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This paper introduces a method of optimization in infinite-horizon economies based on
the theory of correspondences. The proposed approach allow us to study time-separable
and non-time-separable dynamic economic models without resorting to fixed point
theorems or transversality conditions. When our technique is applied to the standard
time-separable model it provides an alternative and straightforward way to derive the
common recursive formulation of these models by means of Bellman equations.
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1. INTRODUCTION

This paper introduces a method of studying the existence of optima in infinite-
horizon representative agent economies. Our focus is on infinitely lived agents. The
proposed theory relies neither on a variational approach and the use of transver-
sality conditions, nor on the usual dynamic programming techniques that employ
fixed point arguments; see, for instance, Becker and Boyd (1997), Harris (1987),
Majumdar et al. (2000), and Stokey et al. (1989). Instead, our approach is based
on the theory of correspondences and applies two classical fundamental theorems
of mathematical analysis, Tychonoff’s Product Theorem and Berge’s Maximum
Theorem.

The basic idea originates from the simple observation that in an infinite-horizon
economy the set of all feasible plans defines a correspondence. This set-valued
function maps the collection of all possible initial states of the economy into
some vector space, which is simply the collection of all time sequences that
represent all current and future plans for consumption and savings. We name
this correspondence the plan correspondence, and it is the building block of the

This research has been supported in part by NSF Grants SES-0128039, DMS-0437210, and ACI-0325846. We thank
participants at the 2007 Conference on Economic Theory at the University of Kansas and the 2008 Conference in
Honor of Wayne J. Shafer at the University of Illinois at Urbana-Champaign. Address correspondence to: Gabriele
Camera, Department of Economics, Krannert School of Management, Purdue University, 403 West State Street, West
Lafayette, IN 47907-2056, USA; e-mail: gcamera@purdue.edu.

c© 2009 Cambridge University Press 1365-1005/09 97

https://doi.org/10.1017/S1365100509080134 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509080134
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proposed approach. Indeed, the starting point of our analysis is the study of the
basic topological properties of the plan correspondence. In particular, we establish
its continuity and compact valuedness. This allows us to prove the existence of
optimal plans and, given bounded and continuous preferences, of a well-defined
value function. Subsequently, we demonstrate that one can easily characterize the
main features of the value function, including its continuity and concavity.

The approach we propose is of general applicability and, in particular, can
accommodate various specifications of preferences, such as time nonseparability.
To our knowledge the approach is novel.1 To illustrate its use, we apply our
correspondence-theoretic approach to a planning problem for a standard time-
separable infinite-horizon economy. For the particular case of geometric discount-
ing we demonstrate how the proposed correspondence-theoretic approach provides
an alternative and straightforward way to obtain a recursive representation. We
offer a simple and direct proof for the fact that the value function is the unique
solution of the Bellman equation. In particular, the proof does not invoke the
Contraction Mapping Theorem, or any other fixed point argument, for that matter.
The approach we propose complements the infinite dimensional optimization liter-
ature; for example, see Balasko et al. (1980), Balasko and Shell (1980), and Wilson
(1981), who study equilibria in the overlapping generations dynamic setting of
Samuelson (1958).

The paper proceeds as follows. Section 2 presents a typical discrete-time dy-
namic model economy. Section 3 specializes to a time-separable model. Section 5
presents a textbook example of the classical one-sector growth model.

2. A TYPICAL DISCRETE-TIME DYNAMIC ECONOMY

The typical dynamic framework in economics consists of an infinite-horizon econ-
omy, where the representative agent can consume, produce, and save by accumu-
lating some asset. We focus on a deterministic setting where time is discrete, i.e.,
there are countably many periods labeled t = 0, 1, 2, . . . , and the agent is infinitely
lived. Because we are interested in developing a method for determining optimal
paths for consumption and savings, and we are not concerned about prices, we
will concentrate on a planning problem. For our purposes, the planner corresponds
to the representative consumer, who faces a resource constraint that is defined by
the assumed production technology.

In each period t the agent must make a choice from a given time-invariant
opportunity set X, the elements of which define the states of the economy. Elements
of X can be interpreted as stocks of real assets (e.g., capital) available in a given
period. In making this choice the agent faces a limitation that is described by a
nonempty-valued feasibility constraint correspondence,

�: X →→X.

We emphasize that � is also assumed to be time-invariant; however, our main
results are valid if � varies over time. Given that the state at the beginning of a
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period is x, the set �(x) contains all feasible states at the beginning of the following
period. For example, if f (x) is output produced today with x ≥ 0 capital, then
�(x) = [0, f (x)]. As usual, the graph of � is denoted by G�; i.e.,

G� = {(x, y) ∈ X × X: y ∈ �(x)}.
It is assumed that the state of the economy evolves deterministically according

to the choice of the agent. Specifically, given that the state of the economy at the
beginning of period t is xt , the state of the economy at the beginning of period t +1
is xt+1, which is chosen by the agent in period t . Consequently, we define a feasible
plan, or simply a plan, starting with x0 ∈ X as an infinite sequence of states

x = (x0, x1, x2, . . .),

such that xt+1 ∈ �(xt ) holds for each t = 0, 1, 2, . . .. It is important to recognize
that for each t ≥ 0 the tail or continuation sequence (xt , xt+1, xt+2, . . .) of a plan
x is also a plan starting with xt ∈ X.

The collection of all feasible plans starting with x0 is denoted �(x0). That is,

�(x0) = {
x = (x0, x1, x2, . . .) ∈ X{0,1,2,...}: xt+1 ∈ �(xt ) for all t = 0, 1, 2, . . .

}
.

Because � is nonempty-valued, the set of all feasible plans �(x0) is nonempty for
each x0 ∈ X.

We now impose some conditions on X and � that capture common assumptions
on underlying technologies of the typical economic model. Throughout this paper
we assume the following topological properties for the state space X and the
constraint correspondence �.

Condition C1. The state space X is a nonempty closed subset of some metrizable
topological vector space �.

In practice, � is usually a Euclidean space. We let

X = �{0,1,2,...}.

