namely, if p is away from N . Furthermore, the corollary also implies
that L′ is unramified at primes above � if � is odd and if �2 � N , since it is well known
that J0 has semi-stable reduction at � in that situation. �

3. Unramified extensions of anti-cyclotomic fields

In this section, we consider an imaginary quadratic field K, and the extensions Hn/K,
where Hn is the ring class field of conductor pn, for an odd prime p which is unramified
in K. Our goal is to bound the �-part of the class group of Hn, where � is a prime distinct
from p, as n tends towards infinity. Our main tools will be Rubin’s main conjectures for
imaginary quadratic fields, and a theorem of Hida on the �-part of special values of Hecke
L-functions. As we have already remarked in the introduction, the proof is somewhat
circuitous, since the orders of the class groups of interest are not given by critical values
of L-functions.

For the convenience of the reader, we remark also that the prime p in this section does
not play the same role in our arguments as the prime called p in the section above.

3.1. We shall make the following assumptions on the data K, � and p.

(1) The unit group O×
K consists of ±1.

(2) The prime � is odd, and split in K.

(3) The number p − 1 is relatively prime to � if p is split in K.

(4) The number p + 1 is relatively prime to � if p is inert in K.

Now let On denote the order Z + pnOK of conductor pn in K. Let Gn = Pic(On)
denote the Picard group of On. Then #Gn = hK · pn−1 · (p ± 1)/u, where hK is the class
number of K, and u = 1

2#O×
K = 1 under our hypotheses. The sign ± is + if p is inert

in K, and − if p is split.
We may decompose Gn = ∆ × gn, where ∆ is the �-Sylow subgroup of Gn, and the

order of gn is relatively prime to �. Note that the group ∆ is independent of n, and
is trivial if the class number of K is prime to �. The possibility that ∆ is non-trivial
will cause some complications in the sequel. However, it does not seem to be possible to
exclude this case in our applications. We write Fn ⊂ Hn for the fixed field of ∆. Thus
Fn/K is the maximal subfield of Hn/K of degree prime to �.

Let N be any Z�[Gn] module. Since the order of Gn may be divisible by �, we can-
not immediately break up N according to the characters of Gn. However, we can still
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decompose according to the characters χ of gn. Thus let o denote a finite extension of Z�

containing the values of the character χ, and let

eχ =
1

#gn

∑
σ∈gn

χ(σ)σ−1 ∈ o[gn]

denote the usual idempotent associated to χ. This makes sense since the order of gn

is prime to �. For any character χ of gn, we will write Nχ to denote eχ(N ⊗ o). Then
N ⊗o ∼= ⊕Nχ, as χ runs over all characters of gn, provided, of course, that o is sufficiently
large. The precise choice of o will not be relevant to our arguments. We only need the fact
that N is finite (respectively, zero) if and only if each Nχ is finite (respectively, zero),
which is independent of the choice of o. Our basic example will be obtained by taking N

to be the �-Sylow subgroup An of the class group of Fn.
Before proceeding, we make one simple observation, which is basic to everything that

follows. Let χ denote a character of gn, and let Aχ
n denote the χ-component of the �-

Sylow subgroup An of the ideal class group of Fn. If m > n, we may equally well view χ

as a character of gm by inflation, and form the χ-part Aχ
m of Am. There is a natural map

An → Am induced by extension of ideals, which gives rise to a map Aχ
n → Aχ

m.

Lemma 3.2. Suppose that m � n, and χ is any character of gn. Then the natural map
Aχ

n → Aχ
m is an isomorphism.

Proof. Let F un
i denote the subfield of the Hilbert class field of Fi cut out by Ai, and

let χ′ =
∏

χσ, where the product is taken over the conjugates of χ over Q�. Then χ′ is
an irreducible Z�-representation, and we write Fχ′

i for the subfield of F un
i corresponding

to the χ′-isotypic component of Ai. To prove the lemma it suffices to show that

Fχ′

n · Fm = Fχ′

m .

Notice that Fχ′

i /Fi is an unramified abelian �-extension. In particular, Fχ′

n ∩Fm = Fn,
since the degree of the fields Fi over the base K is assumed prime to �. Thus Fχ′

n · Fm is
contained in Fχ′

m .
To prove the reverse inclusion, we may argue as follows. Since Gal(Fm/K) is a group

of order prime to �, we see that the extension

0 → Gal(Fχ′

m /Fm) → Gal(Fχ′

m /K) → Gal(Fm/K) → 0 (3.1)

is in fact a semidirect product. Choose a section Gal(Fm/K) → Gal(Fχ′

m /K). Then the
subgroup Gal(Fm/Fn) ⊂ Gal(Fm/K) is normal inside Gal(Fχ′

m /K), since Gal(Fm/K)
acts on Gal(Fχ′

m /Fm) via the representation χ′, which is trivial on Gal(Fm/Fn) by
assumption. Let F ′ ⊂ Fχ′

m denote the fixed field of Gal(Fm/Fn). One sees from equa-
tion (3.1) that there is an exact sequence

0 → Gal(F ′/Fn) → Gal(F ′/K) → Gal(Fn/K) → 0,

where Gal(F ′/Fn) is isomorphic to Gal(Fχ′

m /Fm). Furthermore, Gal(Fn/K) acts on
Gal(F ′/Fn) via the representation χ′.
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We claim now that F ′/Fn is unramified. But this is clear, since Fχ′

m /Fm is unramified,
so that any ramification in Fχ′

m /K comes from Fm/K and all the ramification indices
must divide the degree of Fm/K, which is prime to �. Since the degree of F ′/Fn is a
power of � (recall that Gal(Fχ′

m /Fm) is an �-group) it follows that F ′/Fn is unramified.
Thus F ′ ⊂ Fχ′

n , and Fχ′

m descends to Fn. �

3.3. Now let n(χ) denote the smallest integer such that χ factors through Gal(Fn/K).
Then, in view of the lemma above, we have Aχ

n = Aχ
m for all n, m � n(χ). In other

words, Aχ
n = Aχ

m whenever these expressions make sense. Now, letting A∞ denote the
direct limit of the groups An, we see that A∞ = Gal(M∞/F∞) where F∞ = ∪Fn, and
M∞ is the maximal abelian unramified �-extension of F∞. Viewing χ as a character as
Gal(F∞/K), it then follows that Aχ

∞ = Aχ
n for all n � n(χ). In the sequel, we will be

concerned with proving that Aχ
∞ = 0 for all but finitely many characters χ, as χ runs

over the set of characters of the finite extensions Fn/K, for n → ∞. In view of the above,
it suffices to prove that, for all but finitely many χ, we have Aχ

n = 0 for any convenient
choice of n such that χ factors through Fn/F .

3.4. From now on, we fix the data consisting of a character χ and a base field F = Fn,
such that n � max{n(χ), 1}. We put F = Fn and write g for Gal(F/K). The character χ

is the primary object here, and as explained above, we may make any convenient choice
of F .

Next we fix a factor l of � in K. (Recall that � is assumed to be split.) We let Dl and Il

denote fixed decomposition and inertia groups, respectively. Let Kl
∞ denote the unique Z�

extension of K unramified outside l. We let F l
∞/F denote the compositum of F with Kl

∞.
(Here F l

∞ is to be distinguished from F∞ = ∪Fn, which is a p-ramified extension.)
Observe here that since F/K has degree prime to �, we have Gal(F l

∞/K) = g × Γ , where
Γ ∼= Z�. Thus we can break up any Gal(F l

∞/K)-module according to the characters χ

of g. We fix a finite extension o/Zl containing the values of the given character χ, and
put Λ = o[[Γ ]] ∼= o[[T ]].

