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Finding Carmichael numbers

G. J. O. JAMESON

Introduction
Recall that Fermat's 'little theorem' says that if P is prime and a is not a

multiple of P, then c1- I == 1 mod p.
This theorem gives a possible way to detect primes, or more exactly,

non-primes: if for some positive a 0;;; n - 1, an - I is not congruent to 1
mod n, then, by the theorem, n is not prime. A lot of composite numbers
can indeed be detected by this test, but there are some that evade it. In other
words, there are numbers n that are composite but still satisfy an -, == 1
mod n for all a coprime to n. Such numbers might be called 'false primes',
but in fact they are called Carmichael numbers in honour of
R. D. Carmichael, who demonstrated their existence in 1912 [1] - so the
year 2012 marks their centenary. (Composite numbers that satisfy the stated
condition for one particular a are called a-pseudoprimes. They are the
subject of a companion article [2].)

It is easy to see that every Carmichael number is odd: if n (~ 4) is
even, then (n - I)" - I == (_l)n - I = -1 mod n, so is not congruent to 1
modn.

There is a pleasantly simple description of Carmichael numbers. due to
Korselt:

Theorem 1: A number n is a Carmichael number if, and only if,
n = P,P2 ... Pb a product of (at least two) distinct primes, and Pj - 1
divides n - 1 for each}.

Proof ('if' part): Let n be as stated, and let gcd (a, n) = 1. By Fermat's
theorem, for each}, we have c!j - I == 1 mod Pt- Since Pj - 1 divides
n - 1, cf' -, == I mod Pj. In other words, an -, - 1 is a multiple of each
Pj. It follows that it is a multiple of n, so an - I == I mod n.

We leave out the proof of the converse, that every Carmichael number
is of this form. It can be found in many textbooks on number theory, for
example [3, section 6].

At this point, some texts simply state that 561 (= 3 x II x 17) is a
Carmichael number, and invite the reader to verify it. This is indeed easily
done using Theorem 1. But how was it found? Is it the first Carmichael
number? More generally, how might one detect all the Carmichael numbers
up to a certain magnitude N? We will show how this can be done very
quickly for N = 3000 (this value is chosen because it is just large enough to
produce several examples and to illustrate the principles involved; of course,
the reader may choose to extend the search). We then go on to show how
one can find all the Carmichael numbers of certain types, such as those
having three prime factors, with the smallest one given.
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For numbers within the range considered, these investigations require
only minimal numerical calculations, and we hope to convince the reader
that they offer an entertaining and instructive piece of detective work, easily
carried out with bare hands. Of course, a search up to seriously large
numbers has to be a computer exercise, and this has been very efficiently
undertaken by Pinch [4, 5]; the methods, greatly refining those used here,
are described in [4].

We conclude with a brief account of some recent research topics. For
any readers whose interest has been stimulated, further information about
Carmichael numbers can be found in [6] and [7].

We record here some easy consequences of Theorem 1 which we shall
use constantly.
Lemma: Let n = pu, where p is prime. Then p - 1 divides n - 1 if, and
only if, it divides u - 1.

Proof (n - 1) - (u - 1) = n - u = pu - u = (p - l)u. The statement follows.

Proposition 1: A Carmichael number has at least three prime factors.

Proof Suppose that n has two prime factors: n = pq, where p, q are prime
and p > q. Then p - 1 > q - 1, so p - 1 does not divide q - 1. By the
lemma, p - 1 does not divide n - 1. So n is not a Carmichael number.

Proposition 2: Suppose that n is a Carmichael number and that p and q are
prime factors of n. Then q is not congruent to 1 mod p.

Proof Suppose that q ;: 1 modp, so that p divides q - 1. Since q - 1
divides n - 1, it follows that p divides n - 1. Butthis is not true, since p
divides n.

The Carmichael numbers up to 3000
We start by considering numbers with three prime factors: n = pqr,

with p < q < r. By Theorem 1 and the lemma, we have to discover triples
(p, q, r) that fit together as follows:

(1) p - 1 divides qr - 1 (equivalently, qr ;: 1 modp - 1);
(2) q - 1 divides pr - 1;
(3) r - 1 divides pq - 1.

