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Abstract We introduce a new method to study rational conjugacy of torsion units in integral group
rings using integral and modular representation theory. Employing this new method, we verify the first
Zassenhaus conjecture for the group PSL(2, 19). We also prove the Zassenhaus conjecture for PSL(2, 23).
In a second application we show that there are no normalized units of order 6 in the integral group rings
of M10 and PGL(2, 9). This completes the proof of a theorem of Kimmerle and Konovalov that shows
that the prime graph question has an affirmative answer for all groups having an order divisible by at
most three different primes.

Keywords: integral group ring; torsion unit; Zassenhaus conjecture; prime graph question

2010 Mathematics subject classification: Primary 16U60
Secondary 16S34; 20C05; 20C10

1. Introduction

Throughout this paper let G be a finite group, let ZG be the integral group ring of G and
let V(ZG) be the group of augmentation one units in ZG, the so-called normalized units.
The most famous open conjecture regarding torsion units in ZG is the (first) Zassenhaus
conjecture.

The Zassenhaus conjecture (ZC). Let u ∈ V(ZG) be a torsion unit. Then there
exist a unit x ∈ QG and g ∈ G such that x−1ux = g.

If for a unit u such x and g exist, we say that u is rationally conjugate to g. There are
positive results for the Zassenhaus conjecture for classes of solvable groups (e.g. Weiss
proved it for nilpotent groups [33] and Caicedo et al . established it for all cyclic-by-
abelian groups [5]). For non-solvable groups it is only known for specific groups, e.g. for
A5 [25], S5 [26], A6 [16], or PSL(2, p) for p � 17 a prime [11,15,24].

Considering the difficulty of the Zassenhaus conjecture, and motivated by the results
in [22], it was proposed in [21, Problem 21] to first study the following question.

c© 2017 The Edinburgh Mathematical Society 813

https://doi.org/10.1017/S0013091516000535 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000535
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The prime graph question (PQ). Let p and q be different primes such that V(ZG)
has a unit of order pq. Does this imply that G has an element of that order?

This is the same as to ask whether G and V(ZG) have the same prime graph. Much
more is known here; for example, this has an affirmative answer for all solvable groups
[22] or the series PSL(2, p), with p a prime [15]. Bovdi and Konovalov with different
collaborators obtained positive answers to (PQ) for many of the sporadic simple groups;
see, for example, [3] for recent results. Recently, substantial progress was made when
Kimmerle and Konovalov obtained the first reduction result for the prime graph question
[24, Proposition 4.1] (see also [23, Theorem 2.1]).

Theorem (Kimmerle and Konovalov [24, Proposition 4.1]). If (PQ) has an
affirmative answer for all almost simple homomorphic images of G, then it also has an
affirmative answer for G itself.

Recall that a group A is almost simple if S � A � Aut(S) for a simple group S.
Using the above theorem, they proved that the prime graph question has a positive
answer for every finite group whose order is divisible by at most three different primes
if it has a positive answer for M10, the Mathieu group of degree 10, and PGL(2, 9) [23,
Theorem 3.1]. Their result also places special emphasis on investigating the prime graph
question for almost simple groups.

All proofs of (ZC) for non-solvable groups rely on the so-called Hertweck–Luthar–Passi
method [15,25], referred to as the HeLP method, but in many cases this method does
not suffice to prove (ZC); for example, it fails for A6 [16], PSL(2, 19) (see below) and
M11 [2]. Sometimes special arguments were considered in such situations, as in [26], [14,
Example 2.6] and [16], but these arguments were designed for very specific situations
and are hard to generalize or do not seem to give new information in other situations.

In this paper we introduce a new method to study rational conjugacy of torsion units
inspired by Hertweck’s arguments for proving (ZC) for the alternating group of degree 6
[16]. This method is especially interesting for units of mixed order (i.e. not of prime
power order) and in combination with the HeLP method. We then give two applications
of this method to prove the following results.

Theorem 1.1. The Zassenhaus conjecture holds for PSL(2, 19) and PSL(2, 23).

Theorem 1.2. Neither V(ZM10) nor V(Z PGL(2, 9)) contain units of order 6.

Theorem 1.2, together with [23, Theorems 2.1 and 3.1] (or [24, § 4]), directly yields
the following.

Corollary 1.3. Let G be a finite group. Suppose that the order of all almost simple
homomorphic images of G is divisible by at most three different primes. Then the prime
graph of the normalized units of ZG coincides with that of G. In particular, the prime
graph question has a positive answer for all groups with an order divisible by at most
three different primes.
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Figure 1. The idea of the method.

2. From eigenvalues under ordinary representations to the modular module
structure

Let G be a finite group. The main tool for the study of rational conjugacy of torsion
units is the notion of partial augmentations. Let u =

∑
g∈G agg ∈ ZG and let xG be the

conjugacy class of the element x ∈ G in G. Then εx(u) =
∑

g∈xG ag is called the partial
augmentation of u at x. This relates to (ZC) via the following lemma.

Lemma 2.1 (Marciniak et al . [27, Theorem 2.5]). Let u ∈ V(ZG) be a torsion
unit of order n. Then u is rationally conjugate to a group element if and only if εx(ud) � 0
for all x ∈ G and all powers ud of u with d | n.

It is well known that if u �= 1 is a torsion unit in V(ZG), then ε1(u) = 0 by the so-called
Berman–Higman theorem [31, Proposition 1.4]. If εx(u) �= 0, then the order of x divides
the order of u (see [27, Theorem 2.7], [14, Proposition 3.1]). Moreover, the exponents of
G and of V(ZG) coincide [6]. We will use this in the following without further mention.

Let K be a field, let D be a K-representation of G with corresponding character χ

and let u ∈ V(ZG) be a torsion unit of order n. If χ and all partial augmentations of
u and all its powers are known, and the characteristic of K does not divide n, we can
compute the eigenvalues of D(u) in a field extension of K that is large enough (a field
that is a splitting field for G and all its subgroups will be a good choice; there are plenty
of examples for this kind of calculation in § 3). The HeLP method makes use of the fact
that the multiplicity of each nth root of unity as an eigenvalue of D(u) is a non-negative
integer.