That is, X consists of all sequences with entries in �. The vector space X will be as-
sumed to be equipped with the product topology under which it is also a metrizable
topological vector space; see Aliprantis and Border (2006, Theorems 3.36 and 5.2).
The product topology is also known as the topology of pointwise convergence on
X because an arbitrary sequence {xn} in X, where xn = (xn

0 , xn
1 , xn

2 , . . .), satisfies
xn → x = (x0, x1, x2, . . .) in X if and only if xn

t −−→n→∞ xt holds in � for each
t = 0, 1, 2, . . ..

A second condition deals with desirable properties of the constraint correspon-
dence.

Condition C2. The constraint correspondence �: X →→X has

(a) nonempty and compact values, and
(b) is continuous.
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100 C.D. ALIPRANTIS AND G. CAMERA

A consequence of Conditions C1 and C2 involves a nice property of the
graph G� .

LEMMA 1. Under Conditions C1 and C2, the feasibility constraint correspon-
dence � has a closed graph; i.e., G� is a closed subset of X × X.

Proof. A compact-valued correspondence with Hausdorff range that is up-
per hemicontinuous has a closed graph; see Aliprantis and Border (2006, Theo-
rem 17.10, p. 561).

Lemma 1 will be important in proving certain desirable properties of the col-
lections of all feasible plans, which is the basic building block of our approach to
dynamic optimization.

2.1. The Plan Correspondence

As mentioned in the Introduction, the central idea in our approach to dynamic
optimization is the use of the theory of correspondences. This idea originates
from the simple observation that the set of all feasible plans starting with x0

automatically defines a correspondence

�: X →→ X.

That is, � maps the set of all possible initial states x0 into the space of all possible
sequences. We call the correspondence � the plan correspondence. Since the
constraint correspondence � is nonempty-valued, it follows immediately that �

is likewise nonempty-valued.
The rest of the discussion in this section is devoted to investigating the fun-

damental topological properties of the plan correspondence �. As we will see,
Tychonoff’s classical Product Theorem [see for instance Aliprantis and Border
(2006, Theorem 2.61, p. 52)] will play a key role in establishing the proper-
ties of �. For example, because � is in essence a constraint on the plans, it
is desirable to establish that � is compact-valued and continuous. Tychonoff’s
Theorem is handy in this respect because it states that an arbitrary product of com-
pact topological spaces with the product topology is itself a compact topological
space.

THEOREM 2. Under Conditions C1 and C2, the nonempty-valued plan cor-
respondence

(1) has closed graph, i.e., G� is a closed subset of X × X, and
(2) is compact-valued.

Proof. To see that G� is a closed subset of X × X, assume that a se-
quence {(xn

0 , xn)} in G� satisfies (xn
0 , xn) → (x0, x) in X × X, where xn =

(xn
0 , xn

1 , xn
2 , . . .). Thus, xn

t −−→n→∞ xt holds in � for each t ≥ 0. Because X is
closed, we get xt ∈ X for each t ≥ 0.
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Now fix t ≥ 0. From xn
t+1 ∈ �(xn

t ), we obtain (xn
t , xn

t+1) ∈ G� for each
n. Because (xn

t , xn
t+1)→ (xt , xt+1) in X × X and the graph of � is closed (see

Lemma 1), we get (xt , xt+1) ∈ G� or xt+1 ∈ �(xt ) for all t ≥ 0. Consequently,
we have (x0, x) ∈ G� and so G� is a closed subset of X × X.

Next, we prove that � is compact-valued. So fix x0 ∈ X. Because � has a
closed graph, it should be clear that �(x0) is a closed subset of X. To prove that
�(x0) is a compact subset of X, it suffices to show that �(x0) is included in a
compact subset of X.

To this end, we start by noticing that because � is compact-valued and upper
hemicontinuous, it carries compact subsets of X to compact subsets of X. That is,
if A is a compact subset of X, then �(A) := ⋃

a∈A �(a) is also a compact subset
of X; see Aliprantis and Border (2006, Theorem 17.8, p. 560). Now recursively
define the sets

A0 = {x0} and At+1 = �(At) for t = 0, 1, 2, . . ..

Using an easy inductive argument, we see that each At is a compact subset of X

(and so a compact subset of �). By Tychonoff’s Product Theorem, the set

A = A0 × A1 × A2 × · · ·
is a compact subset of X. To complete the proof, notice that �(x0) ⊆ A.

We emphasize that a pair (x0, x) belongs to the graph of � if and only if
x ∈ �(x0), which is also equivalent to saying that the initial state of x is x0. This
characterization will be used throughout the discussion that follows.

THEOREM 3. Under Conditions C1 and C2, the plan correspondence � is
continuous.

Proof. We first prove that � is upper hemicontinuous. To this end, assume
that xn

0 → x0 holds in X and xn ∈ �(xn
0 ) for each n. It suffices to show that

there exists a subsequence {yn} of {xn} that converges to some point in �(x0);
see Aliprantis and Border (2006, Theorem 17.20, p. 565).

Let A0 = {x0, x
1
0 , x2

0 , x3
0 , . . .} and note that A0 is a compact subset of X and,

of course, of �; see Aliprantis and Border (2006, Theorem 2.38, p. 42). Now, as
in the last part of the proof of Theorem 2, recursively define the sequence {At } of
compact subsets of X by

At+1 = �(At), t = 0, 1, 2, . . ..

If we let A = A0 ×A1 ×A2 ×· · ·, then A is (by Tychonoff’s Product Theorem) a
compact subset of X and clearly �(xn

0 ) ⊆ A holds for each n = 1, 2, . . .. But then
{xn}, as a sequence in A, has a convergent subsequence. Let {yn} be a subsequence
of {xn} satisfying yn → y in X. Now notice that the sequence {(yn

0 , yn)} ⊆ G�

satisfies (yn
0 , yn) → (x0, y) in X × X. Because � has a closed graph, we get

(x0, y) ∈ G� or y ∈ �(x0), as desired.
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Next, we establish the lower hemicontinuity of �. To this end, fix x0 ∈ X and
assume that some open subset O of X = �{0,1,2,...} satisfies �(x0) ∩ O �= ∅. We
must show that there exists a neighborhood N of x0 in � such that �(z0)∩O �= ∅

for each z0 ∈ N ∩ X.
Start by observing that (according to the definition of the product topology) we

can suppose without loss of generality that O is of the form

O = O0 × O1 × O2 × · · · × Ok × � × � × � × · · · , (1)

where k ≥ 0 and Oi is a nonempty open subset of � for each i = 0, 1, . . . , k. The
proof of the existence of the desired neighborhood N will be done by induction
on k.

