
Mathematical Structures in Computer Science (2020), 30, pp. 683–709
doi:10.1017/S0960129520000031

PAPER

Computing knowledge in equational extensions
of subterm convergent theories
Serdar Erbatur1 Andrew M. Marshall2 and Christophe Ringeissen3,∗

1University of Texas at Dallas, Richardson, TX, USA, 2University of Mary Washington, Fredericksburg, VA, USA and
3Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
∗Corresponding author. Email: Christophe.Ringeissen@loria.fr

(Received 28 February 2019; revised 4 October 2019; accepted 18 January 2020; first published online 2 March 2020)

Abstract
We study decision procedures for two knowledge problems critical to the verification of security protocols,
namely the intruder deduction and the static equivalence problems. These problems can be related to
particular forms of context matching and context unification. Both problems are defined with respect to
an equational theory and are known to be decidable when the equational theory is given by a subterm
convergent term rewrite system (TRS). In this work, we extend this to consider a subterm convergent TRS
defined modulo an equational theory, like Commutativity. We present two pairs of solutions for these
important problems. The first solves the deduction and static equivalence problems in rewrite systems
modulo shallow theories such as Commutativity. The second provides a general procedure that solves the
deduction and static equivalence problems in subterm convergent systems modulo syntactic permutative
theories, provided a finite measure is ensured. Several examples of such theories are also given.

Keywords: Equational theories; decision procedures; security protocols; deduction; static equivalence

1. Introduction
The formal analysis of security protocols is nowadays widely investigated. One of its starting
points is the paradigm initiated by Dolev and Yao (1981) where term algebras modulo some
equational theories are used to represent messages built over cryptographic primitives.

Several automated tools for the analysis of security issues in protocols have been developed,
including Armando et al. (2005); Blanchet (2016, 2001); Chadha et al. (2016); Cheval et al. (2018b);
Ciobâcă et al. (2012); Cremers (2008); Escobar et al. (2007); Mödersheim and Viganò (2009);
Schmidt et al. (2012); and Turuani (2006). All these tools make use of decision procedures related
to constraint solving in term algebras.

Verifying the security of protocols requires the development of specific decision procedures
to reason about the knowledge of an intruder. Two important measures of this knowledge are
(intruder) deduction (Millen and Shmatikov 2001; Paulson 1998) and static equivalence (Abadi
and Cortier 2006). The deduction problem is the question of whether an intruder, given their
deductive capability and a sequence of messages representing their knowledge, can obtain some
secret. This is a critical measure of the capability of the protocol to maintain secrets. Deducibility
is needed for many questions about the security of protocols. However, there are some questions
for which we need to be able to decide more than deducibility. For some protocols, in addition
to deducibility, we would like to determine whether an intruder can distinguish between different

© The Author(s) 2020. Published by Cambridge University Press

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031
https://orcid.org/0000-0002-7574-195X
https://orcid.org/0000-0002-0522-8384
https://orcid.org/0000-0002-5937-6059
mailto:Christophe.Ringeissen@loria.fr
https://doi.org/10.1017/S0960129520000031

684 S. Erbatur et al.

runs of the protocol. For example, in protocols which attempt to transmit encrypted votes, we
would like to know if, to the attacker, two different votes are indistinguishable. Static equivalence
measures this property.

Much work has gone into investigating and developing decision procedures for the deduc-
tion and the static equivalence problems (Abadi and Cortier 2006; Ayala-Rincón et al., 2017;
Baudet et al., 2013; Ciobâcă et al., 2012; Conchinha et al., 2011; Erbatur et al., 2017). In this line
of research, the security protocols are often represented by equational theories usually defined
as unions of several simpler sub-theories. In this paper, we focus on decision procedures for the
deduction problem and the static equivalence problem in equational theories T ∪ Ewhere T and E
are possibly non-disjoint. Until now, decision procedures for these problems have been obtained
under the following assumptions:

— T is given by a subterm convergent term rewrite system (TRS), and E is empty (Abadi and
Cortier 2006);

— T and E are disjoint (Cortier and Delaune 2010) and both deduction and static equivalence
are decidable in T and in E;

— T and E share only constructors (Erbatur et al., 2017), and both deduction and static
equivalence are decidable in T and in E.

In this paper, we investigate a new scenario:

— T is given by a TRS R which is both subterm and convergent modulo E, and E is an arbitrary
equational theory.

We then have two cases, based on E. The first case follows our preliminary results in Erbatur et al.
(2018) where we are able to show that the methods of Abadi and Cortier (2006) can be extended
to rewrite systems that are both subterm and convergent modulo E for a simple but significant
class of E theories. In the second case, the previous method is insufficient and a new approach is
developed that extends to a broader class of E theories.

We focus on permutative theories E, such as the Commutativity C= {x+ y= y+ x} or the
Associativity–Commutativity AC= {(x+ y)+ z= x+ (y+ z), x+ y= y+ x}. Permutative theo-
ries are commonly used as background theories E in TRSs modulo E. In a permutative theory,
the number of occurrences of a symbol on the left-hand side of an axiom is equal to the number
of occurrences on the right. These theories also have a number of nice properties, such as being
finite, and having decidable word and matching problems. However, the unification problem in
general is undecidable in permutative theories even if there are important particular permutative
theories with a decidable unification problem, such as C and AC. We investigate the following two
classes of permutative theories:

— The first class corresponds to shallow permutative theories. In that particular case, a permuta-
tive theory must be shallow, meaning that a variable can only occur at depth 1 in the axioms
of the theory. Thus, C is a typical example of a shallow permutative theory. We show that this
class of theories admits decision procedures for deduction and static equivalence which are
based on some reductions to the empty theory. In that simple case, it is possible to reuse the
same proof techniques as the ones developed for the case of subterm convergent term rewrite
systems (Abadi and Cortier 2004, 2006).

— The second class consists of syntactic permutative theories. A syntactic theory admits a com-
plete unification procedure defined as a non-necessarily terminating extension of syntactic
unification with finitely many additional mutation rules. According to Kirchner and Klay
(1990), any permutative theory with a finitary unification problem is indeed syntactic per-
mutative. Thus, AC is syntactic permutative, but it is not shallow due to the Associativity
axiom. For this general case of syntactic permutative theories, we develop a new approach

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

Mathematical Structures in Computer Science 685

based on the computation of a Complete set of E-Matched Terms, CMT for short. We show
that E-matched terms relate to an appropriate notion of E-variant. Here, an E-variant is a gen-
eralization of a normalized variant, as defined in the literature, in the restricted case where E
is given by a convergent rewrite system (Comon and Delaune 2005). We present a method
called MTG to generate a CMT. In general, MTG is not necessarily terminating. However, we
identify a class of syntactic permutative theories, namely the permutative theories closed by
paramodulation, for which MTG always terminates by computing a finite CMT. Thus, MTG
is instrumental in showing that any permutative theory closed by paramodulation has the
Finite Equational Variant Property, defined here and denoted by FEVP. Even if theMTG pro-
cedure does not terminate, it may still be possible to find a finite CMT for all the left-hand
sides of a rewrite system R. In this case, it is then possible to define an appropriate notion
of size of R modulo E, which is of prime interest to solve the knowledge problems in R∪ E.
Actually we show that both deduction and static equivalence in R∪ E are decidable if they
are decidable in E, the size of R modulo E is computable, and R is subterm and convergent
modulo E. Compared to the shallow case, this second approach substantially differs from
the ones developed in Abadi and Cortier (2004, 2006). However, we are able to reuse some
combination techniques introduced for solving the knowledge problems in unions of theo-
ries (Cortier and Delaune 2010; Erbatur et al., 2017). Indeed, our reduction methods require
that we implement decision procedures for deduction and static equivalence in the combina-
tion of E with additional free function symbols. Thankfully, this is always possible due to the
combination result in Cortier and Delaune (2010).

1.1 Main contributions
The primary contributions of this paper are:

— A newmethod that solves both the deduction and static equivalence problems in R∪ Ewhere
R is a subterm rewrite system and R is convergent modulo a shallow permutative theory E
(cf. Theorem 1).

— The introduction of the notion of complete set of E-matched terms (CMT) and a method
called MTG generating a CMT for the case E is syntactic permutative. If MTG always termi-
nates by computing a finite CMT, then there are two important consequences: (1) E has the
Finite Equational Variant Property (FEVP) considered in this paper, and (2) the size of R
modulo E is computable for any rewrite system R. We show that MTG is terminating for the
class of permutative theories closed by paramodulation, and so all these theories have the
FEVP (cf. Theorem 2).

— A newmethod that solves both the deduction and static equivalence problems in R∪ E if R is
a subterm rewrite system, R is convergent modulo a syntactic permutative theory E, the size
of R modulo E is computable, and both deduction and static equivalence are decidable in E
(cf. Theorem 3). Compared to the simple case of a shallow permutative theory E, notice that
the general case of a syntactic permutative theory E requires some additional assumptions:
the computability of the size of Rmodulo E and the decidability of both deduction and static
equivalence in E.

1.2 Plan of the paper
The paper is organized as follows. The concepts and notations used in this paper can be found in
Section 2. The equational theories we focus on are exemplified in Section 3. These theories are of
the form R∪ E, where the rewrite system R is both subterm and convergent modulo a syntactic
permutative theory E. Section 4 presents the decision procedures for deduction and static equiva-
lence in R∪ E for the particular case in which E is shallow permutative. Starting from Section 5, we
investigate the general case in which E is syntactic permutative. At the beginning of Section 5, we
introduce the notion of complete set of E-matched terms (CMT) and discuss how a (finite) CMT

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

686 S. Erbatur et al.

can be related to a (finite) complete set of E-variants. The MTG method for generating a CMT is
presented in Section 5.1. As shown in Section 5.2, MTG terminates and generates a finite CMT for
the class of permutative theories closed by paramodulation. Section 6 introduces the key notion
of size of R modulo E, which is well defined when each left-hand side of R admits a finite CMT.
Then, we show how to reduce any deduction (resp., static equivalence) problem in R∪ E into a
deduction (resp., static equivalence) problem in E, provided that the size of R modulo E is com-
putable. For both classes of permutative theories, shallow (Section 4) and syntactic (Section 6), we
detail the correctness proofs of the related decision procedures. Finally, we discuss in Section 7
some possible lines of future work.

2. Preliminaries
We assume that the reader is familiar with equational logic and term rewriting. We use the
standard notations as presented in Baader and Nipkow (1989). In addition, as in Abadi and
Cortier (2006), we use some concepts, such as names and frames, borrowed from the applied
pi calculus (Abadi and Fournet 2001).

2.1 Terms and substitutions
Given a first-order signature �, a set of names is a countable set of (free) constants N, such that
� ∩N =∅. Given a (countable) set of variables X, the set of (� ∪N)-terms over X is denoted
by T(� ∪N, X). The set of variables in a term t is denoted by fv(t), and the set of names in t is
denoted by fn(t). A term t is ground if fv(t)=∅. For any position p in a term t (including the root
position ε), t(p) denotes the symbol at position p, t|p denotes the subterm of t at position p, and
t[u]p denotes the term t in which t|p is replaced by u. The size of a term t is denoted by |t| and
defined in the usual way as follows: |f (t1, . . . , tn)| = 1+∑n

i=1 |ti| if f is a n-ary function symbol
with n≥ 1, |c| = 1 if c ∈N, and |x| = 0 if x ∈ X. Given any�′ ⊆�, a term t is said to be�′-rooted
if t(ε) ∈�′. A context, s, is a first-order term with “holes” or distinguished variables that occur
only once. We may write s [x1, . . . , xn], to illustrate that the context s contains n distinguished
variables.