Notation. In this paper p will always denote a prime, Qp always the p-adic completion
of Q, and Zp always the ring of integers of Qp. By R we denote a complete local ring
with maximal ideal P containing p, and by K we denote the field of fractions of R.
Furthermore, k denotes a finite field of characteristic p containing the residue class field
of R. The reduction modulo P , also with respect to lattices, will be denoted by a bar.

The idea of our method is that if D is an R-representation of a group G with cor-
responding RG-lattice L and u is a torsion unit in ZG of order divisible by p, we can
reduce D modulo P and obtain restrictions on the isomorphism type of kG-modules
considered as k〈ū〉-modules, where k is big enough to allow realizations of all irreducible
p-modular representations of G. Note that the Krull–Schmidt–Azumaya theorem holds
for finitely generated RG-lattices [7, Theorem 30.6]. From these isomorphism types we
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can then obtain restrictions on the isomorphism types of the kG-composition factors of
L̄ when viewed as a k〈ū〉-module. Since a simple kG-module may appear in the reduction
of several ordinary representations, this may finally yield a contradiction to the existence
of u. A rough sketch of the method is given in Figure 1. As the direct path from the
eigenvalues of an ordinary representation to the isomorphism types of the corresponding
reduced lattice is not always evident, we are sometimes forced to take the detour along
the dashed arrows.

The connections between the eigenvalues of ordinary representations and the isomor-
phism type of the modules in positive characteristic for some cases are collected in the
following propositions, which are consequences of known facts from modular and integral
representation theory.

The first proposition is a standard fact in modular representation theory and may be
found in, for example, [19, Theorems 5.3 and 5.5].

Proposition 2.2. Let G = 〈g〉 be a cyclic group of order pam, where p does not divide
m. Let k be a field of characteristic p containing a primitive mth root of unity ξ. Then
the following hold.

(a) Up to isomorphism there are m simple kG-modules. All these modules are one
dimensional as k-vector spaces, gm acts trivially on them and gpa

acts as ξi for
1 � i � m. We denote these modules by kξ, kξ2

, . . . , kξm

.

(b) The projective indecomposable kG-modules are of dimension pa. They are all uni-
serial and all composition factors of a projective indecomposable kG-module are
isomorphic. There are m non-isomorphic projective indecomposable kG-modules.

(c) Each indecomposable kG-module is isomorphic to a submodule of a projective inde-
composable module. So there are pam indecomposable modules, which are all unis-
erial and all composition factors of an indecomposable kG-module are isomorphic.

Using Proposition 2.2 and the fact that idempotents can be lifted [7, Theorem 30.4],
we obtain the next proposition.

Proposition 2.3. Let G = 〈g〉 be a cyclic group of order pam, where p does not divide
m. Let R be a complete local ring containing a primitive mth root of unity ζ. Let D be
an R-representation of G and let L be an RG-lattice affording this representation.

Let Ai be sets with multiplicities of path roots of unity such that ζA1 ∪ ζ2A2 ∪ · · · ∪
ζmAm are the complex eigenvalues of D(g), where Ai = ∅ is possible. Let V1, . . . , Vm

be KG-modules such that if Ei is a representation of G affording Vi, the eigenvalues of
Ei(g) are ζiAi. Then

L ∼= Lζ1 ⊕ · · · ⊕ Lζm

and L̄ ∼= L̄ζ1 ⊕ · · · ⊕ L̄ζm

such that rankR(Lζi

) = dimk(L̄ζi

) = |Ai|. (The superscripts ζi are merely meant as
indices.) Moreover, K ⊗R Lζi ∼= Vi and the only composition factor of L̄ζi

is kξi

(see the
notation in Proposition 2.2).

https://doi.org/10.1017/S0013091516000535 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000535


Rational conjugacy of torsion units in integral group rings 817

To understand the full connection between the eigenvalues ζiAi and the structure of
Lζi

, i.e. to follow the arrow in the second line of Figure 1, one must study the represen-
tation theory of R〈gm〉. The representation type of R〈gm〉 may be finite, tame or wild.
Roughly speaking, the representation theory gets more complicated with increasing a

and increasing ramification index of K over Qp. A listing of all representation types may
be found in [9]. Some results concerning the connection between Ai and Lζi

are recorded
in the next propositions. The first one is a consequence of [13, Theorem 2.6].

Proposition 2.4. Let the notation be as in Proposition 2.3. Assume in addition that
G ∼= Cp and that K is unramified over Qp. Let γ be a primitive pth root of unity.
Up to isomorphism, there are three indecomposable RG-lattices M1, M2, M3. Each M̄ i

remains indecomposable. The R-rank and the corresponding eigenvalues of D(g) are
rankR(M1) = 1 with eigenvalue 1, rankR(M2) = p − 1 with eigenvalues γ, γ2, . . . , γp−1,
and rankR(M3) = p with eigenvalues 1, γ, γ2, . . . , γp−1.

Notation. We denote the indecomposable lattices in Proposition 2.4 by their natural
names: the trivial lattice M1 = R, the augmentation ideal M2 = I(RCp) and the group
ring M3 = RCp.

When considering RC2p-lattices or kC2p-modules as in Proposition 2.3 (i.e. a = 1 and
m = 2), we abbreviate the superscripts 1 and −1 to + and −, respectively, i.e. L+ = L1,
L− = L−1, L̄+ = L̄1 and L̄− = L̄−1 for the direct summands having trivial and non-
trivial composition factors, respectively.