Given a pair of primes (p, q) with p < q, the following procedure will
detect all the primes r > q such that pqr is a Carmichael number. Consider
the even divisors (if there are any) d of pq - 1 with q < d < pq - 1 and
check whether d + 1 (= r) is prime (we exclude d = pq - 1 since it
would give r = pq). Then we have ensured (3), and we check whether (1)
and (2) hold.
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We do this for all pairs of primes (p, q) for which pqr < 3000 for at
least some primes r > q. However, because of Proposition 2, we leave out
any combination that has q E 1 modp (for example, (3,7), (3,13), (5,11)).

The results are best presented in tabular form, as follows. In each case,
we only list the values of d for which r is prime; the reader can easily check
that none have been missed.

(p, q) pq - 1 d r (1) (2) Carmichael number
(3,5) 14
(3,11) 32 16 17 yes yes 3 x 11 x 17 = 561
(3,17) 50
(3,23) 68
(5,7) 34
(5,13) 64 16 17 yes yes 5 x 13 x 17 1105
(5,17) 84 28 29 yes yes 5 x 17 x 29 2465

42 43 no
(5,19) 94
(7,11) 76
(7,13) 90 18 19 yes yes 7 x 13 x 19 1729

30 31 yes yes 7 x 13 x 31 2821
(7,17) 118

(11,13) 142

Note on checking (1) and (2): To check whether qr E 1 modp - 1,
we do not need to calculate qr; all we need is the values of q and r mod
p - 1. For example, 17 Eland 29 E 1 mod 4, hence 17 x 29 E 1 mod4.

It is not hard to check that these really are the only pairs (p, q) that need
to be considered: for example, (3,29) cannot occur with 31, and
3 x 29 x 37 = 3219.

What about numbers with four prime factors? The very first candidate,
bearing in mind excluded combinations, is 3 x 5 x 17 x 23 = 5865, well
outside our range (of course, this is a bit of an evasion; we come back later
for a more resolute look at these numbers).

So the complete list of Carmichael numbers below 3000 is as seen in the
table. Note that to show that 561 is the first one, only the cases (3,5), (3,11)
and (5,7) are needed.

From now on, we will usually present Carmichael numbers by stating
the prime factors without multiplying them out, since it is really the factors
themselves that are of interest.
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Carmichael numbers pqr with given p
What we have been doing is finding the Carmichael numbers of form

pqr for a given (p, q). We now establish a much more striking fact: there
are only finitely many Carmichael numbers of the form pqr for a given p.
Furthermore, we can give an upper bound for the number of them and
describe a systematic way of finding them. These results were originated by
Beeger [8] and Duparc [9].

We restate the previous (I), (2), (3) more explicitly: n = pqr is a
Carmichael number if and only ifthere are integers hI> hi. h) such that

qr - h, (P - I), (4)

pr - h2(q - I), (5)

pq-I h)(r-I). (6)

The rough size of these numbers is shown by the approximations
hi =: qr/ p, etc., whenp, q, r are large.

Proposition 3: We have 2 E;; h) E;; p - 1.

Proof Since r - 1 > q, we have qh-; < pq, hence h) < p. Since both
are integers, h) E;; P - 1. Also, h) ¢ 1 since r ¢ pq (r is prime!). So
h) ;;. 2.

The essential point is that we can express q and r in terms of p, h2 and h)
as follows.

Proposition 4: We have

q - (7)

Proof By (5) and (6),

h2 (q - I) = P (r - I) + (p - I)

Ph) (pq - I) + (p - I),

so

h2h)(q - I) = p(pq - I) + h)(p - I) = p[p(q - I) + (p - 1)] + h)(p - 1),

hence

(h2h) - /)(q - I) = (p + h))(p - 1).

Once p, q and h) are known, r is determined by (6).
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Theorem 2: Let p be prime. Then there are only finitely many 3-factor
Carmichael numbers with smallest prime factor p. Denote this number by
h(P). Then

h (P) 0;;;; (P - 2) (Iogp + 2).