A substitution σ is an endomorphism of T(� ∪N, X) with only finitely many variables not
mapped to themselves, denoted by σ = {x1
→ t1, . . . , xm
→ tm}. Application of a substitution σ
to a term t is written as tσ . Given two substitutions θ and σ , the composition σ ◦ θ is the sub-
stitution denoted here by θσ and defined such that x(θσ)= (xθ)σ for any x ∈ X. The domain
of σ is Dom(σ)= {x ∈ X | xσ
= x}. The range of σ is Ran(σ)= {xσ | x ∈Dom(σ)}. When θ
and σ are two substitutions with disjoint domains and only ground terms in their ranges, then
θσ = θ ∪ σ . Given a substitution σ and a finite set of variables V ⊆ X, the restriction of σ to V is
the substitution denoted by σ|V such that xσ|V = xσ for any x ∈V and xσ|V = x for any x ∈ X\V .
2.2 Equational theories
Given a set E of�-axioms (i.e., pairs of�-terms, denoted by l= r), the equational theory=E is the
congruence closure of E under the law of substitutivity. For any�-term t, the equivalence class of
t with respect to=E is denoted by [t]E. Since� ∩N =∅, the�-equalities in E do not contain any
names in N. A theory E is trivial if x=E y, for two distinct variables x and y. In this paper, all the
considered theories are assumed non-trivial.

An E-unification problem with free constants in N is a set of � ∪N-equations P= {s1 =?

t1, . . . , sm =? tm}. The set of variables in P is denoted by fv(P). A solution to P, called an E-unifier,
is a substitution σ such that siσ =E tiσ for all 1≤ i≤m. A substitution σ is more general mod-
ulo E than θ on a set of variables V , denoted as σ ≤V

E θ , if there is a substitution τ such that
xστ =E xθ for all x ∈V . A Complete Set of E-Unifiers of P, denoted by CSUE(P), is a set of substi-
tutions such that each σ ∈ CSUE(P) is an E-unifier of P, and for each E-unifier θ of P, there exists
σ ∈ CSUE(P) such that σ ≤fv(P)

E θ . E-unification is said to be finitary if any E-unification problem
https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

Mathematical Structures in Computer Science 687

P admits a finite CSUE(P). An E-unification problem P= {x1 =? t1, . . . , xm =? tm} is a solved form
if x1, . . . , xm are variables occurring once in P, and in that case, the corresponding substitution
μP = {x1
→ t1, . . . , xm
→ tm} is an E-unifier of P such that {μP} is a CSUE(P). When E is empty,
E-unification is called syntactic unification and has the property of being unitary: if two terms s
and t are syntactically unifiable, then there exists a CSUE(s=? t) of cardinality 1 whose element is
called a most general unifier of s=? t denoted bymgu(s, t).

A match-equation over� ∪N is a� ∪N-equation s=? t such that t is ground, also denoted by
s≤? t. An E-matching problem (with free constants in N) is a set of match-equations over� ∪N.
An E-word problem (with free constants in N) is a set of ground � ∪N-equations. Thus, any
E-matching problem and any E-word problem is defined as a particular E-unification problem
with free constants. As a usual practice, a variable x may also occur in the right-hand side of a
match-equation. In that case, the variable x is said to be a subject variable, which is considered as
a free constant in the related unification problem, meaning that any E-unifier σ must satisfy the
additional constraint xσ = x.

Let us introduce the different classes of theories considered in the paper. An axiom l= r
is regular if l and r have the same set of variables. An axiom l= r is collapse-free if l and r
are non-variable terms. An equational theory is regular (resp., collapse-free) if all its axioms
are regular (resp., collapse-free). An equational theory E is finite if for each term t, there are
only finitely many terms s such that t=E s. Matching in finite theories is finitary. A finite the-
ory is necessarily regular and collapse-free. A sufficient condition to get a finite theory is to
assume that E is permutative. An equational theory E is permutative if for each axiom l= r in
E, l and r contain the same symbols with the same number of occurrences. Well-known theo-
ries such as Associativity (A= {(x+ y)+ z= x+ (y+ z)}), Commutativity (C= {x+ y= y+ x}),
and Associativity–Commutativity (AC=A∪ C) are permutative theories. The word problem
and matching are both decidable in finite theories, and so in permutative theories. However,
unification in permutative theories is undecidable in general (Schmidt-Schauß 1989).

2.3 Notions of knowledge
The applied pi calculus and frames are used to model attacker knowledge (Abadi and
Fournet 2001). In this model, the set of messages or terms which the attacker knows, and which
could have been obtained from observing one or more protocol sessions, are the set of terms in
Ran(σ) of the frame φ = νñ.σ , where σ is a substitution such that the terms of Ran(σ) are ground.
We also need to model cryptographic concepts such as nonces, keys, and publicly known values.
We do this by using names, which are essentially free constants. We need to track the names the
attacker knows, such as public values, as well as the names the attacker does not know, such as
freshly generated nonces. In a frame φ = νñ.σ , ñ consists of a finite set of restricted names and
represents names which remain secret from the attacker. The set of names occurring in a term t is
denoted by fn(t).

Given a frame φ = νñ.σ and a term t, tφ denotes by a slight abuse of notation the term tσ .
We say that a term t satisfies the name restriction (of φ) if fn(t)∩ ñ=∅. In this paper, we start
with the Abadi and Cortier notation, introduced below, for deduction and static equivalence.
However, deduction and related problems have been studied before Abadi and Cortier (2006),
see for example Amadio and Lugiez (2000).

Definition 1 (Deduction). Let φ = νñ.σ be a frame, and t a ground term.We say that t is deduced
from φ modulo E, denoted by φ �E t, if there exists a term s such that sσ =E t and fn(s)∩ ñ=∅.
The term s is called a recipe of t in φ modulo E. When φ and E are clear from the context, a recipe
of t is usually denoted by ζt .

Another form of knowledge is the ability to tell if two frames are statically equivalent modulo
E, sometimes also called indistinguishability.

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

688 S. Erbatur et al.

Definition 2 (Static Equivalence). Two terms s and t are equal in a frame φ = νñ.σ modulo
an equational theory E, denoted (s=E t)φ, if sσ =E tσ , and ñ∩ (fn(s)∪ fn(t))=∅. The set of all
equalities s= t such that (s=E t)φ is denoted by Eq(φ). Given a set of equalities Eq, the fact that
(s=E t)φ for any s= t ∈ Eq is denoted by φ |= Eq. Two frames φ = νñ.σ andψ = νñ.τ are statically
equivalent modulo E, denoted as φ ≈E ψ , if Dom(σ)=Dom(τ), φ |= Eq(ψ) and ψ |= Eq(φ).

Both deduction and static equivalence are known to be decidable in subterm convergent rewrite
systems (Abadi and Cortier 2006). In this paper, we lift these results to term rewrite systems that
are subterm convergent modulo some permutative theories.

2.4 Term rewrite systems
A term rewrite system (TRS, for short) is a pair (�, R), where � is a signature and R is a finite set
of rewrite rules of the form l→ r, such that l, r are �-terms, l is not a variable and fv(r)⊆ fv(l).
When the signature is clear from the context, a TRS is simply denoted by R. A term s rewrites to a
term t, denoted by s→R t (or simply s→ t), if there exists a position p of s, a rule l→ r ∈ R, and
a substitution σ such that s|p = lσ and t= s[rσ]p. A term s is a normal form with respect to the
relation→R (or simply a normal form), if there is no term t such that s→R t. This notion is lifted
to substitutions as follows: a substitution σ is normalized if, for every variable x in the domain of
σ , xσ is a normal form. A TRS R is terminating if there are no infinite reduction sequences with
respect to→R. A TRS R is confluent if, whenever t→∗R s1 and t→∗R s2, there exists a term w such
that s1→∗R w and s2→∗R w. A confluent and terminating TRS is called convergent. In a convergent
TRS R, any term t admits a unique R-normal form denoted by t↓R. A TRS R is said to be subterm if
for any l→ r ∈ R, r is either a strict subterm of l or a ground R-irreducible term. A TRS is subterm
convergent if it is both subterm and convergent. An equational theory E is subterm convergent if
there exists a subterm convergent TRS R such that=E is↔∗R. The size of a TRS R is denoted by |R|
and defined as follows: |R| =max{l→r∈R} |l|. Since a variable cannot occur as the left-hand side of
any rule in R, we have that |R| ≥ 1 for any non-empty TRS R. When R is empty, we define |R| = 1.

Let us now introduce the notion of equational rewriting, also called class rewriting (Jouannaud
and Kirchner 1986). Given a TRS R and an equational theory E, the rewrite relation of Rmodulo
E is defined as follows: s→R,E t if there exist some position p in s, some rule l→ r ∈ R and a
substitution μ such that s|p =E lμ and t= s[rμ]p. The TRS R is said to be E-convergent if the
relation =E ◦→R ◦ =E is terminating and←→∗R∪E ⊆ →∗R,E ◦ =E ◦←∗R,E. In an E-convergent
TRS R, any term t admits a unique R-normal form modulo E denoted by t ↓R,E, and for any
terms s and t, we have s←→∗R∪E t iff (s ↓R,E)=E (t ↓R,E). In this paper, we focus on the following
E-convergent TRSs.

Definition 3. A subterm E-convergent TRS is a TRS which is both subterm and E-convergent.

A reduction ordering is a well-founded ordering on terms closed under context and substitu-
tion. Consider an inference system I whose each inference rule is of the form e1, . . . , en � en+1
where both the premises e1, . . . , en and the conclusion en+1 are equalities. Let us assume a reduc-
tion ordering < with the additional property of being total on ground terms. To define a notion
of redundancy with respect to <, we extend < to an ordering on equalities using the multiset
extension of < to compare equalities viewed as multisets of terms. In a set of ground equali-
ties E, an inference with premises in E is said to be redundant if its conclusion follows from the
equalities of E that are smaller than its largest premise. In an arbitrary set of equalities E, an infer-
ence with premises in E is redundant if it is redundant in the set of all ground instances of E.
A set of equalities is saturated with respect to I if all the inferences of I with premises in E are
redundant.

2.5 Syntactic theories
A theory E is syntactic if it has a finite resolvent presentation S, that is a finite set of equational
axioms S such that each equality t=E u has an equational proof t↔∗S u with at most one step↔S

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

Mathematical Structures in Computer Science 689

Figure 1. MSPmatching procedure for syntactic permutative theories

applied at the root position. The theories C and AC are permutative and syntactic (Kirchner and
Klay 1990).

The interest of syntactic theories is to admit a mutation-based unification procedure that bears
similarities with the standard syntactic unification procedure. In addition to the classical decom-
position rule, additional mutation rules are needed. This leads to a mutation-based unification
procedure which is not necessarily terminating for all syntactic theories. When restricting to the
matching problem, it is possible to get termination for a large class of theories of practical inter-
est. Actually, a mutation-based matching algorithm for the class of syntactic permutative theories
has been presented in Nipkow (1990). In Figure 1, we consider a rule-based description of this
matching algorithm borrowed from Ringeissen (2019). It will be applied in Section 6 to possibly
compute a finite representation of terms matched by the left-hand sides of a TRS.

Lemma 1. Assume S is a finite resolvent presentation of any syntactic permutative theory E. The
MSP inference system given in Figure 1 provides a sound, complete, and terminating E-matching
procedure: the set of computed solved forms corresponds to a complete set of solutions.

Mutation-based unification algorithms are known for some important subclasses of syntactic
theories, such as shallow theories (Comon et al., 1994), and theories closed by paramodula-
tion (Lynch and Morawska 2002). These particular syntactic theories play a central role in the
paper and are defined as follows.

A theory E is shallow if variables can only occur at a depth atmost 1 in axioms of E. For instance,
C is a shallow theory but AC is not.

To define the property of being closed by paramodulation, we rely on the notion of saturation
introduced at the end of Section 2.4 with respect to a reduction ordering < which is assumed to
be total on ground terms. An equational theory E is closed by paramodulation if E is a finite set of
equalities saturated with respect to the inference system including the single rule

Paramodulation s[l′]= t, l= r � s[r]σ = tσ

where l= r is a fresh instance of an equality in E, σ =mgu(l′, l), lσ
< rσ and l′ is not a variable.
Applying the paramodulation rule to an equality in E produces a new equality which is then added
to the set. Thus, an equational theory is saturated by paramodulation when, after exhaustive appli-
cations of the above rule, no further non-redundant equalities are added (see Section 2.4 for the

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

690 S. Erbatur et al.

description of redundant). The set is finitely saturated by paramodulation if only a finite number
of new, non-redundant equalities are added.