Proposition 2.5. Let the notation be as in Proposition 2.3, let p be odd and let p ≡ δ

mod 4 with δ ∈ {±1}. Assume that K is the p-adic completion of an extension of Q(
√

δp)
that is unramified at p. Denote by R the ring of integers of K and let G ∼= Cp. Note that
there are exactly three simple RG-lattices up to isomorphism. The two following facts
hold for indecomposable RG-lattices:

(a) if L is an indecomposable RG-lattice, then the non-trivial simple lattices each
appear at most once as a composition factor of L, and the trivial one at most
twice;

(b) if L is an indecomposable RG-lattice having at most two non-isomorphic composi-
tion factors, then each composition factor appears at most once.

Proof. If K ′ is the p-adic completion of Q(
√

δp) and R′ is its ring of integers, then up
to isomorphism all indecomposable R′G-lattices are explicitly given in [12, Lemma 4.1].
These lattices satisfy the statements of the proposition. If L is an indecomposable RG-
lattice, it is a direct summand of R ⊗R′ L′, where L′ is an indecomposable R′G-lattice,
by the last paragraph of the proof of [7, Proposition 33.16]. So the statements of the
proposition still hold for indecomposable RG-lattices. �

3. Applications

For a group G we denote by χi an ordinary character of G and by Di a representation
of G affording this character. By ϕi we denote a Brauer character and by Θi a represen-
tation affording ϕi. We write Di(u) ∼ (α1, . . . , αj) or Θi(u) ∼ (α1, . . . , αj) to indicate
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that α1, . . . , αj are the eigenvalues (with multiplicities) of the corresponding matrix. To
improve readability, we sometimes group the eigenvalues appearing several times: for
example,

Di(u) ∼
(
3 × 1 , 2 × ζ, ζ−1

)

indicates that Di(u) has 1 three times and ζ and ζ−1 each twice as eigenvalues. By ζn we
will denote some fixed primitive complex nth root of unity. In particular, we will use ζn to
denote the eigenvalues of a matrix of finite order n over a field of characteristic p, where
p is coprime to n, in the sense of Brauer, as presented, for example, in [20, Chapter 2,
§ 17].

Let K be an algebraically closed field, let D be a K-representation of G with char-
acter χ and let u be a torsion unit in V(ZG) such that the characteristic of K does
not divide the order of u. Let m and n be natural numbers such that um+n = u.
Let D(um) ∼ (α1, . . . , α�) and D(un) ∼ (β1, . . . , β�). As D(um) and D(un) are simul-
taneously diagonalizable over K, this means that D(u) ∼ (α1βi1 , . . . , α�βi�

) with
{i1, . . . , i�} = {1, . . . , �}. On the other hand, if X denotes a set of representatives of
conjugacy classes of G, then χ(u) =

∑
x∈X εx(u)χ(x). Comparing the values for χ(u)

obtained in these two ways is the basic idea of the HeLP method.

3.1. The groups PSL(2, q) and proof of Theorem 1.1

Rational conjugacy of torsion units in integral group rings of the groups PSL(2, pf )
were studied by Hertweck in [15]. The next proposition summarizes some results from
that article.

Proposition 3.1 (Hertweck [15]). Let G = PSL(2, pf ) and let u be a torsion unit
in V(ZG).

(a) If u is of order prime to p, there exists an element in G of the same order as u. If,
moreover, the order of u is prime, u is rationally conjugate to an element in G.

(b) If f = 1 and p divides the order of u, then u is of order p and rationally conjugate
to an element in G.

(c) Assume that p /∈ {2, 3} and u is of order 6. Then u is rationally conjugate to an
element in G.

Proof. See [15, Propositions 6.1, 6.3, 6.4, 6.6 and 6.7]. �

The HeLP method verifies the Zassenhaus conjecture for PSL(2, p) if p � 17. We give
a quick account. (ZC) was already verified for p = 2 in [17], p = 3 in [1], p = 5 in [25],
p = 7 in [14], p ∈ {11, 13} in [15] and p = 17 independently in [24] and [11]. The
HeLP method also suffices to prove (ZC) for p = 23 (see below), but not for p = 19. We
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will always use the character tables and Brauer tables from ATLAS [34]∗. We will use
throughout the GAP notation for conjugacy classes.

For G = PSL(2, pf ) and p > 2 we have |G| = (pf − 1)pf (pf + 1)/2, there are cyclic
subgroups of order (pf − 1)/2, p and (pf +1)/2 in G, and every cyclic subgroup of G lies
in a conjugate of such a subgroup. There are two conjugacy classes of elements of order
p and, if g is an element of order prime to p, the only conjugate of g in 〈g〉 is g−1. All of
this follows from a result of Dickson [18, Satz 8.27].

We first list the results that can be obtained using solely the HeLP method to distin-
guish those from the results involving the new method.

Lemma 3.2. Let p be a prime, let f ∈ N and set G = PSL(2, pf ).

(a) If p �∈ {2, 3}, then elements in V(ZG) of order 4, 9 or 12 are rationally conjugate
to group elements.

(b) If p �∈ {2, 5} and u ∈ V(ZG) is of order 10, then either u is rationally conjugate to
a group element or it has the following partial augmentations:

(ε2a(u), ε5a(u), ε5b(u), ε10a(u), ε10b(u)) = (0, 1,−1, 1, 0)

if u2 is rationally conjugate to an element in 5a, or

(ε2a(u), ε5a(u), ε5b(u), ε10a(u), ε10b(u)) = (0,−1, 1, 0, 1)

if u2 is rationally conjugate to an element in 5b. The conjugacy classes are listed
in such a way that squares of elements in 10b are lying in 5a.

Proof. We will use the representations given in [15] and explicitly proved in [28,
Lemma 1.2], namely, if a is an element of order (pf + 1)/2 and b is an element of order
(pf − 1)/2 in G, then there is a primitive (pf + 1)/2th root of unity α and a primi-
tive (pf − 1)/2th root of unity β such that for every i ∈ N0 there exists a p-modular
representation Θi of G with character ϕi such that

Θi(a) ∼ (1, α, α−1, α2, α−2, . . . , αi, α−i),

Θi(b) ∼ (1, β, β−1, β2, β−2, . . . , βi, β−i).

