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In wall-bounded turbulent flows, the wall-normal gradient in turbulence intensity
causes inertial particles to move preferentially toward the wall, leading to elevated
concentration levels in the viscous sublayer. At first glance, wall-modelled large-eddy
simulations may seem ill suited for accurately simulating this behaviour, given that
the sharp gradients and coherent structures in the viscous sublayer and buffer region
are unresolved in this approach. In this paper, a detailed inspection of conservation
equations describing the influence of turbophoresis and near-wall structures on particle
concentration profiles reveals a more nuanced view depending on the friction Stokes
number. The dynamics of low and moderate Stokes number particles indeed depends
strongly on the complex spatio-temporal details of streaks, ejections, and sweeps in
the near-wall region. This significantly impacts the near-wall particle concentration
through a biased sampling effect which provides a net force away from the wall on
the particle ensemble caused by the tendency of inertial particles to accumulate
in low-speed ejection regions. At higher Stokes numbers, however, this biased
sampling is of minimal importance, and the particle concentration becomes inversely
proportional to the wall-normal particle velocity variance at a given distance from
the wall. As a result, wall-modelled large-eddy simulations can predict concentration
profiles with more accuracy in the high Stokes number regime than low Stokes
numbers simply by modifying the interpolation scheme for particles between the first
grid point and the boundary. However, accurate representation of low and moderate
Stokes number particles depends critically on information not present in standard
wall-modelled large-eddy simulations.

Key words: particle/fluid flow, turbulence simulation

1. Introduction
Small, heavy particles in an inhomogeneous turbulent flow tend to migrate from

regions of high turbulence intensity toward lower-intensity regions (Caporaloni et al.
1975; Reeks 1983). This phenomenon, known as turbophoresis, is driven by a
differential in turbulent dispersion rates between different regions of a flow. Particles
in regions with higher turbulent intensity disperse more quickly than those in more
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quiescent regions, causing particles to accumulate with longer residence times and
higher concentrations in regions of lower turbulence intensity. In wall-bounded
turbulent flows, no-slip and no-penetration conditions cause turbulence intensities to
vanish at solid boundaries, resulting in sharp gradients of turbulence intensity in the
viscous sublayer and buffer region. As a result, particles tend to accumulate in the
viscous sublayer (Marchioli & Soldati 2002; Sikovsky 2014) at high concentrations
relative to the surrounding flow. The increased concentration near the wall can
influence a number of physical processes, such as deposition (Guha 2008), collision
and coalescence (Kuerten & Vreman 2015; Kuerten 2016) and radiation transmission
and absorption (Pouransari & Mani 2017).

Using direct numerical simulations (DNS) to predict turbulent wall-bounded
flows is currently feasible only up to moderate Reynolds numbers, because the
computational cost increases very quickly with Reynolds number (Moin & Mahesh
1998). Because DNS is prohibitively expensive for high Reynolds number engineering
flows, large-eddy simulations (LES) have enjoyed a good deal of success and
popularity in recent decades. Because LES can only represent a coarse-grained version
of the turbulent carrier flow, the effect of small-scale turbulence on particles requires
additional modelling. Armenio, Piomelli & Fiorotto (1999) showed the effect of using
LES instead of DNS to advance tracer and inertial particle trajectories, finding that
tracer particles are actually the most sensitive to small-scale motions in terms of
single-particle statistics. Marchioli, Salvetti & Soldati (2008b) also pointed out the
insufficiency of LES alone for advancing particle trajectories, showing the impact of
subgrid scales on particle concentration profiles and clustering in a turbulent channel
flow. Further, Marchioli, Salvetti & Soldati (2008a) showed that simply recovering
the subgrid-scale fluctuation energy through approximate deconvolution or fractal
interpolation may not be enough for accurate prediction of these phenomena. Bianco
et al. (2012) further studied the statistics of errors due to using a filtered velocity
field to advance particles, emphasizing the effect of particles sampling in a biased
way the near-wall flow features such as streaks, sweeps, and ejections.