The theory C is closed by paramodulation, while AC is not. The following permutative theories
are not shallow but closed by paramodulation:

— {i(x)+ y= i(y)+ x},
— {i(x)+ y= i(y)+ x, x ∗ i(y)= y ∗ i(x)}.
As shown in Lynch and Morawska (2002), the class of theories closed by paramodulation

admits a terminating mutation-based unification procedure. For these theories, applying muta-
tion on terms previously introduced by mutation will only generate superfluous unifiers. To
take into account this property, the idea initiated in Lynch and Morawska (2002) is to consider
a marking notation, terms boxing, such that terms generated by mutation are boxed and no
further mutations are applied on boxed terms. Thus, any mutation reduces a complexity measure
counting the number of unboxed symbols, where a symbol is said to be boxed if it occurs
in a boxed term. This complexity measure is used to prove termination of a mutation-based
unification procedure for theories closed by paramodulation (Lynch and Morawska 2002).
Along the lines of Lynch and Morawska (2002), it is possible to obtain a matching algorithm for
permutative theories closed by paramodulation called MSPB and defined in the same way as MSP
exceptMatchMut which is replaced by its boxed version:

MatchMutB {f (s1, . . . , sm)≤? g(t1, . . . , tn)} ∪ P
� { r1 ≤? t1, . . . , rn ≤? tn, s1 =? l1 , . . . , sm =? lm } ∪ P

where f (s1, . . . , sm) is unboxed and f (l1, . . . , lm)= g(r1, . . . , rn) is a fresh variant of an axiom in S.

Compared to MSP, the interest of MSPB is to generate a reduced search space without loss of
completeness for permutative theories closed by paramodulation.

3. Subterm Equational Convergent Rewrite Systems
From now on, let us consider (�∪�, RE)= (�∪�, R∪ E) where (�∪�, R) is a TRS modulo
a permutative theory (�, E) such that �∩� =∅ and R is subterm E-convergent. Hence, E can
be a permutative theory such as C or AC. The fact that R is E-convergent implies the uniqueness
of normal forms modulo E and the decidability of the word problem modulo RE: for any terms
s and t, we have s=RE t iff (s ↓R,E)=E (t ↓R,E). In the following, a term or a substitution is said
to be normalized if it is normalized w.r.t→R,E, and a frame is normalized if its substitution is
normalized.

In the rest of this section, we present some examples of theories RE such that R is subterm
E-convergent (Section 3.1) and we introduce the notion of subterms modulo E (Section 3.2).

3.1 Examples
3.1.1 A theory for a messaging protocol
Let us start with a theory used in practice tomodel a groupmessaging protocol. The Asynchronous
Racheting Tree protocol specified in Cohn et al. (2018) has been studied in Nguyen (2019) using
ProVerif (Cheval et al. 2018a; Blanchet 2016). The goal of this protocol is to provide encrypted
group messaging by maintaining some strong security guarantees. For this protocol, the theory
modeling the intruder is defined in Nguyen (2019) as a combination RENC ∪K where RENC and K
are as follows:

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

Mathematical Structures in Computer Science 691

RENC =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

adec(aenc(m, pk(sk)), sk)→ m
getmsg(sign(m, sk))→ m

checksign(sign(m, sk),m, pk(sk))→ ok
sdec(senc(m, k), k)→ m

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

K =
{
keyexch(x, pk(x′), y, pk(y′))= keyexch(x′, pk(x), y′, pk(y))

}

The combination RENC ∪K is non-disjoint since the function symbol pk is shared by RENC and K.
More precisely, pk satisfies an appropriate notion of shared constructor, and so the combination
method described in Erbatur et al. (2017) applies to RENC ∪K. Another possibility is to apply the
reduction method presented in Section 6 using the fact that RENC is subterm K-convergent and K
is a permutative theory closed by paramodulation.

3.1.2 Non-associative sub-theories of Abelian groups and combinations
The theory of Abelian groups is AG= RAG ∪AC(∗) where RAG denotes the following
AC(∗)-convergent TRS:

RAG =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∗ e→ x
x ∗ i(x)→ e

x ∗ (y ∗ i(x))→ y
i(i(x))→ x

i(e)→ e
i(x ∗ y)→ i(x) ∗ i(y)

RAG is not subterm due to the rule i(x ∗ y)→ i(x) ∗ i(y). Note that AG is an example of monoidal
theory. Hence, the decidability of deduction and static equivalence in AG follows from the fact
that these problems are decidable in monoidal theories (Cortier and Delaune 2010).

The theory of Abelian Pre-Groups is APG= RAPG ∪ C(∗) where RAPG denotes the following
subterm C(∗)-convergent TRS:

RAPG = {x ∗ e→ x, x ∗ i(x)→ e, i(i(x))→ x, i(e)→ e}
In Yang et al. (2014), APG was considered as an approximation to deal with unification in
homomorphic encryption over Abelian groups.

We can actually extend the definition of APG to include an approximation of associativity in
the following way. Define the theory of Abelian Pre-Groups with Associative Approximation by
APGAA= RAPGAA ∪ C(∗) where RAPGAA is the following subterm C(∗)-convergent TRS:

RAPGAA = RAPG ∪ {(i(n) ∗ x) ∗ n→ x, (n ∗ x) ∗ i(n)→ x}
This theory is a mono-sorted version of the theory of Abelian Pre-Groups with Associative
Approximation studied in Yang et al. (2014). As with APG, the motivation of studying APGAA
in Yang et al. (2014) is to approximate the theory of homomorphic encryption over Abelian groups
in order to solve the unification problem using a variant-based approach (moduloC(∗)). Note that
APG and APGAA are not monoidal theories, despite the fact that AG is.

The modular exponentiation theory can be defined as an extension of AG with two additional
axioms:

exp(exp(x, y), z) = exp(x, y ∗ z),
exp(x, e) = x.

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

692 S. Erbatur et al.

This theory is motivated by the Diffie-Hellman exponentiation and has been studied in Chevalier
et al. (2003). The corresponding TRS

{exp(exp(x, y), z)→ exp(x, y ∗ z), exp(x, e)→ x} ∪ RAG
is AC(∗)-convergent but not subterm. It is possible to get interesting subterm approximations of
modular exponentiation by considering APG and APGAA instead of AG. In that direction, the
following two TRSs:

{exp(exp(x, y), i(y))→ x, exp(x, e)→ x} ∪ RAPG,
{exp(exp(x, y), i(y))→ x, exp(x, e)→ x} ∪ RAPGAA

are subterm C(∗)-convergent. To take into account more equational properties of modular expo-
nentiation, these last two TRSs are more generally convergent modulo the enlarged background
theory {exp(exp(x, y), z)= exp(exp(x, z), y)} ∪ C(∗), which is actually a syntactic permutative
theory and more precisely a permutative theory closed by paramodulation.

3.1.3 Exclusive Or, its non-associative sub-theories, and combinations
The theory of Exclusive Or is ACUN = R⊕ ∪AC(⊕) where R⊕ denotes the following subterm
AC(⊕)-convergent TRS:

R⊕ = {x⊕ 0→ x, x⊕ x→ 0, x⊕ (x⊕ y)→ y}
ACUN is another example of monoidal theory, and so it follows that both deduction and static
equivalence are decidable in ACUN (Cortier and Delaune 2010). Interestingly, the decidability of
these problems was already shown in Abadi and Cortier (2006) for ACUN by using some ad-hoc
decision procedures. The deduction problem for ACUN was also successfully studied in Comon
and Shmatikov (2003), Chevalier et al. (2005). By omitting the Associativity axiom, we get that
{x⊕ 0→ x, x⊕ x→ 0} is subterm C(⊕)-convergent.

Exclusive Or often appears as a sub-theory in the axiomatization of protocols. For example, the
following TRS is an axiomatization for the Needham-Schroeder-Lowe protocol:

RNSL = {pk(x, sk(x, y))→ y, sk(x, pk(x, y))→ y} ∪ R⊕
Here, the operators pk and sk are used to model public key encryption. The unification problem in
RNSL ∪AC(⊕) was studied in Sasse et al. (2011). Notice that RNSL is subterm AC(⊕)-convergent.
Other examples of a disjoint combination of R⊕ with a subterm convergent TRS have been
considered in Dreier et al. (2018).

3.1.4 Quasigroups and loops
A quasigroup is a binary groupoid, (Q, ∗), such that every equation of the form x ∗ y= z has
a unique solution whenever two of the elements x, y, and z are specified. These have been
axiomatized by the following identities (Hullot 1980):

x \ (xy)= y, x(x \ y)= y, (yx)/x= y, (y/x)x= y
where \ and / are the left and right division operations and are used to denote the unique solutions
of the equation x ∗ y= z, i.e, y= x \ z and x= z/y. A loop is a quasigroup with a unit element.
When the commutative axiom is added for multiplication, we do not need two unique divisors
and can replace them by a system with a single divisor, here denoted by x|y. For example, with the
following axiomatization:

{(x ∗ y)|x= y, x ∗ (y|x)= y} ∪ {x ∗ y= y ∗ x}

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

Mathematical Structures in Computer Science 693

the corresponding subterm C(∗)-convergent rewrite system is

{(x ∗ y)|x→ y, x ∗ (y|x)→ y, y|(y|x)→ x}.
If we add a unit element to obtain a loop, we could start with the following axiomatization:

{(x ∗ y)|x= y, x ∗ (y|x)= y, x ∗ 1= x} ∪ {x ∗ y= y ∗ x}
and the corresponding subterm C(∗)-convergent rewrite system is

{(x ∗ y)|x→ y, x ∗ (y|x)→ y, x ∗ 1→ x, y|1→ y, x|x→ 1, y|(y|x)→ x}.

3.1.5 Rewrite systems with E-constructors
Some classical examples of subterm rewrite systems can be easily adapted to model theories
including commutative or associative-commutative symbols. For instance, let us briefly mention
the following rewrite systems:

(i) {occ(x+ k, k)→ ok}
(ii) {rm(x+ k, k)→ x}
(iii) {dec(enc(x, k+ y), k)→ x}
(iv) {dec(enc(x, k), k+ y)→ x}

For any of these four rewrite systems, one can check that

— the symbol+ is a constructor, that is, it does not appear at the root of any left-hand side;
— the system is subterm AC(+)-convergent;
— the system is subterm C(+)-convergent.

3.2 Subtermsmodulo
In the case of subterm convergent TRSs (modulo the empty theory), it is sufficient for the deduc-
tion decision procedure to compute deducible terms just from the set of subterms occurring in the
set of terms of the frame. That is, no new terms need to be added. When considering a non-empty
theory E, we have to introduce an extended notion of subterm to capture the fact that matching
modulo E is now performed when applying a rewrite step modulo E. Recall that E is assumed to be
permutative. While this may seem somewhat restrictive, it allows for the consideration of theories
such as AC and C which are found in a large number of security protocols.

Given a term t, St(t) is the smallest set of terms including t such that

— if u′ =E u and u ∈ St(t), then u′ ∈ St(t),
— if u ∈ St(t) and p is a non-root position of u, then u|p ∈ St(t).

Notice that St(t) is finite since E is permutative. For a set of terms T, St(T)=⋃
t∈T St(t), and for a

substitution σ , St(σ)= St(Ran(σ)).

Example 1. Consider the theory APG defined in Section 3.1.2 and the following frames where
ñ= {k1, k2}:

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

694 S. Erbatur et al.

φ = νñ.{x1
→ i(k1 ∗ a), x2
→ a ∗ k2}
ψ = νñ.{x1
→ k1 ∗ a, x2
→ a ∗ k2}
φ′ = νñ.{x1
→ i(k1 ∗ a), x2
→ a ∗ k1}
ψ ′ = νñ.{x1
→ i(k1), x2
→ i(k1 ∗ k2)}

According to the above definition of St, we get the following set of terms.