Moreover, for any E > 0, we have /3 (P) < ep logp for sufficiently large p,
so in fact

h(P) ~ 0 asp ~ 00.

p logp

Proof Choose h3 satisfying 2 0;;;; h3 0;;;; P - 1. Write h2h3 - # = 6.. We
will work with 6. rather than ha- When 6. is chosen, q is determined by (7)
and then r by (6). By (7),

(P - I) (p + h3)

q - I
Clearly, 6. is a positive integer, so 6. ;;. I. Also, since p - 1 < q - 1, we
have 6. < p + h-, so in fact 6. 0;;;; P + hs - I, and 6. must lie in an
interval of length p + h3 - 2. In addition, 6. must be congruent to
-# mod h3, so each block of length h3 contains only one possible value for
6.. Hence the number of choices for 6. is no more than

p + h3 - 2 + 1 = P - 2 + 2.
h3 h3

We now sum over the possible values of h3 and use the well-known fact that
p 1L - < logp to obtain

h~2h

p-I

h (P) 0;;;; L (P - 2 + 2) < (p - 2) (Iogp + 2).
h=2 h

The reader is at liberty not to bother with the second half of the proof!
For those bothering, the point is that the bounds just found took no notice of
the fact that 6. also has to be a divisor of (p - 1) (p + h3). We use the well-
known fact that for any E > 0, T (n)/ n' ~ 0 as n ~ 00, where T (n) is the
number of divisors of n, So the number of choices for 6. is also bounded by
r[(P - I)(P + h3)], which is less than p' for large enough n (since
(P - 1) (P + h3) < 2#). Using this bound for h3 0;;;; pI - f and the previous
one for hs > pl-c, together with the elementary inequality

IL - 0;;;; log x - log y + 1,
y<n<;xn

we see thatj', (P) 0;;;; 51 + 52, where 51 = pI - 'pc = p and

52 0;;;; L (l~+ 2) 0;;;; p(E logp + 1) + 2p = ep logp + 3p,
pi - r < h <p h
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so h (P) < ep logp + 4p < 2Ep logp for large enough p. Of course, we
can now replace 2E by E.

Note: Using known bounds for the divisor function, the bound can be
refined to show that [s (P) :ll;; (p logp)/ (log logp) for large enough p (see
[7]). This still makes no allowance for the need for q and r to be prime.
Because of the prime number theorem, which says that the number of
primes less than N is approximated by N / log N, one might expect these
conditions to reduce the bound for h (P) by a factor like (Iogpf; however,
as far as I know, no such result has been proved.

The proof of Theorem 2 also amounts to a procedure for finding the
Carmichael numbers pqr for a given p. We choose h3, then search for
possible values of 1::.. They have to satisfy:

I::. :ll;; P + h3 - 1,

I::. == -i modh3,

I::. divides (p - I) (p + h3).

For example, when h3 = 2, the second condition restricts I::. to odd values.
We list the values of I::. satisfying these conditions. For each of them, q

is defined by q - I = (p - 1) (p + h3) / 1::.. Of course, q mayor may not
be prime. If it is, we continue, deriving r from (6). (The r defined this way
will always be an integer: by the expression for h2 (q - I) in the proof of
Proposition 4, h3 divides p(pq - I); now, by Euclid's lemma, h3 divides
pq - 1). The algebra of Proposition 4, taken in reverse, shows that we have
ensured that (5) is satisfied. We still have to check whether r is prime and
whether qr == mod (p - I): if both these things happen, then pqr is a
Carmichael number. Furthermore, this process will detect all Carmichael
numbers of the form pqr.

We now work through the cases p = 3,5,7. First, take p = 3. The
only value for hs is 2. We require I::. to be odd, no greater than 4, and a
divisor of 10. The only choice is I::. = I, giving q = II. By (6),
2(r - I) = 32,sor = 17. Clearly,qr == 1 mod2. So3 x II x 17isa
Carmichael number, and it is the only one withp = 3.