Let N l
∞ denote the maximal abelian pro-� extension of F l

∞ which is unramified outside
the primes above l. Then X l

∞ = Gal(N l
∞/F l

∞) ⊗Z�
o is a module over o[[Gal(F l

∞/K)]] =
o[[g×Γ ]]. We will put a subscript on the objects X l

n,∞, N l
n,∞, etc., if we wish to indicate

the dependence on the chosen base F = Fn.
In the sequel we will drop the superscript of l on X l

∞ since the notation will be
cumbersome when we consider χ-components, and there is no other X∞ anywhere. Thus
let Xχ

∞ = eχ(X∞) denote the χ-isotypic part of X∞. Then Xχ
∞ is a module over Λ. It is

well known (see [dS87, p. 103]) that Xχ
∞ is torsion over Λ.

Now we want to check that the modules Xχ
∞ depend only on the character χ, and not

on the base field F = Fn. Thus suppose that m � n, and view the character χ as a
character of Fm. Let Xχ

i,∞ denote the χ-isotypic part of Xi,∞, where the dependence on
the base Fi is indicated by the subscript i.

Lemma 3.5. The natural map Xχ
n,∞ → Xχ

m,∞ is an isomorphism.

Proof. This follows from an argument similar to that which proved Lemma 3.2, using
the fact that F l

m,∞/F l
n,∞ is a finite extension of degree prime to �. �
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Now if F ′ is any subfield of F l
∞, we write U(F ′) for the group of local units in

F ′ ⊗ K� which are congruent to 1 modulo primes above l. Let C(F ′) denote the group
of elliptic units in F ′ and let C̄(F ′) denote the closure in U(F ′) of C(F ′) ∩ U(F ′).
Put U∞ = limF ′ U(F ′) and C̄∞ = limF ′ C̄(F ′), where the limits are taken over all finite
extensions F ′ ⊂ F l

∞, with respect to the norm maps. It is easy to see that U∞ and
C̄∞ are finitely generated Λ-modules, and that U∞/C̄∞ is a torsion Λ-module (again,
see [dS87, p. 103]).

The following theorem is a case of the main conjectures for imaginary quadratic fields,
as proven by Rubin.

Theorem 3.6 (Rubin). Suppose that � does not divide the number of roots of unity
in K. Let χ be a character of g. Then the Λ modules (U∞/C∞)χ and Xχ

∞ are both
torsion and have the same characteristic ideal.

Proof. The fact that the modules in question are torsion was already mentioned above.
For the equality of the characteristic ideals, we refer to [Rub94, Theorem 2 (i)]. Note,
however, that the prime p in Rubin’s notation corresponds to � in the present situation.

�

3.7. The link of Rubin’s theorem to the usual statement of the main conjectures comes
from the fact that the characteristic ideal of U∞/C̄∞ is known to be generated by a
certain �-adic L-function. We now proceed to explain this connection.

Fix an idele class character λ of K, such that λ∞ : (K ⊗ R)× → C satisfies λ∞ = ι2,
where ι is the restriction of a complex place of K. Thus λ has infinity type (2, 0). We
shall assume further that λ has conductor 1. Such a λ always exists under the hypothesis
that O×

K = ±1 (see [dS87, § 1.3, Lemma 1.4 (ii), p. 41]). Then λ defines a character
of ideals in K such that λ((α)) = ι(α)2, for a principal ideal (α) of K. Since the class
group of K is finite, it is clear that λ takes values in some algebraic extension of K. If
we fix an embedding Q̄ ⊂ Q̄�, and a factor l of � in K associated to the given embed-
ding, we can view λ as a Galois character λl defined on Gal(K1(�∞)/K), where K1(�∞)
denotes the compositum of all ray class fields of conductor a power of �. Then we have
λl(Frob(q)) = λ(q) for any prime ideal q with (q, �) = 1. Since λ has infinity type (2, 0) it
follows that in fact λl factors through Gal(K1(l∞)/K), where l is the prime induced by

ιl : K → Q̄ ⊂ Q̄�.

Then if we identify the inertia group Il ⊂ Gal(K1(l∞)/K) with the image of the local
units Ul via the Artin map, we see that the restriction of λl to Ul is given by ι2l .
Since Ul

∼= (Z/�Z)× × Z� (� is split in K), it follows that ξl = λ
(�−1)/2
l

factors through
Gal(Kl

∞/K). We write ξ = λ(�−1)/2 for the complex character corresponding to ξl. Then ξ

has conductor 1 and infinity type (� − 1, 0).
Now recall that χ denotes a character of g = Gal(F/K), and that g has order prime

to �. Then, writing F l
∞ for the compositum of F with the Z�-extension Kl

∞/K as before,
we find that F l

∞ is a Z�-extension of F unramified outside l. Let G = Gal(F l
∞/K) = g×Γ ,

where Γ ∼= Z�
∼= Gal(Kl

∞/K). Then we may view the characters of the form εl = χξm
l ,
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m ∈ Z, as characters of G. We will write ε for the grossencharacter of K whose l-adic
avatar is εl. Note also that the conductor of ε = χξm is a power of p, since the original
λ was selected to have conductor 1. (But the Galois character εl is of course non-trivial
on the inertia group Il, as is typical with l-adic representations of Galois groups.)

Our goal is to describe a certain l-adic L-function associated to the character χ. This
L-function is most simply described in terms of a measure on the Galois group G = g×Γ ,
and the integrals of the various characters ε = χξm. We fix the notation as follows. For
each positive integer m, and each character χ of g, we put

εl = εl(χ, m) = χξm
l = χλ

(�−1)m/2
l

.

As we have already remarked, each such εl has conductor dividing pn and has infinity
type (k, 0) with k = (� − 1)m > 0.

With all this notation in mind, the �-adic L-function of interest arises from a measure φ

on G satisfying the following formula (see [dS87, Theorem 4.12, p. 76], as well as the
remarks below):

∫
G

εl dφ = G(ε) · (1 − ε(l)/�) · (k − 1)!
Lp(ε−1, 0)
Ω−k

� Ωk
∞

. (3.2)

Here εl = εl(χ, m), and Lp(ε−1, 0) denotes the value of the L-series
∑

a
ε−1(a)N(a)−s at

s = 0. The sum is taken over ideals a ⊂ OK that are relatively prime to p. The numbers
Ω∞ and Ω� are certain complex and �-adic periods respectively. The number G(ε) is ‘the
Gauss sum’ defined in [dS87, p. 75]. Note that G(ε) has complex absolute value equal to
�n(ε)(k−1), where n(ε) is the exact power of l dividing the conductor of ε. Furthermore,
if ε = χξm with χ a character of g as above, then G(ε) = 1, since ε has conductor prime
to l [dS87, Remark (i), p. 75].

Remark 3.8. There is a small misprint in [dS87, Theorem 4.12]. The quantity written
there as L∞,f(ε−1, 0) should be replaced by

(k − 1)!Lf(ε−1, 0) = (2π)kL∞,f(ε−1, 0).

Indeed, according to [dS87, p. 37], the Euler factor at infinity in L∞,f(ε−1, s) is given
by Γ (s + k)/(2πs+k), so that the right-hand side of formula (31) is not even algebraic.
I am informed by de Shalit that the extra powers of π were inadvertently absorbed into
the period, and that the same error occurs in Theorem 4.14 (p. 80). An accurate formula
may be found in Theorem 4.11 (p. 74), which deals with a slightly different situation, or
in [Yag82, p. 411].

Remark 3.9. We point out also that the measure constructed in [dS87] is defined on
Galois groups of the form Gal(K1(prl∞)/K), where K1(prl∞) denotes the compositum
of the ray class fields K1(prlt), as t tends to infinity. Taking r = n (where F = Fn

is our fixed base field) we see that F l
∞ ⊂ K1(pnl∞), and that the characters ε(χ, m)

factor through G = Gal(F l
∞/K). Thus de Shalit’s measure descends to G via the natural

projection Gal(K1(pnl∞)/K) → G.

https://doi.org/10.1017/S147474800500006X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800500006X


Multiplicative subgroups of J0(N) and applications to elliptic curves 301

Remark 3.10. The measure we have defined is imprimitive at p in the sense that it
interpolates L-series deprived of the Euler factor at p. This defect is vacuous unless χ is
one of the finitely many characters factoring through the Hilbert class field. We are forced
to work over the base field Fn for n � 1 by virtue of the fact that the construction of the
measures in [dS87, Theorem 4.12] requires f to be a non-trivial idea, so dealing with char-
acters that are everywhere unramified causes some annoying technicalities. In this paper
we are only concerned with results pertaining to almost all χ, so it will be convenient to
discard the finitely many unramified χ, thereby avoiding irrelevant complications.