St(φ)= {i(k1 ∗ a), i(a ∗ k1), a ∗ k1, k1 ∗ a, a, k1, a ∗ k2, k2 ∗ a, k2}
St(ψ)= {k1 ∗ a, a ∗ k1, a ∗ k2, k2 ∗ a, k1, k2, a}
St(φ′)= {i(k1 ∗ a), i(a ∗ k1), a ∗ k1, k1 ∗ a, k1, a}
St(ψ ′)= {i(k1), i(k1 ∗ k2), i(k2 ∗ k1), k1 ∗ k2, k2 ∗ k1, k1, k2}

Proposition 1. For any terms t, t′, t=E t′ implies St(t)= St(t′), and for any position p in t, St(t|p)⊆
St(t).

The following result states that we cannot generate a new term outside St(t) by rewriting terms
in St(t) (except the ground right-hand sides of R).

Lemma 2. If lσ =E t, then for any position p of l, (l|p)σ ∈ St(t).

Proof. By structural induction on l.
If l is a variable, this is trivial since the only possible position is ε and l|ε = l.
Assume l= f (l1, . . . , lm) and σ is a substitution such that f (l1, . . . , lm)σ =E t.
If there is an equational step at the root position, then there exist some terms g1, . . . , gm such

that l1σ =E g1, . . . , lmσ =E gm and f (g1, . . . , gm)=E t. By definition of St(t) and Proposition 1, the
terms g1, . . . , gm are in St(t), and so l1σ , . . . , lmσ ∈ St(t).

If there is no equational step at the root position, then t is of the form f (t1, . . . , tm) and l1σ =E
t1, . . . , lmσ =E tm. By definition of St(t) and Proposition 1, the terms t1, . . . , tm are in St(t), and
so l1σ , . . . , lmσ ∈ St(t).

4. Decision Procedures for Shallow Permutative Theories
In this section, we construct new decision procedures for deduction and static equivalence where
E is a shallow permutative theory, for example, E is Commutativity. We start by considering
deduction which will also be needed when considering the problem of static equivalence.

4.1 Deduction
The decision procedure for the deduction problem requires the computation of some finite
deducible terms defining the so-called completion of a given frame.

Definition 4. Let φ = νñ.σ be a normalized frame. The set of terms D∗(φ) is the smallest set D such
that:

(1) Ran(σ)⊆D,
(2) if t1, . . . , tn ∈D and f (t1, . . . , tn) ∈ St(σ) then f (t1, . . . , tn) ∈D,
(3) if t ∈D, t′ ∈ St(σ), t=E t′, then t′ ∈D,
(4) if there is a root reduction s[d̄]→ε

R,E t where |s| ≤ |R|, fn(s)∩ ñ=∅, d̄ ∈D and t ∈ St(σ),
then t ∈D.

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

Mathematical Structures in Computer Science 695

Let σ∗ = σ {χu
→ u | u ∈D∗(φ)\Ran(σ)} where χu is a fresh variable. The frame φ∗ = νñ.σ∗
is called the completion of φ with respect to contexts bounded by |R|. Given a recipe ζu for each
u ∈D∗(φ)\Ran(σ), the substitution {χu
→ ζu | u ∈D∗(φ)\Ran(σ)} is called a recipe substitution
of φ and is denoted by ζφ .

Example 2. Consider the frames φ andψ from Example 1. Now let us compute the setsD∗(φ) and
D∗(ψ), and recipe substitutions ζφ and ζψ . One can check thatD∗(φ)= {i(k1 ∗ a), a ∗ k2, a, i(a ∗
k1), k2 ∗ a, k1 ∗ a, a ∗ k1} andD∗(ψ)= {k1 ∗ a, a ∗ k2, a, a ∗ k1, k2 ∗ a}. The symbol a ∈ St(σ) is
contained in these sets due to the second item of Definition 4. However, we cannot use this rule
for elements of ñ, which rules out k1 and k2. In addition, e is not contained in these sets since
e
∈ St(φ). Therefore, for φ = νñ.σ , we get:

σ∗ = σ {x3
→ i(a ∗ k1), x4
→ k2 ∗ a, x5
→ a, x6
→ k1 ∗ a, x7
→ a ∗ k1}
ζφ = {x3
→ x1, x4
→ x2, x5
→ a, x6
→ i(x1), x7
→ i(x1)}

For the frame ψ = νñ.τ , we obtain:
τ∗ = τ {x3
→ a ∗ k1, x4
→ k2 ∗ a, x5
→ a}
ζψ = {x3
→ x1, x4
→ x2, x5
→ a}

The decision procedure is based on the following reduction lemma, using the facts that the
completion is computable and the deduction problem is decidable in the empty equational theory.

Lemma 3 (Deduction). Let RE= R∪ E where R is any subterm E-convergent TRS and E is any
shallow permutative theory. For any normalized frame φ and any normalized term t, we have that
φ �RE t if and only if φ∗ � t.

Proof. See Section 4.3.

Example 3. (Example 1 continued.)

— The term (k2 ∗ a) ∗ (k1 ∗ a) is deduced from φ modulo APG since it is deduced from φ∗
thanks to the recipe x4 ∗ x6.

— The term k1 is deduced from ψ ′ modulo APG, thanks to the recipe i(x1).
— The term k1 ∗ (k2 ∗ k1) is deduced from ψ ′ modulo APG, thanks to the recipe i(x1) ∗ i(x2).

4.2 Static equivalence
The decision procedure for the static equivalence is based on the computation of small equalities
bounded by the size of R.

Definition 5. Let φ = νñ.σ be a normalized frame. Consider the following sets of terms: Bt(R)=
{t | |t| ≤ |R|}; and Gr(R)= {r | l→ r ∈ R, r is ground }. Given a recipe substitution ζφ of φ as intro-
duced in Definition 4, the set EqBζ (φ) is the set of equalities tζφ = t′ζφ such that (tζφ =RE t′ζφ)φ and
t, t′ ∈ Bt(R)∪Gr(R).

Example 4. Let us look at EqBζ for some of the frames from Example 1. Since these sets can be
large, but finite, we will not list every equation in the set. Let us consider EqBζ (φ). First are all the
equalities that consist of terms, t and t′, of size 0, that is, variables:

x1 = x1, x2 = x2, x1 = x3, x2 = x4 . . .

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

696 S. Erbatur et al.

Notice that each of these satisfies Definition 5. For example, (x2ζφ)σ = a ∗ k2 =RE k2 ∗ a=
σ (ζφx4). We also have equalities between size 1 terms:

i(x1)= i(x1), i(x2)= i(x2), . . . i(x1)= i(x3), . . .

x1 ∗ x1 = x1 ∗ x1, . . . , x1 ∗ x2 = x3 ∗ x4 . . .
The same applies for these equalities. For example, ((x1 ∗ x2)ζφ)σ = i(k1 ∗ a) ∗ (a ∗ k2)=RE i(a ∗
k1) ∗ (k2 ∗ a)= ((x3 ∗ x4)ζφ)σ . We need to also include mixed sized equalities such as between
size 0 and size 1 terms:

x3 = i(x5), i(x3)= x1, i(x3)= x5, e ∗ x7 = x7 . . .

Note that equalities such as x7 ∗ k1 = x1 are not included since fn(x7 ∗ k1)∩ ñ
= ∅.
|R| = 2 thus the final and largest, in terms of term size, set of equalities is between two terms of

size 2:

e ∗ x1 = e ∗ x1, e ∗ x1 = e ∗ x3, . . . , i(i(x1))= i(i(x3)), . . .

To get a decision procedure, it remains to show that checking small equalities defined by EqBζ
is sufficient to prove the static equivalence of the two input frames. Note that the check of each of
these equalities is effective since the RE-equality is decidable.

Lemma 4 (Static Equivalence). Let RE= R∪ E where R is any subterm E-convergent TRS and E
is any shallow permutative theory. For any normalized frames φ and ψ , we have that φ ≈RE ψ iff
ψ |= EqBζ (φ) and φ |= EqBζ (ψ).

Proof. See Section 4.3.

Example 5. Consider the frames φ, φ′, and ψ from Example 1. We have φ
≈RE φ′ since i(x1)=RE
x2 ∈ EqBζ (φ′) and i(x1)φ
=RE x2φ. For the two frames φ and ψ , we can show φ ≈RE ψ by checking
that ψ |= EqBζ (φ) and φ |= EqBζ (ψ).

According to the above reduction lemmas (Lemmas 3 and 4), we obtain the following result:

Theorem 1. Let RE= R∪ E where E is any shallow permutative theory and R is any subterm E-
convergent TRS. Then, deduction and static equivalence are decidable in RE.

To prove both reduction lemmas (Lemmas 3 and 4) and so Theorem 1, we reuse the same
approach as in Abadi and Cortier (2004, 2006), by applying two technical lemmas introduced
in Section 4.3, namely Lemma 7 for E and Lemma 9 for R modulo E. To prove these lemmas,
we use some properties satisfied by a shallow permutative theory E. With shallow permutative
theories, we have identified a class of theories E for which we can apply exactly the same approach
as in Abadi and Cortier (2004, 2006) to get new decidability results for equational rewrite systems
which are both subterm and E-convergent.

Theorem 1 applies to the subterm C-convergent rewrite systems, such as the ones listed in
Section 3.1. The rewrite system can be empty, which means that the deduction and the static
equivalence problems are decidable in shallow permutative theories. Commutativity is perhaps
the most popular shallow permutative axiom, but obviously it is not the only one, for example,
f (x, y, z)= f (z, x, y) and x+ 0= 0+ x are also shallow permutative. Moreover, a union of shallow
permutative theories remains shallow permutative, and so Theorem 1 can be directly applied to
this union of theories, for instance to handle a union of several commutative symbols.

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

Mathematical Structures in Computer Science 697

4.3 Correctness proofs
Recall that, given a frame φ = νñ.σ and a term t, tφ denotes by a slight abuse of notation the
term tσ .

Remark 1. When we use the notation tφ, we assume that a variable x does not occur in t if xφ is
a ground term occurring in the axioms of E. This can be assumed without loss of generality since
that term, say t′, can be used as a subterm of t since t′ satisfies the name restriction of φ.

Lemma 5. Assume E is shallow permutative. For any term s satisfying the name restriction, if sφ∗ =E
u, then there exists a term t satisfying the name restriction of φ∗ such that u= tφ∗ and |s| = |t|.

Proof. Let us focus on an equational step sφ∗ ↔E u. Then, the generalization to sφ∗ ↔∗E u can be
easily proved by induction on the length of the derivation.

If the equational step↔E is applied at a position of a non-variable term s, then φ∗ belongs to
the substitution part of the equational step because E is shallow permutative, and the term u can
be expressed as a term tφ∗ with |t| = |s|. Note that, due to the restrictions on E, an equational step
↔E will not increase the size of a term.

Otherwise, the equational step↔E is necessarily applied in φ∗, which means that there exists
a variable x at a position p of s such that xφ∗ ↔E u|p. By definition of φ∗, there exists a variable y
such that yφ∗ = u|p. Therefore, we have sφ∗ ↔E u= (s[y]p)φ∗, and we can choose t= (s[y]p).

Lemma 6. Assume E is shallow permutative. For any non-variable terms s= f (s̄) and t= g(t̄)
satisfying the name restriction, if sφ∗ =E tφ∗ then

— f = g and s̄φ∗ =E t̄φ∗,
— or there exist terms l̄, r̄, ū, v̄ and a substitution μ such that l̄, r̄ are either variables or ground

terms, ū, v̄ satisfy the name restriction of φ, |ū| = |s̄|, |v̄| = |t̄|, s̄φ∗ =E ūφ∗ = l̄μ, t̄φ∗ =E v̄φ∗ =
r̄μ, and f (l̄)←→ε

E g(r̄).

Proof. Since E is a shallow theory, it has a resolvent presentation which remains shallow.
Therefore, if sφ∗ =E tφ∗, then

— sφ∗ = f (s̄φ∗), tφ∗ = f (t̄φ∗), and s̄φ∗ =E t̄φ∗,
— or sφ∗ = f (s̄φ∗), tφ∗ = g(t̄φ∗) and there exist terms l̄, r̄ and a substitution μ such that l̄, r̄

are either variables or ground terms, s̄φ∗ =E l̄μ, t̄φ∗ =E r̄μ, and f (l̄)←→ε
E g(r̄). By Lemma 5,

there exist terms ū and v̄ satisfying the name restriction such that |ū| = |s̄| |v̄| = |t̄| and ūφ∗ =
l̄μ, v̄φ∗ = r̄μ.