The LES approach is based on resolving the dominant, most energetic motions in
a flow while leaving smaller, less influential fluctuations unresolved (and represented
by a subgrid stress model). In wall-bounded turbulent flows, the size of energetic
motions decreases close to the wall, so that computational grids must be refined in
all directions to resolve the most influential flow features in the near-wall region
and apply the no-slip, no-penetration boundary conditions – a practice referred to
as wall-resolved LES (WRLES). As a result, WRLES does contain at least some
information, albeit incomplete, about near-wall turbulent fluctuations. Significant
attention has been paid in recent years to enriching WRLES for particle-laden
flows with models for subgrid-scale (SGS) fluctuations, as recently reviewed by
Kuerten (2016) and Marchioli (2017). The main closure problem in this context
is that, to solve for particle dynamics using a drag law, the fluid velocity seen by
the particle, including subgrid motions, is needed. For modelling the subgrid fluid
velocity seen by particles, various approaches include: approximate deconvolution
(Kuerten 2006; Park et al. 2017), kinematic simulation (Ray & Collins 2014),
fractal interpolation (Scotti & Meneveau 1999) and stochastic methods (Fede et al.
2006; Pozorski & Apte 2009; Minier 2015; Innocenti, Marchioli & Chibbaro 2016;
Breuer & Hoppe 2017). Some of these models are developed in the context of
homogeneous turbulence while others are valid for inhomogeneous or near-wall
flows. Stochastic models for subgrid scales in LES have been informed by similar
techniques for Reynolds-averaged Navier–Stokes (RANS) (Pope 1994; Arcen &
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Tanière 2009; Minier 2015). Phenomenological models for the interaction of particles
with near-wall coherent structures have also been developed in this context (Chibbaro
& Minier 2008; Guingo & Minier 2008; Jin, Potts & Reeks 2015). On the other
hand, deconvolution-based models rely on the specifics of filtering theory as a basis
for LES (Sagaut 2006). A hybrid stochastic–deconvolution model was developed by
Michałek et al. (2013). Bassenne et al. (2019) coupled a deconvolution method with
a deterministic small-scale enrichment procedure and showed good results in isotropic
turbulence, but their model was not effective for wall-modelled LES (Bassenne et al.
2018).

When applied to wall-bounded flows, the above studies have focused on the
WRLES regime (except for Bassenne et al. (2018)), if for no other reason than they
have been performed at relatively low friction Reynolds numbers, Re∗ < 1000. As
Reynolds number increases, however, the grid requirements for WRLES still lead
to rapid increases in computational cost (Chapman 1979; Choi & Moin 2012) and
hence prohibit the use of WRLES for many higher Reynolds number flows. Instead,
various other more affordable simulation approaches have been invented for treating
wall-bounded turbulent flows, such as detached-eddy simulations (DES) (Spalart 2009)
and wall-modelled LES (WMLES) (Bose & Park 2018). These techniques save on
computational cost by not resolving near-wall eddies, instead focusing on providing
accurate boundary treatments for the filtered equations. The accuracy of WMLES in
predicting the near-wall flow depends on the quantity of interest. For instance, Park
& Moin (2016) showed that wall pressure fluctuations are captured more accurately
than wall shear stress fluctuation in WMLES.

In this paper, we focus on Lagrangian particle tracking in WMLES. Figure 1 shows
streamwise velocity contours on a plane cut through turbulent channel flow simulations
using DNS and WMLES at a friction Reynolds number of Re∗ = 600, highlighting
the difference in resolution even at such a moderate Reynolds number. The WMLES
captures large-scale motions in the flow, but lacks small-scale details which can be
important for advecting inertial particles, particularly near the wall. These near-wall
flow structures, however, may be vital for the accurate simulation of particle dynamics
and turbophoresis (Marchioli & Soldati 2002). The challenge of predicting particle-
laden flows using WMLES, therefore, is much more difficult than in WRLES, but
WMLES is more practical for simulating high Reynolds number flows. Typically, the
first grid point in WMLES lies outside the viscous and buffer layers, in the so-called
logarithmic region of the flow. Therefore, the region of enhanced concentration due to
turbophoresis is almost entirely within the first grid cell. Nonetheless, given the cost
savings made possible by WMLES at higher Reynolds numbers, it is of high interest
to investigate turbophoresis and particle concentration profiles in WMLES.

