
TPLP 21 (2): 264–282, 2021. c© The Author(s), 2021. Published by Cambridge University Press

doi:10.1017/S1471068421000028 First published online 3 March 2021

264

Implementing WordNet Measures of Lexical
Semantic Similarity in a Fuzzy Logic Programming

System∗

PASCUAL JULIÁN-IRANZO
Department of Information Technologies and Systems, University of Castilla-La Mancha, 13071

Ciudad Real, Spain
(e-mail: Pascual.Julian@uclm.es)

FERNANDO SÁENZ-PÉREZ
Faculty of Computer Science, Complutense University of Madrid, 28040 Madrid, Spain

(e-mail: fernan@sip.ucm.es)

submitted 25 November 2019; revised 26 January 2021; accepted 27 January 2021

Abstract

This paper introduces techniques to integrate WordNet into a Fuzzy Logic Programming system.
Since WordNet relates words but does not give graded information on the relation between them,
we have implemented standard similarity measures and new directives allowing the proximity
equations linking two words to be generated with an approximation degree. Proximity equations
are the key syntactic structures which, in addition to a weak unification algorithm, make a
flexible query-answering process possible in this kind of programming language. This addition
widens the scope of Fuzzy Logic Programming, allowing certain forms of lexical reasoning, and
reinforcing Natural Language Processing (NLP) applications.

KEYWORDS: fuzzy logic programming, WordNet, proximity equations, system implementation

1 Introduction and motivation

Fuzzy Logic Programming (Lee 1972) integrates concepts coming from fuzzy logic (Zadeh

1965) into logic programming (van Emden and Kowalski 1976) in order to deal with the

essential vagueness of some problems by using declarative techniques. In recent years,

there has been renewed interest in this field, involving multiple lines of work. When

the fuzzy unification algorithm is weakened using a similarity relation (i.e. a reflexive,

symmetric, transitive, fuzzy binary relation), the approach is usually called Similarity-

based Logic Programming (Fontana and Formato 1999; 2002; Loia et al . 2001; Sessa

2002).

∗ Work is partially funded by the State Research Agency (AEI) of the Spanish Ministry of Science and
Innovation under grant PID2019-104735RB-C42 (SAFER), by the Spanish Ministry of Economy and
Competitiveness, under the grants TIN2016-76843-C4-2-R (MERINET), TIN2017-86217-R (CAVI-
ART-2), and by the Comunidad de Madrid, under the grant S2018/TCS-4339 (BLOQUES-CM), co-
funded by EIE Funds of the European Union.

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000028
https://orcid.org/0000-0002-6482-3220
mailto:Pascual.Julian@uclm.es
https://orcid.org/0000-0001-6075-4398
mailto:fernan@sip.ucm.es
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068421000028&domain=pdf
https://doi.org/10.1017/S1471068421000028


Implementing WordNet lexical similarity measures 265

%% PROXIMITY EQUATIONS

ancestor~ascendant=1.0. ancestor~progenitor=0.9.

%% FACTS

father(abraham,isaac). father(isaac,esau). father(isaac,jacob).

mother(sara,isaac). mother(rebeca,jacob). mother(rebeca,esau).

%% RULES

direct_ancestor(X,Y) :- father(X,Y); mother(X,Y).

ancestor(X,Z) :- direct_ancestor(X,Z).

ancestor(X,Z) :- direct_ancestor(X,Y), ancestor(Y,Z).

Fig. 1. A BPL program fragment.

We have extended Similarity-based Logic Programming by introducing new theoretical

concepts and developing two fuzzy logic programming systems: Bousi∼Prolog (BPL for

short) (Rubio-Manzano and Julián-Iranzo 2014; Julián-Iranzo and Rubio-Manzano 2017)

and FuzzyDES (Julián-Iranzo and Sáenz-Pérez 2017; 2018b). Their syntax is based on the

clausal form, and they embody a Weak SLD (WSLD) resolution operational semantics,

which uses a fuzzy unification algorithm based on the concept of proximity relation (i.e.

a fuzzy binary relation supporting unification that, although reflexive and symmetric,

is not necessarily transitive) (Julián-Iranzo and Rubio-Manzano 2015; Julián-Iranzo and

Sáenz-Pérez 2018a). A proximity relation is defined by proximity equations, denoted by

a ∼ b = α, whose intuitive reading is that two constants (either n-ary function symbols

or n-ary predicate symbols), a and b, are approximate or similar with a certain degree α.

For instance, assume a deductive database that stores information about people and

their family relationships encoded using the Bousi∼Prolog language (see Figure 1). In

a Prolog system (without proximity equations), asking about the progenitors of isaac

with the query progenitor(X,isaac) produces no answer. However, Bousi∼Prolog answers

X=abraham with 0.9 and X=sara with 0.9 thanks to its proximity-based unification algo-

rithm. Since we have specified that progenitor is close to ancestor with degree 0.9, these

two terms can “weakly” unify with approximation degree 0.9, leading to a refutation.

Here, the proximity equations are axiomatically given by the programmer. It would be

interesting if the system could provide assistance through its connection to a lexical re-

source such as WordNet (Fellbaum 1998; 2006; Miller 1995). This study, therefore, deals

with the generation of the set of proximity equations both automatically and with a min-

imal intervention by the programmer. However, the motivation for integrating WordNet

into our logic systems goes beyond this simple help function. We provide the Prolog im-

plementation, wn connect, to connect to WordNet with a number of similarity measures

and convenient predicates to be used either in isolation or integrated into Bousi∼Prolog,
allowing reasoning with linguistic terms. Unlike Distributional Semantic Models such

as Word Embeddings or other statistical approaches, WordNet-based techniques do not

require training and facilitate explainability (Santus et al . 2018).

The usefulness of this proposal lies in its inclusion of applications such as text mining

in information retrieval, text classification, and even sentiment analysis (Allahyari et al .

2017; Baeza-Yates and Ribeiro-Neto 2011; Serrano-Guerrero et al . 2015) (see also 6.2).

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000028


266 P. Julián-Iranzo and F. Sáenz-Pérez

2 The lexical resource WordNet and Prolog

WordNet is a lexical English-language database. Words of the same syntactic category

are grouped into sets of synonyms called synsets. Roughly speaking, the words of a

synset have the same meaning in a specific context and they represent a concept (or word

sense). Each synset has a synset ID. Because a word has different senses (meanings), it

can belong to different synsets. WordNet is structured as a semantic net where words

are interlinked by lexical relations, and synsets by semantic relations. Synonymy and

antonymy are the major lexical relations. Semantic relations serve to build knowledge

structures (i.e. networks of synsets – concepts). Nouns, as well as verbs, are interconnected

by the hyponymy relation (IS-A relation), which links specific concepts to more general

ones. Hypernymy is the opposite relation, that is, a hypernym is a word whose meaning

includes a group of other words. Both relations are transitive. Note also that both nouns

and verbs are organized as separate hierarchical structures.