So consider first the case k = 0. If

O = O0 × � × � × � × · · · ,

then for all z0 ∈ O0 ∩ X we have �(z0) ⊆ O. Consequently, this implies that
we have �(z0) ∩ O = �(z0) �= ∅ for each z0 ∈ O0 ∩ X. Because O0 is a
neighborhood of x0 in �, our conclusion is trivially true for k = 0.

For the inductive step, assume that for some k ≥ 0 the following is true. If
an open set of the form (1) satisfies �(x0) ∩ O �= ∅, then there exists some
neighborhood N of x0 in � such that �(z0) ∩O �= ∅ for each z0 ∈ N ∩ X. Now
suppose that an open set of X of the form

O = O0 × O1 × O2 × · · · × Ok × Ok+1 × � × � × � × · · ·

satisfies �(x0) ∩ O �= ∅. To complete the inductive proof, we must demonstrate
the existence of a neighborhood N of x0 in � such that z0 ∈ N ∩ X implies
�(z0) ∩ O �= ∅.

To this end, start by picking some plan x = (x0, x1, x2, . . .) ∈ �(x0) ∩ O. In
particular, note that xk+1 ∈ �(xk) ∩ Ok+1. Because xk ∈ Ok , the lower hemi-
continuity of �: X →→X at xk guarantees the existence of an open neighborhood
O ′

k ⊆ Ok of xk such that z ∈ O ′
k ∩ X implies �(z) ∩ Ok+1 �= ∅.2 Now consider

the open set

O′ = O0 × O1 × O2 × · · · × Ok−1 × O ′
k × � × � × � × · · · ,

and note that x ∈ �(x0) ∩O′. But then, by our induction hypothesis, there exists
a neighborhood N of x0 in � such that z0 ∈ N ∩ X implies �(z0) ∩ O′ �= ∅.

To complete the proof, we must show that this neighborhood N of x0 in �

satisfies the desired property. To see this, fix z0 ∈ N ∩ X and then choose

z = (z0, z1, z2, . . . , zk, zk+1, . . .) ∈ �(z0) ∩ O′.
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Clearly, zk ∈ O ′
k ∩ X and consequently, by the choice of O ′

k , there exists some
z′
k+1 ∈ �(zk) ∩ Ok+1. Now if we choose states z′

k+2, z
′
k+3, . . . in X such that

z′
t+1 ∈ �(z′

t ) for all t = k + 1, k + 2, . . . ,

then the plan z′ = (z0, z1, . . . , zk, z
′
k+1, z

′
k+2, . . .) satisfies z′ ∈ �(z0) ∩ O. Thus,

z0 ∈ N ∩ X implies that �(z0) ∩ O �= ∅, and the proof is finished.

The preceding result is important because, as we will see, it allows us to
employ Berge’s Maximum Theorem to study optima. As a consequence, we can
characterize the set of optima and derive the fundamental properties of the value
function in a direct and very simple manner. However, before doing so, we need
to take one more step. Namely, we need to establish the convexity of the plan
correspondence �.

For convenience, denote by P the collection of all feasible plans for all possible
initial states in X. That is,

P =
⊔
x∈X

�(x).

As usual, the symbol A = ⊔
Ai∈I means that A = ⋃

Ai∈I and Ai ∩ Aj = ∅

if i �= j . In this case, note that if x �= x ′ then any plan x starting with x, i.e.,
x ∈ �(x), cannot lie in �(x ′) because the first coordinate of x is not x ′. That is,
�(x) ∩ �(x ′) = ∅.

To study convexity properties of the plan correspondence, we need one more
assumption.

Condition C3. The state space X is a convex subset of � and the constraint
correspondence �: X →→X has a convex graph.

This condition guarantees the convexity of the graph of the plan correspondence.
As we will see, this is fundamental in establishing the concavity of the value
function.

THEOREM 4. Under Condition C3, the plan correspondence � has a convex
graph, and so � is also convex-valued.

Proof. Let (x0, x), (y0, y) ∈ G� and 0 ≤ α ≤ 1. Notice that xt+1 ∈ �(xt ) and
yt+1 ∈ �(yt ) imply that (xt , xt+1), (yt , yt+1) ∈ G� for all t ≥ 0. Because � has a
convex graph, it follows that for each t ≥ 0 the convex combination of (xt , xt+1)

and (yt , yt+1) satisfies

(αxt + (1 − α)yt , αxt+1 + (1 − α)yt+1) = α(xt , xt+1) + (1 − α)(yt , yt+1) ∈ G�.

In other words, αxt+1 + (1−α)yt+1 ∈ �(αxt + (1−α)yt ) holds true for all t ≥ 0.
This implies that αx + (1 − α)y ∈ �(αx0 + (1 − α)y0) or

α(x0, x) + (1 − α)(y0, y) = (αx0 + (1 − α)y0, αx + (1 − α)y) ∈ G�.

So the graph of the correspondence � is a convex set, i.e., a convex subset of
X × X.

https://doi.org/10.1017/S1365100509080134 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509080134


104 C.D. ALIPRANTIS AND G. CAMERA

Now that we have discussed the basic properties of the plan correspondence,
we are ready to introduce a notion of preferences

2.2. The Lifetime Utility Function

We take the preferences of the representative agent over plans as a primitive
notion. As usual, we refer to these preferences as the “lifetime utility” of the
representative agent. We also assume the agent is infinitely lived. However, we
will depart from the usual way of defining preferences for a given initial state. As
a matter of fact, since we are working with the plan correspondence, it is useful
to define preferences over all possible plans for any initial state. That is, we work
with preferences defined on the graph of the plan correspondence.

Condition C4. The lifetime utility function is a continuous function

Û : G� → R.

Given the lifetime utility function Û , we associate with it a new function
U :P → R defined for each x ∈ �(x) by

U(x) = Û (x, x).

When U is restricted to a specific upper section �(x) of the plan correspondence
�, then we call U : �(x) → R the state-contingent lifetime utility function. In
other words, U is simply the function Û restricted to the upper section of � at
the initial state x ∈ X.

The following result should be obvious.