Thus, for each character χ of g, we deduce that there exists a measure φχ on Γ such
that ∫

Γ

ξm dφχ = (1 − χξm(l)/�)(k − 1)!
Lp(χ−1ξ−m, 0)

Ω−k
� Ωk

∞
. (3.3)

Here k = (� − 1)m and m � 1. Since Γ ∼= Z�, we may identify the measure φχ with a
power series fχ ∈ o[[T ]]. The power series fχ is characterized by fχ(um − 1) =

∫
Γ

ξm dφ,
where u = ξ(γ), for a fixed topological generator γ of Γ . Note also that formula (3.3)
implies that fχ depends only on χ, but not on the base field F = Fn, at least if n � 1.

The following theorem is basically due to Coates and Wiles. Recall that χ is a character
of p-power conductor. For technical reasons in the statement, we will exclude the finitely
many characters that factor through the Hilbert class field.

Theorem 3.11. Suppose that χ has conductor divisible by p. Then the characteristic
ideal of (U∞/C̄∞)χ is generated by fχ.

Proof. This may be found in [dS87, Lemma 1.10, p. 105]. Note, however, that de Shalit
frames his result in terms of a ray class field K1(pn); that everything descends to the
subfield F = Fn is a trivial verification, using the fact that the elliptic units in F are
norms of those in the ray class field. Note also that we have insisted that χ be ramified
at p in order to be consistent with our definition of the p-adic L-function above, which
is imprimitive at p if χ is unramified. �

Rubin’s theorem may therefore be restated as follows.

Corollary 3.12. Suppose the conductor of χ is divisible by p. Then the characteristic
ideal of Xχ

∞ is generated by the p-adic L-function fχ(T ).

With all this in mind, we can now approach the key results in this section, which state
that the power series fχ are almost always units. This is a consequence of a theorem
due to Hida. Together with the main conjecture due to Rubin, we obtain the fact that
the modules Xχ

∞ are almost always trivial. Thus, recall that F∞ = ∪Fn ⊂ K(p∞) is
contained in the p-anti-cyclotomic tower, and put g∞ = Gal(F∞/K). Then we have the
recently announced theorem of Hida.

Theorem 3.13 (Theorem 1.1 of [Hid03]). Let ξ denote a grossencharacter of K

with conductor 1, and with infinity type (k, 0) for some k > 0. Let p denote an odd
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prime number. If � �= p is an odd prime which splits in K, then, for all but finitely many
anti-cyclotomic characters χ of p-power conductor, the number

Γ (k)
Lp(χ−1ξ−1, 0)

Ωk
∞

= (k − 1)!
Lp(χ−1ξ−1, 0)

Ωk
∞

is algebraic and an �-adic unit, for a fixed embedding Q̄ ⊂ Q̄�. Here Γ (s) denotes the
Gamma function and Lp denotes the L-series deprived of the Euler factors at p.

Remark 3.14. For the convenience of the reader, we translate Theorem 1.1 of [Hid03]
into the notation used here. First of all, note that the case of imaginary quadratic fields
is indeed included in Hida’s results, since the class number of Q is one (and so Q cannot
satisfy his condition M1). Note also that Hida’s � corresponds to our p, and vice versa.
Finally, characters of infinity type (r, s) in Hida correspond to infinity types (−r, −s)
in this paper and in [dS87]. To get the formula given above, observe that χ−1ξ−1 has
infinity type (k, 0) in Hida’s notation, so the formula above is the same as his, with
F = Q and κ = 0.

Remark 3.15. We would also like to point out here that the paper [Hid03] is still in
preprint form at the time of writing. While we have tried to ensure that the references
to this work are accurate, the reader should always consult the latest version of the
manuscript available from Hida’s web page.

Our key result may now be stated as follows.

Theorem 3.16. Let χ run over the set of finite-order characters of g∞. Then, for all
but finitely many χ, the power series fχ is invertible in o[[T ]].

Proof. Put ε = χξ. Then it suffices to show that

fχ(u − 1) = G(ε)(1 − ε(l)/�)(� − 2)!
Lp(ε−1, 0)

Ω
−(�−1)
� Ω

(�−1)
∞

is an �-adic unit, for all but finitely many χ. Note first of all that the �-adic period Ω�

and the number G(ε) are both units (see [dS87, p. 75], both for the definition of the
period Ω�, and a discussion of the Gauss sum; in fact G(ε) = 1 under our hypotheses). In
view of Hida’s theorem above (with k = � − 1), it suffices to show that the Euler factor
at � is an �-adic unit. But this is given explicitly by

(1 − ε(l)/�) = (1 − χξ(l)/�) = (1 − χ(l) · ξ(̄l)−1��−2),

since l̄l = �, and ξ(�) = ��−1. But now ξ(̄l) is an l-adic unit, as follows easily from the
facts that l is the prime over � singled out by our fixed embedding Q̄ → Q̄�, and ε(̄l) is
divisible only by primes above l̄ (finiteness of the class number). So the Euler factor is a
unit as well. �

In order to state the next result, which puts everything together, we recall our various
notations.
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(i) χ is any finite order character of g∞, as in the theorem above.

(ii) n � 1 is any integer such that χ factors through g = gn = Gal(F/K) where F = Fn.
The character χ is the primary object, and we simply choose such an n, depending
on χ.

(iii) Aχ
n is the χ-component of the ideal class group of F = Fn.

(iv) F∞ = ∪Fn, and A∞ = lim An = Gal(M∞/F∞), where M∞ is the maximal unram-
ified abelian pro-� extension of F∞

(v) F l
∞ is the unique Z�-extension of F unramified outside primes above l. This depends

on the choice of n.

(vi) X∞ = Gal(N l
∞/F l

∞), where N l
∞ denotes the maximal abelian pro-� extension of

F l
∞ that is unramified outside primes above l.

(vii) Xχ
∞ is the χ-component of X∞.

According to Lemmas 3.2 and 3.5, the groups Aχ
∞ and Xχ

∞ depend only on χ and not
on the choice of base field F . We have Aχ

∞ = Aχ
n for any choice of n sufficiently large.

Corollary 3.17. We have Aχ
∞ = Xχ

∞ = 0 for all but finitely many characters χ of g∞.
For all but finitely many χ, we have Aχ

n = 0 for all n � 0.

Proof. Without loss of generality, we may exclude the finitely many characters that
factor through the Hilbert class field. Then the statement about Xχ

∞ follows from the
main conjecture. Indeed, the module (U∞/C̄∞)χ is annihilated by fχ, and the latter is
a unit for almost all χ. Thus (U∞/C̄∞)χ is pseudo-null for almost all χ, and by Rubin’s
theorem, the same is true for Xχ

∞. But Greenberg has shown (see [Gre78, end of § 4])
that X∞ has no non-zero finite Λ-submodule, so that Xχ

∞ is zero for almost all χ.
As for Aχ

∞, we know already that Aχ
∞ = Aχ

n if n is sufficiently large. So suppose that
Aχ

∞ = Aχ
n is non-trivial for some choice of n. Let χ′ =

∏
χσ, where χσ runs over the

conjugates of χ over Z�. Then χ′ is an irreducible Z�-representation, and Aχ′

n �= 0. Thus
there exists an unramified extension F ′/F (here F = Fn) with Gal(F ′/F ) a finite �-
group, such that Gal(F/K) acts on Gal(F ′/F ) via χ′. If χ �= 1, then χ′ �= 1 as well, so
that F ′ is linearly disjoint from F l