For convenience, the relevant parts of the characters ϕi are collected in Tables 1 and 2,
where dashes indicate zeroes.

Let p �∈ {2, 3}. If u ∈ V(ZG) is of order 4, then ε2a(u) = 0 by [15, Proposition 6.5].
Thus, ε4a(u) = 1 and u is rationally conjugate to a group element.

Assume that u ∈ V(ZG) is of order 9. Then ε3a(u) = 0 by [15, Proposition 6.5]. Let
9a, 9b and 9c denote the conjugacy classes of elements of order 9 in G and x ∈ G such
that x ∈ 9a, x2 ∈ 9b and x4 ∈ 9c. Then

ε9a(u) + ε9b(u) + ε9c(u) = 1.
∗ All tables used in this paper are accessible in GAP [10] via the package [4] using the com-

mands CharacterTable("G"); and CharacterTable("G") mod p;, where G is the identifier of the group,
e.g. PSL(2,19) or M10. The corresponding decomposition matrix for a Brauer table can then be obtained
by using DecompositionMatrix.
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Table 1. Parts of some p-Brauer-characters of G = PSL(2, pf ) for p /∈ {2, 3} and 24 | |G|.

1a 2a 3a 4a 6a 12a 12b

ϕ1 3 −1 — 1 2 1 + ζ12 + ζ−1
12 1 − ζ12 − ζ−1

12

ϕ2 5 1 −1 −1 1 2 + ζ12 + ζ−1
12 2 − ζ12 − ζ−1

12

ϕ3 7 −1 1 −1 −1 2 + ζ12 + ζ−1
12 2 − ζ12 − ζ−1

12

ϕ5 11 −1 −1 1 −1 1 1

Table 2. Part of some p-Brauer-characters of G = PSL(2, pf ) with p /∈ {2, 5}
and 20 | |G| with α = ζ5 + ζ4

5 , β = ζ2
5 + ζ3

5 .

1a 2a 5a 5b 10a 10b

ϕ1 3 −1 −β −α −2α − β −α − 2β

ϕ2 5 1 — — −2α −2β

Let ζ be a primitive complex 9th root of unity such that Θ1(x) ∼ (1, ζ, ζ8). Since
Θ1(u3) ∼ (1, ζ3, ζ6) and ϕ1 is real valued, we get Θ1(u) ∼ (1, γ, δ) with (γ, δ) ∈
{(ζ, ζ8), (ζ2, ζ7), (ζ4, ζ5)}. So

(1 + ζ + ζ8)ε9a(u) + (1 + ζ2 + ζ7)ε9b(u) + (1 + ζ4 + ζ5)ε9c(u)

∈ {1 + ζ + ζ8, 1 + ζ2 + ζ7, 1 + ζ4 + ζ5}.

Using ζ2, ζ3, ζ4, ζ5, ζ6, ζ7 as a Z-basis of Z[ζ] (see [29, Chapter 1, (10.2) Proposition]),
this gives

(−ε9b(u) + ε9c(u), ε9a(u) − ε9b(u)) ∈ {(−1,−1), (1, 0), (0, 1)}.

Combining each of these possibilities with ε9a(u) + ε9b(u) + ε9c(u) = 1, we get

(ε9a(u), ε9b(u), ε9c(u)) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Thus u is rationally conjugate to a group element. This is also a consequence of [28,
Theorem 1].

Now assume that u is of order 12. Then G contains an element of order 12 by Propo-
sition 3.1. So let 2a, 3a, 4a, 6a, 12a, 12b be the conjugacy classes with potentially
non-vanishing partial augmentations for u. Let ζ be a primitive 12th root of unity such
that Θ1(12a) ∼ (1, ζ, ζ11).

We will use ζ, ζ4, ζ8, ζ11 as a Z-basis of Z[ζ]. (This is a basis since ϕ(12) = 4, where ϕ

denotes Euler’s totient function, and 1 = −ζ4 − ζ8, ζ2 = −ζ8, ζ3 = ζ − ζ11, ζ5 = −ζ11,
ζ6 = −1 = ζ4 + ζ8, ζ7 = −ζ, ζ9 = −ζ + ζ11 and ζ10 = −ζ4.) We have

ε2a(u) + ε3a(u) + ε4a(u) + ε6a(u) + ε12a(u) + ε12b(u) = 1. (3.1)
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Furthermore, Θ1(u9) ∼ (1, ζ3, ζ9) and Θ1(u4) ∼ (1, ζ4, ζ8). Thus, as ϕ1 has only real
values, Θ1(u) ∼ X with X ∈ {(1, ζ5, ζ7), (1, ζ, ζ11)} = {(1,−ζ11,−ζ), (1, ζ, ζ11)}. Hence,
using Table 1, we obtain

− ε2a(u) + ε4a(u) + 2ε6a(u) + (1 + ζ + ζ11)ε12a(u) + (1 − ζ − ζ11)ε12b(u)

∈ {1 + ζ + ζ11, 1 − ζ − ζ11}.

Again using ζ, ζ4, ζ8, ζ11 as a basis of Z[ζ], this gives

ε12a(u) − ε12b(u) = ±1, (3.2)

−ε2a(u) + ε4a(u) + 2ε6a(u) + ε12a(u) + ε12b(u) = 1. (3.3)

Proceeding the same way, we have

Θ2(u9) ∼ (1,−1,−1, ζ3, ζ9), Θ2(u4) ∼ (1, ζ4, ζ8, ζ4, ζ8) and Θ2(u) ∼ X

with X ∈ {(1, ζ2, ζ10, ζ, ζ11), (1, ζ2, ζ10, ζ5, ζ7)}. So, by Table 1 and ζ2 + ζ10 = 1, we get

ε2a(u) − ε3a(u) − ε4a(u) + ε6a(u) + (2 + ζ + ζ11)ε12a(u) + (2 − ζ − ζ11)ε12b(u)

∈ {2 + ζ + ζ11, 2 − ζ − ζ11}.