The goal of this paper is to elucidate the physics of turbophoresis by analysing
exact conservation equations, and to leverage the results to demonstrate the modelling
challenges and opportunities for WMLES of particle-laden flows. In particular, we
seek to clarify the level of detail needed in modelling the features of the fluid
velocities seen by particles within one grid spacing of the boundary in WMLES. Of
course, such an understanding must encompass different regimes of inertial particle
behaviours, including variations with Stokes number and volume fraction effects.
In order to focus on the physics of wall-bounded particle-laden flows, the simplest
geometry, that of a flow between two flat plates, is studied.

The remainder of the paper is structured as follows. The problem set-up, governing
equations and boundary conditions are described in § 2. The statistical consequences
of exact conservation equations on turbophoresis and particle concentration profiles in
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FIGURE 1. Streamwise velocity contours and sketch of typical mesh for (a) DNS with
stretched mesh in the wall-normal direction and (b) WMLES with coarser uniform mesh.

a turbulent channel flow are analysed in § 3. In § 4, point-particle DNS (PP-DNS) is
used to verify and quantify the analysis from the previous section. The insight gained
from these two sections is used to devise a proof-of-concept model for WMLES in
§ 5, which performs better in certain regimes compared with others. Conclusions are
then drawn in § 6.

2. Governing equations and problem set-up
This section introduces the governing equations and boundary conditions for

particle-laden turbulent channel flow considered in this paper. The following sections
analyse and present simulation methods and results for the scenario described here.

2.1. Turbulent channel flow
The fluid flow is described by velocity u(x, t) and pressure p(x, t) fields that evolve
according to the incompressible Navier–Stokes equations,

∂tu+ (u · ∇)u=−∇(p/ρf )+ νf∇
2u+ f , ∇ · u= 0, (2.1a,b)

where ρf is the fluid mass density, νf is the kinematic viscosity and f signifies
forcing by particles. The effect of including or neglecting the two-way coupling
represented by f is documented in appendix D. For the mass fractions simulated
in this paper, the two-way coupling is of secondary importance for the particle
concentration profile compared with particle–particle collisions and so is neglected
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in the numerical calculations presented in the main body of the paper. Although
the presence or absence of the two-way coupling does not change the form of the
conservation expressions derived below for the particle phase, it is expected that it
would quantitatively affect the drag force terms in those expressions when the mass
fraction is sufficiently large.

For studying the physics of wall-bounded flows in the simplest case possible, this
paper considers a turbulent channel flow. An imposed pressure gradient in the x
(streamwise) direction, dp/dx, drives the flow and no-slip, no-penetration conditions
are imposed at the (smooth) walls separated by a distance 2h in the y (wall-normal)
direction. Thus, the flow and particle statistics are homogeneous in the x and z
(spanwise) directions in addition to the mirror symmetry about the centreline. A
statistically stationary channel flow is characterized by the friction Reynolds number,
Re∗= u∗h/νf , where u∗=

√
−(dp/dx)h/ρf is the friction velocity. The smallest active

scales in the flow are characterized by the friction length scale, δ∗ = νf /u∗, and the
friction time scale, τ∗ = νf /u2

∗
.

2.2. Lagrangian particle tracking
The particle phase is described by Np discrete particles with centre of mass x(t) and
velocity v(t), evolving according to the trajectory equations,

ẋ(i) = v(i), v̇(i) = a(i)(x, v), i= 1, 2, . . . ,Np, (2.2a,b)

where a(x, v) is the acceleration of the particle due to fluid forces. Each spherical
particle is characterized by its diameter (dp) and mass density (ρp). For small particles
(dp < δ∗) at low particle slip Reynolds numbers (Rep = |u − v|dp/νf � 1), Stokes
drag can be used, aSt = (u(x) − v)/τp, with relaxation time τp = ρpd2

p/(18ρfνf ) in
the limit ρp � ρf . In DNS, the fluid velocity seen by the particle, u(x), must be
interpolated from the Eulerian grid to particle locations for the drag law. In LES, the
interpolated velocity only represents the filtered velocity seen by the particle. The
remaining SGS velocity seen by the particles requires additional modelling (Fede
et al. 2006; Kuerten 2006; Marchioli et al. 2008b; Ray & Collins 2014; Minier
2015, 2016; Marchioli 2017; Park et al. 2017). The simulations in this paper use
the Schiller–Naumann drag, aSN = aSt(1+ 0.15Re0.687