WordNet can be accessed either via a web interface or locally. There exists a WordNet

3.0 database version released by Eric Kafe, which can be found at https://github.com/

ekaf/wordnet-prolog. The information stored in WordNet is provided as a collection of

Prolog files. Each file contains the definition of what is called an operator, corresponding

to a WordNet relation. Files are named wn <operator>.pl, where <operator> is the

name of a specific operation (relation). Therefore, each WordNet relation is represented

by a Prolog predicate, which is stored in a separate file and defined by a set of Prolog

facts. The specifications of these predicates are detailed in Fellbaum et al. (2006). We

now describe the predicates of greatest interest for this study.

The file wn s.pl contains all the information about words stored in WordNet. It de-

fines the s operator, which has an entry for each word. The structure of the s opera-

tor is s(Synset id, W num,Word,Ss type,Sense number,Tag count), where W num, if

given, indicates which word in the synset is being referred to. The words in a synset

are numbered serially, starting with 1. The third argument is the word itself (which is

represented by a Prolog atom). The Ss type parameter is a one character code indicating

the synset type: n (noun); v (verb); a (adjective); s (satellite adjective); and r (adverb).

The Sense number parameter specifies the sense of the word, within the part of speech

encoded in the Synset id. The higher the sense number, the less common the word.

Finally, the Tag count indicates the number of times the word sense was found in the

sense-tagged text corpus of Semantic Concordances (Miller et al . 1993), which was gen-

erated from the Brown Corpus (Francis and Kucera 1979), using WordNet as a lexicon.

The Brown Corpus was inspected word by word, including sense-tags for each one. A

higher tag count number means that the word is more common than others with a lower

tag count. In Section 5.4, we illustrate the meaning of some of these parameters through

an example.

The file wn hyp.pl stores hypernymy relations in the binary predicate

hyp(synset ID1, synset ID2) specifying that the second synset is a hypernym

of the first synset. This semantic relation only holds for nouns and verbs. Because

hyponymy is the inverse relation of hypernymy, the operator hyp also specifies that the

first synset is a hyponym of the second synset.

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

https://github.com/ekaf/wordnet-prolog
https://github.com/ekaf/wordnet-prolog
https://doi.org/10.1017/S1471068421000028


Implementing WordNet lexical similarity measures 267

Table 1. Some similarity measures and their features

Measure Type Description Range

PATH EB. simPATH(c1, c2) = 1/len(c1, c2) [0, 1]

WUP EB. simWUP(c1, c2) =
2×depth(lcs(c1,c2))

Depth(c1)+Depth(c2)
[0, 1]

LCH EB. simLCH(c1, c2) = −log
(

len(c1,c2)

2×max{depth(c)|c∈WordNet}

)
[0,∞]

RES IC simRES(c1, c2) = IC(lcs(c1, c2)) [0,∞]

JCN IC simJCN(c1, c2) =
1

IC(c1)+IC(c2)−2×IC(lcs(c1,c2))
[0,∞]

LIN IC simLIN(c1, c2) =
2×IC(lcs(c1,c2))

IC(c1)+IC(c2)
[0, 1]

3 WordNet and lexical semantic similarity

WordNet relates words but does not give their degree of relationship. Measuring lexical

semantic similarity has many applications for Natural Language Processing (NLP), and

its integration into a fuzzy logic programming system such as Bousi∼Prolog is appropriate

because of its proximity-based operational semantics. The syntax of our language uses

symbols (words) that are endowed with a fuzzy semantics via proximity equations. We

are, therefore, interested in techniques for measuring the similarity degree between words

to facilitate the construction of proximity equations with linguistic criteria. Semantic

similarity quantifies how alike two words are (more precisely: how similar the concepts

they denote are).

Similarity measures are limited to noun pairs and verb pairs because WordNet orga-

nizes nouns and verbs into hyponymy/hypernymy-based hierarchies of concepts (synsets).

Although a large number of measures of semantic relatedness1 and similarity have been

proposed (Budanitsky and Hirst 2006), they are only implemented by a limited number

of tools. WordNet::Similarity (Pedersen et al . 2004) is perhaps the most prominent. This

tool has three similarity measures based on counting edges between concepts (PATH,

WUP (Wu and Palmer 1994), and LCH (Leacock and Chodorow 1998)), and another

three based on information content (RES (Resnik 1995), JCN (Jiang and Conrath 1997),

and LIN (Lin 1998)).

Table 1 summarizes some features of these measures, with the measure name in the

first column, its type (either counting Edges Based – EB or Information Content – IC) in

the second, its description in the third, and its range in the last. In order to understand

the description of similarity measures accurately, we introduce the following standard

definitions and notations used when working in the framework of WordNet:

• We differentiate between “words” and “concepts”. We use the term “word ” as

shorthand for “word form,” and the term “concept” (i.e. “synset”) to refer to a

specific sense or word meaning. Words will be denoted by the letter w, and concepts

1 Note that “lexical semantic relatedness” is a broad concept that subsumes “lexical semantic similarity”.
There are many different forms in which two words can be related without being similar: for instance,
“car” and “petrol” are closely related, but they are not similar. From a pragmatic point of view, and
to distinguish one type of measure from another, it is usual to reserve the name “relatedness” for those
that measure features other than similarity.

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000028


268 P. Julián-Iranzo and F. Sáenz-Pérez

by the letter c, possibly with subscripts. A concept can also be seen as a word w

of type t with sense s and denoted by w : t : s (which we often call word term or

pattern).

• Similarity measures use so-called HyperTrees (Hypernym Trees). These are IS-A

hierarchies, which are a consequence of the hyponymy relation between concepts.

Despite their name, HyperTrees are not really trees because a concept can be

linked to a hypernym concept through different paths. Moreover, in practice, the

branches of a HyperTree are manipulated independently as hypernym chains. Given

a HyperTree, the length of the shortest path from synset c1 to synset c2 is denoted

by len(c1, c2). The depth of a node c is the length of the shortest path from the

global root to c, that is, depth(c) = len(root, c). The “global root” is a virtual root

that we introduce into the IS-A hierarchy of either nouns or verbs for technical

reasons.

• The least common subsumer (LCS) of two concepts c1 and c2 is the most spe-

cific concept they share as an ancestor. It is denoted by lcs(c1, c2). An example

illustrating the notion of LCS is shown in Section 5.4.

RES, JCN and LIN measures are based on the notion of IC (Resnik 1995). For a

concept c, IC(c) = −ln(p(c)), where p is the probability of finding an instance of the

concept c in a corpus. In our case, this probability is measured in terms of a relative

frequency of use (or frequency count) of the concept c stored in WordNet, which is a

measure of the number of times that it occurs in the corpus of Semantic Concordances.