∞ over F . Indeed, F l
∞ = FKl

∞ is abelian over K, so that
Gal(F l

∞/F ) is trivial for the action of g = Gal(F/K). Thus F ′ · F l
∞ would be a non-trivial

unramified extension of F l
∞ contained in N l

∞. Since the χ-part of X∞ = Gal(N l
∞/F l

∞)
is zero for almost all χ, the statement about Aχ

∞ follows. The last statement results from
the fact that Aχ

n = Aχ
∞ for all n sufficiently large. �

3.18. We can now transfer everything back to the full ring class field Hn = K(pn). Thus
recall that Fn ⊂ Hn is the maximal subfield of Hn of degree prime to �. Then Gn =
Gal(Hn/K) = ∆ × gn, where g = gn = Gal(Fn/K) and ∆ is an �-group (independent
of n). Observe also that Hn/Fn is everywhere unramified, as the degree of Hn/Fn is a
power of �. Indeed, only primes above p are ramified in Hn/K, and the ramification index
of such primes in Hn is a divisor of (p ± 1)pn−1, which by our hypotheses is prime to �.
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Let Bn denote the �-Sylow subgroup of the ideal class group of Hn, and let Bχ
n denote

the χ-component, for any character χ of gn. Here gn is viewed as a subgroup of Gn.
Given a character χ of gn, we may as before view it as a character of gm ⊂ Gm, for
m � n. Thus we can form the χ component Bχ

m for all m � n. Let Bχ
∞ denote the direct

limit of the groups Bχ
m, for m � n. Then we claim that Bχ

∞ is finite for all χ, and that
Bχ

∞ = 0 for all but finitely many χ.
The first of these statements follows from the fact that Bχ

n = Bχ
m, for m � n, as in

Lemma 3.2, since Hm/Hn has degree prime to �. The second follows from the analogous
statement for Aχ

∞, but we have to argue carefully, since Hn/Fn may have degree divisible
by �.

Thus suppose that Bχ
∞ is non-trivial for some χ. Then Bχ

n is non-trivial for some n.
Then, defining χ′ as in the proof of Lemmas 3.2 and 3.5, we find that there exists an
extension H ′/H (here put H = Hn and F = Fn), such that Gal(H ′/H) is a finite �-
group, and such that g = Gal(F/K) acts via the representation χ′. Since ∆ is a finite
�-group, it follows that there exists a non-trivial quotient of Gal(H ′/H) on which the
action of ∆ is trivial, and g acts via χ′. Let L′/H be the corresponding extension. Then
L′ is abelian over F , since the action of ∆ is trivial. Since H/F is unramified, we see that
L′/F is in fact an abelian unramified �-extension. Since Gal(F/K) acts on the subgroup
Gal(L′/H) ⊂ Gal(L′/F ) via χ′, we find that there is a non-trivial unramified abelian
�-extension of F on which the action of Gal(F/K) is given by χ. But as we have already
seen, this can only happen for finitely many χ.

We may summarize these considerations in the following proposition. Let the hypothe-
ses on � and p be as above. Let Hn denote the ring class field of conductor pn, and let
Hun

n denote the maximal unramified abelian �-extension of Hn. We put H∞ =
⋃

Hn,
and let Hun

∞ =
⋃

Hun
n denote the maximal unramified �-extension of H∞.

Proposition 3.19. The extension Hun
∞ /H∞ is finite. Furthermore, there exists an m

such that Hun
n = Hun

m · Hn, if n � m.

For our purposes, it is necessary to have a slightly more general result, where we allow
ramification at a finite set of split primes.

Theorem 3.20. Let Σ denote a finite set of primes of K. Assume that all primes in Σ

are split in K, and that Σ does not contain any prime of residue characteristic �. Let
MΣ

∞ denote the maximal abelian pro-� extension of H∞, unramified outside primes in Σ.
Then XΣ

∞ = Gal(MΣ
∞/H∞) has finite �-rank.

Proof. The maximal everywhere unramified pro-� extension of H∞ is finite, according
to the proposition above. Now let q denote any prime in Σ. Then q is finitely decomposed
in H∞, since H∞/K is anti-cyclotomic, and q is assumed to be split in K. Let q′ denote
any factor of q in H∞. Let MΣ

n denote the maximal abelian pro-� extension of Hn,
unramified outside primes in from Σ, and let XΣ

n = Gal(MΣ
n /Hn). Then since q′ has

residue characteristic distinct from � by hypothesis, we see that q′ is tamely ramified in
MΣ

n /Hn. Thus the inertia group In,q′ at q′ in XΣ
n is the image under the reciprocity

map of the roots of unity in the completion of Hn at q′, and this is a cyclic group. Since
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this holds for every n � 0, it follows that the inertia group of q′ in XΣ
∞ is the surjective

image of the �-power roots of unity in the completion of H∞ at q′, which is a pro-cyclic
group. Thus each factor q′ contributes �-rank at most 1, and since there are only finitely
many factors of q for each q ∈ Σ, and only finitely many primes in Σ, the statement of
the theorem follows. �

The following corollary is an immediate consequence of the theorem.

Corollary 3.21. Let Σ be as above, and let r � 1 be an integer. For each n � 0, let Ln

denote the composite of all abelian extensions of Hn that are of degree dividing �r and
unramified outside Σ. Then there exists an m such that Ln = Lm · Hn, for n � m.

4. The Shimura subgroup

4.1. We can now prove that the Shimura subgroup is maximal. The basic ingredient is a
theorem of Ihara. To explain this, we need to introduce various models for the complex
curves Γ \ H∗, where Γ = Γ1(N) or Γ0(N), and H∗ denotes the union of the upper half
plane and the rational cusps.

Let S = Spec(Z[1/N ]), and let X0(N)S denote the coarse moduli space whose R-valued
points classify cyclic N -isogenies E → E′ of generalized elliptic curves over R, for any S-
scheme R. Similarly, let X1(N)S denote the moduli space classifying embeddings µN →
E. Note that this variant of X1(N) is usually written as X1(N)arith; we will not need to
concern ourselves with other models here. The schemes X0(N) and X1(N) are smooth
and proper over S, and every geometric fibre is a smooth and connected curve.

Let V denote the Shimura subgroup of J0(N)(Q̄), as defined in the introduction. Our
goal is to prove that V is in some sense the maximal multiplicative-type subgroup of
J0(N), at least under some hypotheses. Let J0(N)/V denote the image of J0(N) in
J1(N). Then there is an isogeny JV = (J0(N)/V )dual → J0(N), whose kernel is the
Cartier dual V ∗ of V . If we embed X0(N) into its Jacobian by sending the cusp 0 to
the origin, then pullback of JV → J0(N) yields a Galois cover XV → X0(N) of curves
over Q, with structural group V ∗. Then, by definition, the pullback of XV to X1(N)
via the projection π : X1(N) → X0(N) is trivial in the sense that it is isomorphic to
a disjoint union of copies of X1(N). We want to show that in fact this is true for all
Galois covers of X0(N) (over Q). While we cannot prove this completely, we can still
offer Theorem 1.1 of § 1. For the convenience of the reader, we repeat the statement here.

Theorem 4.2. Let W denote any finite Q-rational subgroup of J0(N)(Q̄) such that
W ∼= µn for some odd integer n, and such that J0(N) has semi-stable reduction at � for
each prime � dividing n. Then W is contained in the Shimura subgroup.

4.3. To prove the theorem, it suffices to show that the pullback π∗(XW ) → X1(N) is
isomorphic to a finite union of copies of X1(N). The basic criterion for the triviality of
such covers is given by a theorem of Ihara, which we now proceed to explain.

Let q denote a prime with (N, q) = 1. Then the non-cuspidal points on X0(N)(F̄q)
classify isomorphism classes of cyclic N -isogenies E → E′, with E and E′ elliptic curves
in characteristic q. A point x ∈ X0(N)(F̄q) is called super-singular if the curves E and
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E′ are super-singular. It is well known that all super-singular points are rational over the
field Fq2 with q2 elements.

Now consider a degree d cover f : Xq → X0(N) defined over Fq, where Xq is a smooth
and geometrically irreducible curve. A super-singular point x ∈ X0(N)(Fq2) is said to
split completely in Xq if the fibre of f over x in Xq consists of d distinct points, each
rational over Fq2 .