p ), which gives a finite Reynolds
number correction (Schiller & Naumann 1933; Balachandar & Eaton 2010). Note that
the present work does not include a lift force, which could potentially play a role
in the near-wall region where velocity gradients are largest. Simple lift models, such
as the Saffman lift force, are not applicable here. Given the complexity and variety
of lift models (Wang et al. 1997; Marchioli, Picciotto & Soldati 2007), we defer the
effect of lift to future work.

At times within § 3, the Stokes drag form will be used to simplify expressions. The
same procedures as shown below can also be performed using Schiller–Naumann drag
to include finite Reynolds number correction terms. These expressions are used to
generate the plots in this paper, to be consistent with the simulation, and are given in
appendix A.

3. Analysis of particle statistics
In this section, equations for the evolution of particle statistics are derived and

various moments (conservation equations) are considered. In addition to providing a
framework for interpreting simulation results, a good amount of qualitative insight
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follows directly from the exact conservation equations. For instance, the power-law
shape of particle concentration profiles in the viscous sublayer are shown to be a
direct consequence of momentum conservation. Further, the power-law exponent can
be formally bounded. Appendix B highlights that similar analysis can be performed
for preferential concentration in homogeneous turbulence. The similarities between
turbophoresis in wall-bounded flows and preferential concentration in homogeneous
flows has been explored in other works as well (Bragg & Collins 2014; Sikovsky
2014).

3.1. Single-particle probability density function evolution
The particle ensemble has statistical homogeneity in the x and z directions, so the
particle statistics of interest include only wall-normal position and velocity. To this
end, we study the single-particle position–velocity probability density function (PDF)
defined by,

f (y, vy; t)= 〈δ(y− ŷ(t))δ(vy − v̂y(t))〉, (3.1)

where δ(x) is the Dirac delta function representing the fine-grained PDF. The angled
brackets, 〈·〉, are employed to denote ensemble averaging over a monodisperse system
of particles. Practically speaking, these averages may be obtained by averaging
over all identical particles in a given realization, as well as averaging in time.
Such temporal averaging is more convenient for obtaining converged statistics from
numerical simulations and is therefore used in subsequent sections.

For use with (3.1), the dynamics of each individual particle, equation (2.2), is
projected in the wall-normal direction,

˙̂y= v̂y
˙̂vy = ây =

uy(x̂, t)− v̂y

τp
. (3.2a,b)

Differentiating (3.1) in time and substituting (3.2), one can obtain an evolution
equation for f ,

∂f
∂t
+
∂(vy f )
∂y
+
∂(〈ay|y, vy〉f )

∂vy
= ḟcoll, (3.3)

where the conditional average 〈ay|y, vy〉 is shorthand for 〈ây|ŷ = y, v̂y = vy〉, i.e. the
average particle acceleration conditioned on wall-normal position and velocity. The
right-hand side term, ḟcoll, denotes the changes in particle velocity due to inter-particle
collisions. Note that Sikovsky (2014) starts from an equation similar to (3.3), but in
that work the fluid velocity seen by the particle (which contributes to the acceleration
term) is modelled by a stochastic forcing term. In this paper, no stochastic modelling
assumptions are made about the fluid flow seen by the particle. Instead, the present
analysis seeks to understand the consequences of the exact conservation equations for
the particle phase.

3.2. Particle mass conservation
The particle number density (concentration) is obtained at any y location by integrating
f over all possible particle velocities,

C(y; t)=C0(t)
∫
∞

−∞

f (y, vy; t) dvy, (3.4)
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where C0(t) =
∫

C(y; t) dy is the bulk particle concentration. Integrating (3.3) over
all velocities and multiplying by C0, we obtain a mass conservation equation for the
particle phase,

∂C
∂t
+
∂(〈vy|y〉C)

∂y
= 0. (3.5)

The collisional term exactly vanishes because each collision individually conserves
mass. Assuming statistical stationarity, ∂C/∂t=0. It follows, then, that 〈vy|y〉=0. This
simply states that the net wall-normal flux of particles must vanish at all y locations
for the PDF to remain stationary in time.