Specifically,

p(c) = Frequency(c)/Frequency(Root),

where Frequency(c) is computed by adding the Tag count of the concepts subsumed by

the concept c and Root is the concept (virtual or not) on the top of the concept hierarchy.

4 Formal setting

This section recalls and extends some formal background of BPL and its relation to

lexical similarity. Given a universe U , proximity equations extensionally define a bi-

nary fuzzy relation R : U × U −→ [0, 1]. A λ-cut is a user-defined threshold such that

Rλ = {〈x, y〉 | R(x, y) ≥ λ}. A fuzzy relation can have some properties attached, for

any e, e1, e2, e3 ∈ U : Reflexive (R(e, e) = 1), Symmetric (R(e1, e2) = R(e2, e1))), and

�-Transitive (R(e1, e3) ≥ R(e1, e2)�R(e2, e3)), where the operator � is an arbitrary

t-norm. A fuzzy relation with the reflexive and symmetric properties is a proximity rela-

tion. If in addition it has the �-transitive property, it is a similarity relation.2

A weak unification of terms builds upon the notion of weak unifier of level λ for

two expressions E1 and E2 with respect to R (or λ-unifier): a substitution θ such that

R(E1θ,E2θ) ≥ λ, which is the unification degree of E1 and E2 with respect to θ and

R. There are several weak unification algorithms (Julián-Iranzo and Sáenz-Pérez 2018a)

2 Lexical semantic similarity and a similarity relation are two different concepts. The first simply provides
a degree of similarity between words, but it is not a similarity relation in the sense defined above,
with the reflexive, symmetric and �-transitive properties. On the practical side, we use the WordNet
similarity measures to obtain the approximation degree that we use when automatically constructing
the proximity equations.

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000028


Implementing WordNet lexical similarity measures 269

based on this notion and on the proximity-based unification relation ⇒, which defines

a transition system (based on (Martelli and Montanari 1982)). This relation, applied to

a set of unification problems {Ei ≈ E ′
i |1 ≤ i ≤ n} can yield either a successful or a

failed sequence of transition steps. In the first case, both a successful substitution and a

unification degree are obtained (detailed in, e.g. (Julián-Iranzo and Sáenz-Pérez 2018a)).

The notion of weak most general unifier (wmgu) θ between two expressions, denoted

by wmguλR(E1,E2), is defined as a λ-unifier of E1 and E2 such that there is no other

λ-unifier which is more general than θ. Unlike in the classical case, the wmgu is not

unique. However, our weak unification algorithm computes a representative wmgu with

approximation degree greater than or equal to any other wmgu.

Given a fuzzy logic program Π with rules 〈(A← Q); δ〉, where A is an atomic formula,

Q is either empty or a conjunction of n ≥ 0 atomic formulas Bi, and δ is the degree of

the rule, an operational semantics can be defined as a transition system with a transition

relation ⇒WSLD, which, in particular, includes the (transition) rule:

〈(←A′∧Q′), θ, α〉 ⇒WSLD 〈(←Q∧Q′)σ, θσ, δ�β�α〉
if 〈(A← Q); δ〉 ∈ Π, σ = wmguλR(A,A′) �= fail, R(Aσ,A′σ) = β ≥ λ, and (δ�β�α) ≥ λ.

A fuzzy logic program Π is translated into a logic program by linearizing heads, mak-

ing the weak unification explicit, and explicitly computing the approximation degree.

Essentially, given a graded rule 〈p(tn) ← Q; δ〉, for each R(p, q) = α ∈ Π with α ≥ λ,

generate the clause:

q(xn)← (δ�α) ∧ x1 ≈ t1 ∧ · · · ∧ xn ≈ tn ∧Q,

where ≈ is the weak unification operator, ti are terms, xi are variables, and δ�α abbre-

viates the goal δ�α ≥ λ.

We assume three-arity predicates for lexical similarity measures with the pattern (w1 :

t1 : s1, w2 : t2 : s2, d), where wi : ti : si are word terms and d ∈ (0, 1] is a normalized

semantic similarity degree. Any element e in the semantics of a lexical similarity measure

m can be used to generate a proximity equation R(w1, w2) = d defining R. Depending

on the fuzzy relation we decide to work with, Bousi∼Prolog generates several types of

closure starting from the proximity equations defining R. Specifically, since a similarity

relation requires all of the three properties (in particular, transitivity), its intension is

its reflexive, symmetric, �-transitive closure. This allows for both manual and automatic

generation of proximity equations relating similar words, including words that are not

directly related by m (cf. Section 5).

Section 5 will show how to integrate WordNet and the aforementioned lexical se-

mantic similarity measures into the state-of-the-art fuzzy logic programming system

Bousi∼Prolog.

5 Integrating WordNet into Bousi∼Prolog

Bousi∼Prolog3 comprises three subsystems with a total of nine modules. The wn-connect

subsystem provides the basis for the connection between WordNet and the Bousi∼Prolog

3 https://dectau.uclm.es/bousi-prolog

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

https://dectau.uclm.es/bousi-prolog
https://doi.org/10.1017/S1471068421000028


270 P. Julián-Iranzo and F. Sáenz-Pérez

system.4 wn-connect is a software application in itself with ten Prolog modules, which

implements predicates for managing synsets, hypernyms and hyponyms, giving support

to the wn sim measures and wn ic measures modules which, in addition, implement the

standard similarity measures defined in Section 3. We now offer a summary of the base

modules:

• The wn synsetsmodule implements predicates to retrieve information about words

and synsets stored in WordNet. It uses the wn module implemented by Jan Wiele-

maker,5 which exploits SWI-Prolog demand loading and Quick Load Files (QLF)

for “just-in-time” fast loading.

• The wn hypernyms module implements predicates to retrieve information about hy-

pernyms of a concept (synset). It uses the modules wn synsets and wn utilities.

Notably, the predicate wn hypernyms/2 returns a list List SynSet HyperNym of

hypernyms (as synset identifiers) for a word term Hyponym.

• The wn hyponyms module implements predicates to retrieve informa-

tion about hyponyms of a concept (synset). Remarkably, the predicate

wn gen all hyponyms of/2 generates all the hyponyms of a concept (Synset ID),

and is especially useful for computing the information content of a concept.

5.1 Implementing similarity measures

The first step for a more ambitious goal is to automatically extract semantic similarity

information from WordNet IS-A hierarchies, and other attributes as the frequency of use

as explained before in Section 3. Here, we describe in broad strokes the implementation of

similarity measures based on edge-counting (module wn sim measures) and some insights

about those based on information content (module wn ic measures).