The following lemma corresponds to Lemma 3 in the appendix of Abadi and Cortier (2004).

Lemma 7. Let RE= R∪ E where R is any subterm E-convergent TRS and E is any shallow permu-
tative theory. For any terms s and t satisfying the name restriction, if sφ∗ =E tφ∗ and ψ |= EqBζ (φ),
then (sζφ)ψ =RE (tζφ)ψ .

Proof. By induction on |s| + |t|.
— Base case: if |s| and |t| are less than |R|, then it is true by definition of EqBζ .
— Inductive step:

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

698 S. Erbatur et al.

(A) Consider s= f (s̄) and t= g(t̄). By applying Lemma 6, two cases are possible:
(i) f = g and s̄φ∗ =E t̄φ∗. By applying the induction hypothesis, we get (s̄ζφ)ψ =E

(t̄ζφ)ψ , and so (sζφ)ψ = f ((s̄ζφ)ψ)=E f ((t̄ζφ)ψ)= (tζφ)ψ .
(ii) By Lemma 6, we have s̄φ∗ =E ūφ∗ = l̄μ and t̄φ∗ =E v̄φ∗ = r̄μ such that f (l̄)←→ε

E
g(r̄). By applying the induction hypothesis, we get (s̄ζφ)ψ =RE (ūζφ)ψ and
(t̄ζφ)ψ =RE (v̄ζφ)ψ . The terms l̄, r̄ are either variables or ground terms, and so
uiφ∗ = xμ= vjφ∗ for each variable x in l̄, r̄. By the induction hypothesis, we get
(uiζφ)ψ =RE (vjζφ)ψ . Hence, there exists a substitution μ′ such that
– (s̄ζφ)ψ =RE (ūζφ)ψ =RE l̄μ′
– (t̄ζφ)ψ =RE (v̄ζφ)ψ =RE r̄μ′
Consequently, we have
– (sζφ)ψ = f ((s̄ζφ)ψ)=RE f ((ūζφ)ψ)=RE f (l̄μ′)
– (tζφ)ψ = g((t̄ζφ)ψ)=RE g((v̄ζφ)ψ)=RE g(r̄μ′)
where f (l̄μ′)=E g(r̄μ′).

(B) Consider s= f (s1, . . . , sr) and t is a variable x. Assume xφ∗ =E sφ∗. We
have that f (s1φ∗, . . . , srφ∗)=E xφ∗. Let Ni = siφ∗ for i= 1, . . . , r, and M= xφ∗.
Since f (N1, . . . ,Nr)=E M and M ∈ St(φ), then Ni ∈ St(φ). Since Ni = siφ∗ and
Ni ∈ St(φ), we have that Ni ∈ Ran(φ∗), and so there exists some recipe ζNi .
Since M=E f (N1, . . . ,Nr), we have ζMφ =E f ((ζN1φ), . . . , (ζNrφ)), and ζMψ =RE
f ((ζN1ψ), . . . , (ζNrψ)) by assumption on ψ .
Since Ni =E siφ∗, we have that ζNiψ =RE (siζφ)ψ by the induction hypothesis. Then,

(xζφ)ψ = ζMψ =RE (f (s1, . . . , sr)ζφ)ψ = (sζφ)ψ

The Lemma 4 given in the appendix of Abadi and Cortier (2004) can be adapted as follows:

Lemma 8. Let RE= R∪ E where R is any subterm E-convergent TRS and E is any shallow per-
mutative theory. For any term s satisfying the name restriction and any term t such that sφ∗ →R t,
there exists a term u satisfying the name restriction such that t= uφ∗ and for any frame ψ such that
ψ |= EqBζ (φ), (sζφ)ψ =RE (uζφ)ψ .

Proof. (i) Let us first assume that the rewrite step occurs at the root position. Suppose sφ∗ = lμ
with l→ r ∈ R. There are two possibilities:
— Assume there exists some substitution μ′ such that s= lμ′. The substitution μ′ satisfies

the name restriction of φ since s satisfies it. We have μ=μ′φ∗, and so sφ∗ = lμ′φ∗ →R
rμ′φ∗, where rμ′ satisfies the name restriction of φ thanks to the form of rules in R.
Moreover, for any frame ψ with the same name restriction as the one of φ, the same
rewrite step applies on sζφψ = lμ′ζφψ and we get sζφψ = lμ′ζφψ→R rμ′ζφψ .

— Otherwise, it is impossible to have |s|> |R| and sφ∗ = lμ. Consequently, |s| ≤ |R| and
only two cases are possible for the rewrite rule l→ r since R is subterm E-convergent:
– If r is a ground term, then (sζφ)φ =RE sφ∗ →R r= rφ∗ =RE (rζφ)φ (where r satisfies
the name restriction of φ). By definition of EqBζ and by assumption on ψ , we have
(sζφ)ψ =RE r=RE (rζφ)ψ .

– If r is a subterm of l, then by definition of φ∗ (cf. Definition 4(4)), there exists some
variable x such that (sζφ)φ =RE sφ∗ →R xφ∗ =RE (xζφ)φ. By definition of EqBζ and by
assumption on ψ , we have (sζφ)ψ =RE (xζφ)ψ .

(ii) Let us now assume that the rewrite step occurs below the root position. There exists a posi-
tion p
= ε such that s′φ∗ = (s′φ∗)[sφ∗]p with sφ∗ →ε

R t. By the case (i) above, there exists a
term u such that t= uφ∗ and (sζφ)ψ =RE (uζφ)ψ . Then, we have

s′φ∗ →R (s′φ∗)[t]p = (s′φ∗)[uφ∗]p = (s′[u]p)φ∗

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

Mathematical Structures in Computer Science 699

and
(s′ζφ)ψ = (s′ζφψ)[sζφψ]p =RE (s′ζφψ)[uζφψ]p = (s′[u]p)ζφψ

This lemma can now be extended as follows using Lemma 7.

Lemma 9. Let RE= R∪ E where R is any subterm E-convergent TRS and E is any shallow permu-
tative theory. For any term s satisfying the name restriction and any term t with sφ∗ →R,E t, there
exists a term u satisfying the name restriction such that t=E uφ∗. In addition, for any frame ψ such
that ψ |= EqBζ (φ), (sζφ)ψ =RE (uζφ)ψ .

Proof. If sφ∗ →R,E t, then (according to Lemma 5) there exists a term s′ satisfying the name restric-
tion such that sφ∗ =E s′φ∗ and s′φ∗ →R t. By Lemma 7, we have (sζφ)ψ =RE (s′ζφ)ψ . By Lemma 8,
there exists a term u satisfying the name restriction such that (s′ζφ)ψ =RE (uζφ)ψ . Consequently,
we get (sζφ)ψ =RE (uζφ)ψ .

We are now ready to prove the two reduction lemmas, namely Lemmas 3 and 4. For both
lemmas, we prove the non-obvious direction:

— Lemma 3.

Proof. (Only if direction) Assume sφ∗ =RE t where t is normalized. According to Lemma 9,
there exists a rewrite proof of the form

sφ∗ →R,E ◦ =E · · ·→R,E ◦ =E s′φ∗ =E t
where s′ satisfies the name restriction of φ∗, equivalently the name restriction of φ.

— Lemma 4.

Proof. (If direction) Let Eqζ (φ) be the set of all equalities sζφ = tζφ such that (sζφ =RE tζφ)φ.
Consider any sζφ = tζφ ∈ Eqζ (φ). According to Lemma 9, there exists a rewrite proof of the
form

(sζφ)φ =RE sφ∗ →R,E ◦ =E · · ·→R,E ◦ =E s′φ∗

(tζφ)φ =RE tφ∗ →R,E ◦ =E · · ·→R,E ◦ =E t′φ∗
where s′φ∗ =E t′φ∗ and s′, t′ satisfy the name restriction of φ∗ (equivalently, the name
restriction of φ).
By Lemma 9, we have (sζφ)ψ =RE (s′ζφ)ψ and (tζφ)ψ =RE (t′ζφ)ψ . By Lemma 7, we have
(s′ζφ)ψ =RE (t′ζφ)ψ . Hence, (sζφ)ψ =RE (tζφ)ψ , which means that ψ |= Eqζ (φ).
In a symmetric way, we can show that φ |= Eqζ (ψ). Then, we can conclude since

φ ≈RE ψ iff ψ |= Eqζ (φ) and φ |= Eqζ (ψ)

5. Equational Variants in Syntactic Permutative Theories
In this section, we start investigating the possibility to go beyond the case E is shallow permu-
tative, by considering E is syntactic permutative, for example, E is Associativity–Commutativity,
and R is E-convergent. In this general case, we need to consider an additional finiteness assump-
tion introduced below. The investigated approach relies on the possibility of computing a finite
representation of all the terms that are matched modulo E by the left-hand sides of the TRS R.

Definition 6. An E-variant of a term l is a pair (t, σ) such that t=E lσ and Dom(σ) is included in
fv(l). Given two E-variants (u, θ) and (v, γ) of a term l, (u, θ) is more general than (v, γ), denoted
by (u, θ)≤E (v, γ) if there exists a substitution τ such that uτ =E v and θτ =E γ . A complete set

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

700 S. Erbatur et al.

of E-variants of l, denoted by CVE(l), is a set of E-variants of l such that for any E-variant (v, γ)
of l, there exists (u, θ) ∈ CVE(l) such that (u, θ)≤E (v, γ). The equational theory E is said to have
the Finite Equational Variant Property (FEVP, for short) if any term admits a finite complete set of
E-variants.

Equational variants are analogous to variants defined with respect to a convergent TRS (Comon
and Delaune 2005; Escobar et al., 2012; Meseguer 2018). When R denotes a convergent TRS, a
R-variant of l is defined in the literature as a pair (t, σ) such that t= (lσ)↓R and t, σ are both
R-normalized. Given two R-variants (u, θ) and (v, γ) of l, (u, θ) is said to be more general than
(v, γ) if there exists a substitution τ such that uτ = v and θτ = γ . A complete set of R-variants of
l is defined in the same way as in Definition 6: it is a set CVR(l) of R-variants of l such that for any
R-variant (v, γ) of l, there exists (u, θ) ∈ CVR(l) such that (u, θ) is more general than (v, γ). Then,
R is said to have the Finite Variant Property (FVP, for short) if any term admits a finite complete
set of R-variants.

Proposition 2. If a convergent TRS has the FVP, then its equational theory has the FEVP.

The following notion of complete set of E-matched terms is instrumental to show the FEVP.

Definition 7. A term t is said to be E-matched by l if there exists some substitution σ such that (t, σ)
is an E-variant of l. The set of terms E-matched by l is denoted by MTE(l). A complete set of terms
E-matched by l is a subset of MTE(l) denoted by CMTE(l) such that for any t ∈MTE(l), there exist
t′ ∈ CMTE(l), and a substitution μ satisfying the following property: t=E t′μ and for any E-variant
(t, σ) of l, there exists an E-variant (t′, σ ′) of l such that σ =E σ ′μ.

Given a non-empty TRS R, a complete set of terms E-matched by R is CMTE(R)= {t | t ∈
CMTE(l), l→ r ∈ R}.

Unsurprisingly, the finiteness of CMTE(l) for each term l suffices to show the FEVP:

Proposition 3. Assume E is permutative. For any term l, if CMTE(l) is finite, then {(t, σ) | t ∈
CMTE(l), lσ =E t} is a finite CVE(l).

Proof. Since E is assumed to be permutative, the set of substitutions σ such that lσ =E t is finite
for any terms l, t.