3.3. Particle wall-normal momentum conservation
The particle wall-normal momentum, which is the same as the particle mass flux
introduced in (3.5), is obtained as a first-order moment of f ,

〈vy|y〉C(y; t)=C0

∫
∞

−∞

vy f (y, vy; t) dvy. (3.6)

A conservation equation for the wall-normal momentum is obtained by multiplying
(3.3) by C0 and vy and integrating over all particle velocities. The result is,

∂(〈vy|y〉C)
∂t

+
∂(〈v2

y |y〉C)

∂y
− 〈ay|y〉C= 0. (3.7)

As with the mass conservation equation, the collisional term makes no contribution
to the wall-normal momentum of the particle ensemble because each inter-particle
collision individually conserves momentum. The third term on the left, the acceleration
term, is obtained using integration by parts. At steady state, ∂(〈vy|y〉C)/∂t= 0, and the
particle wall-normal momentum balance reduces to,

d
dy
(〈v2

y |y〉C)= 〈ay|y〉C. (3.8)

Because 〈vy|y〉 = 0 from mass conservation, 〈v2
y |y〉 represents the particle wall-normal

velocity variance as a function of distance from the wall. This would not be the case
for a spatially developing flow such as a turbulent boundary layer, in which case 〈v2

y |y〉
could be split into mean-squared and variance components. Note that the derivative
in y on the left-hand side is now a total derivative since time dependence has been
removed.

3.3.1. Mechanisms affecting non-uniform concentration
Using the product rule and assuming the Stokes drag formula, ay = (uy − vy)/τp,

the particle wall-normal momentum balance at steady state, equation (3.8), may be
rewritten as,

〈v2
y |y〉

dC
dy
=

(
〈uy|y〉
τp
−

d〈v2
y |y〉

dy

)
C. (3.9)
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FIGURE 2. From a point-particle DNS snapshot of Re∗= 150 (details in § 4): location of
St+ = 8, ΦV = 3 × 10−5 particles with centroid 5 6 y+ 6 10, white spheres, for particles
superposed with contours at y+ = 10 of the (a) streamwise velocity, (b) wall-normal
velocity. The size of each particle is exaggerated for visualization purposes. The velocities
are in friction units, u/u∗.

The two terms on the right-hand side, proportional to the local concentration level,
must balance with the left-hand side term proportional to the concentration gradient.
Thus, two mechanisms for generating non-uniform particle concentrations may be
deduced from (3.9).

The first right-hand side term in (3.9) represents the average drag force on the
particles at a given distance from the wall. For Stokes drag, this is proportional to,
〈uy|y〉, the average wall-normal fluid velocity as sampled by particles at a given wall-
normal location. In arriving at (3.9), it is recognized that the 〈vy|y〉 contribution from
the Stokes drag relation vanishes due to mass conservation, leaving only potential
contributions from 〈uy|y〉. For particles randomly distributed in the flow, this drag term
vanishes. However, it is known that heavy particles tend to accumulate in low-speed
streaks associated with ejection events in near-wall turbulence (Rashidi, Hetstroni &
Banerjee 1990; Eaton & Fessler 1994; Marchioli & Soldati 2002). Indeed, as shown in
figure 2, the particles tend to prefer ‘ejection’ regions, which have lower streamwise
velocity (u′x < 0) and positive wall-normal velocity (u′y > 0). As a result, the biased
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sampling term is positive (〈uy|y〉> 0) near the wall as particles sample ejection events
more often than sweeps. This means that the biased sampling provides a net force
which pushes particles away from the wall.

The second term on the right-hand side is the turbophoresis pseudo-force, which
creates the migration of particles down gradients in wall-normal velocity variance.
The no-slip, no-penetration boundary conditions are enforced on the fluid phase at the
wall, and the tendency of the particles to relax toward local fluid velocities will give
lower 〈v2

y |y〉 in the immediate vicinity of the wall. This leads to d〈v2
y |y〉/dy > 0, i.e.

increasing particle wall-normal velocity fluctuations with increasing distance from the
wall. As a result, turbophoresis causes a significant net migration of particles toward
the wall which is only partially offset by the biased sampling force.