To a greater or lesser extent, all edge-counting similarity measures are based on

the computation of the LCS of two words (more accurately, concepts). The predicate

wn sim measures: lcs/6 returns the LCS of two words Word1 and Word2, and also mea-

sures depth in their respective HyperTrees. Roughly speaking, it computes the Hyper-

Trees of Word1 and Word2 and compares them from their roots, returning the synset ID

previous to the first mismatch (which is the LCS of both concepts). Additionally, the

predicate lcs/6 returns the depths for LCS, Word1 and Word2 for reasons of efficiency:

we want to go through the hypernym lists only once, so these quantities are calculated

when computing the LCS.

The computation of the hypernyms of a concept is carried out by the predi-

cate wn hypernyms: hypernym chain/2, which computes a list (SynSet HyperNyms) of

synset IDs designating the hypernyms of a concept (SynSet Hyponym). It, thus, com-

putes a HyperTree that will be used in the former comparison to compute the LCS.

Once the depths of the LCS and the words to be compared are known, it is easy

to compute the relationship degree between them by following the guidelines given in

Section 3. For example, the WUP measure is implemented by the predicate wn wup/3,

4 (Julián-Iranzo and Sáenz-Pérez 2019) gives a more detailed description of this subsystem from the
user’s point of view. Also, https://dectau.uclm.es/bousi-prolog/2018/08/27/applications/ sup-
plies the source files with the code and detailed comments of its implementation.

5 https://github.com/JanWielemaker/wordnet.

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

https://dectau.uclm.es/bousi-prolog/2018/08/27/applications/
https://github.com/JanWielemaker/wordnet
https://doi.org/10.1017/S1471068421000028


Implementing WordNet lexical similarity measures 271

which takes two concepts (expressed as word terms of the form Word:SS type:Sense num)

and returns the degree of similarity between them. It relies on the private predicate wup/3

that calls lcs/6 to generate and inspect a pair of HyperTrees associated to Word1 and

Word2, and obtains the similarity degree between both words (according to that pair

of HyperTrees). Because a concept can have more than one HyperTree, several pairs of

HyperTrees are possibly considered, and a list of similarity degrees is obtained for each of

these pairs of HyperTrees. Finally, the maximum degree in the list is selected as a result.

Regarding similarity measures based on the information content, the key idea lies in the

implementation of the notion of frequency of use. The operator wn s/6 stores information

on how common a word is. The tag number indicates the number of times the word was

found in a text corpus: the higher the number, the more common the word is. This

parameter can, therefore, be employed to obtain the use of a word and, summing the

tag number of all words in a synset, the specific use associated to a whole synset (i.e.

to a concept) can be obtained. Then, the frequency of use of a concept is obtained by

adding the “synset tag num” of all concepts subsumed by that concept.

As explained in Section 3, the information content of a concept is a function of the ratio

between the frequency of use of that concept and the frequency of use of the root concept

of the hierarchy. Finally, the information content-based measures are computed as shown

in Table 1 for specific predicates. Note that, we have taken the option of smoothing the

frequencies of use with a value of 0, which we substitute for a very small number close to

0. So, some relationship values do not exactly match those that would be obtained when

using tools like wordnet::similarity (Pedersen et al . 2004).

Finally, 6.1 includes a performance comparison between the similarity measures im-

plemented for Bousi∼Prolog and other systems.

5.2 Directives for generating proximity equations

Bousi∼Prolog can load both ontologies (consisting of proximity equations) and fuzzy logic

programs (with fuzzy logic rules and possibly proximity equations). Thus, it would be of

interest to use the similarity measures implemented in the last section to automatically

construct such ontologies.

In order to define the semantic similarity between selected concepts, we provide a

Bousi∼Prolog directive for automatically generating the proximity equations which define

an ontology:

• :-wn gen prox equations(+Msr, +LL of Pats)

where Msr is the similarity measure which can be any of: path, wup, lch, res,

jcn, and lin. The second argument LL of Pats is a list for which each element is

another list containing the patterns that must be related by proximity equations.

The pattern can be either a word or the structure Word:Type:Sense, where Word is

the word, Type is its type (either n for noun or v for verb), and Sense is the sense

number in its synset. Note that, because similarity measures only relate nouns with

nouns, and verbs with verbs, the words of a set must be of the same part of speech.

If the pattern is simply a word, then a sense number of 1 is assumed, and its type

is made to match all other words in the same list.

An example of this directive is

:-wn_gen_prox_equations(wup,[[man,human,person],[grain:n:8,wheat:n:2]]).

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000028


272 P. Julián-Iranzo and F. Sáenz-Pérez

In this case, as only words are provided in the first list, the sense number is 1, and their

types are equal by pairs (nouns for these words). The second list explicitly specifies the

pattern of each word to be related. Then, excluding, for reasons of simplicity, reflexive,

and symmetric entries, the following proximity equations are generated for a lambda

cut of 0:

sim(man, human, 1, 0.56).
sim(man, person, 1, 0.8888888888888888).
sim(person, man, 1, 0.8888888888888888).
sim(human, person, 1, 0.6086956521739131).
sim(grain, wheat, 0, 0.2608695652173913).

Note that there are two blocks, numbered with 1 for the first four equations, and with

0 for the last one. Clearly, words in the first list are not made to be related to those in

the second list, and therefore they must occur in different blocks. In addition, proximity

equations are generated only for the words stored in WordNet.

Another form of this directive automatically builds an ontology in terms of the tokens

in the BPL program by including auto in its second argument. Only the symbols that

occur in a program are related, because it would not be practical to relate the symbols

of the program with all those that occur in WordNet.

5.3 Implementing the generation of proximity equations

Bousi∼Prolog processes a file (either a program or an ontology) with the load command

ld file of the BPL Shell module (named bplShell), where its argument is the name of

the file to load (with default extension bpl). Upon execution of this command, a source

file (file.bpl) is parsed, compiled to Prolog (file.tpl), and consulted.

When parsing a directive :-wn gen prox equations, it is first checked for validity, and

then replaced in the target Prolog file with the proximity equations corresponding to the

pairs formed with the symbols derived from its arguments. As explained, there are two

cases for this directive, and they are handled in a different way:

• Explicit indication of words to be related.

Here, the proximity equations can be directly generated from each list of words, kept

in the memory (as asserted Prolog facts) and outputted to the translated program in

the .tpl file at a later stage. The procedure is as would be expected: for each pair of

different words W1 and W2 in a list, generate the proximity equation sim(W1,W2,D),

where D is the approximation degree for the normalized measure given as the first

parameter of the directive. Normalization is required because measures are gener-

ally not on the interval (0, 1] which is the range for proximity equations.

• Automatic generation of proximity equations.

This case is different from the former because, when processing the directive, the

rules in the program have not yet been parsed, so their tokens are not available.

It is, therefore, processed after parsing the remaining program, by performing a

syntactic analysis in order to extract the sets of constant, functor, and predicate

identifiers and adding the resulting proximity equations for each separate set of

tokens (with the same shape as in the other case) to the memory.