When E is the empty theory and l is any term, the singleton {l} is a CMTE(l). When E is an
arbitrary theory, the singleton {l} can be a CMTE(l) for some particular terms l, for example,
CMTE(x+ 0)= {x+ 0} for E=AC(+). As stated below, the singleton {l} is always a CMTE(l)
under a simple assumption that bears some similarities with the unique matching property used
in Chevalier and Rusinowitch (2008) to get decidability of ground intruder systems corresponding
to deduction problems in a hierarchical combination of theories.

Proposition 4. If l is any variable, then {l} is a CMTE(l). If l is any non-variable term and for
any term t in MTE(l), the match-equation l≤?

E t admits a unique solution modulo E, then {l} is a
CMTE(l).

Proof. Consider the identity substitution ε. For any term l, lε= l, and so (l, ε) is an E-variant of l.

— Let l be any variable. For any E-variant (t, σ) of l, we have t=E lσ and σ =E εσ where (l, ε) is
an E-variant of l.

— Let l be any non-variable term. By assumption, for any term t inMTE(l), there exists a unique
substitution σ such that t=E lσ and σ =E εσ .

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

Mathematical Structures in Computer Science 701

Figure 2. MTG additional rules

By definition of a complete set of E-matched terms, this implies in both cases that {l} is a CMTE(l).

The case of a variable l being easily solved, we focus below on the case where l is a non-variable
term.

5.1 TheMTG procedure for computing a complete set of matched terms
We now study a general procedure that, when terminating, computes a finite CMTE(l). Consider
the inference system MTG defined by the set of rules in MSP given in Figure 1 plus the two
additional rulesMergeSV , InstSV given in Figure 2.

Lemma 10. Let l be an arbitrary non-variable term and x a fresh variable. Assume that any MTG-
derivation starting from {l≤? x} is terminating. Then, a CMTE(l) is given by the finite set MT of
terms xσP where

— P is a solved form such that {l≤? x} �∗MTG P,
— σP is the composition of all substitutions applied by InstSV orMergeSV in the derivation {l≤?

x} �∗MTG P.

Proof. Given any solved form P such that {l≤? x} �∗MTG P, letμP be the corresponding substitution
andμP|fv(l) the restriction ofμP to fv(l). For any term xσP ∈MT, (xσP,μP|fv(l)) is an E-variant of l.
Consequently,MT ⊆MTE(l).

To show thatMT is a complete set of E-matched terms, consider any term t ∈MT and the set
SF of solved forms computed by MSP with {l≤? t} as input. For any substitution θ , {Pθ | P ∈ SF}
corresponds to the set of solved forms computed byMSPwith {l≤? tθ} as input. SinceMSP is an E-
matching algorithm, {σθ | σ ∈ CSUE(l≤? t)} is a CSUE(l≤? tθ). Therefore,MT is a CMTE(l).

We show in the following example that MTG may not terminate when E is the Associativity–
Commutativity.

Example 6. It is difficult to get terminating MTG-derivations when E=AC(+). Let us consider
l= (a+ x). Starting from a+ x≤? x0, the only possibility is to apply InstSV , leading to a+ x≤?

x1 + x2. The theory E=AC(+) admits a resolvent presentation that consists of seven axioms. One
of these axioms is w1 + (w2 +w3)= (w1 +w2)+w3. By applyingMatchMut with this axiom, we
get

a=? w1, x=? w2 +w3,w1 +w2 ≤? x1,w3 ≤? x2

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

702 S. Erbatur et al.

The repeated application of RemEq and Rep leads to

w1 ≤? a, x=? w2 + x2, a+w2 ≤? x1,w3 ≤? x2.

It contains a+w2 ≤? x1 which is a renaming of the input, and so theMTG procedure loops in that
case.

5.2 Termination ofMTG and closure under paramodulation
As stated above, the MTG procedure is not guaranteed to terminate for an arbitrary E. However,
there are classes of permutative theories for which the MTG procedure is guaranteed to terminate.
One such class of permutative theories are those closed under paramodulation, which we prove
below.

Lemma 11. Consider MTGB =MSPB ∪ {MergeSV , InstSV} where MSPB is defined in Section 2.5
and MergeSV , InstSV are given in Figure 2. Let E be any permutative theory closed by paramod-
ulation. For any non-variable term l and any fresh variable x, any MTGB-derivation starting from
{l≤? x} is terminating and MTGB provides a CMTE(l) in the same way as the one described in
Lemma 10 for MTG.

Proof. To prove termination, let us analyze the interaction betweenMSPB and the additional rules
MergeSV and InstSV :

— After the application of MergeSV , no MSPB rule can be fired. Only InstSV can be possibly
fired after the exhaustive application ofMergeSV .

— After the application of InstSV on s≤? x, some MSPB rule may be fired, and there are two
possible cases:
– If s is rooted by an unboxed symbol occurrence, then MatchDec or MatchMutB applies
and in both cases the number of unboxed symbol occurrences is strictly decreasing.

– If s is rooted by a boxed symbol occurrence, then necessarily MatchDec applies and the
number of unboxed symbol occurrences is not increasing but the multiset of sizes of terms
is strictly decreasing.

The completeness follows from the proof of Lemma 10 and the fact thatMSPB is an E-matching
algorithm.

According to Lemma 11 and Proposition 3, we get the following result:

Theorem 2. If E is a permutative theory closed by paramodulation, then E has the FEVP.

Example 7. Let us consider a small example of computing a CMTE(l), where l is x+ i(a) and
E= {x+ i(y)= i(y)+ x}. We start by applying the MTGB procedure on the input {x+ i(a)≤? x0}.
Initially, no rules from MSP apply and only InstSV applies, resulting in three substitutions: {x0
→
x1 + x2}, {x0
→ i(x1)}, and {x0
→ a}. Thus, each substitution causes a branch in the computation
of the procedure. The branches generated by {x0
→ i(x1)}, and {x0
→ a} lead to a failure. Let us
follow the branch corresponding to {x0
→ x1 + x2} and the match-equation x+ i(a)≤? x1 + x2.
Now rules from MSP apply, including as a first rule MatchDec resulting in {x≤? x1, i(a)≤? x2}.
Continuing in this fashion, we reach a solved form corresponding to the E-matched term x1 + i(a)
where x1 + i(a)= x0{x0
→ x1 + x2}{x2
→ i(x3)}{x3
→ a}. In addition toMatchDec,MatchMutB

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

Mathematical Structures in Computer Science 703

also applies on x+ i(a)≤? x1 + x2 and leads to
{
x=? x′ , i(a)=? i(y′) , i(y′) ≤? x1, x′ ≤? x2

}
.

Then, InstSV can be applied on i(y′) ≤? x1 with the substitution {x1
→ i(x3)}. Following this
branch, we get another solved form corresponding to the E-matched term i(a)+ x2 where i(a)+
x2 = x0{x0
→ x1 + x2}{x1
→ i(x3)}{x3
→ a}.

6. Decision Procedures for Syntactic Permutative Theories
From now on, we assume that E is syntactic permutative and R is a subterm E-convergent TRS
admitting a finite CMTE(R), where CMTE(R) is introduced in Definition 7. Under this finiteness
assumption, it is possible to define an appropriate notion of size for Rmodulo E.

Definition 8. Given a non-empty TRS R admitting a finite CMTE(R), the size of R modulo E,
denoted by |R|, is defined as follows:

|R| =max{|t| | t ∈ CMTE(R)}.
We refer below to some notions introduced in Section 4 with respect to |R|, such as the com-

pletion of a frame (Definition 4) and a set of terms of size bounded by |R| (Definition 5). These
notions are defined in the same way in the context of this section, using now the size |R| given in
Definition 8.

Remark 2. The size of Rmodulo E is computable if and only if there exists a finite and computable
CMTE(R).

Remark 3. When E is the empty theory, the size of Rmodulo E coincides with the size of R defined
in Section 2 since {l | l→ r ∈ R} is a CMTE(R).

In the following, we present reduction methods from RE= R∪ E to the combined theory ∅ ∪ E
where ∅ denotes the empty�-theory. According to the combination result in Cortier and Delaune
(2010), it is always possible to obtain decision procedures for both deduction and static equiva-
lence in ∅ ∪ E from the ones existing in E alone. This explains why ∅ ∪ E is often simply denoted
by E in the following two subsections. In Abadi and Cortier (2006), it has been observed that the
decidability of static equivalence entails the decidability of deduction, provided that the signature
includes a unary free function symbol. In fact, the encoding presented in Abadi and Cortier (2006)
can be easily generalized to any non-constant free function symbol. Usually � contains at least a
non-constant function symbol, and so the decidability of static equivalence in ∅ ∪ E implies the
decidability of deduction in E. Thus, we could be tempted to focus our attention on static equiva-
lence only. However, as illustrated in Abadi and Cortier (2006) and Cortier and Delaune (2010), a
decision procedure for the static equivalence usually requires a decision procedure for the deduc-
tion. In an analogous way, we first focus on deduction as a first step toward a decision procedure
for the static equivalence.

6.1 Deduction
The decision procedure for the deduction problem in RE is based on the following reduction
lemma.

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

704 S. Erbatur et al.

Lemma 12 (Deduction). Let RE= R∪ E where E is any syntactic permutative theory and R is any
subterm E-convergent TRS with a computable size of R modulo E. For any normalized frame φ and
any normalized term t, we have that φ �RE t if and only if φ∗ �E t.

Proof. See Section 6.3.

Example 8. Consider R= {i(x)+ i(a)→ x}, E= {i(x)+ i(y)= i(y)+ i(x)}. Let φ = ν{k}.{x1
→
i(a), x2
→ a+ i(k)} and ψ = ν{k}.{x1
→ i(a), x2
→ i(k)}. One can check that D∗(φ)= {i(a), a+
i(k), a} and D∗(ψ)= {i(a), i(k), a, k}. Once these sets of deducible terms are computed, the frames
can be completed and used to reduce the deduction problemmodulo RE to the deduction problem
modulo E. For example, notice that the term i(k)+ k is deducible from ψ∗ but not from φ∗.

6.2 Static equivalence
In a way similar to what is done for disjoint combinations (Cortier and Delaune 2010), we
extend the input frames with the instantiation of recipes of all deducible terms occurring in the
completions.

Definition 9. Let φ = νñ.σ be a frame. Let� be a set of terms t such that tσ is ground and t satisfies
the name restriction of φ. The�-extension of φ is the frame�φ = νñ.{χt
→ t | t ∈�}σ .

Lemma 13. Given any normalized frames φ = νñ.σ and ψ = νñ.τ such that Dom(σ)=Dom(τ),
let φ̄ = (�φ)↓R,E, ψ̄ = (�ψ)↓R,E where �= St(Ran(ζφ)∪ Ran(ζψ)). Then, we have (i) (φ̄)∗ = φ̄
and (ψ̄)∗ = ψ̄ ; (ii) φ ≈RE ψ if and only if φ̄ ≈RE ψ̄ .

Proof.

(i) Notice that (σ∗)∗ = σ∗. This is due to the fact that St(σ∗)= St(σ). Therefore, completing
the frame φ̄ (or ψ̄) does not add new terms.

(i) Consider φ̄ = νñ.σ̄ , ψ̄ = νñ.τ̄ and the substitution π = {χt
→ t | t ∈�}. By definition, σ̄ =
πσ and τ̄ = πτ . Let us now prove the two directions:
— Assume φ̄ ≈RE ψ̄ . Consider any terms s and t satisfying the name restriction of φ. We can

assume without loss of generality that (fv(s)∪ fv(t))∩Dom(π)=∅. The restriction of σ̄
to Dom(σ) coincides with σ , and so (s=RE t)φ iff (s=RE t)φ̄. Since φ̄ ≈RE ψ̄ , (s=RE t)φ̄
iff (s=RE t)ψ̄ . The restriction of τ̄ to Dom(τ) coincides with τ , and so (s=RE t)ψ̄ iff
(s=RE t)ψ . Thus, φ ≈RE ψ .

— Assume φ ≈RE ψ . Consider any terms s and t satisfying the name restriction of φ̄. By
definition of φ̄, (s=RE t)φ̄ iff (sπ =RE tπ)φ. Since φ ≈RE ψ , (sπ =RE tπ)φ iff (sπ =RE
tπ)ψ . By definition of ψ̄ , (sπ =RE tπ)ψ iff (s=RE t)ψ̄ . Thus, φ̄ ≈RE ψ̄ .