We present the cases p = 5 and p = 7 in tabular form.
value of q or r, terminating the process, is indicated by c.

h3 5 + h3 52 mod h3 I::. q r qr mod 4

A composite

2
3
4

7
8
9

1
2
3

29
17
13

73
29
17

Carmichael
number

5 x 29 x 73
5 x 17 x 29
5 x 13 x 17
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h3 7 + h3 72 mod s, 1:1 q r qr mod 6 Carmichael
number

2 9 1 SSe
3 19 67 7 x 19 x 67

3 10 2 31 73 7 x 13 x 73
S 13 31 7 x 13 x 31

4 11 1 3 23 41 7 x 23 x 41
S 12 4 1 73 103 7 x 73 x 103

6 13 19 7 x 13 x 19
6 13

These cases have a success rate that is quite untypical of larger
numbers! In fact, even p = 11 is very different: there are no Carmichael
numbers llqr. The reader is invited to work through this for himself or
herself: there are ten admissible combinations of h3 and 1:1; six cases have q
prime, then two have r prime. The remaining combinations fail at the
hurdle qr == 1 mod 10.

At the risk of spoiling the fun, we now list the 3-factor Carmichael
numbers pqr for all p up to 61, grouped by p, then ordered by q and r in
tum.
3 x II x 17

5 x 13 x 17
5 x 17 x 29
5 x 29 x 73

7 x 13 x 19
7 x 13 x 31
7 x 19 x 67
7 x 23 x 41
7 x 31 x 73
7 x 73 x 103

13 x 37 x 61
13 x 37 x 97
13 x 37 x 241
13 x 61 x 397
13 x 97 x 421

17 x 41 x 233
17 x 353 x 1201

19 x 43 x 409
19 x 199 x 271

23 x 199 x 353

29 x II3 x 1093
29 x 197 x 953

31x61x211
31 x 61 x 271
31 x 61 x 631
31 x 151 x 1171
31 x 181 x 331
31 x 271 x 601
31 x 991 x 15361

37 x 73 x 109
37 x 73 x 181
37 x 73 x 541
37 x 109 x 2017
37 x 613 x 1621

41 x 61 x 101
41 x 73 x 137
41 x 101 x 461
41 x 241 x 521
41 x 241 x 761
41 x 881 x 12041
41 x 1721 x 35281

43 x 127 x 211
43 x 127 x 1093
43 x 127 x 2731
43 x 211 x 337
43 x 211 x 757
43 x 271 x 5827
43 x 433 x 643
43 x 547 x 673
43 x 631 x 1597
43 x 631 x 13567
43 x 3361 x 3907

47 x 1151 x 1933
47 x 3359 x 6073
47 x 3727 x 5153
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53 x 79 x 599
53 x 157 x 521
53 x 157 x 2081

61 x 181 x 1381
61 x 181 x 5521
61 x 241 x 421
61 x 271 x 571
61 x 277 x 2113

61 x 421 x 12841
61 x 541 x 3001
61 x 661 x 2521
61 x 1301 x 19841
61 x 3361 x 402159 x 1451 x 2089

Remark: If pqr is a Carmichael number and q - I is a multiple of p - I,
then so is r - I. This follows from (2) and the identity
pr - I = (p - I) r + (r - I). It is very common for Carmichael
numbers to have this property, at least in the early stages: of the 69 numbers
listed above, 57 have it. The same comment applies to the q and r generated
by the process we have described.

Another consequence of Proposition 4 is that we can give bounds for
q, rand n in terms of p:

Proposition 5: If pqr is a Carmichael number, withp < q < r, then

q < 2p(p - I), r < l(p - I), n < 2l(p - 1)2 « 2l).

Proof: By (7) and the fact that h3 ,.;; p - I, we have

q ,.;; (p - I) (p + h3) + I ,.;; (p - I )(2p - 1) + I < 2p (p - I).

Now by (6),

I I I 2 I
r = h

3
(pq - I) + I ,.;;2. (pq - I) + I = 2. (pq + I) < p (p - I) + 2.'

so in fact r < p2 (p - 1) (equality doesn't occur, since r is prime!). Hence
n = pqr < 2l(p - 1)2.

With a bit more care, one can improve these bounds to r < W (p + I)
and n < !JJ4(p + 1)2, which are close to being optimal (see [7]).