It is noteworthy that the analysis of Guha (1997, 2008) has omitted the biased
sampling term, but for low Stokes numbers, this term significantly affects the
concentration profile. The difference between Eulerian-averaged fluid velocities and
average fluid velocities seen by (non-randomly spaced) particles is included as a
drift velocity in stochastic models (Minier, Chibbaro & Pope 2014). Near the wall,
this drift velocity is driven by interaction with coherent structures, leading to the
biased sampling effect of a net force away from the wall. The importance of this
term will be further illustrated when considering the τp→ 0 limit below. At higher
Stokes numbers, the τp in the denominator shows that the biased sampling force will
diminish and likely become negligible compared to turbophoresis. The prediction of
the turbophoresis force may not require detailed knowledge of particle interactions
with turbulent coherent structures since it only relies on the gradient of particle
wall-normal velocity variance. In contrast, turbulent coherent structures play a direct
and unmistakable role in establishing the sampling bias term. For this reason, one
objective of the numerical demonstrations below is to quantitatively assess at what
Stokes number one may safely neglect the effect of the biased sampling term in (3.9)
on the concentration profile, and hence potentially neglect the details of near-wall
coherent structures. While turbophoresis and biased sampling are two distinct effects
in the statistical equations, it should be appreciated that both naturally emerge from
a true account of the particle dynamics in the presence of coherent structures (i.e.
the fluid velocity seen by the particles), so they are not uncorrelated in a dynamical
sense.

3.3.2. Formal solution
It is straightforward to construct the formal solution of (3.9),

C(y)=N exp

 1
τp

∫ y
〈uy|η〉

〈v2
y |η〉

dη︸ ︷︷ ︸
biased sampling

−

∫ y d ln〈v2
y |η〉

dη
dη︸ ︷︷ ︸

turbophoresis

 , (3.10)

where N is an integration constant which is unimportant for exploring causes of non-
uniform concentration. Two phoresis integrals can be defined based on this form, as
underscored in (3.10). The first phoresis integral,

Ibias =
1
τp

∫ y

0

〈uy|η〉

〈v2
y |η〉

dη, (3.11)
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quantifies the effect of biased sampling on the resulting concentration profile. For
positive 〈uy|y〉, this term alone would cause increasing concentration with increasing
distance to the wall. Meanwhile, the second phoresis integral,

Iturb =−

∫ y

0

d ln〈v2
y |η〉

dη
dη, (3.12)

quantifies the influence of turbophoresis on the final concentration profile. In these
two definitions, the wall location (y = 0) is used for the lower bound. These two
definitions enable a straightforward, fair comparison of how biased sampling and
turbophoresis affect the concentration profile and when one effect may be safely
neglected. A relationship similar to (3.10) was considered by Capecelatro, Desjardins
& Fox (2016) in the context of two-fluid equations, but only after the biased sampling
term was found to be negligible and removed from the analysis.

While (3.10) provides a formal expression for the concentration profile, it should
be appreciated that it involves unclosed statistical terms depending, most notably, on
the statistics of fluid velocities seen by particles at various wall-normal distances. At
present, this expression is not necessarily advanced as a specific starting point for
model development, but is rather used here to demonstrate qualitative features and
provide a framework for elucidating the performance of models for the fluid velocities
seen by particles.

3.3.3. The St→∞ limit
Seeing that the turbophoresis integral, equation (3.12), may be formally integrated,

then (3.10) may also be written as

C(y)=
N
〈v2

y |y〉
exp

(
1
τp

∫ y
〈uy|η〉

〈v2
y |η〉

dη

)
. (3.13)

This form emphasizes that, at large Stokes numbers (τ−1
p → 0) when the biased

sampling becomes negligible, the concentration profile becomes inversely proportional
to the wall-normal particle velocity variance. From a modelling perspective, this
means that predicting concentration profiles for high Stokes number particles,