Theorem 4.4 (Ihara). Let Xq → X0(N) be an unramified cover over Fq, where Xq is
a smooth and absolutely irreducible curve. Suppose that every super-singular point in
X0(N) splits completely. Then π∗(Xq) is trivial as a cover of X1(N).

Proof. See [Iha75,Rib84]. A further discussion may also be found in [Pra95]. �

4.5. As we have already remarked in § 1, we want to reduce the characteristic zero cover
XW → X0(N) to characteristic q, and then apply Ihara’s theorem. However, we need to
explain what is mean by the reduction, and why triviality of the cover in characteristic q

implies triviality of the one in characteristic zero. One way to do this would be to extend
the curve XW to a curve over Zq, and consider coverings of curves over Zq, but in practice
this is somewhat technical. Instead we shall simplify matters considerably by working
with the Jacobians and their Néron models rather than integral models of curves.

To explain this, recall that our cover XW → X0(N) (over Q) is associated by definition
to a finite subgroup W ⊂ J0(N). Now, if q is any odd prime such that q � N , then the
Jacobian J0(N) admits a Néron model J0(N)R over R = Zq which is an abelian scheme,
and the scheme-theoretic closure WR of W is a finite flat subgroup of J0(N)R. Writing s

for the closed point of R, we deduce that Ws is a finite subgroup of the special fibre
J0(N)s, of order equal to that of W . Similarly, the Shimura subgroup V extends to a
finite flat subgroup VR ⊂ JR, and by functoriality of the Jacobian (equal to Pic0 in this
setting), the special fibre Vs is precisely the kernel of J0(N)Fq → J1(N)Fq . To show that
W ⊂ V , it suffices to show that Ws ⊂ Vs, since WR and VR are both finite flat subgroups
of J0(N)R. Thus if we define XW,s to be the cover of X0(N)s = X0(N)Fq associated to
the subgroup Ws ⊂ J0(N)s, then it suffices for our purposes to show that XW,s becomes
trivial over X1(N)Fq . Note here that is not clear a priori that XW,s is related to the
special fibre of an integral model of XW . However, it does follow from functoriality of
the Jacobian that the Q-isogeny JW → J0(N) extends to an isogeny of Néron models
whose special fibre is precisely the map JW,s → J0(N)s whose pullback gives the cover
XW,s → X0(N)s. This implies in particular that if T is a scheme over R, and x is a
T -valued point of X0(N)R, then the fibre in XW,s of xs ∈ X0(N)(Ts) is canonically
identified with the corresponding fibre in JW,s → J0(N)s. Thus, if xW denotes the fibre
over x in the isogeny JW,R → J0(N)R, then xs = xW,s is the special fibre of xW . Note
here that we have avoided any mention of an integral model of XW , or of Galois coverings
of relative curves. This is possible since we are only interested in the fibres of such a cover,
and these would be canonically identified with the corresponding fibres of the isogenies
in question. In particular, we need not concern ourselves with the precise integral model
for XW , nor the relation between XW,s, as defined above, with the special fibre of the
integral model.
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We can now prove Theorem 1.1. We keep the notations introduced in the statement
and in the discussion above.

4.6. Without loss of generality, we may assume that W has order �r, where � is an odd
prime, and that X is isomorphic to µ�r as a Galois module. We show that the pullback
X ′

W = π∗(XW ) → X1(N) is trivial. Letting XW,q = XW,s denote the ‘reduction’ of XW

as defined above, it is even enough to show that X ′
W,q = π∗(XW,q) is the trivial cover of

X1(N)Fq . As we have mentioned, the main point will be to choose q in such a way as
to make Ihara’s criterion applicable. We shall achieve this by lifting the super-singular
points to CM points in characteristic 0, and controlling the fibres over the CM points by
limiting the ramification with the help of Corollary 2.7.

We choose an imaginary quadratic field K of discriminant D such that all primes
dividing N� are split in K, and such that the roots of unity in K are ±1. We further choose
an odd prime p � ND� such that K, p and � satisfy the conditions set out in § 3.1. Then we
consider the ring class fields Hn of conductor pn, and the compositum H∞ = ∪Hn. We
will use the notations of § 3 for the ring of integers and Picard groups of the fields Hn.
Since all primes dividing N are split in K, we can choose an ideal n of K such that
OK/n ∼= Z/NZ. Assume that such an n is fixed.

Now let Cn denote the set of pairs (A, n) where A is an elliptic curve with CM by K

such that End(A) = On is the order of conductor pn. Then #Cn = #Gn, where Gn =
Pic(On) ∼= Gal(Hn/K). Each pair (A, n) defines a point x ∈ X0(N)(Hn). We want to
consider the reduction of x at inert primes of K.

Thus let q �= p denote any rational prime which remains prime in K (so q � N�).
Then q splits completely in every field Hn. We fix a prime q of H∞ lying over q. Let
Sq(N) denote the set of super-singular points on X0(N)(Fq2). According to [Vat03, § 6],
there is a reduction mod q map

r : Cn → Sq(N),

which is surjective for n sufficiently large (depending of course on q). For another view-
point on the reduction map, the reader may consult [Cor02].

Put M = N if (N, �) = 1, and M = N/� if not. Since � is assumed to be a prime of
semi-stable reduction, we have (M, �) = 1. Let Ln denote the maximal abelian extension
of Hn of exponent dividing �r which is unramified at all primes outside M . Then Ln/Hn

is finite, and by Corollary 2.7, we have an m such that Ln = Lm ·Hn if n � m. It is clear
that Lm is Galois over Q. Let ι denote any embedding of Lm into the complex numbers,
and let c ∈ Gal(Lm/Q) denote the action of complex conjugation. Note that c induces
the non-trivial automorphism of K/Q, and so is non-trivial. We take q to be any prime
of K such that q � ND�p, such that Frob(q) = c ∈ Gal(Lm/Q). Then q is inert in K,
and q splits completely in Gal(Lm/K).

Now choose n sufficiently large that the reduction map Cn → Sq(N) is surjective. Let
P ∈ Cn, so that P ∈ X0(N)(Hn) ⊂ J0(N)(Hn). Then we consider a point P ′ lying
in the fibre of the cover XW → X0(N) over P . (Note that this fibre is unchanged if
we consider P to be a point of J0(N) instead.) It follows from Corollary 2.7 that P ′ is
rational over an extension H ′/Hn of degree dividing �r, where H ′ is unramified outside
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the primes dividing M . Here, as before, M denotes N if (�, N) = 1, and M = N/� if not.
Thus H ′ ⊂ Ln = Lm · Hn, by our choice of m. Since q is inert in K, we see that q splits
completely in the anti-cyclotomic field Hn. On the other hand, our choice of q implies
that q has degree two in Lm/Q. Thus we see that q has degree two in Ln. It follows that
every point in the fibre of XW,q → X0(N)Fq over r(P ) ∈ Sq(N) ⊂ X0(N)Fq2 is rational
over Fq2 , for each P ∈ Cn. Since n was chosen so that the reduction map is surjective, we
find that all super-singular points split completely in XW,q → X0(N)Fq . It follows now
from Ihara’s theorem that the cover X ′

W,q → X1(N) is trivial, as required.

5. Stevens’s conjecture

In this section we will prove Theorems 1.10, 1.11 and 1.16. We will keep the notation
of § 1. Thus C denotes a fixed isogeny class of elliptic curves over Q of conductor N . We
will write E∗ for the curve of minimal height in C, and E0 and E1 for the strong Weil
curves in C for X0(N) and X1(N), respectively.

5.1. Let E ∈ C, and let � denote an odd prime. Then E admits a cyclic �-isogeny over Q

if and only if E[�] is reducible as a Gal(Q̄/Q)-module. By the work of Mazur [Maz78],
the list of all possible � is known. Thanks to the further work of Kenku [Ken82], we
even have a list of all integers M such that there is an elliptic curve over Q admitting a
cyclic isogeny of degree M .