The directives that generate proximity equations are based on the private pred-

icate gen prox equation. It generates a proximity equation sim(Word1, Word2,

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000028


Implementing WordNet lexical similarity measures 273

?- wn_word_info(cat).

INFORMATION ABOUT THE WORD ’cat’ :

Synset_id = 102121620

Word Order num. = 1

Synset type (n:NOUN, v:VERB, a:ADJ., s:ADJ. SAT., r:ADV.) = n

Sense number = 1

Tag_count = 18

-----------

Gloss:

feline mammal usually having thick soft fur and no ability to roar: domestic

cats; wildcats

-----------

true

Fig. 2. A query for obtaining all relevant information about a word (e.g. the word “cat”).

NormalizedDegree) in terms of a given measure (Measure) and a pair of words, which

can be completely specified with either a pattern or only with its syntactic form as plain

words. In this last case, their first sense number is selected and the same word type is

enforced.

5.4 Accessing WordNet

The wn connect subsystem must be made visible before using the built-ins (pub-

lic predicates) defined in its modules. In Bousi∼Prolog, WordNet and a wide reper-

toire of built-in predicates, which are implemented by the wn connect modules can

be accessed either by the directive :-wn connect in a program or interactively with

ensure loaded(wn(wn connect)) at the command prompt.

Nearly all the predicates implemented in the wn-connect subsystem are crisp, return-

ing the top approximation degree. For instance, the predicate wn word info/1 merges

the information provided by the predicate wn s/6 (which stores information about a

synset) and wn g/2 (which contains an explanation/definition of the concept represented

by the synset and example sentences). Figure 2 shows the first answer to the query

wn word info(cat). This is telling us that the first sense (Sense number = 1) of the

word form “cat” in the part of speech of nouns (Synset type = n – i.e. a noun) refers to

the concept: “feline mammal usually having thick soft fur and no ability to roar etc.”.

There are six more answers for noun-related senses and two more for verb-related senses.

However, the binary similarity predicates (wn path/2, wn wup/2, wn lch/2, etc.) are

fuzzy predicates that return the similarity degree of two concepts. We also maintain

ternary predicates available to programmers, since they provide direct access to the

approximation degree D, which can be very useful for its explicit handling. Thanks to

the repertoire of built-in predicates implemented in the wn-connect subsystem, the user

of the BPL system can extract information from WordNet, deepening into the structure

of the relationships between its linguistic terms. This becomes especially evident for the

predicate wn display graph hypernyms/1. Figure 3 shows its outcome for the hypernym

hierarchy of all senses of the word god.6

6 In Figure 3, each node draws the representative word of the respective synset (i.e. those with W num
equal to one). This figure also illustrates how a concept can be linked to a hypernym concept through
different paths in (a subset of) the WordNet IS-A hierarchy.

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000028


274 P. Julián-Iranzo and F. Sáenz-Pérez

Fig. 3. Hypernyms of the word god (all senses).

Moreover, with these built-in predicates, a certain form of linguistic reasoning is possi-

ble. For example, the predicate wn lcs/2, which computes the LCS of a set of concepts,

can help to obtain the most specific generalization of a set of concepts and to contribute

to knowledge discovery. Although in a database, there only exists direct information

about, for example, lion, leopard, cougar, and cat, it is possible to discover that this

information is also pertinent for feline by using the predicate wn lcs/2. In Figure 4, the

concept referred to by the synset ID 102120997 (grouping [feline:n:1, felid:n:1])

is the most specific concept of (the synsets of) lion, leopard, cougar and cat, that they

share as a common ancestor in the IS-A hierarchy of WordNet. Furthermore, the pred-

icate wn gen hyponyms upto level/3, which generates all the hyponyms of a concept

(Synset ID) up to a certain depth level (Level), can also be used to generate an ontol-

ogy of closely related terms to the given concept that can be used to implement flexible

queries and text mining tasks. In particular, 6.2 illustrates an application of this work to

text classification, also including some performance measures.

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000028


Implementing WordNet lexical similarity measures 275

?- wn_lcs([lion, leopard, cougar, cat], LCS_SS_ID),

wn_synset_components(LCS_SS_ID, Words_LCS_SS_ID).

LCS_SS_ID = 102120997,

Words_LCS_SS_ID = [feline:n:1, felid:n:1].

Fig. 4. A query for obtaining the LCS or most specific generalization of a set of concepts.

6 Experimental assessment

In the following two subsections, we perform experiments to find the performance of the

implemented similarity measures and the cost of integrating WordNet into Bousi∼Prolog.
Instructions, programs, and data to reproduce the experiments in these appendices

have been made available at https://dectau.uclm.es/bousi-prolog/wp-content/

uploads/sites/3/2020/07/Published.zip.

6.1 Evaluation of the measures and comparison with other systems

In this section, we evaluate the computational cost of the measures implemented in

Subsection 5.1, comparing the results with other systems.

Specifically, we are using an implementation of WordNet::Similarity for Java (WS4J)

developed by Hideki Shima.7 We use WS4J because it provides some time information

that allows the cost of these measures to be appreciated. We are also using our own

implementation of the WordNet-based similarity measures, but executed both by SWI-

Prolog and Bousi∼Prolog. This allows us not only to compare the performance of our

measures integrated into Bousi∼Prolog with WS4J, but also the overhead introduced by

our implementation of Bousi∼Prolog w.r.t. SWI-Prolog.

In the first experiment, we selected 12 words with the highest number of senses. Then,

we pair them obtaining six pairs of words. Afterward, for each word in that pair, we

generate the Cartesian product of all their senses (Word1:n:Sense1, Word2:n:Sense2).

Finally, we compute the similarity degree of these pairs, thus mimicking how WS4J

operates,8 measuring the overall time cost of the computation.

Table 2 shows the costs involved in the computation of the similarity degree of these six

pairs of words for the three systems and the three edge-based measures. For each measure,

“Time” shows the elapsed time in milliseconds, “Lat.” the latency in milliseconds/pair,

and “Thr.” the throughput in pairs/second. While BPL is at a small disadvantage with

respect to SWIPL, WS4J is roughly four times as fast.

In the second experiment, we randomly generate pairs of noun and verb patterns

(Word1:Type: Sense1, Word2:Type:Sense2) so Type is either n or v. Then, we generate

the calls to a similarity measure, and finally, we measure the performance of Bousi∼Prolog
w.r.t. SWI-Prolog.9 Table 3 shows the results of this experiment. The numbers are the

average after tree executions.

The analysis of the data in Table 3 reveals that for the BPL system, the average

Latency of edge-based measures is 0.14 ms/pair and the average Latency of IC-based

7 WS4J is available at https://github.com/Sciss/ws4j and also has a web interface WS4J Demo at
http://ws4jdemo.appspot.com.