Carmichael numbers pqr with given r
Now let us vary the problem and ask how one might find all the

Carmichael numbers pqr for a given r (of course, the results for all r ,.;;71
could be read off from our list, but that would really be cheating!). A very
different method is appropriate. Because of Proposition 2, we only need to
consider primes p < r that do not divide r - I. For such p, (3) demands q
such that pq == I mod (r - I). By elementary number theory, there is
exactly one integer q < r - I that satisfies this, found either by applying
the Euclidean algorithm to obtain an expression xp + y(r - I) = I or
(more quickly when the numbers are small) by simply trying the numbers
k (r - I) + I (k = 1,2, ... ) in tum until a multiple of p is found. If q is
prime and different from p, we now check whether (1) and (2) are satisfied.
We do this for successive p, but of course leave out any prime that has
already appeared as the q corresponding to an earlier p. We set out the
result for the case r = 19:
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P q (1) (2) Carmichael number
5 11 yes no
7 13 yes yes 7 x 13 x 19
17 17

Four prime/actors
Now consider numbers with four prime factors: n = pqrs, with

p < q < r < s. The requirements are now: p - 1 divides qrs - 1 and
three similar conditions. The analogy with the first problem we considered
for 3-factor numbers is: given (p, q, r) find the s (> r) such that pqrs is a
Carmichael number. To solve this, observe that s - 1 must be a divisor of
pqr - 1 and s must satisfy the three other congruence conditions. We
identify the numbers s that satisfy all these conditions, and check whether
they are prime. We work through two examples.

Example: (p, q, r) = (7,11,13). Then pqr = 1001, so s - 1 must be a
divisor of 1000. The congruence condition for 6 will be implied by the one
for 12, so we can leave it out. The other two are:

7 x 13 x s == 1 mod 10; since 7 x 13 = 91 == 1 mod 10, this is
equivalent to s == 1 mod 10;
7 x 11 x s == 1 mod 12; since 77 == 5 mod 12, this is equivalent to
5s == 1 mod 12, hence to s == 5 mod 12.

This pair of conditions is equivalent to s == 41 mod 60 (found by
considering 5, 17,29,41 until we find a number congruent to 1 mod 10). So
s - 1 is congruent to 40 mod 60 and a divisor of 1000. The only numbers
satisfying this are 40 and 100. Since 41 and 101 are prime, these two values
of s are the solution to our problem. (In fact, 7 x 11 x 13 x 41 = 41 041
is the smallest 4-factor Carmichael number.)

If pqr is itself a Carmichael number, then the congruence conditions
equate to s being congruent to 1 mod p - 1, q - 1 and r - 1, since (for
example)qr == 1 mod(p - 1).

Example: (p, q, r) = (7,13,19) (a particularly rewarding example). By the
previous remark, s is congruent to 1 mod 6, 12 and 18, hence congruent to 1
mod 36. Also, s - 1 must divide pqr = 1729 - 1 = 48 x 36. So the
possible values for s are of the form 36k + 1, where k is a divisor of 48.
We list these values, indicating by * those that are prime, thereby giving a
Carmichael number:

37', 73', 109', 145, 217, 289, 433', 577*, 865.

Now for the second problem, to find the Carmichael numbers pqrs for
given (p, q). All we have to do is substitute pq for p in our previous
reasoning. It doesn't make any difference that pq is not prime until the final
step, where of course the congruences for p - I and q - I must be checked
separately. We define h4 by h4(s - 1) = pqr - I, from which it follows that
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2 ,;;;h4 ,;;;pq - 1. Clearly, h4 cannot be a multiple of p or q. Nor can it be
congruent to 1 mod p (or q), since then s would be a multiple of p (or q).
Proposition 4 becomes r - 1 = (pq - 1){Pq + h4)1 S, where /::;.= h3h4 _ p2q2,
so that

/::;.= (pq - 1) (pq + h4) < p (pq + h
4
).

r - 1
Of course, /::;.also has to divide (pq - 1) (pq + h4). This limits the number
of possible values for it to (pq)' (for any given e > 0) for large enough pq,
so the number of Carmichael numbers of this form is bounded by (pq)1 +E.