LEMMA 5. For each initial state x ∈ X the function U : �(x) → R is conti-
nuous.

We now wish to discuss monotonicity of the lifetime utility function. To do
so, we need to introduce an order relation on the graph of the correspondence �.
Recall first that a set A equipped with a reflexive, antisymmetric, and transitive
relation ≥ is referred to as an ordered set or a partially ordered set.3 We employ the
following notation: If z = (z0, z1, z2, . . .) ∈ X, then z−0 denotes the sequence z
without its first term; i.e., z−0 = (z1, z2, z3, . . .). Now assume that the state space
X is an ordered set, ordered by ≥ . By means of this order relation ≥ we can
introduce an order relation 
 on G� by defining (x0, x) 
 (y0, y) in G� to mean

(1) x0 ≥ y0 in X, and
(2) x−0 = y−0, i.e., xt = yt for all t ≥ 1.

Notice that 
 is indeed an order relation on the graph G� of �, so the order 

allows us to define the monotonicity of the lifetime utility function.

DEFINITION 6. If the state space X is an ordered set, then the lifetime utility
function Û is called monotone (resp. strictly monotone) if (x0, x) � (y0, y) in
G� implies Û (x0, x) ≥ Û (y0, y) in R [resp. Û (x0, x) > Û(y0, y)].
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The monotonicity of the lifetime utility function expresses the following notion.
Whenever the initial element x0 of a plan x dominates the corresponding initial
element y0 of another plan y, and the other elements of x and y are the same, then
the lifetime utility generated by plan x must be at least as large as the lifetime
utility generated by plan y.

We are now ready to discuss optimal plans.

2.3. The Value Function

Given an initial state x0 ∈ X the representative agent maximizes his state-
contingent lifetime utility function. That is, he solves the following optimization
problem:

Maximize: U(x)

Subject to: x ∈ �(x0).

A glance at Lemma 5 guarantees that, under Conditions C1 and C2, this op-
timization problem has a solution. Therefore, one defines a real-valued function
v: X → R for each x0 ∈ X by

v(x0) = sup
x∈�(x0)

U(x) = max
x∈�(x0)

U(x).

The above function v is called the value function. Any feasible plan x ∈ �(x0)

that satisfies U(x) = v(x0) is called an optimal plan. The existence of optimal
plans is a straightforward consequence of our approach to dynamic optimization.

LEMMA 7. Under Conditions C1, C2, C3, and C4, for a given initial state
x0 ∈ X:

(a) there exists at least one optimal plan;
(b) if the lifetime utility function Û is strictly concave, then there is exactly one optimal

plan.

Proof. By Theorem 2 the set �(x0) is compact for each x0 ∈ X. Now notice
that, by Lemma 5, U is a continuous function when restricted to any �(x0).

For property (b) notice that the strict concavity of Û implies the strict concavity
of U : �(x0) → R, and the uniqueness of the optimal plan follows.

In the remainder of this section, we apply our approach to dynamic optimization
to obtain in a direct manner three key properties of the value function; continuity,
monotonicity, and concavity. We start by discussing the continuity of the value
function.

THEOREM 8. Under Conditions C1, C2, and C4 the value function v is con-
tinuous.
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Proof. We know from Theorem 2 that the plan correspondence �: X →→ X is
nonempty- and compact-valued. Also, according to Theorem 3, � is continuous.
Now apply Berge’s classical Maximum Theorem [see for instance Aliprantis
and Border (2006, Theorem 17.31, p. 570)] to infer that the maximum function
m: X → R, defined for each x0 ∈ X by

m(x0) = max
x∈�(x0)

U(x) = max
x∈�(x0)

Û (x0, x) ,

is a continuous function. Now notice that v coincides with m.

Now that we have established the continuity of the value function, we turn our
attention to its monotonicity. Recall that the constraint correspondence � is said
to be monotone if X is an ordered set, and y0 < x0 in X implies �(y0) ⊆ �(x0).

THEOREM 9. Under Conditions C1, C2, and C4, if the state space X is an
ordered set, the constraint correspondence � is monotone, and the lifetime utility
function Û is monotone (resp. strictly monotone), then the value function v is
monotone (resp. strictly monotone).

Proof. Assume that Û is strictly monotone and let y0 < x0 in X. The mono-
tonicity of � implies �(y0) ⊆ �(x0). By Lemma 7 there exists a plan y ∈ �(y0)

such that v(y0) = U(y). From �(y0) ⊆ �(x0), the sequence x = (x0, y1, y2, . . .)

satisfies x ∈ �(x0); that is, (x0, x) ∈ G�. Hence, (y0, y), (x0, x) ∈ G� and
(x0, x) � (y0, y). Because Û is strictly monotone, we see that

v(y0) = U(y) = Û (y0, y) < Û(x0, x) = U(x) ≤ v(x0).

Thus, v(y0) < v(x0) proving that, in this case, v is strictly monotone.
If Û is monotone, then similar arguments show v(y0) ≤ v(x0), so that the value

function v is monotone.

Our next result deals with concavity of the value function.

THEOREM 10. Under Conditions C1, C2, C3, and C4, if the lifetime utility
function Û is concave (resp. strictly concave), then the value function v is
likewise concave (resp. strictly concave).

Proof. Fix two elements x0, y0 ∈ X with x0 �= y0 and let 0 < α < 1. Next,
pick plans x ∈ �(x0) and y ∈ �(y0) such that v(x0) = U(x) and v(y0) = U(y).
Clearly, αx + (1 − α)y ∈ �(αx0 + (1 − α)y0). Now taking into account that
(x0, x) �= (y0, y), the strict concavity of Û yields

v(αx0 + (1 − α)y0) = max
z∈�(αx0+(1−α)y0)

U(z)

≥ U(αx + (1 − α)y)

= Û (α(x0, x) + (1 − α)(y0, y))

> αÛ(x0, x) + (1 − α)Û(y0, y)
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= αU(x) + (1 − α)U(y)

= αv(x0) + (1 − α)v(y0).

Hence, v(αx0 + (1 − α)y0) > αv(x0) + (1 − α)v(y0), proving that v is strictly
concave.