Comparing coefficients of ζ4 gives

ε2a(u) − ε3a(u) − ε4a(u) + ε6a(u) + 2ε12a(u) + 2ε12b(u) = 2. (3.4)

Applying the same for ϕ3, we obtain Θ3(u9) ∼ (1,−1,−1, ζ3, ζ9, ζ3, ζ9), Θ3(u4) ∼
(1, ζ4, ζ8, 1, ζ4, ζ8, 1) and Θ3(u) ∼ (X) with

X ∈ {(1,−1,−1, ζ, ζ11, ζ, ζ11), (1,−1,−1, ζ, ζ11, ζ5, ζ7), (1,−1,−1, ζ5, ζ7, ζ5, ζ7),

(1, ζ2, ζ10, ζ3, ζ9, ζ, ζ11), (1, ζ2, ζ10, ζ3, ζ9, ζ5, ζ7)}.

So, by Table 1, ζ2 + ζ10 = 1 and ζ3 + ζ9 = 0, and we get

ε2a(u) + ε3a(u) − ε4a(u) − ε6a(u) + (2 + ζ + ζ11)ε12a(u) + (2 − ζ − ζ11)ε12b(u)

∈ {−1 + 2ζ + 2ζ11,−1,−1 − 2ζ − 2ζ11, 2 + ζ + ζ11, 2 − ζ − ζ11}.

As the first three possibilities would give ε12a(u) − ε12b(u) ∈ {−2, 0, 2}, contradicting
(3.2), only the last two remain and give

−ε2a(u) + ε3a(u) − ε4a(u) − ε6a(u) + 2ε12a(u) + 2ε12b(u) = 2. (3.5)

In the same way,

Θ5(u6) ∼
(
5 × 1 , 6 × − 1

)
, Θ5(u9) ∼

(
3 × 1 , 2 × − 1 , 3 × ζ3, ζ9,

)
,

Θ5(u4) ∼
(
3 × 1 , 4 × ζ4, ζ8

)
, Θ5(u) ∼ (1, ζ, ζ2, ζ3, ζ4, ζ5, ζ7, ζ8, ζ9, ζ10, ζ11)
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(note that ϕ5(u) has to be even rational, as ϕ5 has only rational values). Thus −ε2a(u)−
ε3a(u) + ε4a(u) − ε6a(u) + ε12a(u) + ε12b(u) = 1, giving

−ε2a(u) − ε3a(u) + ε4a(u) − ε6a(u) + ε12a(u) + ε12b(u) = 1. (3.6)

Now, subtracting (3.1) from (3.6) gives ε2a(u) + ε3a(u) + ε6a(u) = 0, while subtracting
(3.4) from (3.5) gives ε2a(u) − ε3a(u) + ε6a(u) = 0. Thus ε3a(u) = 0. Then subtracting
(3.1) from (3.3) gives −2ε2a(u) + ε6a(u) = 0, so ε2a(u) = ε6a(u) = 0. Now multiply-
ing (3.1) by 2 and subtracting it from (3.4) gives ε4a(u) = 0. Using (3.1) and (3.2),
this leaves only the trivial possibilities (ε2a(u), ε3a(u), ε4a(u), ε6a(u), ε12a(u), ε12b(u)) ∈
{(0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1)}.

For part (b) assume that p �∈ {2, 5}, u ∈ V(ZG) is of order 10 and let ζ be a primitive
5th root of unity such that Θ1(10a) ∼ (1,−ζ,−ζ4). Assume furthermore that u2 is
rationally conjugate to an element in 5a.

We have
ε2a(u) + ε5a(u) + ε5b(u) + ε10a(u) + ε10b(u) = 1.

Furthermore, Θ1(u5) ∼ (1,−1,−1) and Θ1(u6) ∼ (1, ζ2, ζ3). As ϕ1 has only real values,
we get Θ1(u) ∼ (1,−ζ2,−ζ3). Thus

− ε2a(u) + (−ζ2 − ζ3)ε5a(u) + (−2ζ − ζ2 − ζ3 − 2ζ4)ε10a(u)

+ (−ζ − ζ4)ε5b(u) + (−ζ − 2ζ2 − 2ζ3 − ζ4)ε10b(u) = 1 − ζ2 − ζ3.

Using ζ, ζ2, ζ3, ζ4 as a Z-basis of Z[ζ], we obtain

ε2a(u) − ε5b(u) − 2ε10a(u) − ε10b(u) = −1,

ε2a(u) − ε5a(u) − ε10a(u) − 2ε10b(u) = −2.

In the same way we get Θ2(u5) ∼ (1, 1, 1,−1,−1), Θ2(u6) ∼ (1, ζ, ζ2, ζ3, ζ4) and Θ2(u) ∼
X with X ∈ {(1,−ζ, ζ2, ζ3,−ζ4), (1, ζ,−ζ2,−ζ3, ζ4)}. We have ϕ2(u) = ε2a(u) − 2(ζ +
ζ4)ε10a(u) − 2(ζ2 + ζ3)ε10b(u). Hence

(−ε2a(u) − 2ε10a(u),−ε2a(u) − 2ε10b(u)) ∈ {(−2, 0), (0,−2)}.

Combining these equations with the equations obtained above, we get

(ε2a(u), ε5a(u), ε5b(u), ε10a(u), ε10b(u)) ∈ {(0, 1,−1, 1, 0), (0, 0, 0, 0, 1)}.

If u2 is rationally conjugate to an element in 5b, then replacing every ζi with ζ2i and
doing the same computations as above gives the result. �

Proof of Theorem 1.1. By Proposition 3.1, to obtain the Zassenhaus conjecture
for G = PSL(2, 23) only elements of orders 4 and 12 in V(ZG) need to be checked and
these are rationally conjugate to group elements by Lemma 3.2. So from now on let
G = PSL(2, 19). Then by Proposition 3.1 only elements of orders 9 and 10 need to be
checked, but elements of order 9 were already handled in Lemma 3.2. So assume that
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Table 3. Part of the ordinary character table of PSL(2, 19) with α = ζ5 + ζ4
5 , β = ζ2

5 + ζ3
5 .