We shall say that the isogeny class C is sporadic if there exists E ∈ C such that E

admits a cyclic M -isogeny for some M such that the genus of X0(M) is positive. There
are only finitely many sporadic isogeny classes (up to twist), and the j-invariants of the
curves in these classes are known (see [BK75, p. 79]). Furthermore, one can even write
specific curves exhibiting these M -isogenies. This observation will be helpful in what
follows (cf. Remark 1.12).

We begin with a series of preliminaries.

Lemma 5.2. Suppose that EQ is a semi-stable elliptic curve, and that � is an odd prime
such that E[�] is reducible as a Gal(Q̄/Q)-module. Then E[�] has composition factors
isomorphic to Z/�Z and µ�. Furthermore, E has ordinary reduction at �.

Proof. See Proposition 21 and the subsequent Lemma 5 in [Ser72, p. 307]. �

The following result is key.

Proposition 5.3. Let E0 ⊂ J0(N) be the strong Weil curve. Suppose that E0[�] is
reducible as a Gal(Q̄/Q)-module, and that E0 is ordinary at �. Then the following hold.

(1) �2 � N , for the conductor N .

(2) There exists an E′ ∈ C such that there is an étale isogeny E0 → E′ of degree �.

Proof. Let f denote the newform on Γ0(N) associated to E by the Shimura–Taniyama
correspondence. Then the �th coefficient of the Fourier expansion of f is non-zero, since f

is ordinary at � and f is of weight 2. It now follows from [Miy89, Theorem 4.6.17] that,

https://doi.org/10.1017/S147474800500006X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800500006X


Multiplicative subgroups of J0(N) and applications to elliptic curves 309

if �r is the exact power of r that divides the level N , then either f has nebentype character
with conductor divisible by �r, or r � 1. Since f has trivial nebentype character, we see
that �2 � N .

As for the second assertion, observe that ordinariness of E0 implies that E0[�] has
composition factors C and D of order �, where the action of GQ is given by characters χ

and χ−1ω, respectively, for the Teichmüller character ω and a character χ unramified at �.
(Note that χ = 1 if E0 is semi-stable.) It suffices to show that there is an exact sequence
0 → C → E0[�] → D → 0, since C is unramified as a module for the decomposition
group D� and E0 is semi-stable at �. Indeed, the quotient map E0 → E0/C is étale, as is
easy to see (see Lemma 2.2). To construct such a subgroup C, we follow the procedure
of [Ste82,Vat99]. The basic idea is to use an Eisenstein series to produce a subgroup
of the cuspidal group, and use a multiplicity one theorem to ensure that this subgroup
is contained in E0. (In this context, the idea goes back to [Tan97].)

Let the Fourier expansion of the newform f corresponding to E0 be given by f(z) =∑
anqn. Then one can retrieve the numbers an (mod �) from the Galois module E0[�]

as follows. Since f is an eigenform, it suffices to determine aq, as q runs over all primes.
Since E[�] is given up to semi-simplification by χ ⊕ χ−1ω, we get the following.

(i) If q � N�, then aq ≡ χ(q) + qχ(q)−1 (mod �).

(ii) If q = �, then aq = χ(q) (mod �), since E0 is ordinary.

(iii) Finally, if q �= � is such that q | N , then aq = 0 if q2 | N . If q exactly divides N ,
then either aq = χ(q) (mod �) or aq = q/χ(q) (mod �).

To proceed further, it will be convenient to lift the F�-valued character χ to character-
istic zero via the Teichmüller lift. Then χ takes values in the group µ�−1 ⊂ Z×

� . Picking
an embedding Q̄ ⊂ Q̄�, we may therefore regard χ as taking values in Q̄. Furthermore,
the choice of embedding Q̄ ⊂ Q̄� determines a prime λ | � of Q̄. Finally, we also pick an
embedding Q̄ ⊂ C.

We now contend that, under the hypotheses of the proposition, there is a holomorphic
Eisenstein series g =

∑
bnqn, bn ∈ Q(χ), on Γ0(N) such that the following hold.

(1) an ≡ bn (mod λ), for every n � 1.

(2) The constant term of g at every cusp is divisible by λ.

The proof of this is not hard, and follows the lines of similar arguments in [Vat99,
GV00]. However, there are a number of cases to consider, making the argument some-
what lengthy. Note here that we are viewing the coefficients bn ∈ Q̄ as complex numbers
according to the embedding fixed above.

To prove the contention, it will be convenient first to separate cases depending on
whether or not χ is trivial, starting with the latter. Then if M denotes the conductor of χ,
we have M2 | N , and there is a holomorphic Eisenstein series g′ of weight two on Γ0(M2)
such that the L-series L(g′, s) is given by L(g′, s) = L(χ, s)L(χ−1, s − 1). For a prime q,
the Euler factor at q of L(g′, s) is given by the inverse of (1 − χ(q)q−s)(1 − χ−1(q)q1−s).
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Stripping away Euler factors from g′ as in the proof of Proposition 3.4 in [Shi78], we
can produce a Eisenstein series g(z) of weight 2 and level N , satisfying the first of the
stated conditions. Explicitly, one can take g(z) =

∑
bnqn to be such that

L(g, s) = LN1(χ, s) · LN2(χ
−1, s − 1),

is the product of imprimitive L-series. Here LNi
(ξ, s) denotes the Dirichlet L-function

of the Dirichlet character ξ = χ or ξ = χ−1, deprived of the Euler factors at primes
dividing Ni. (For a general discussion of this type of Eistenstein series, we refer to [Shi78,
§ 3], especially Proposition 3.4 already cited. Alternatively, one could consult [Miy89,
Chapter 7], but the normalization there is somewhat different.) The integers Ni are
square-free, with N1N2 | N , and may be determined as follows. If q is any prime number,
and aq is the qth Fourier coefficient of the cuspform f , then we require that the following
hold.

(i) If q2 | N and aq = 0, then q divides both N1 and N2.

(ii) If q exactly divides N , and aq ≡ q/χ(q) (mod �), then q | N1.

(iii) If q exactly divides N , and aq ≡ χ(q) (mod �), and q/χ(q) �≡ χ(q) (mod �), then
q | N2. (The last condition is imposed to avoid overlap with the case above.)

(iv) Finally, for q = � or q � N , we require that q � N1N2.

It follows from these conditions that bq = aq (mod �) at all primes q. Indeed, if aq = 0,
then q divides both N1 and N2, so bq = 0. If N is divisible by exactly the first power
of q, then aq is non-zero and q divides precisely one of the Ni, depending on whether
aq ≡ q/χ(q) (mod �) or not. So bq is also non-zero, and one checks (using the previously
displayed formulae for aq) that bq satisfies bq ≡ aq (mod �). Finally, if q = �, then we
have aq ≡ bq = χ(q) + q/χ(q) (mod �). We point out here that according to the result of
Shimura mentioned above, the Eisenstein series g has level N1N2. Since (�, N1N2) = 1,
we see that the level of g divides N/� if � divides N .

Thus we have found an Eisenstein series g satisfying the first of our desired conditions.
The validity of the second condition for g now follows from the fact that χ is non-trivial,
together with the q-expansion principle, as in the proof of Theorem 3.11 in [GV00].
For the convenience of the reader, we repeat the argument here. Namely, the Eisenstein
series g =

∑
bnqn we have constructed satisfies condition (1) above, so that an − bn ≡ 0

(mod λ) for n � 1. Since χ is non-trivial, we even have b0 = 0 (because the constant
term is equal to the residue of L(g, s) at s = 1, and L(g, s) is holomorphic in this case).
Since f is a cuspform we have a0 = 0, and so a0 − b0 ≡ 0 (mod λ) as well. Thus the form
f − g =

∑
cnqn is such that cn = an − bn ≡ 0 (mod λ) for n � 0. In other words, the

q-expansion of f − g at ∞ vanishes identically modulo λ.
If � � N , this implies that f−g is identically zero modulo λ by the q-expansion principle.