Of course, if the lifetime utility function Û is not strictly concave, then for a
given initial state x0 we can have a multiplicity of optimal plans, say π(x0).4 That
is, we obtain a correspondence π: X →→ X, defined by

π(x0) =
{

x ∈ �(x0): U(x) = v(x0) = max
y∈�(x0)

Û (x0, y)
}
.

We call π the optimal plan correspondence, which satisfies the following prop-
erties.

THEOREM 11. If Conditions C1, C2 and C4 are true, then the optimal plan
correspondence π is nonempty- and compact-valued and upper hemicontinuous.

Moreover, when Condition C3 is also true, we have the following additional
properties:

(a) If the lifetime utility function Û is concave, then π is convex-valued.
(b) If the lifetime utility function Û is strictly concave, then π is a continuous function.

Proof. The optimal plan correspondence coincides with the “argmax” corre-
spondence

π(x0) =
{

x ∈ �(x0): Û (x0, x) = max
y∈�(x0)

Û (x0, y)
}
.

By Berge’s Maximum Theorem, π is nonempty- and compact-valued and upper
hemicontinuous.

For (a), note that �(x0) is a convex and compact subset of X. Because the
function U : �(x0) → R is continuous and concave, it follows that the nonempty
set π(x0) of maximizers of U over �(x0) is convex.

For (b), observe that under Conditions C1, C2, C3, and C4 and strict concavity
of Û , it follows from Lemma 7 that for each initial state x0 ∈ X there exists
exactly one optimal plan in �(x0). That is, in this case, π is a function. Because
π as a correspondence is upper hemicontinuous, it is automatically a continuous
function.

In the following sections we apply our optimization technique to a standard
dynamic model from the macroeconomic literature.

3. A TIME-SEPARABLE MODEL

An important class of dynamic models in economics is the ones characterized
by time-separable lifetime utility functions. Under certain conditions, this type of
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preferences gives rise to recursive formulations for the value functions in terms
of the Bellman equation; see Stokey et al. (1989). In this section, we apply our
framework to establish the existence of optima and derive the basic properties of
the value functions in these models. To do so, throughout this section, we assume
that Conditions C1, C2 are valid.

We will say that the lifetime utility function Û is time-separable if there exists
a bounded continuous function F : G� → R (commonly referred to as the return
function or as the period utility function) such that for each point (x0, x) ∈ G� or,
equivalently, x = (x0, x1, x2, . . .) ∈ �(x0), we have

Û (x0, x) = U(x) =
∞∑
t=0

β(t)F (xt , xt+1). (2)

Here β(t) > 0 is interpreted as the discount factor at period t ≥ 0 and it is
assumed that

∑∞
t=0 β(t) < ∞. Clearly, the boundedness of F , coupled with

the condition on discounting, guarantees that Û as given by (2) is a real-valued
function.5 We refer to any dynamic model with preferences given by (2) as a
time-separable model.

We start by establishing the continuity of time-separable preferences.

LEMMA 12. Any time-separable utility function Û : G� → R is continuous;
i.e., it satisfies Condition C4.

Proof. Assume that (xn
0 , xn) → (x0, x) in G�. That is, xn

0 → x0 in X and

xn = (
xn

0 , xn
1 , xn

2 , . . .
)→ x = (x0, x1, x2, . . .)

in X. In other words, for each t ≥ 0 we have xn
t −−→n→∞ xt in X. We must establish

that Û (xn
0 , xn)→ Û (x0, x) holds true in R.

To this end, fix ε > 0. Start by choosing some M > 0 such that |F(x, y)| ≤ M

holds for all (x, y) ∈ G� and then pick some τ > 0 such that 2M
∑∞

t=τ+1 β(t) <
ε
2 . Using the continuity of F , we see that there exists some n0 such that n ≥ n0

implies | ∑τ
t=0 β(t)[F(xn

t , xn
t+1) − F(xt , xt+1)]| < ε

2 . But then for each n ≥ n0

we have

∣∣Û(
xn

0 , xn
)−Û (x0, x)

∣∣=|U(xn)−U(x)| ≤
∣∣∣∣∣

τ∑
t=0

β(t)
[
F

(
xn

t , xn
t+1

)−F(xt , xt+1)
]∣∣∣∣∣

+
∣∣∣∣∣

∞∑
t=τ+1

β(t)
[
F

(
xn

t , xn
t+1

)−F(xt , xt+1)
]∣∣∣∣∣

<
ε

2
+ 2M

∞∑
t=τ+1

β(t) <
ε

2
+ ε

2
= ε.

This shows that Û (xn
0 , xn) → Û (x0, x) holds in R, as desired.

https://doi.org/10.1017/S1365100509080134 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509080134


DYNAMIC OPTIMIZATION 109

We now proceed to establish the monotonicity property of Û , i.e., of the
lifetime utility defined on the graph of the plan correspondence. Recall that if the
state space X is an ordered set, then the return function F : G� → R is said to
be monotone (resp. strictly monotone) in x whenever (x0, y), (y0, y) ∈ G� with
x0 > y0 implies F(x0, y) ≥ F(y0, y) [resp. F(x0, y) > F(y0, y)] in R.

THEOREM 13. Under Conditions C1 and C2, if the state space X is ordered
and the period utility function F is monotone (resp. strictly monotone) in x, then
the lifetime utility function Û is monotone (resp. strictly monotone).

Proof. Assume (x0, x) � (y0, y) in G�. That is, x0 > y0 in X and x−0 = y−0.
Now note that the monotonicity of F in x implies F(y0, x1) ≤ F(x0, x1) (with
strict inequality if F is strictly monotone). But then in view of xt = yt for all
t ≥ 1, we have

Û (y0, y) = U(y) = β(0)F (y0, y1) +
∞∑
t=1

β(t)F (yt , yt+1)

≤ β(0)F (x0, y1) +
∞∑
t=1

β(t)F (yt , yt+1)

= β(0)F (x0, x1) +
∞∑
t=1

β(t)F (xt , xt+1)

= U(x) = Û (x0, x).

Therefore, Û (y0, y) ≤ Û (x0, x) so that Û is monotone. Strict monotonicity of Û

follows by observing that the weak inequality in the displayed formula above is
strict.

Now that we have established continuity and monotonicity of the lifetime utility
function, we are ready to study some basic properties of the value function. The
next result indicates that the value function is continuous.