1a 2a 5a 5b 10a 10b

χ18 18 −2 −α −β −α −β

χ19 19 −1 −1 −1 −1 −1

Table 4. Part of the Brauer table and decomposition matrix of PSL(2, 19) for the prime 5.

(a) Part of the Brauer table
1a 2a

ϕ1 1 1
ϕ18 18 −2

(b) Part of the decomposition matrix
ϕ1 ϕ18

χ1 1 —
χ18 — 1
χ19 1 1

u ∈ V(ZG) is of order 10 and not rationally conjugate to a group element. If u is not
rationally conjugate to an element of G, then also u3 is not rationally conjugate to an
element in G. Furthermore, if u2 is rationally conjugate to an element in 5a, then u6 is
rationally conjugate to an element in 5b. So we may assume that u2 is conjugate to an
element in 5a, and by Lemma 3.2 we get

(ε2a(u), ε5a(u), ε5b(u), ε10a(u), ε10b(u)) = (0, 1,−1, 1, 0).

We give the parts of the character tables relevant for our proof in Tables 3 and 4.
Let D18 and D19 be representations affording the characters χ18 and χ19 given in

Table 3. We compute the eigenvalues of D18(u) and D19(u) using the character table in
the way demonstrated above. We have

D18(u5) ∼
(
8 × 1 , 10 × − 1

)
and D18(u6) ∼

(
3 × 1, ζ, ζ2, ζ3, ζ4 , 1 × 1, ζ, ζ4

)
.

Since χ18(u) = χ18(5a) − χ18(5b) + χ18(10a) = −2(ζ + ζ4) + (ζ2 + ζ3), we obtain

D18(u) ∼ (1, ζ, ζ2, ζ3, ζ4, 1, ζ2, ζ3,−1,−ζ,−ζ2,−ζ3,−ζ4,−1,−ζ,−ζ4,−ζ,−ζ4).

Moreover,

D19(u5) ∼
(
9 × 1 , 10 × − 1

)
and D19(u6) ∼

(
3 × 1 , 4 × ζ, ζ2, ζ3, ζ4

)
.

Since χ19(u) = −1, we get

D19(u) ∼ (1, ζ, ζ2, ζ3, ζ4, ζ, ζ2, ζ3, ζ4,−1,−ζ,−ζ2,−ζ3,−ζ4,−1,−ζ,−ζ2,−ζ3,−ζ4).
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824 A. Bächle and L. Margolis

By [32], the Schur indices of all irreducible representations of G are 1 and we may thus
assume that D19 is a Q5-representation while D18 is a K-representation, where K is the
5-adic completion of Q(ζ9 + ζ−1

9 , ζ5 + ζ−1
5 ) = Q(ζ9 + ζ−1

9 ,
√

5). For both these fields, the
rings of integers are principal ideal domains, so by [7, Proposition 23.16] we may assume
that D19 is a Z5-representation and D18 is an R-representation, where R denotes the
ring of integers of K. Let L19 and L18 respectively be a Z5G-lattice and an RG-lattice
affording these representations. As usual, denote by a bar the reduction modulo the
maximal ideal of Z5 and the maximal ideal of R. Denote by k a field of characteristic 5
that contains Z̄5 and R̄ and affords all irreducible 5-modular representations of G.

We may assume that L̄19 contains L̄18 as a submodule (multiplying a module by the
augmentation ideal I(kG) annihilates precisely the trivial kG-submodules). L̄19/L̄18 is a
trivial kG-module, and so also a trivial k〈ū〉-module. By Proposition 2.3, as Z5〈u〉-lattice
and as R〈u〉-lattice we may respectively write L19

∼= L+
19 ⊕ L−

19 and L18
∼= L+

18 ⊕ L−
18 such

that the composition factors of L̄+
i are all trivial and the composition factors of L̄−

i are
all non-trivial as k〈ū〉-modules for i ∈ {18, 19}. As L̄19/L̄18 is a trivial module, we have
L̄−
18

∼= L̄−
19 (as k〈ū〉-modules).

By the computations above, the eigenvalues of D19(u), which are not 5th roots of unity,
i.e. which contribute to L−

19 by Proposition 2.3, are

(−1,−ζ,−ζ2,−ζ3,−ζ4,−1,−ζ,−ζ2,−ζ3,−ζ4).

Recall that we denote by (Z5)−, I(Z5C5)− and (Z5C5)− the indecomposable Z5C10-
lattices of rank 1, 4 and 5 respectively, which have non-trivial composition factors (see
Propositions 2.3 and 2.4). By Proposition 2.4 the eigenvalues imply that L−

19
∼= X with

X ∈ {2(Z5)− ⊕ 2I(Z5C5)−, (Z5)− ⊕ I(Z5C5)− ⊕ (Z5C5)−, 2(Z5C5)−}.

In any case, L̄−
19 has two indecomposable summands of k-dimension at least 4, as inde-

composable summands of X stay indecomposable after reduction by Proposition 2.4.
On the other hand, the eigenvalues of D18(u) that are not 5th roots of unity are

(−1,−ζ,−ζ2,−ζ3,−ζ4,−1,−ζ,−ζ4,−ζ,−ζ4).