Thus the q-expansion of f − g is zero modulo λ at all cusps of X0(N). In particular, the
constant term at any cusp is divisible by λ. But since f is a cuspform, f has no constant

https://doi.org/10.1017/S147474800500006X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800500006X


Multiplicative subgroups of J0(N) and applications to elliptic curves 311

term at any cusp, which implies that the constant term of g at every cusp is divisible
by λ, as required.

It remains to treat the case where � divides N . In this case, N is divisible by precisely
the first power of �, and cn = 0 (modλ), n � 0, implies only that f−g vanishes identically
on the component of X0(N)F�

containing the cusp ∞. Then the same argument as before
shows that the constant term of g at any cusp lying on the component containing ∞
of X0(N)F�

, is divisible by λ. As for the remaining cusps, they lie on the component
of X0(N)F�

containing the cusp 0, and an explicit computation with Tate curves shows
that such cusps are ramified over X0(N/�) (over Z), with ramification index �. Indeed,
one checks using the results of [DR73, Chapter V] or the summary in [DI95, § 9.3] that
the cusps reducing to the 0-component are precisely those corresponding to generalized
elliptic curves whose component group has order divisible by �, and that the canonical
projection is given in terms of a local coordinate q at such a cusp by q 	→ q�. But as we
observed above, our Eisenstein series g has level dividing N/�. Thus it arises via pullback,
under the canonical projection from X0(N) to X0(N/�), from a form on X0(N/�). This
implies that the constant term at a ramified cusp is divisible by �, because the constant
term is equal to the residue of the associated differential g(z) dz = g(q�) d(q�)/q�. This
completes the proof when χ is non-trivial.

If χ is trivial, then we have to be more careful. In this case, the composition factors of
E0[�] are given by Z/�Z and µ�. If Z/�Z occurs as a subgroup, then the statement of the
proposition follows. So we may assume that there is an exact sequence of Galois modules

0 → µ� → E0[�] → Z/�Z → 0, (5.1)

and our task is to use an Eisenstein series to construct a splitting of this sequence.
Observe that the existence of the sequence (5.1) implies directly that there is a prime r

dividing the conductor N such that r ≡ 1 (mod �). Indeed, we have µ� ⊂ E0 ⊂ J0(N), and
by Theorem 1.1 we find that µ� ⊂ E0[�] must be contained in the Shimura subgroup V .
But the formula of Corollary 1 in [LO91] shows that the order of V divides φ(N), for
the Euler function φ, and since �2 � N , this implies our contention.

Thus we fix a prime r | N such that r ≡ 1 (mod �). Since Frob(r) acts trivially on µ�,
we see that the rth Fourier coefficient ar = ar(f) satisfies ar ≡ 1 (mod �) if r2 � N ,
or ar = 0 if r2 | N . Here f is the cuspform corresponding to our elliptic curve E0, as
before. Now consider the unique holomorphic Eisenstein series g′ of weight 2 on Γ0(r),
normalized so that the coefficient of q is equal to 1. Then the constant terms of g′ at
the two cusps of Γ0(r) are given by ± 1

24 (r − 1). Note also that the coefficient of qr is 1,
which already matches the coefficient of f , if r2 � N . If r2 | N , then we can remove the
unique Euler factor of g′ at r to match the rth Fourier coefficient of f . Thus, starting
from g′, we can once again strip Euler factors to produce an Eisenstein series of level M

satisfying the first of the two required conditions.
The second condition is clear if � > 3. Indeed, r ≡ 1 (mod �), so that the num-

bers ± 1
24 (r − 1) are non-units in Z�. Thus the constant terms of the q-expansion of g′ at

both cusps of Γ0(r) are divisible by �, and it was checked in the proof of Theorem 3.3
in [Vat99] that this implies the analogous condition for the form g(z) on Γ0(N).
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It remains to consider the case � = 3. If N = r is prime, then the results of
Mazur [Maz77] imply that r ≡ 1 (mod 9). Then 1

24 (r − 1) is divisible by 3, and we
obtain the required result as above. Thus we may assume that there exists some prime r′

dividing N/r. We want to assume further that we may choose r′ so that r′ �= 3. Indeed,
if this were not possible, then (since � = 3 is a prime of semi-stable reduction) we must
have N = 3r, for a prime number r, with r ≡ 1 (mod 3). The existence of the exact
sequence (5.1) and Theorem 1.1 shows that the order of the Shimura subgroup is divis-
ible by 3. But looking at the formula for the order of the Shimura subgroup as given
in [LO91, Corollary 1] we find that φ(N) = 2(r − 1) must be divisible by 9. Thus r ≡ 1
(mod 9), and we may therefore argue as in the case above.

Thus we can assume that r′ �= 3 (still assuming � = 3). If r′ = r, then r2 | N and
ar(E0) = ar(f) = 0. Then stripping the remaining Euler factor at r from g′ gives the
Eisenstein series g′′(z) = g′(z)−g′(rz), which has rth coefficient zero, and constant term
zero at infinity. Starting from g′′, we deduce an Eisenstein series g of level N satisfying
the first condition, and such that the constant term at infinity is zero. Note that if 3 | N ,
then the coefficients of q3 for g′ and f are already congruent. Indeed, the coefficient of q3

for g′ is
∑

d|3 d = 4. On the other hand, the coefficient of q3 in the expansion of f is
determined as the eigenvalue of Frob(3) on the maximal unramified quotient of E0[3∞],
and since E0[3] has the composition series (5.1), we find that a3(f) ≡ 1 (mod 3). Thus it
is not necessary to adjust Euler factors at 3 to achieve the desired congruence, and we
may assume that g in fact has level prime to � = 3. But now that the form h = f(z)−g(z)
has q-expansion at infinity that vanishes identically modulo λ | 3, and the same argument
used in the case χ �= 1 above proves our contention.

If r′ �= r and r′ ≡ 1 (mod 3), one has ar′(E0) = 1 or 0. Take g′′ = g′(z) − r′g′(r′z).
Then g′′ has constant term divisible by 3 at infinity, and r′th coefficient 1, and we can
find g(z) by arguing as before.

If r′ ≡ −1 (mod 3), then ar′(E0) = −1 or 0 since if E0 has multiplicative reduction, it
is necessarily non-split. To verify this latter point, we need Theorem 1.1 again. Indeed,
we have µ3 ⊂ X ⊂ J0(N), since by our ordinariness hypothesis J0(N) is semi-stable at 3.
But then Theorem 6 of [LO91] shows that the Hecke operator Tr′ acts as multiplication
by r′ on µ3, and since r′ ≡ −1 (mod 3) and µ3 ⊂ E0, we see that the eigenvalue of Tr′

is −1. Thus we may take g′′ = g′(z) − g′(r′z), and argue as before, since the latter has
r′th coefficient equal to r′ ≡ −1 (mod 3).

In summary, we have shown that there exists an Eisenstein series g(z) of level divid-
ing N satisfying the conditions (1) and (2) above. Let Cg denote the subgroup of the cus-
pidal group associated to g in [Ste82, Definition 1.8.5]. Then we claim that Cg[�] is non-
zero. In fact, various forms of this result have already been used in [Ste82,Ste85,GV00],
but for completeness we spell out the details again. The basic ingredients are condition (2)
above, and a theorem of Washington. Namely, by [Ste82, Corollary 1.8.7], the group Cg is
isomorphic to hom(Ag, Q/Z), where Ag = Pg/Cg, and Ag and Cg denote the Z-modules
generated (in C) by the periods and residues of g, respectively (see [Ste82, pp. 40–
41]). Then condition (1) states precisely that all residues of g are divisible by λ, and
it suffices to exhibit a period of g which is a λ-adic unit. So let φg ∈ H1(X0(N), Ag)
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denote the cohomology class associated to g by Stevens [Ste82, bottom of p. 40]. We
will show that the ‘twisted special value’ period Λ(φg, ξ) is an �-adic unit, for some
Dirichlet character ξ with conductor prime to N . Here we remind the reader that
Λ(φg, ξ) = φg ∩ Λ(ξ) ∈ A ⊗ Z[ξ] is the cap product of φg with a certain homology class
Λ(ξ) in H1(X0(N), Z[ξ]) defined via modular symbols (see [Ste82, Definition 1.6.4]). If
we let P (ξ) and R(ξ) denote the Z[ξ]-modules generated respectively by the periods and
residues of g, then there is a surjective map Ag ⊗Z[ξ] → Ag(ξ) = R(ξ)/P (ξ), and it even
suffices to show that Λ(φg, ξ) is non-zero in Ag(ξ).