Example 9. Assume R= {i(i(x))→ x} and E=∅. Consider the frames φ = ν{k}.{x
→ i(k)} and
ψ = ν{k}.{x
→ k}. One can observe that φ ≈RE ψ . For this static equivalence problem, �=
{i(x), x} where i(x) is the recipe of k in φ. According to the definition of φ̄ and ψ̄ introduced in
Lemma 13, we have φ̄ = ν{k}.{x
→ i(k), x′
→ k, x′′
→ i(k)} and ψ̄ = ν{k}.{x
→ k, x′
→ i(k), x′′
→
k}. Again, one can observe that φ̄ ≈RE ψ̄ .

Example 10. Continuing Example 8, �= {a, x1 + x2, x1, x2} where x1 + x2 is the recipe of k in
ψ . Then, φ̄ = ν{k}.{x1
→ i(a), x2
→ a+ i(k), x3
→ a, x4
→ i(a)+ (a+ i(k)), x5
→ i(a), x6
→ a+
i(k)} and ψ̄ = ν{k}.{x1
→ i(a), x2
→ i(k), x3
→ a, x4
→ k, x5
→ i(a), x6
→ i(k)}.

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

Mathematical Structures in Computer Science 705

The decision procedure for the static equivalence computes small equalities obtained by
considering a finite set of contexts derived from the left-hand sides of R.

Definition 10. Let φ = νñ.σ be a normalized frame. Consider the sets of terms Bt(R)= {t | |t| ≤ |R|}
where |R| is given in Definition 8 and Gr(R) introduced in Definition 5. The set EqB(φ) is the set of
equalities t= t′ such that (t=RE t′)φ and t, t′ ∈ Bt(R)∪Gr(R).

Example 11. Continuing Example 10, we obtain EqB(φ̄)= {i(a)= i(a), i(x1)= i(x1), i(x3)=
i(x3), a= a, a+ a= a+ a, . . .} and EqB(ψ̄)= {i(a)= i(a), i(x1)= i(x1), i(x3)= i(x3), i(x4)=
i(x4), x4 = x4, a= a, . . . , x4 = x2 + x1, . . .}.

To get a decision procedure, it remains to show that checking small equalities defined by EqB
are sufficient to prove the static equivalence of the two input frames. Note that the check of each
of these equalities is effective since the RE-equality is decidable.

The decision procedure for static equivalence in RE is based on the following reduction lemma:

Lemma 14 (Static Equivalence). Let RE= R∪ E where E is any syntactic permutative theory and
R is any subterm E-convergent TRS with a computable size of R modulo E. For any normalized
frames φ̄ and ψ̄ introduced in Lemma 13, we have φ̄ ≈RE ψ̄ iff ψ̄ |= EqB(φ̄) and φ̄ |= EqB(ψ̄) and
φ̄ ≈E ψ̄ .

Proof. See Section 6.3.

Example 12. Continuing Example 11, notice that x4 = x2 + x1 ∈ EqB(ψ̄). However, x4 = x2 +
x1
∈ EqB(φ̄). In other words, φ̄
|= EqB(ψ̄). Therefore, the frames are not statically equivalent. This
is due to the fact that in the second frame, ψ , the adversary would have knowledge of k but not so
in the first frame, φ. Thus, the adversary is able to use this knowledge to distinguish the frames.

According to the above reduction lemmas, we get the following result.

Theorem 3. Let RE= R∪ E where E is any syntactic permutative theory, R is any subterm E-
convergent TRS with a computable size of R modulo E and both deduction and static equivalence
are decidable in E. Then, both deduction and static equivalence are decidable in RE.

The proof of Theorem 3 is given below.

6.3 Correctness proofs
Let us first rephrase the Lemma 4 proved in the appendix of Abadi and Cortier (2004) by using the
frames φ̄ and ψ̄ . One can notice that we use a definition for EqB which is more refined than the
rough one considered in Abadi and Cortier (2004). Instead of considering contexts whose sizes
are bounded by the maximal size of the left-hand sides in R as in Abadi and Cortier (2004), our
definition takes into account only the contexts for which the frame is needed for being matched
by some left-hand side.

Lemma 15. Let RE= R∪ E where E is any syntactic permutative theory and R is any subterm E-
convergent with a computable size of R modulo E. Assume φ̄ ≈E ψ̄ and ψ̄ |= EqB(φ̄). For any term s
satisfying the name restriction and for any term t such that sφ̄→R,E t, there exists a term u satisfying
the name restriction such that t=E uφ̄ and sψ̄ =RE uψ̄ .

Proof. The structure of the proof is similar to the one developed for Lemma 8.

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

706 S. Erbatur et al.

(i) Let us first assume that the rewrite step occurs at the root position. Suppose sφ̄ =E lμ with
l→ r ∈ R. There are two possibilities:
— Assume there exist some term sc in CMTE(l) and a substitution θ such that s=E scθ . Both

sc and θ satisfy the name restriction of φ̄ since s satisfies it. By definition of a CMTE(l), for
the E-variant (sφ̄,μ) of l, there exists some E-variant (sc, θ ′) of l such that μ=E θ ′(θφ̄).
The substitution θ ′ satisfies the name restriction of φ̄ since sc satisfies it. Let μ′ = θ ′θ .
We have μ=E μ′φ̄ where μ′ satisfies the name restriction of φ̄. Thus, we have sφ̄ =E
lμ′φ̄→R rμ′φ̄, where rμ′ satisfies the name restriction of φ̄ thanks to the form of rules
in R. Moreover, for any frame ψ̄ with the same name restriction as the one of φ̄, the same
rewrite step applies and we get lμ′ψ̄→R rμ′ψ̄ , where rμ′ satisfies the name restriction.
If φ̄ ≈E ψ̄ , then sφ̄ =E lμ′φ̄ implies sψ̄ =E lμ′ψ̄ . Consequently, sψ̄ =E lμ′ψ̄→R rμ′ψ̄ .

— Otherwise, if |s|> |R| and sφ̄ =E lμ, then there would be a contradictionwith the fact that
CMTE(l) is a complete set of terms E-matched by l. Thus, we have necessarily |s| ≤ |R|,
and only two cases are possible for the rewrite rule l→ r since R is subterm E-convergent:
– If r is a ground term, then sφ̄→R,E r= rφ̄ (where r satisfies the name restriction of φ̄).
By definition of EqB and by assumption on ψ̄ , we have sψ̄ =RE r= rψ̄ .

– If r is a subterm of l, then by definition of φ̄, there exists some variable x such that
sφ̄→R,E xφ̄. By definition of EqB and by assumption on ψ̄ , we have sψ̄ =RE xψ̄ .

(ii) Let us now assume that the rewrite step occurs below the root position. There exists a
position p
= ε such that s′φ̄ = (s′φ̄)[sφ̄]p with sφ̄→ε

R,E t. By the case (i) above, there exists
a term u such that t=E uφ̄ and sψ̄ =RE uψ̄ . Then, we have

s′φ̄→R,E (s′φ̄)[t]p =E (s′φ̄)[uφ̄]p = (s′[u]p)φ̄

and

s′ψ̄ = (s′ψ̄)[sψ̄]p =RE (s′ψ̄)[uψ̄]p = (s′[u]p)ψ̄

We are now ready to prove the two reduction lemmas, namely Lemmas 12 and 14. For both
lemmas, we prove the non-obvious direction:

— Lemma 12.

Proof. (Only if direction) Assume sφ̄ =RE t where t is normalized. According to Lemma 15,
there exists a rewrite proof of the form

sφ̄→R,E ◦ =E · · ·→R,E ◦ =E s′φ̄ =E t

where s′ satisfies the name restriction of φ̄. By choosing ψ = φ, we have φ̄ =E φ∗ and so

sφ∗ =E sφ̄→R,E ◦ =E · · ·→R,E ◦ =E s′φ̄ =E s′φ∗ =E t

— Lemma 14.

Proof. (If direction) Assume sφ̄ =RE tφ̄. According to Lemma 15, there exists a rewrite proof
of the form

sφ̄→R,E ◦ =E · · ·→R,E ◦ =E s′φ̄

tφ̄→R,E ◦ =E · · ·→R,E ◦ =E t′φ̄

where s′φ̄ =E t′φ̄ and s′, t′ satisfy the name restriction of φ̄.
By Lemma 15, we have sψ̄ =RE s′ψ̄ and tψ̄ =RE t′ψ̄ . By assumption, we have φ̄ ≈E ψ̄ , and so
s′φ̄ =E t′φ̄ implies s′ψ̄ =E t′ψ̄ . Consequently, sψ̄ =RE tψ̄ .

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

Mathematical Structures in Computer Science 707

7. Conclusion
We have shown how to lift the existing decidability results on knowledge in subterm convergent
rewrite systems to rewrite systems defined modulo certain equational theories E. In particular, we
have lifted the decidability results to the case in which E is shallow permutative, for example, the
Commutativity theory C. Furthermore, we have studied a notion of complete set of E-matched
terms, CMT for short, such that if a subterm convergent equational rewrite system R admits a
finite CMT for each of its left-hand sides, then the size of Rmodulo E can be defined. In addition,
the knowledge problems in R∪ E are decidable if they are decidable modulo E and the size of R
modulo E is computable. We have also developed a procedure (MTG) such that if the procedure
terminates, a finite CMT is guaranteed. The MTG procedure is terminating for a large class of
syntactic permutative theories, namely permutative theories closed by paramodulation. Even if
theMTG procedure is not terminating, it is possible to have a finite CMT. For example, in general,
the AC case does not produce a terminating MTG procedure. However, a particular subterm AC-
convergent rewrite system can admit a computable size of R modulo AC and consequently the
knowledge problems are decidable in R∪AC.

The next step would be to explore a relaxing of the notion of subterm convergent while main-
taining the decidability results for the knowledge problems. This would be useful since many
axiomatizations of protocols are close but not completely subterm convergent. For example,
consider the following set of axioms:1

d(e(x, y), y)→ x
d(e(x, y&z), y)→ e(x, z)
d(e(x, y), y&z)→ d(x, z)

d(e(x, y&z), y&v)→ d(e(x, z), v)

Notice that this theory is not completely subterm convergent. However, it is close in that all the
right-hand sides are either subterms or homeomorphic embeddings of the left-hand sides. If the
notion of subterm could be extended to such cases, then it may be possible to solve the knowledge
problem in the C(&)-convergent form of this theory.

More generally, a natural continuation of this work is to study the use of equational (E-
convergent) rewrite systems for extending the complete but non-necessarily terminating pro-
cedures that have been designed for the knowledge problems in standard (convergent) rewrite
systems (Baudet et al., 2013; Ciobâcă et al., 2012). Due to the interest of AC in protocol verifica-
tion, it would be useful to develop such an engine with the capability to handle AC-convergent
rewrite systems.

Another challenge is to study the knowledge problems in combinations of the form R∪ E∪ T
where R is an E-convergent TRS and T is an arbitrary theory sharing with R only the function
symbols of E, like for instance R is AC(+)-convergent and T = {h(x+ y)= h(x)+ h(y)}. In this
direction, it would be interesting to extend our combination results (Erbatur et al., 2017) on the-
ories sharing absolutely free constructors to the case of theories sharing constructors modulo a
theory E such as AC.

Acknowledgements. We are very grateful to the reviewers: the paper has been significantly improved thanks to their sug-
gestions. We would like to thank Véronique Cortier and Steve Kremer for fruitful comments and discussions. This work
has received funding from the European Research Council (ERC) under the H2020 research and innovation program (grant
agreement no. 645865-SPOOC).

Note
1 These axioms are a fragment of a larger theory studied in Yang et al. (2014), modeling encryption and decryption in a
multiset of keys.