THEOREM 14. Under Conditions C1 and C2, the value function v of a time-
separable model is bounded and continuous.

Proof. The continuity of v is a simple consequence of Theorem 8. To see that
v is bounded, assume that |F(x, y)| ≤ M holds for each (x, y) ∈ G� . Now if
x ∈ �(x0) satisfies v(x0) = U(x), then we have

|v(x0)| = |U(x)| =
∣∣∣∣∣

∞∑
t=0

β(t)F (xt , xt+1)

∣∣∣∣∣
≤

∞∑
t=0

β(t)|F(xt , xt+1)| ≤ M

∞∑
t=0

β(t) < ∞.
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Because x0 ∈ X is arbitrary, we see that that v is a bounded function.

The next result deals with monotonicity properties of the value function.

THEOREM 15. Assume that Conditions C1, C2, and C3 are valid, the state
space X is an ordered set, the constraint correspondence � is monotone, and the
return function is monotone (resp. strictly monotone) in x. Then the value function
v is monotone (resp. strictly monotone).

Proof. This follows immediately from Theorems 13 and 9.

Next, we discuss the concavity of the value function v.

LEMMA 16. Under Conditions C1, C2, and C3, if F is concave (resp. strictly
concave), then the lifetime utility function Û is concave (resp. strictly concave).

Proof. We assume that F is strictly concave on the convex set G� , and we
prove that Û is strictly concave on the convex set G�. (Concavity can be proved
in a similar manner.)

To this end, let (x0, x), (y0, y) ∈ G� satisfy (x0, x) �= (y0, y). This means that
for some k ≥ 0 we have xk �= yk . Now fix 0 < α < 1. The strict concavity of F

yields

F(α(xt , xt+1)+ (1 − α)(yt , yt+1)) ≥ αF(xt , xt+1)+ (1−α)F (yt , yt+1)∀ t �= k,

F (α(xk, xk+1) + (1 − α)(yk, yk+1)) > αF(xk, xk+1) + (1 − α)F (yk, yk+1).

Consequently, we have

Û (α(x0, x)+(1−α)(y0, y))

= U(αx + (1 − α)y)

=
∑
t �=k

β(t)F (α(xt , xt+1) + (1 − α)(yt , yt+1))

+β(k)F (α(xk, xk+1) + (1 − α)(yk, yk+1))

>
∑
t �=k

β(t)
[
αF(xt , xt+1) + (1 − α)F (yt , yt+1)

]

+β(k)
[
αF(xk, xk+1) + (1 − α)F (yk, yk+1)

]

= α

∞∑
t=0

β(t)F (xt , xt+1)+(1−α)

∞∑
t=0

β(t)F (yt , yt+1)

= αU(x) + (1 − α)U(y)

= αÛ(x0, x) + (1 − α)Û(y0, y).
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Thus Û (α(x0, x) + (1 − α)(y0, y)) > αÛ(x0, x) + (1 − α)Û(y0, y), so that Û is
a strictly concave function.

Strict concavity is a common assumption in economic models because it guar-
antees the uniqueness of optimal plans.

COROLLARY 17. If F is strictly concave, then for each initial state x0 ∈ X

there exists exactly one optimal plan; i.e., there exists a unique plan x ∈ �(x0)

such that v(x0) = U(x).

We now show that our optimization method can be used to derive very easily
the recursive properties of the value function in the typical case of geometric
discounting.

4. GEOMETRIC DISCOUNTING AND THE BELLMAN EQUATION

We consider the most common time-separable model, where β(t) = βt and
0 < β < 1 is a fixed discount factor. In this case, one can establish that the value
function has an additional important property. Namely, it satisfies the classical
Bellman equation; i.e., one can describe the dynamic model in a recursive manner.

THEOREM 18. Under Conditions C1 and C2, the value function v: X → R is
the one and only bounded function that satisfies the Bellman functional equation;
i.e., for each x0 ∈ X we have

v(x0) = sup
y∈�(x0)

[F(x0, y) + βv(y)].

Proof. We verify first that v satisfies the Bellman equation. So fix x0 ∈ X and
let

m = sup
y∈�(x0)

[F(x0, y) + βv(y)]. (3)

Because F(x0, ·) and v are both continuous functions on the set �(x0), the function
F(x0, ·)+ v(·) is likewise continuous on �(x0). Taking into account that �(x0) is
a compact set, we see that the supremum over �(x0) in (3) is attained. So there is
some y0 ∈ �(x0) such that m = F(x0, y0)+βv(y0). Now, according to Lemma 7,
there exists an optimal plan y = (y0, y1, y2, . . .) ∈ �(y0) such that v(y0) = U(y).
Clearly, x = (x0, y0, y1, y2, . . .) is a plan in �(x0). This implies that

m = F(x0, y0) + βv(y0) = F(x0, y0) + βU(y) = U(x) ≤ v(x0). (4)

Use Lemma 7 once more to select an optimal plan z = (x0, z1, z2, . . .) ∈ �(x0)

such that v(x0) = U(z). Clearly, z−0 = (z1, z2, . . .) ∈ �(z1), and from this and
z1 ∈ �(x0) we see that

v(x0) = U(z) = F(x0, z1) + βU(z−0) ≤ F(x0, z1) + βv(z1) ≤ m. (5)

From (4) and (5), we infer that v(x0) = m, as desired.
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Next, we prove that v is the only bounded function that satisfies the Bellman
equation. To see this, let w: X → R be a bounded function that satisfies the
Bellman equation; i.e., for each x ∈ X we have

w(x) = sup
y∈�(x)

[F(x, y) + βw(y)]. (6)

Fix x0 ∈ X. Now let ε > 0. We claim that there exists a plan x ∈ �(x0) such that

w(xt ) < F(xt , xt+1) + βw(xt+1) + ε

holds for all t ≥ 0. The construction is done by induction. If the state element
xt ∈ X has been selected, then we use (6) to select some xt+1 ∈ �(xt ) such that
F(xt , xt+1)+βw(xt+1)+ ε. Another easy inductive argument shows that for each
w(xt ) < τ ≥ 0 we have

w(x0) ≤
τ∑

t=0

βtF (xt , xt+1) + βτ+1w(xτ+1) + ε

τ∑
t=0

βt . (7)

Taking into account that the boundedness of w implies limτ→∞ βτ+1w(xτ+1) = 0,
by letting τ → ∞ in (7), we get

w(x0) ≤
∞∑
t=0

βtF (xt , xt+1) + ε

1 − β
= U(x) + ε

1 − β
≤ v(x0) + ε

1 − β

for all ε > 0. This implies that w(x0) ≤ v(x0).
Finally, for the reverse inequality, fix a plan x ∈ �(x0) such that v(x0) = U(x).