We select ξ to be a Dirichlet character of t-power conductor, where t is some prime
with t � N� (to be specified later). Then Corollary 3.1.5 in Stevens shows that

Λ(φg, ξ) =
τ(ξ)
2πi

L(g, ξ, 1) ∈ Ag(ξ),

since ξ is non-exceptional at � in Stevens’s terminology [Ste82, Definition 3.1.3]. Here
τ(ξ) denotes the usual Gauss sum of ξ, and L(g, ξ, s) denotes the ξ-twisted L-function
of g. We must therefore unwind the definition of L(g, ξ, s), keeping track of the Euler
factors that were removed in the construction. As before, we find that there exist positive
integers N1 and N2 such that N1N2 divides N , and such that

L(g, ξ, s) = LN1(χξ, s)LN2(χ
−1ξ, s − 1).

Here again the Ni are prime to �, since our form g has level dividing N/� if � | N . Now
applying the functional equation of LN1(χξ, s) and putting in s = 1, we find that

Λ(φg, ξ) = unit ·
∏
q|N1

(1 − χξ(q)/q) ·
∏
q|N2

(1 − χ−1ξ(q)) · L((χξ)−1, 0) · L(χ−1ξ, 0).

But the L-values appearing in the above formula are �-adic units for almost all ξ of
t-power conductor according to a theorem of Washington [Was78]. Thus one needs only
to check that one can choose t and ξ so that the various Euler factors are units, and this
is elementary.

Thus Cg[�] is non-zero. Furthermore, the eigenvalue of the Hecke operator Tn on Cg

is given by bn(g) ≡ an(E0) (mod λ). Let m denote the maximal ideal of the Hecke
ring T determined by f modulo λ. Then J0(N)[m] contains both Cg[�] and E0[�], and
all of these are modules for Gal(Q̄/Q). Note also that the action of Gal(Q̄/Q) on Cg

is via the character χ, and that each of the ±-eigenspaces for complex conjugation in
E0[�] has dimension 1. But now the multiplicity one theorem of J0(N)[m]et (see [Vat99,
Theorem 2.7] for a discussion in this context) shows that the α eigenspace for complex
conjugation inside J0[m] is one dimensional over F�, where α denotes the parity of χ. It
follows that Cg ∩ E[�] = E[�]α �= 0, and this proves our proposition. �

Lemma 5.4. Let E0 be the strong Weil curve for X0(N). Let E′ → E0 denote an étale
isogeny of degree �r. Suppose that E0 is ordinary at �. Then r � 1 unless the class C is
sporadic.

https://doi.org/10.1017/S147474800500006X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800500006X


314 V. Vatsal

Proof. By the previous lemma, there is another étale isogeny E0 → E′′, of degree �.
Then the composite φ : E′ → E0 → E′′ is a composite of étale isogenies, and is therefore
étale, and of degree �r+1. Since φ is étale, the kernel is necessarily cyclic. Indeed, if
this were not the case, then ker(φ) would contain a subgroup isomorphic as a group
to Z/�Z ⊕ Z/�Z. But this means that E[�] ⊂ ker(φ), so that φ must factor through
the multiplication by �, which contradicts the fact that it is étale. Thus φ is cyclic of
degree �r+1, and by Mazur’s theorem again, we must have r � 1 unless � = 3, in which
case r + 1 = 3 is possible. Excluding the finitely many curves corresponding to non-
cuspidal rational points of X0(27) (which correspond to sporadic isogeny classes and can
be checked by machine as in Remark 1.12), we obtain the conclusion of the lemma. �

5.5. We can now complete the proof of Theorem 1.10. Let C denote a (non-sporadic)
class of semi-stable elliptic curves, and let E0 denote the strong Weil curve in C. Let
φ : E∗ → E0 be an étale isogeny from the minimal curve E∗ to E0. Let n denote the
degree of φ. Then, by the lemma above, we have n = 2r

∏
�i, where the �i are distinct

odd primes. For each � = �i dividing n, we know that the composition factors of E∗[�]
are Z/�Z and µ�, by semi-stability of E∗. Let K∗

� ⊂ E∗[�] denote the �-part of the kernel
of φ. Since φ is étale, we have K∗

� = Z/�Z. Letting K� ⊂ E0 denote the �-part of the
kernel of the dual isogeny φ∗, we find that K�

∼= µ� ⊂ E0 ⊂ J0(N). By Theorem 1.1, we
find that K� ⊂ J0(N) is contained in the Shimura subgroup V . Now let E1 denote the
analogue of the Weil curve for X1(N). Then E1 ∼= E0/V ′, where V ′ = E0 ∩ V . But now∏

� K� ⊂ V ′, and, since V is of multiplicative type, it follows that
∏

K� coincides with
the prime-to-2 part of V ′ = V ∩ E0 (because any µr

� ⊂ E0 is the kernel of an isogeny
with étale dual). But by definition

∏
� K� is the prime-to-2 part of the kernel of φ∗ as

well. Thus we get isogenies E0 → E′ = E0/
∏

K� → E1, and E′ = E∗ up to an isogeny
of degree a power of 2. This proves the theorem.

5.6. The proof of Theorem 1.11 is straightforward. Let � � 7, and consider an isogeny
class C of elliptic curves such that E[�] is reducible for E ∈ C. Then, according to the list
of possible rational cyclic isogenies, and excluding finitely many sporadic isogeny classes
as explained in Remark 1.12, we may assume that E[p] is irreducible for such E if p �= �,
and that there are no cyclic isogenies of degree �2. It follows that the class C consists of
two curves, connected by isogenies of degree �.

Let E0 denote the strong Weil curve for X0(N) in C. Then E0 is ordinary at � by
hypothesis. It follows from Proposition 5.3 that there is a subgroup C ⊂ E0[�] such
that C has order �, and the action of GQ is via a character χ that is unramified at �.
One checks that E0 → E0/C is étale, since C is unramified, and E0 is semi-stable at �

by Proposition 5.3. Thus E0 is the minimal curve in C. Furthermore, since there are no
cyclic isogenies of degree �2, one sees that the sequence 0 → C → E[�] → D → 0 is
non-split. Then it is clear that E0 has trivial intersection with the Shimura subgroup,
since the action of GQ on the latter is cyclotomic. Thus E0 ⊂ J0(N) maps injectively
into J1(N), and we have E0 = E1 is the strong Weil curve for X1(N). This proves the
theorem.
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5.7. Finally, we note that Theorem 1.16 follows from the fact that Stevens’s conjecture
is true at � under the hypotheses of the theorem, by the same argument that proved
Theorem 1.10. Indeed, it is clear that the L-function L(E1, T ) associated to the strong
Weil curve for X1(N) is integral; this was already observed in [GV00, Remark 3.5]. The
theorem follows from this, together with the formulae of [Ste89, Proposition 4.12].
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We also point out that a version of our Theorem 1.11 may be found in [Tan97], where
it was assumed that � � 13 and the prime � is a prime of good reduction. The method
of proof is similar.

References

[BK75] B. J. Birch and W. Kuyk (eds), Modular functions of one variable, IV, Lecture Notes
in Mathematics, vol. 476 (Springer, 1975).

[CG96] J. Coates and R. Greenberg, Kummer theory for abelian varieties over local fields,
Invent. Math. 124 (1996), 129–174.

[Cor02] C. Cornut, Mazur’s conjecture on higher Heegner points, Invent. Math. 148 (2002),
495–523.

[Cre92] J. Cremona, Algorithms for elliptic curves (Cambridge University Press, 1992).
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