8 For WS4J, the parameter Most Frequent Sense (MFS) is set to false.
9 https://code.google.com/archive/p/ws4j/wikis/DraftNextVersion.wiki describes a similar exper-
iment for WS4J, but we were unable to replicate it because the results of this kind of experiments
depends strongly on the list of word pairs.

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

https://dectau.uclm.es/bousi-prolog/wp-content/uploads/sites/3/2020/07/Published.zip
https://dectau.uclm.es/bousi-prolog/wp-content/uploads/sites/3/2020/07/Published.zip
https://github.com/Sciss/ws4j
http://ws4jdemo.appspot.com
https://code.google.com/archive/p/ws4j/wikis/DraftNextVersion.wiki
https://doi.org/10.1017/S1471068421000028


276 P. Julián-Iranzo and F. Sáenz-Pérez

Table 2. Comparing Bousi∼Prolog, SWI-Prolog and WS4J on six pairs of words with

the highest number of senses

Measure

PATH WUP LCH

System Time Lat. Thr. Time Lat. Thr. Time Lat. Thr.

BPL 966 0.02 44,572 959 0.02 45,400 959 0.02 44,943
SWIPL 895 0.02 48,004 920 0.02 46,540 950 0.02 45,117
WS4J 211 0.01 204,410 430 0.01 101,024 212 0.01 205,464

Table 3. Comparing Bousi∼Prolog and SWI-Prolog on randomly generated pairs of

patterns

Measure

Edge-based Information Content-based

System PATH WUP LCH RES JCN LIN
(ms/10,000 pairs) (ms/250 pairs)

BPL 1,438 1,403 1,597 34,680 36,221 34,982
SWIPL 242 242 275 33,521 35,088 35,073

measures is 141.17 ms/pair, while for SWI-Prolog they are 0.03 ms/pair and 138.24

ms/pair, respectively. These results lead to an average ratio between both systems of

5.84 for edge-based measures and only 1.02 for IC-based measures, showing an acceptable

overhead of Bousi∼Prolog relative to SWI-Prolog for these tasks. In the first case, the

overhead is more noticeable when traversing 10K word pairs than only 250 because tail

recursion optimization is lost in the Bousi∼Prolog to Prolog translation. Thus, optimizing

this translation will be the subject of future work.

6.2 Applications to text classification and some performance results

Bousi∼Prolog is well suited to making the query-answering process more flexible, due

to its weak unification algorithm. In (Rubio-Manzano and Julián-Iranzo 2014), we dis-

cussed several practical applications where it can be useful, such as flexible deductive

databases, knowledge-based systems, information retrieval, and approximate reasoning.

Bousi∼Prolog has been used in a number of real applications such as text classification

(or cataloging) (Romero et al . 2013), knowledge discovery (Rubio-Manzano and Julián-

Iranzo 2015), linguistic feedback in computer games (Rubio-Manzano and Triviño 2016),

and decision-making (Çakir and Ulukan 2019; 2020).

In this section, we briefly summarize our latest research in text classification. The goal

of any text classification process is to assign one or more predetermined categories to

classify each of the texts. We are proposing a declarative approach consisting of classifying

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000028


Implementing WordNet lexical similarity measures 277

texts according to a set of predefined categories by using semantic relations and the ability

of Bousi∼Prolog to weakly unify. The proposed method consists of the following steps:

1. Knowledge Base Building: The categories are (semantically) defined by extract-

ing a set of proximity equations from standard thesauri and ontologies (WordNet

in our case). The set of proximity equations form the significative subset of the

thesaurus or ontology that we will use in the classification process and, by abuse

of language, we name it the “ontology” file.

2. Flexible Search and Computing Occurrence Degrees: For each document

content, the words close to a category are searched in order to classify them, and

their degrees of occurrence are obtained. The occurrence degree of a word is an

aggregation of the number of occurrences of the word (in a document) and its

approximation degree with regard to the category analyzed.

3. Computing Document Compatibility Degrees: The compatibility degrees of

the documents with regard to a category are computed using a specific compatibility

measure. A compatibility measure is an operation, which uses the occurrence degrees

of the words close to a category to calculate a document compatibility degree,

that is, an index of how compatible the document is with regard to the category

analyzed.

4. Classification Process: Finally, each document is classified as pertaining to the

category or categories that return a higher compatibility degree. We assign to a

document all the categories that have a compatibility index between the maximum

compatibility, Max, obtained for that document and a minimum Min=0.9*Max.

It is noteworthy that our approach to text classification does not need a pre-classified

set of training documents. The proposed method only requires the category names as user

input. Hence, our method is not based on category occurrence frequency, but depends

greatly on the definition of that category and how the text fits that definition.

Thanks to the integration with WordNet, we can generate the ontology files without

human intervention, starting from the set of predefined categories. Ontology files are com-

puted either by: (i) generating several level of hyponyms of a category and obtaining the

similarity degree between them and the category by using a similarity measure (PATH,

WUP, etc.) or (ii) taking the gloss of a category (which can be seen as the definition of

the category), extracting a list of words using NLP techniques, and then obtaining the

degree of relation between them and the category by using a similarity measure.

Once the ontology file is generated and the categories from which we start are de-

fined (in terms of their semantic relationship with other words), we can then apply the

remaining steps of our classification algorithm.

An application implementing the method described above can be found at the URL

https://dectau.uclm.es/bousi-prolog/applications/, and a preliminary paper on

this subject is (Al-Sayadi et al . 2020). The results shown in that paper are encouraging in

terms of Precision, Recall, and F-measure.10 For instance, for the dataset “News Wires-2

10 Precision: percentage of total positive classifications w.r.t. the total of classifications performed by
the classifier method. In this case, “positive classification” means a classification where the classifier
and the expert judgment coincide. Recall : percentage of total positive classifications w.r.t. the total
of classifications performed by the expert classifier. F-measure: the harmonic mean between precision
and recall.