An easy inductive argument shows that for each τ ≥ 0 we have

w(x0) ≥
τ∑

t=0

βtF (xt , xt+1) + βτ+1w(xτ+1).

Letting τ → ∞ yields w(x0) ≥ ∑∞
t=0 βtF (xt , xt+1) = U(x) = v(x0). Thus,

w(x0) ≥ v(x0) is also true, so that w(x0) = v(x0) for each x0 ∈ X.

The above result, though well known, offers a new contribution to the literature
on dynamic optimization because it provides another way of proving the recursive
property of the value function for this class of models. The key contribution is that
to prove that the value function is the unique solution of the Bellman equation,
we do not invoke the Contraction Mapping Theorem or for that matter any fixed
point argument, as is commonly done. Theorem 18 offers a simple and direct
proof of this fact by taking advantage of the correspondence-theoretic approach
that we have developed. For instance, notice that the proof of Theorem 18 relies
on the continuity of the value function, which in turn is established by a simple
application of Berge’s Maximum Theorem. The key ingredient is the introduction
of the plan correspondence concept and the demonstration of its continuity.

https://doi.org/10.1017/S1365100509080134 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509080134


DYNAMIC OPTIMIZATION 113

We conclude our study in this section by discussing the policy function for
economies with geometric discounting. To do this, assume that Conditions C1
and C2 are valid, and, of course, from Lemma 12 Condition C4 is true. A glance
at Theorem 18 shows that the value function v is continuous and that it satisfies
the Bellman equation; i.e.,

v(x) = max
y∈�(x)

[F(x, y) + βv(y)]

holds true for each x ∈ X.
This recursive property allows the definition of a correspondence g: X →→X

given by

g(x) = {y ∈ �(x): F(x, y) + βv(y) = v(x)}.
This “argmax” correspondence is called the policy correspondence [see Stokey
et al. (1989)]. The choices in g(x) are the best choices that the agent can make on
any date that starts with the state x, given the constraint imposed on the agent by
�(x). We emphasize that in general there can be more than one choice y ∈ �(x)

that is optimal. That is, in general g is a multi valued function. When g is a
function, i.e., when the optimal choice is unique for each x ∈ X, then g is called
the policy function.

Now we can establish the following well-known result by a simple application
of the technique we have developed in the proof of Theorem 11.

THEOREM 19. The policy correspondence g: X→→X is nonempty and
compact-valued and upper hemicontinuous. Moreover,

(a) if the function F is concave, then g is also convex-valued, and
(b) if the function F is strictly concave, then g is a continuous function.

Given that the return function F is bounded, it is not difficult to see (and is
well known) that a plan x = (x0, x1, x2, . . .) is optimal if and only if it satisfies
Bellman’s Principle of Optimality. That is, for each t ≥ 0, we have

v(xt ) = F(xt , xt+1) + βv(xt+1). (8)

In other words, a plan x ∈ �(x0) is optimal if and only if xt+1 ∈ g(xt ) holds for
all t ≥ 0. This observation, in connection with the preceding discussion, yields
the following.

THEOREM 20. If a time-separable model with geometric discounting satisfies
Conditions C1, C2 and C3 and has a strictly concave return function, then for
each initial state x0 ∈ X there exists a unique optimal plan x = (x0, x1, . . .) that
is given by the recursive formula

xt+1 = g(xt ) = gt+1(x0) for each t = 0, 1, 2, . . ..

https://doi.org/10.1017/S1365100509080134 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100509080134


114 C.D. ALIPRANTIS AND G. CAMERA

5. AN EXAMPLE: THE ONE-SECTOR GROWTH MODEL

The textbook formulation of the one-sector growth model runs something like
this. There is a single commodity that is used as capital, along with labor, to
produce output. In the simplest formulation, labor is presumed to be supplied in
fixed amounts and there is a representative agent. In each period t = 0, 1, 2, . . .

a part ct of the output is consumed and a part xt+1 is saved as capital for next
period, which fully depreciates after its use. The quantities ct and xt+1 satisfy the
feasibility constraint

ct + xt+1 = f (xt ) ,

where f : [0,∞) → [0,∞) is the production function and x0, the initial capital
stock, is given. The function f is assumed to satisfy the Inada conditions. In
particular, f is strictly increasing and strictly concave.

We now verify that the model satisfies the conditions necessary to apply our
approach:

(i) the metrizable topological vector space is � = R,
(ii) the state space is the ordered, closed, and convex subset X = [0, ∞) of �, and

(iii) the constraint correspondence �: X→→X defined by �(x) = [0, f (x)] is
(a) nonempty- and compact-valued,
(b) monotone,
(c) continuous (according to Theorem A.1), and
(d) has a closed convex graph.

With each plan x ∈ �(x0), we associate the consumption plan denoted cx =
(c0, c1, c2, . . .) that is defined for each t = 0, 1, 2, . . . by

ct = f (xt ) − xt+1.

Clearly, 0 ≤ ct ≤ f (xt ) for each t = 0, 1, 2, . . ..
The objective here is to find a plan x ∈ �(x0) that maximizes the lifetime utility

function U : �(x0) → X , defined by

U(x) =
∞∑
t=0

βtu(ct ) =
∞∑
t=0

βtu(f (xt ) − xt+1) , (9)

where, as usual, u: [0,∞) → [0,∞) is a bounded function satisfying the Inada
conditions (and hence u is strictly concave) and normalized so that u(0) = 0.
Because u is bounded, U is a well-defined real-valued function.

Now we define the return function F : G� → R by F(x, y) = u(f (x) − y). It
is not difficult to see that the return function F is continuous, strictly increasing
in x, and strictly concave. Clearly, this model is a special case of the general
recursive dynamic model, where U(x) = ∑∞

t=0 βtF (xt , xt+1). In particular, the
state-contingent lifetime utility function is now given for each (x, x) ∈ G� by
Û (x, x) = U(x).
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Consequently, from the results obtained in Section 3, Conditions C1, C2, C3,
and C4 are true and Û is strictly monotone and strictly concave. Thus, we have
established the following well-known result.