Note that the simple R〈u〉-lattice S affording the eigenvalues (−ζ2,−ζ3) appears exactly
once as a composition factor of L−

18. Let L−
18

∼= Y ⊕Z such that Y is indecomposable and S

is a composition factor of Y . There are at most two non-isomorphic simple R〈u〉-lattices
involved in Z, namely, the one affording eigenvalues (−ζ,−ζ4) and the one affording the
eigenvalue −1. Hence, by Proposition 2.5, the maximal R-rank of an indecomposable
summand of Z is 3. Again by Proposition 2.5 both simple lattices corresponding to the
eigenvalues (−ζ,−ζ4) and (−ζ2,−ζ3), which both have R-rank 2, appear each at most
once as a composition factor of Y , while the simple lattice corresponding to the eigenvalue
−1 appears at most twice. Thus the maximal R-rank of Y is 6. So in any case L̄−

18 does
not posses two indecomposable direct summands of dimension at least 4, but since the
Krull–Schmidt–Azumaya theorem holds, we obtain a contradiction to L̄−

18
∼= L̄−

19 and the
above paragraph. �
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Aut(A6) ∼= PΓL(2, 9)

�������������

�������������

M10

������������� S6 PGL(2, 9)

�������������

A6 ∼= PSL(2, 9)

Figure 2. Almost simple groups containing A6. Indices of consecutive subgroups are 2.

Remark 3.3. Note that the proof of the Zassenhaus conjecture for PSL(2, 23) only
uses the HeLP method. Naturally, the next candidate to study the Zassenhaus conjec-
ture for PSL(2, p) would be PSL(2, 29). After applying the HeLP method for this group,
units of order 14 remain critical. Using the method from above would in any case involve
RC7-lattices, where R denotes the ring of integers of Q7(ζ7 + ζ−1

7 ). Since the representa-
tion type of RC7 is wild (see [9]) this seems hopeless using only theoretical arguments.
However, the degrees of the representations involved are at most 30, so a computational
approach seems to be feasible. This is, however, not a part of this paper.

3.2. Proof of Theorem 1.2

Let G = Aut(A6), the automorphism group of the alternating group of degree 6. Both
M10 and PGL(2, 9) are subgroups of index 2 in G (see Figure 2). There is a unique
conjugacy class 3a of elements of order 3 in G (it is the union of the two conjugacy
classes of elements of order 3 in A6 and has length 80). This class is also the conjugacy
class of elements of order 3 in M10 and PGL(2, 9). Furthermore, there is a conjugacy
class of G consisting of all the involutions in A6 of length 45, which we will denote
by 2a. This is clearly also a conjugacy class of M10 and PGL(2, 9). Let u be a unit
of order 6 in V(ZM10) or in V(Z PGL(2, 9)). By [23, Proof of Theorem 3.1], if such a
unit exists, then all partial augmentations of u vanish except at the classes 2a and 3a,
and then (ε2a(u), ε3a(u)) = (−2, 3). We will first compute in Aut(A6) and then obtain
contradictions to the existence of u via restriction to M10 and PGL(2, 9).

The relevant parts of the character tables∗ of G are given in Table 5, the corresponding
decomposition matrix in Table 6. By χ10 we denote the irreducible character of degree
10 that contains a trivial constituent after reduction modulo 3.

Denote by ζ a complex primitive 3rd root of unity. Using the HeLP method and the
fact that each χi is real valued, we obtain

D10(u) ∼
(
2 × 1 , 2 × ζ, ζ2 , 2 × − 1 , 1 × − ζ,−ζ2

)
,

D20(u) ∼
(
8 × 1 , 6 × − ζ,−ζ2

)
.

∗ These tables can be obtained in their entirety in GAP by calling CharacterTable("A6.2ˆ2"); and
CharacterTable("A6.2ˆ2") mod 3; respectively.
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Table 5. Parts of the ordinary character table and Brauer table
for the prime 3 for the group Aut(A6).

(a) Part of the ordinary character table
1a 2a 3a

χ1a 1 1 1
χ1b 1 1 1
χ10 10 2 1
χ20 20 −4 2

(b) Part of the Brauer table for p = 3
1a 2a 5a 2b

ϕ1a 1 1 1 1
ϕ1b 1 1 1 −1
ϕ6a 6 −2 1 —
ϕ6b 6 −2 1 —
ϕ8 8 — −2 —

Table 6. Part of the decomposition matrix of Aut(A6) for the prime 3.

ϕ1a ϕ1b ϕ6a ϕ6b ϕ8

χ1a 1 — — — —
χ1b — 1 — — —
χ10 1 1 — — 1
χ20 — — 1 1 1

This can be computed in the way demonstrated above. As u4 is rationally conjugate to
an element in 3a and u3 is rationally conjugate to an element in 2a, we have χ10(u4) =
χ10(3a) = 1 and χ10(u3) = χ10(2a) = 2. This gives

D10(u4) ∼
(
4 × 1 , 3 × ζ, ζ2

)
and D10(u3) ∼

(
6 × 1 , 4 × − 1

)
.

Now χ10(u) = ε2a(u)χ10(2a) + ε3a(u)χ10(3a) = −1 and, as the eigenvalues of D10(u) are
products of the eigenvalues of D10(u4) and D10(u3), this gives the stated eigenvalues.

Moreover, we have χ20(u4) = χ20(3a) = 2 and χ20(u3) = χ20(2a) = −4. So

D20(u4) ∼
(
8 × 1 , 6 × ζ, ζ2

)
and D20(u3) ∼

(
8 × 1 , 12 × − 1

)
.

Since χ20(u) = ε2a(u)χ20(2a) + ε3a(u)χ20(3a) = 14 we obtain the claimed eigenvalues.
As all the character values of all ordinary characters of G are integers on all conjugacy

classes of G, we may assume by a theorem of Fong [20, Corollary 10.13] that all ordinary
representations mentioned above are K-representations, where K is the 3-adic completion
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Table 7. Dimensions of T+ and T − for certain k〈ū〉-modules,
where ∗ takes all possible values in {a, b}.

k〈ū〉-module k-dimension k-dimension
T of T+ of T −

L̄10 6 4
L̄20 8 12
T1∗ 1 0
T6∗ 2 4
T8 4 4

Table 8. Decomposition factors of certain reduced R Aut(A6)-lattices,
where (i, j) takes a value in {(a, b), (b, a)}.

kG-module T Socle of T Head of T

L̄10 T1i T1j

L̄20 T6a ⊕ T6b T8

of an extension of Q that is unramified at 3. So if R is the ring of integers of K we may
assume that they are even R-representations. Let P be the maximal ideal of R and let a
bar denote the reduction modulo P . Let k be a finite field of characteristic 3 containing
the residue class field of R and affording all irreducible 3-modular representations of
M10, PGL(2, 9) and Aut(A6). Denote by L∗ an RG-lattice affording the representation
D∗. Recall that k, I(kC3) and kC3 respectively denote the indecomposable kC6-modules
of k-dimension 1, 2 and 3 having trivial composition factors, and (k)−, I(kC3)− and
(kC3)− respectively denote the indecomposable kC6-modules of k-dimension 1, 2 and 3
having non-trivial composition factors (see Propositions 2.2 and 2.4). We will write T∗
for a simple kG-module having character ϕ∗.