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

https://dectau.uclm.es/bousi-prolog/applications/
https://doi.org/10.1017/S1471068421000028


278 P. Julián-Iranzo and F. Sáenz-Pérez

Table 4. Performance of automatic generation of ontologies based on WordNet

hyponyms

Global Local
Ontology file Equs. Runtime (s) Inferences Stack (Mb) Stack (Mb)

Using similarity measures based on counting edges

odp hyp 263 0.038 287,140 0.823461 0.512711
enviweb hyp 352 0.486 399,114 0.767675 0.723183
reutersshorts hyp 278 0.039 286,338 0.348183 0.554588
reuters10 hyp 314 0.044 328,070 0.541951 0.618492

AVERAGE 302 0.152 325,165 0.620317 0.602243

Using similarity measures based on information content

odp hyp ic 263 44.020 190,808,568 0.245071 0.512710
enviweb hyp ic 352 28.529 124,793,835 0.344101 0.723183
reutersshorts hyp ic 278 1.641 7,382,626 0.807327 0.554588
reuters10 hyp ic 314 25.871 111,821,332 0.323959 0.618492

AVERAGE 302 25.015 108,701,590 0.430115 0,602243

Table 5. Performance of classifying datasets from WordNet-generated ontologies

Global Local
Dataset Runtime (s) Inferences Stack (Mb) Stack (Mb)

Web Snippets (ODP): 1.453 14,510,417 2.49 2.31
115 documents

News Snippets (EnviWeb): 1.668 16,508,815 1.72 1.71
116 documents

News Wires-1 (Reuters-Short): 2.766 27,308,333 3.32 4.39
267 documents

News Wires-2 (Reuters-10): 422.729 3,586,006,321 247.62 341.49
8.599 documents

(Reuters-10)”, which is a set of short texts (news limited up to 160 characters long)

selected from Reuters-21578,11 we obtain an average Precision, Recall, and F-measure of

73.07%, 55.59%, and 62.99%, respectively. Our immediate goal is to improve Recall and

to contribute to provide explainable results.

In order to show the feasibility of integratingWordNet into Bousi∼Prolog, we undertook
an experimental assessment of the cost of generating several ontologies and classifying

some datasets. The results are shown in Tables 4 and 5, with CPU runtime in seconds,

11 http://www.daviddlewis.com/resources/testcollections/reuters21578/

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

http://www.daviddlewis.com/resources/testcollections/reuters21578/
https://doi.org/10.1017/S1471068421000028


Implementing WordNet lexical similarity measures 279

the number of inferences performed during the computation, and information on memory

consumption in megabytes.

In Table 4, each row groups the average data obtained when generating ontologies for

a given data set using three different similarity measures. The column “Equs.” shows

the number of proximity equations generated per ontology. The first part of the table

presents data related to similarity measures based on counting edges (PATH, WUP

and LCH) while the second part gives those based on information content (RES, JCN

and LIN).

Note that, for the ontologies which use similarity measures based on counting edges,

the cost of generating and storing proximity equations (pairs) in a file 302 is 0.152 s,

on average. This signifies that for this kind of measure, the latency is 0.5 ms/equ and

the throughput 1,986.8 equs/s. Similarly, for measures based on information content, the

latency is 82.9 ms/equ and the throughput is 12.1 equs/s.

As can be seen, building ontologies using similarity measures based on information con-

tent has a higher cost due to the complexity of this kind of similarity measure (involving

the computation of the LCS and the generation of all its hyponyms, to establish its

information content, in order to compute the similarity degree of two words).

Table 5 sets out information about the average cost of classifying four different datasets

using the previously generated ontologies.

7 Conclusions

We have presented techniques to embody the information stored in the lexical database

WordNet (Fellbaum 1998; 2006; Miller 1995) into the fuzzy logic programming lan-

guage Bousi∼Prolog (Rubio-Manzano and Julián-Iranzo 2014; Julián-Iranzo and Rubio-

Manzano 2017; Julián-Iranzo and Sáenz-Pérez 2018a). However, the techniques developed

can be used to connect WordNet to any logic programming language that uses an oper-

ational semantics based on some variant of WSLD resolution.

The main contributions of this study are the following:

1. We have implemented, in Prolog, all the usual similarity measures (based on count-

ing edges and on information content) to be found in standard tools such as

wordnet::similarity (Pedersen et al . 2004).

2. A whole BPL subsystem (wn-connect) has been developed, providing those mea-

sures and several built-in predicates to obtain useful information about words and

synsets in WordNet. This subsystem can be used independently in a Prolog inter-

preter.

3. We have implemented directives to generate proximity equations from a set of

words, linking them with an approximation degree. Hence, the significance of this

work is to make a fuzzy treatment of concepts via proximity relations possible, and

also to endow Bousi∼Prolog with linguistic characteristics.

4. Because Bousi∼Prolog allows WordNet databases to be accessed easily, it is possible

to use interesting relations (antonymy, meronymy, etc.), or to use causal relations,

to reason.

5. We have provided the system implementing these techniques as a desktop applica-

tion (for Windows, Mac, and Linux OS’s – dectau.uclm.es/bousi-prolog), and

also an online web interface (dectau.uclm.es/bplweb).

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

dectau.uclm.es/bousi-prolog
dectau.uclm.es/bplweb
https://doi.org/10.1017/S1471068421000028


280 P. Julián-Iranzo and F. Sáenz-Pérez

6. Finally, we have undertaken an experimental assessment: First, measuring the per-

formance of the implemented WordNet-based similarity measures and the cost of

generating hyponymy-based ontologies; and, second, executing a text classification

application implemented using Bousi∼Prolog and its connection to WordNet, con-

cluding that Bousi∼Prolog has a reasonable performance w.r.t. other systems.

As future work, experiments suggest enhancing the performance of Bousi∼Prolog by

introducing memorizing techniques, and optimizing their compilation by leveraging tail

recursion optimization, and also, implementing relatedness measures based on other tech-

niques such as word embeddings.

Acknowledgments

We would like to express our gratitude to the anonymous reviewers and the area editor for their

valuable comments that have greatly improved the final version of our paper.

References

Al-Sayadi, S. H., Julián-Iranzo, P., Romero, F. P. and Sáenz-Pérez, F. 2020. A fuzzy
declarative approach to classify unlabeled short texts based on automatically constructed
WordNet ontologies. In Proceedings of the 12th European Symposium on Computational In-
telligence and Mathematics, ESCIM 2020. 1–6.

Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E., Gutierrez, J. and

Kochut, K. 2017. A Brief Survey of Text Mining: Classification, Clustering and Extraction
Techniques. CoRR abs/1707.02919.

Baeza-Yates, R. and Ribeiro-Neto, B. 2011. Modern Information Retrieval – The Concepts
and Technology Behind Search, 1st ed. Pearson Education Ltd., Harlow, England.

Budanitsky, A. and Hirst, G. 2006. Evaluating WordNet-based measures of lexical semantic
relatedness. Computational Linguistics 32, 1, 13–47.

Çakir, E. and Ulukan, H. Z. 2019. A fuzzy logic programming environment for recycling
facility selection. In Proceedings of the 11th International Joint Conference on Computational
Intelligence, IJCCI 2019. ScitePress, 367–374.

Çakir, E. and Ulukan, H. Z. 2020. A fuzzy linguistic programming for sustainable ecotourism
activities. In Proceedings of the 10th Annual Computing and Communication Workshop and
Conference, CCWC 2020. IEEE, 121–126.

Fellbaum, C. 1998. WordNet: An Electronic Lexical Database. MIT Press.