THEOREM 21. In the one-sector growth model, the value function v is

(a) bounded,
(b) continuous,
(c) strictly concave,
(d) strictly increasing, and
(e) the only bounded solution of the Bellman equation; i.e., v: X → R is the only bounded

function that for each x ≥ 0 satisfies

v(x) = sup
0≤y≤f (x)

[F(x, y) + βv(y)].

Also, the policy function g: R+ → R+, defined by v(x) = F(x, g(x))+βv(g(x)),

(i) is continuous, and
(ii) for each x0 ∈ X the unique optimal plan x = (x0, x1, . . .) is given by the recursive

formula xt+1 = g(xt ) = gt+1(x0) for each t = 0, 1, 2, . . ..

6. CONCLUDING REMARKS

We have introduced a method for studying the existence of optima in dynamic
economies that relies neither on a variational approach and the use of transversality
conditions, nor on the usual dynamic programming techniques that employ fixed
point arguments. Instead, our approach is based on the theory of correspondences
and applies two classical fundamental theorems of mathematical analysis, Ty-
chonoff’s Product Theorem and Berge’s Maximum Theorem.

The basic ingredient is the study of the properties of what we call the plan
correspondence. This set-valued function maps the collection of all possible initial
states of the economy into the collection of all time-sequences representing plans
for consumption and savings. If it can be established that this correspondence is
continuous and convex- and compact-valued, then one can easily prove existence
of optimal plans given bounded and continuous preferences over plans. In addition,
once can easily characterize the main features of the associated value function,
and in particular its continuity and concavity. Our approach to proving existence
of optima can easily accommodate preferences that are not time-separable. Given
standard time-separable preferences, it also offers a straightforward way to obtain
a recursive representation by means of a Bellman equation.

NOTES

1. After completing this draft, we were made aware of the related work of Dutta and Mitra (1989),
which also studies properties of the value function and optimal policy correspondence by application
of the maximum theorem. The focus in that paper is on establishing a version of the maximum
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theorem with weaker continuity requirements. This theorem is applied to an intertemporal problem
where standard continuity requirements of objective function and feasible plan correspondence are not
satisfied.

2. Notice that here is the only place we use the lower hemicontinuity of �.
3. As usual, for an order relation on a set A, the symbol a > b in A means a ≥ b and a �= b. We

also write interchangeably b ≤ a instead of a ≥ b and b < a for a > b.
4. This means there is indeterminacy because several distinct plans are optimal. Of course, outside

of a planning problem such as the one we consider, there can be other reasons for indeterminacy, even
with quite standard preferences and technologies. For example, see the discussion of externalities in
Boldrin and Rustichini (1994).

5. Of course, the most common formulation assumes β(t) = βt for all t ≥ 0, where 0 < β < 1.
6. Keep in mind that, as usual, the closed interval [a, a] is simply the singleton {a}. Clearly, the

correspondence � is also nonempty-, convex-, and compact-valued.
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APPENDIX
We state a result about correspondences, not readily available in the literature.

THEOREM A.1. Let X be a topological space and let f, h: X → R be two continuous
functions. Then the correspondence �: X →→ R, defined by letting

�(x) = the closed subinterval of R with endpoints f (x) and h(x) ,

is continuous.6
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Proof. Replacing f by max{f, h} and h by min{f, h}, we can suppose without loss
of generality that h(x) ≤ f (x) holds true for each x ∈ X. Now fix some x0 ∈ X.

We first show that � is upper hemicontinuous at x0. To this end, assume that O is an
open subset of R satisfying �(x0) = [h(x0), f (x0)] ⊆ O. We must show that there exists
a neighborhood N of x0 such that x ∈ N implies �(x) ⊆ O.

Because O is open and h(x0), f (x0) ∈ O, there exists some real number ε > 0 such that
(h(x0) − ε, h(x0) + ε) ⊆ O and (f (x0) − ε, f (x0) + ε) ⊆ O. In particular, observe that
(h(x0) − ε, f (x0) + ε) ⊆ O. Next pick a neighborhood N of x0 such that x ∈ N implies

h(x0) − ε < h(x) < h(x0) + ε and f (x0) − ε < f (x) < f (x0) + ε.

Now notice that x ∈ N implies �(x) = [h(x), f (x)] ⊆ (h(x0) − ε, f (x0) + ε) ⊆ O, and
so N is a desired neighborhood.

Next, we prove that � is lower hemicontinuous at x0. To see this, assume that for some
open subset O of R we have �(x0) ∩ O �= ∅ or [h(x0), f (x0)] ∩ O �= ∅. We must show
that there exists a neighborhood N of x0 such that x ∈ N implies �(x) ∩ O �= ∅.

We start by fixing some y ∈ O such that h(x0) ≤ y ≤ f (x0). Next, we pick some ε > 0
such that (y − ε, y + ε) ⊆ O. Now we distinguish three cases.

Case I. h(x0) = f (x0) = y.
In this case, by the continuity of h and f at x0 there exists some neighborhood N of x0

such that x ∈ N implies h(x), f (x) ∈ (y − ε, y + ε) and so

�(x) = [h(x), f (x)] ⊆ (y − ε, y + ε) ⊆ O.

Consequently, x ∈ N yields �(x) ⊆ O so that �(x) ∩ O = �(x) �= ∅. This proves that,
in this case, N is a desired neighborhood.

Case II. h(x0) < y < f (x0).
Here, the continuity of h and f at x0 guarantees the existence of some neighborhood

N of x0 such that h(x) < y and y < f (x) hold for all x ∈ N . But then x ∈ N implies
y ∈ �(x) ∩ O, proving that �(x) ∩ O �= ∅ for all x ∈ N .

Case III. h(x0) = y < f (x0) or h(x0) < y = f (x0).
Because (y − ε, y + ε) ⊆ O, notice that in both possibilities there exists some z ∈

(y − ε, y + ε) (and so z ∈ O) satisfying h(x0) < z < f (x0), and the desired conclusion
follows from Case II above.
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