Regarded as k〈ū〉-modules, using Propositions 2.2 and 2.3 we may write L̄∗ ∼= L̄+
∗ ⊕ L̄−

∗
and T∗ ∼= T+

∗ ⊕ T−
∗ , where all the composition factors of T+

∗ and L̄+
∗ are trivial and all

the composition factors of T−
∗ and L̄−

∗ are non-trivial. As u3 is rationally conjugate to
an element in 2a, it is also 3-adically conjugate to this element by [14, Lemma 2.9].
Thus the k-dimensions of T+

∗ and T−
∗ can be deduced from the Brauer table above.

The k-dimensions of L̄+
∗ and L̄−

∗ can be deduced from the eigenvalues given above using
Proposition 2.3. The dimensions are given in Table 7.

The Krull–Schmidt–Azumaya theorem will be used without further mention. We will
use decomposition series of L̄∗ as kG-module, which we obtained using the MeatAxe
algorithm [30] as implemented in GAP [10]∗, as shown in Table 8.

∗ The representations of irreducible modules are available in GAP through use of the command
IrreducibleRepresentationsDixon or IrreducibleAffordingRepresentation once the character is
given. The latter is a function of the package Repsn [8]
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Table 9. Part of the Brauer table of M10 for the prime 3,
including all characters up to degree 6.

1a 2a

ψ1a 1 1
ψ1b 1 1
ψ4a 4 —
ψ4b 4 —
ψ6 6 −2

In this paragraph all modules will be k〈ū〉-modules. With the eigenvalues of D20(u)
as above, using Propositions 2.3 and 2.4 we get L̄−

20
∼= 6I(kC3)−. As T1a and T1b are

trivial k〈ū〉-modules by the Brauer table given above, using the eigenvalues of D10(u) and
Proposition 2.4, we obtain T−

8
∼= L̄−

10
∼= X with X ∈ {(k)− ⊕ (kC3)−, 2(k)− ⊕ I(kC3)−}.

Moreover, as T−
8

∼= L̄−
20/(T−

6a ⊕ T−
6b), i.e. T−

8 is also a quotient of L̄−
20

∼= 6I(kC3)−, we get

T−
8

∼= 2(k)− ⊕ I(kC3)−.

So 6I(kC3)−/(T−
6a ⊕ T−

6b) ∼= L̄−
20/(T−

6a ⊕ T−
6b) ∼= T−

8
∼= 2(k)− ⊕ I(kC3)− and this implies

that
T−
6a ⊕ T−

6b
∼= 2(k)− ⊕ 3I(kC3)−.

As dimk(T−
6a) = dimk(T−

6b) = 4, this gives either

T−
6a

∼= 2(k)− ⊕ I(kC3)−, T−
6b

∼= 2I(kC3)−

or

T−
6a

∼= 2I(kC3)−, T−
6b

∼= 2(k)− ⊕ I(kC3)−.

We will now apply restriction. First consider u ∈ V(ZM10).
Looking at the Brauer table of Aut(A6) and the Brauer table of M10 stated in Table 9,

we obtain that T6a and T6b are isomorphic as kM10-modules. So if u lies in ZM10, they
must also be isomorphic as k〈ū〉-modules, contradicting the above.

Now assume that u lies in Z PGL(2, 9). Let T be T6a or T6b such that as a k〈ū〉-
module T− ∼= 2(k)− ⊕ I(kC3)−. Looking at the Brauer table of PGL(2, 9) given in
Table 10 we obtain that, considered as a k PGL(2, 9)-module, T has two three-dimensional
composition factors, say S3x and S3y. Moreover, by Clifford’s theorem [7, Theorem 11.1],
T is the direct sum of its two composition factors. The characters belonging to S3x and S3y

both have the value −1 on 2a, so as k〈ū〉-modules S−
3x and S−

3y are both two dimensional,
and thus one of them is isomorphic to 2(k)− while the other one is isomorphic to I(kC3)−.

Let D3x : PGL(2, 9) → GL(3, k) be a representation of PGL(2, 9) affording S3x. Let
α be the Frobenius automorphism of k applied to every entry of a 3 × 3-matrix over k.
Then α ◦ D3x is also a k-representation of PGL(2, 9) and, looking at the Brauer table,
we obtain that this representation affords S3y. As α is linear on the full matrix ring, S3x
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Table 10. Part of the Brauer table of PGL(2, 9) for the prime 3,
including all characters up to degree 6 with α = ζ5 + ζ4

5 .

1a 2a 4a 5a 5b 2b

τ1a 1 1 1 1 1 1
τ1b 1 1 1 1 1 −1
τ3a 3 −1 1 −α 1 + α −1
τ3b 3 −1 1 1 + α −α −1
τ3c 3 −1 1 −α 1 + α 1
τ3d 3 −1 1 1 + α −α 1
τ4a 4 — −2 −1 −1 —
τ4b 4 — −2 −1 −1 —

is also sent to S3y as a k〈ū〉-module via α, and hence S−
3x is sent to S−

3y via α. However,
since α preserves the dimensions of eigenspaces of a matrix, S−

3x and S−
3y must in fact be

isomorphic as k〈ū〉-modules. This contradicts the above and thus the existence of u. �
Acknowledgements. We thank Martin Hertweck for helpful conversations.
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