The reader may care to work through the first case, (p, q) = (3, 5). By
the remarks above, the only relevant values of h4 are 2,8, 14. Also, because
of the exclusions given by Proposition 4, the smallest possible value for r is
17, so in fact /::;.< 15 + h4• You should discover quite quickly that there is
only one resulting Carmichael number, 3 x 53 x 47 x 89.

How many Carmichael numbers?
There are just 43 Carmichael numbers up to 106, whereas there are

78 498 primes - so the original idea of using the Fermat property to detect
primes is not so bad after all! As mentioned above, Pinch [4, 5] has
computed the Carmichael numbers up to 1018 (more recently, even to 1021).
Some of his results are as follows. Here, C (x) denotes the number of
Carmichael numbers up to x, and C3 (x) the number with three prime factors.

x 106 107 108 1019 10112 1015 1018

C (x) 43 105 255 646 8241 105212 1 401 644
C3 (x) 23 47 84 172 1 000 6083 35 586

It was an unsolved problem for many years whether there are infinitely
many Carmichael numbers. The question was resolved in 1994 in a classic
article by Alford, Granville and Pomerance [10]. Here it was shown, using
sophisticated methods, not only that the answer is yes, but that in fact
C(x) > ~17 for sufficiently large x. Harman [11] has improved the, to 0.33.

There is a very wide gap between these estimates and the known upper
bounds for C (x). These involve the following rather unwieldy expressions:
write log2 (x) = log log r, etc., and I (x) = exp (Iogx log3xl log- r). Erdos
[12] obtained the upper bound x!l(X)I-c for some c > !, valid for large
enough x. It was improved to x I I (X)I - e in [13]. Erdos conjectured (with
reasons) that C (x) is not bounded above by XI for any a < I. This is a
very bold conjecture in view of the computed values (Pinch's largest figure
is only slightly more than xI/3), but it is still regarded as a serious possibility.
The question is discussed in depth in [14].

For 3-factor Carmichael numbers, the situation is just the reverse. As
yet, nobody has come near to proving that there are infinitely many of them,
though this seems compellingly likely in view of Pinch's calculations. One
approach to this problem is deceptively enticing. Suppose, for some n, that
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p = 6n + 1, q = I2n + 1 and r = I8n + 1 are all prime. It is easily
verified that (1), (2) and (3) hold, for example

(6n + I)(I2n + 1) = 72n2 + I8n + 1 = 1 mod I8n.
So pqr is a Carmichael number. This occurs, for example, for n = 1 and
n = 6. Are there infinitely many values of n for which it occurs?
Unfortunately, this question is unsolved: it is a typical example of a whole
family of questions about prime numbers that sound simple but stoutly resist
solution.

In contrast, a lot of progress has been made on upper bounds. We
remark first that the estimation C3 (x) ..;; Cx?.l3 (for some constant C)
follows easily from our Theorem 2, together with Chebyshev's well-known
estimate for prime numbers, which states the following: let P(x) denote the
set of primes not greater than x, and let O(x) = L logp. Then 0 (x) ..;; cx

PEP(X)

for all x, where c is a constant not greater than log4. If n = pqr ..;;.r, then
p < X1/3, so by Theorem 2 (in the formj", (P) ..;;2p logp), we have

C3 (x)";; L 2p logp ..;;2x1/30 (X
I/3

) ..;; 2ci13
•

p e P(X111)

However, much stronger results are known. Following methods developed
in [15], it was shown in [16] that, for any e > 0, C3(x) < r'14 + e for
large enough x, and the -& has been further reduced to iCl in [17]. In [14], it
is conjectured, with heuristic reasoning, that the true bound is Kx1/3/ (logrj'
for a certain specified K.

The starting point for all these methods is to consider the gcd g of
p - 1, q - 1 and r - 1 and to write

p - 1 = ag, q - I = bg, r - I = cg.
There is an intricate algebra relating these quantities and the hj, and one
finds, for example, that there are only finitely many 3-factor Carmichael
numbers with a given value of g. A gentle exposition of these results can be
seen in [7].
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