Fellbaum, C. 2006. WordNet(s). In Encyclopedia of Language & Linguistics, 2nd ed., K. B. E.
in Chief), Ed. Vol. 13. Elsevier, Oxford, 665–670.

Fellbaum, C. et al. 2006. WordNet File Formats: prologdb(5WN). https://wordnet.

princeton.edu/documentation/prologdb5wn

Fontana, F. A. and Formato, F. 1999. Likelog: A logic programming language for flexible
data retrieval. In Proceedings of the 1999 ACM Symposium on Applied Computing (SAC’99),
260–267.

Fontana, F. A. and Formato, F. 2002. A Similarity-based Resolution Rule. International
Journal of Intelligent Systems 17, 9, 853–872.

Francis, W. N. and Kucera, H. 1964, 1971, 1979. A Standard Corpus of Present-Day Edited
American English, for use with Digital Computers (Brown). https://www.sketchengine.eu/
brown-corpus/.

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

https://abs/1707.02919
https://wordnet.princeton.edu/documentation/prologdb5wn
https://wordnet.princeton.edu/documentation/prologdb5wn
https://www.sketchengine.eu/brown-corpus/
https://www.sketchengine.eu/brown-corpus/
https://doi.org/10.1017/S1471068421000028


Implementing WordNet lexical similarity measures 281

Jiang, J. J. and Conrath, D. W. 1997. Semantic similarity based on corpus statistics and
lexical taxonomy. In Proceedings of the 10th Research on Computational Linguistics Inter-
national Conference, ROCLING 1997. The Association for Computational Linguistics and
Chinese Language Processing (ACLCLP), 19–33.

Julián-Iranzo, P. and Rubio-Manzano, C. 2015. Proximity-based unification theory. Fuzzy
Sets and Systems 262, 21–43.

Julián-Iranzo, P. and Rubio-Manzano, C. 2017. A sound and complete semantics for a
similarity-based logic programming language. Fuzzy Sets and Systems 317, 1–26.

Julián-Iranzo, P. and Sáenz-Pérez, F. 2017. FuzzyDES or how DES met Bousi Prolog. In
Proceedings of the 2017 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2017,
1–6.

Julián-Iranzo, P. and Sáenz-Pérez, F. 2018a. An efficient proximity-based unification algo-
rithm. In Proceedings of the 2018 IEEE International Conference on Fuzzy Systems, FUZZ-
IEEE 2018, 1–8.

Julián-Iranzo, P. and Sáenz-Pérez, F. 2018b. A fuzzy datalog deductive database system.
IEEE Transactions on Fuzzy Systems 26, 2634–2648.

Julián-Iranzo, P. and Sáenz-Pérez, F. 2019. WordNet and Prolog: why not? In Proceedings
of the 11th Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT
2019, 1–8.

Leacock, C. and Chodorow, M. 1998. Combining local context and Wordnet similarity for
word sense identification. In WordNet: An Electronic Lexical Database, C. Fellbaum, Ed. MIT
Press, 265–283.

Lee, R. 1972. Fuzzy logic and the resolution principle. Journal of the ACM 19, 1, 119–129.

Lin, D. 1998. An information-theoretic definition of similarity. In Proceedings of the 15th Inter-
national Conference on Machine Learning. Morgan Kaufmann, 296–304.

Loia, V., Senatore, S. and Sessa, M. I. 2001. Similarity-based SLD resolution and its im-
plementation in an extended prolog system. In Proceedings of the 2001 IEEE International
Conference on Fuzzy Systems, FUZZ-IEEE 2001, 650–653.

Martelli, A. and Montanari, U. 1982. An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems 4, 258–282.

Miller, G. A. 1995. WordNet: a lexical database for English. Communications of the
ACM 38, 11, 39–41.

Miller, G. A., Leacock, C., Tengi, R. and Bunker, R. 1993. A semantic concordance. In
Proceedings of the Workshop on Human Language Technology, HLT 1993, 303–308.

Pedersen, T., Patwardhan, S. and Michelizzi, J. 2004. WordNet::similarity – measuring
the relatedness of concepts. In Proceedings of the Nineteenth National Conference on Artificial
Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intelligence. AAAI
Press / The MIT Press, 1024–1025.

Resnik, P. 1995. Using information content to evaluate semantic similarity in a taxonomy. In
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI
95, 2 Volumes. Morgan Kaufmann, 448–453.

Romero, F. P., Julián-Iranzo, P., Ferreira-Satler, M. and Gallardo-Casero, J. 2013.
Classifying unlabeled short texts using a fuzzy declarative approach. Language Resources and
Evaluation 47, 1, 151–178.

Rubio-Manzano, C. and Julián-Iranzo, P. 2014. Fuzzy linguistic Prolog and its applications.
Journal of Intelligent and Fuzzy Systems 26, 1503–1516.

Rubio-Manzano, C. and Julián-Iranzo, P. 2015. Incorporation of abstraction capability
in a logic-based framework by using proximity relations. Journal of Intelligent and Fuzzy
Systems 29, 4, 1671–1683.

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000028


282 P. Julián-Iranzo and F. Sáenz-Pérez

Rubio-Manzano, C. and Triviño, G. 2016. Improving player experience in computer games by
using players’ behavior analysis and linguistic descriptions. International Journal of Human-
Computer Studies 95, 27–38.

Santus, E., Wang, H., Chersoni, E. and Zhang, Y. 2018. A rank-based similarity metric
for word embeddings. In Proceedings of the 56th Annual Meeting of the Association for Com-
putational Linguistics ACL 2018 (2). Association for Computational Linguistics, 552–557.

Serrano-Guerrero, J., Olivas, J. A., Romero, F. P. and Herrera-Viedma, E. 2015. Sen-
timent analysis: a review and comparative analysis of web services. Information Sciences 311,
18–38.

Sessa, M. I. 2002. Approximate reasoning by similarity-based SLD resolution. Theoretical Com-
puter Science 275, 1–2, 389–426.

van Emden, M. and Kowalski, R. 1976. The semantics of predicate logic as a programming
language. Journal of the ACM 23, 4, 733–742.

Wu, Z. and Palmer, M. S. 1994. Verb semantics and lexical selection. In Proceedings of the
32nd Annual Meeting of the Association for Computational Linguistics. Morgan Kaufmann
Publishers/ACL, 133–138.

Zadeh, L. 1965. Fuzzy sets. Information and Control 8, 338–353.

https://doi.org/10.1017/S1471068421000028 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000028

	Introduction and motivation
	The lexical resource WordNet and Prolog
	WordNet and lexical semantic similarity
	Formal setting
	Integrating WordNet into BousiProlog
	Implementing similarity measures
	Directives for generating proximity equations
	Implementing the generation of proximity equations
	Accessing WordNet

	Experimental assessment
	Evaluation of the measures and comparison with other systems
	Applications to text classification and some performance results

	Conclusions
	References