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

708 S. Erbatur et al.

References
Abadi, M. and Cortier, V. (2004). Deciding knowledge in security protocols under equational theories. Research Report RR-

5169, INRIA.
Abadi, M. and Cortier, V. (2006). Deciding knowledge in security protocols under equational theories. Theoretical Computer

Science 367 (1–2) 2–32.
Abadi, M. and Fournet, C. (2001). Mobile values, new names, and secure communication. In: Proceedings of the 28th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2001), ACM, 104–115.
Armando, A., Basin, D. A., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar, J., Drielsma, P. H., Héam, P., Kouchnarenko, O.,

Mantovani, J., Mödersheim, S., von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L. and Vigneron, L.
(2005). The AVISPA tool for the automated validation of internet security protocols and applications. In: Etessami, K. and
Rajamani, S. K. (eds.) 17th International Conference on Computer Aided Verification, CAV 2005, Edinburgh, Scotland, UK,
Proceedings, Lecture Notes in Computer Science, vol. 3576, Springer, 281–285.

Amadio, R. and Lugiez, D. (2000). On the reachability problem in cryptographic protocols. In: Proceedings of CONCUR 2000
— Concurrency Theory, Springer, 380–394.

Ayala-Rincón, M., Fernández, M. and Nantes-Sobrinho, D. (2017). Intruder deduction problem for locally stable theories
with normal forms and inverses. Theoretical Computer Science 672 64–100.

Baader, F. and Nipkow, T. (1998). Term Rewriting and All That. Cambridge University Press.
Baudet, M., Cortier, V. and Delaune, S. (2013). YAPA: A generic tool for computing intruder knowledge. ACM Transactions

on Computational Logic 14 (1) 4.
Blanchet, B. (2016). Modeling and verifying security protocols with the applied Pi calculus and ProVerif. Foundations and

Trends in Privacy and Security 1 (1–2) 1–135.
Blanchet, B. (2001). An efficient cryptographic protocol verifier based on prolog rules. In :14th IEEE Computer Security

Foundations Workshop (CSFW-14 2001), 11–13 June 2001, Cape Breton, Nova Scotia, Canada. IEEE Computer Society,
82–96.

Chadha, R., Cheval, V., Ciobâcă, S. and Kremer, S. (2016). Automated verification of equivalence properties of cryptographic
protocols. ACM Transactions on Computational Logic 17 (4) 23:1–23:32.

Cheval, V., Cortier, V. and Turuani, M. (2018). A little more conversation, a little less action, a lot more satisfaction: global
states in ProVerif. In: 31st IEEE Computer Security Foundations Symposium, CSF 2018, Oxford, United Kingdom, IEEE
Computer Society, 344–358.

Cheval, V., Kremer, S. and Rakotonirina, I. (2018). The DEEPSEC prover. In: Chockler, H. and Weissenbacher, G. (eds.)
Computer Aided Verification – 30th International Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, Lecture Notes in Computer Science, vol. 10982, Springer, 28–36.

Chevalier, Y., Küsters, R., Rusinowitch, M. and Turuani, M. (2003). Deciding the security of protocols with Diffie-Hellman
exponentiation and products in exponents. In Pandya, P. K. and Radhakrishnan, J. (eds.) FSTTCS 2003: Foundations
of Software Technology and Theoretical Computer Science, 23rd Conference, Mumbai, India, Lecture Notes in Computer
Science, vol. 2914, Springer, 124–135.

Chevalier, Y., Küsters, R., Rusinowitch, M. and Turuani, M. (2005). An NP decision procedure for protocol insecurity with
XOR. Theoretical Computer Science 338 247–274.

Chevalier, Y. and Rusinowitch, M. (2008). Hierarchical combination of intruder theories. Information and Computation 206
(2–4) 352–377.

Ciobâcă, S., Delaune, S. and Kremer, S. (2012). Computing knowledge in security protocols under convergent equational
theories. Journal of Automated Reasoning 48 (2) 219–262.

Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J. and Milner, K. (2018). On ends-to-ends encryption: Asynchronous
group messaging with strong security guarantees. In: Conference on Computer and Communications Security, CCS 2018,
Toronto, Canada, ACM, 1802–1819.

Comon-Lundh, H. and Delaune, S. (2005). The finite variant property: How to get rid of some algebraic properties. In:
Giesl, J. (ed.) Rewriting Techniques and Applications, Lecture Notes in Computer Science, vol. 3467, Springer, 294–307.

Comon, H., Haberstrau, M. and Jouannaud, J.-P. (1994). Syntacticness, cycle-syntacticness, and shallow theories. Information
and Computation 111(1) 154–191.

Comon-Lundh, H. and Shmatikov, V. (2003). Intruder deductions, constraint solving and insecurity decision in presence of
exclusive or. In: 18th Annual IEEE Symposium on Logic in Computer Science (LICS 2003), 271–280.

Conchinha, B., Basin, D. A. and Caleiro, C. (2011). FAST: An efficient decision procedure for deduction and static equiv-
alence. In: Schmidt-Schauß, M. (ed.) Proceedings of RTA 2011, Novi Sad, Serbia, LIPIcs, vol. 10, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 11–20.

Cortier, V. and Delaune, S. (2010). Decidability and combination results for two notions of knowledge in security protocols.
Journal of Automated Reasoning 48(4) 441–487.

Cremers, C. J. F. (2008). The Scyther tool: Verification, falsification, and analysis of security protocols. In: Gupta, A. and
Malik, S. (eds.) 20th International Conference on Computer Aided Verification (CAV 2008), Princeton, NJ, USA, July 7–14,
2008, Proceedings, Lecture Notes in Computer Science, vol. 5123, Springer, 414–418.

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031

Mathematical Structures in Computer Science 709

Dolev, D. and Yao, A. C. (1981). On the security of public key protocols (extended abstract). In: 22nd Annual Symposium on
Foundations of Computer Science, Nashville, Tennessee, USA, IEEE Computer Society, 350–357.

Dreier, J., Hirschi, L., Radomirovic, S. and Sasse, R. (2018). Automated unbounded verification of stateful cryptographic
protocols with exclusive or. In: 31st IEEE Computer Security Foundations Symposium, CSF 2018, Oxford, United Kingdom,
IEEE Computer Society, 359–373.

Erbatur, S., Marshall, A. M. and Ringeissen, C. (2017). Notions of knowledge in combinations of theories sharing construc-
tors. In: de Moura, L. (ed.) Automated Deduction – CADE-26, 26th International Conference on Automated Deduction,
Gothenburg, Sweden, Proceedings, Lecture Notes in Computer Science, vol. 10395, Springer, 60–76.

Erbatur, S., Marshall, A. M. and Ringeissen, C. (2018). Knowledge problems in equational extensions of subterm convergent
theories. In: 32nd International Workshop on Unification (UNIF-2018), Oxford, UK.

Escobar, S., Meadows, C. A. and Meseguer, J. (2007). Maude-NPA: Cryptographic protocol analysis modulo equational
properties. In: Foundations of Security Analysis and Design V, FOSAD 2007/2008/2009 Tutorial Lectures, Lecture Notes in
Computer Science, vol. 5705, Springer, 1–50.

Escobar, S., Sasse, R. and Meseguer, J. (2012). Folding variant narrowing and optimal variant termination. Journal of Logic
and Algebraic Programming 81 (7–8) 898–928.

Hullot, J. (1980). Canonical forms and unification. In: Bibel, W. and Kowalski, R. A. (eds.) 5th Conference on Automated
Deduction, Les Arcs, France, July 8–11, 1980, Proceedings, Lecture Notes in Computer Science, vol. 87, Springer, 318–334.

Jouannaud, J.-P. and Kirchner, H. (1986). Completion of a set of rules modulo a set of equations. SIAM Journal on Computing
15 (4) 1155–1194.

Kirchner, C. and Klay, F. (1990). Syntactic theories and unification. In: Fifth Annual IEEE Symposium on Logic in Computer
Science (LICS 1990), 270–277.

Lynch, C. and Morawska, B. (2002). Basic syntactic mutation. In: Voronkov, A. (ed.) Automated Deduction – CADE-18, 18th
International Conference on Automated Deduction, Proceedings, Lecture Notes in Computer Science, vol. 2392, Springer,
471–485.

Meseguer, J. (2018). Variant-based satisfiability in initial algebras. Science of Computer Programming 154 3–41.
Millen, J. and Shmatikov, V. (2001). Constraint solving for bounded-process cryptographic protocol analysis. In: Proceedings

of the 8th ACM Conference on Computer and Communications Security (CCS 2001), ACM, 166–175.
Mödersheim, S. and Viganò, L. (2009). The open-source fixed-point model checker for symbolic analysis of security protocols.

In: Foundations of Security Analysis and Design V, FOSAD 2007/2008/2009 Tutorial Lectures, Lecture Notes in Computer
Science, vol. 5705, Springer, 166–194.

Nguyen, K. (2019). Formal verification of a messaging protocol. Work done under the supervision of Vincent Cheval and
Véronique Cortier.

Nipkow, T. (1990). Proof transformations for equational theories. In: Fifth Annual IEEE Symposium on Logic in Computer
Science (LICS 1990), 278–288.

Paulson, L. C. (1998). The inductive approach to verifying cryptographic protocols. Computer Security 6(1–2) 85–128.
Ringeissen, C. (2019). Building and combining matching algorithms. In: Lutz, C., Sattler, U., Tinelli, C., Turhan, A. Y. and

Wolter, F. (eds.) Description Logic, Theory Combination, and All That – Essays Dedicated to Franz Baader on the Occasion
of His 60th Birthday, Lecture Notes in Computer Science, vol. 11560, Springer, 523–541.

Sasse, R., Escobar, S., Meadows, C., Meseguer, J. (2011). Protocol analysis modulo combination of theories: A case study in
Maude-NPA. In: Proceedings of International Workshop on Security and Trust Management, Springer, 163–178.

Schmidt, B., Meier, S., Cremers, C. J. F. and Basin, D. A. (2012). Automated analysis of Diffie-Hellman protocols and advanced
security properties. In: Chong, S. (ed.) 25th IEEE Computer Security Foundations Symposium, CSF 2012, Cambridge, MA,
USA, June 25-27, 2012, IEEE Computer Society, 78–94.

Schmidt-Schauß, M. (1989). Unification in permutative equational theories is undecidable. Journal of Symbolic Computation
8 (4) 415–421.

Turuani, M. (2006). The CL-Atse protocol analyser. In: Pfenning, F. (ed.) Term Rewriting and Applications, 17th International
Conference, RTA 2006, Seattle, WA, USA, August 12–14, 2006, Proceedings, Lecture Notes in Computer Science, vol. 4098,
Springer, 277–286.

Yang, F., Escobar, S., Meadows, C., Meseguer, J. and Narendran, P. (2014). Theories of homomorphic encryption, unification,
and the finite variant property. In: Proceedings of the 16th International Symposium on Principles and Practice of Declarative
Programming (PPDP 2014), ACM, 123–133.

Cite this article: Erbatur S,Marshall AM and Ringeissen C (2020). Computing knowledge in equational extensions of subterm
convergent theories.Mathematical Structures in Computer Science 30, 683–709. https://doi.org/10.1017/S0960129520000031

https://doi.org/10.1017/S0960129520000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000031
https://doi.org/10.1017/S0960129520000031

	Computing knowledge in equational extensions of subterm convergent theories
	Introduction
	Main contributions
	Plan of the paper

	Preliminaries
	Terms and substitutions
	Equational theories
	Notions of knowledge
	Term rewrite systems
	Syntactic theories

	Subterm Equational Convergent Rewrite Systems
	Examples
	A theory for a messaging protocol
	Non-associative sub-theories of Abelian groups and combinations
	Exclusive Or, its non-associative sub-theories, and combinations
	Quasigroups and loops
	Rewrite systems with E-constructors

	Subterms modulo

	Decision Procedures for Shallow Permutative Theories
	Deduction
	Static equivalence
	Correctness proofs

	Equational Variants in Syntactic Permutative Theories
	The MTG procedure for computing a complete set of matched terms
	Termination of MTG and closure under paramodulation

	Decision Procedures for Syntactic Permutative Theories
	Deduction
	Static equivalence
	Correctness proofs

	Conclusion