C(y)≈
N
〈v2

y |y〉
, (3.14)

requires only an accurate representation of particle wall-normal velocity fluctuation
magnitudes. The spatio-temporal details of interactions between particles and near-wall
coherent structures becomes less important in this limit, simplifying the modelling
task. In a WMLES simulation, it is possible to reproduce fairly accurate wall-normal
velocity variances for the fluid (Bae et al. 2018) in the resolved region of the
flow. However, it is less clear whether the variance profiles for particles, including
Lagrangian sampling and memory effects, below the first grid point can be reproduced
in the WMLES modelling approach.
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3.3.4. The St→ 0 limit
In the opposite limit τp→ 0, the particle velocity may be written as (Maxey 1987)

vy = uy − τp
Duy

Dt
+O(τ 2

p ). (3.15)

This means that the biased sampling force becomes

lim
τp→0

〈uy|y〉
τp
=

〈
Duy

Dt

〉
=−

1
ρf

∂〈p〉
∂y

. (3.16)

Note that the viscous force, νf∇
2
〈uy〉, vanishes because 〈uy〉 = 0 at steady state in the

limit τp→ 0. At τp = 0, the average over the particle ensemble becomes the same as
the fluid ensemble average, the concentration profile becomes flat (incompressibility)
and the wall-normal RANS equation is obtained from (3.9),

0=−
∂〈p〉
∂y
+

d〈u2
y〉

dy
, (3.17)

as in, for example, equation (5.2.2) of Tennekes & Lumley (1972). This convergence
of the τp → 0 limit of the biased sampling to the pressure gradient was previously
pointed out in passing by Bragg & Collins (2014) during a discussion of the analogy
between preferential concentration in homogeneous turbulence and turbophoresis
in wall-bounded turbulence. The approach to (3.17) illustrates that the sampling
bias becomes equal and opposite to turbophoresis in small St number limit, which
highlights the importance of preferential sampling of near-wall structures at low Stokes
numbers. This analysis confirms that accurately predicting the concentration profile
of low Stokes number particles will require a much more detailed representation of
the near-wall turbulent fluctuations than is present in WMLES. The numerical results
in §§ 4 and 5 explore both low and high St+ cases in more quantitative detail.

3.3.5. The y→ 0 limit
The above analysis may also be leveraged to demonstrate the existence of a power-

law concentration profile in the viscous sublayer. The derivation stems from a low
Stokes number expansion, but the reasons a power law can also be observed at higher
Stokes numbers are discussed below. Consider (3.15) in the limit y→ 0, where a
Taylor expansion of the fluid velocity field prevails (i.e. in the viscous sublayer),

ux(x, y, z, t)= Ax(x, z, t)y+O(y2),

uy(x, y, z, t)= By(x, z, t)y2
+O(y3),

uz(x, y, z, t)= Az(x, z, t)y+O(y2).

 (3.18)

Note that the linear term ∼y for the wall-normal fluid velocity is exactly zero due
to the divergence-free condition for incompressible flows (Kim, Moin & Moser 1987;
Pope 2000). Substituting (3.18) into (3.15) for particles ‘almost’ following fluid
trajectories, i.e.

vy = uy − τp

(
∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z

)
+O(τ 2

p ), (3.19)
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one obtains an expansion for the particle wall-normal velocities,

vy = Ayy2
− τp

(
y2 ∂Ay

∂t
+ y3Ax

∂By

∂x
+ 2y3B2

y + y3Az
∂By

∂z

)
+O(τ 2

p , y3). (3.20)

From this expression, the particle wall-normal velocity variance can be assessed,

〈v2
y |y〉 = 〈A

2
y〉︸︷︷︸
α

y4
+O(τp, y5), (3.21)

where statistically stationary flow has been assumed, i.e. 〈∂tAy〉 = 0 and 〈Ay∂tAy〉 = 0.
The biased sampling term can also be evaluated,

〈uy|y〉
τp
=
〈(uy − vy)|y〉

τp
=

〈
Ax
∂By

∂x
+ 2B2

y + Az
∂By

∂z

〉
︸ ︷︷ ︸

β

y3
+O(τp, y4). (3.22)

Together, equations (3.21) and (3.22) yield

〈v2
y |y〉 ≈ αy4,

〈uy|y〉 ≈ βτpy3.

}
(3.23)

Although this has been derived specifically in the τp → 0 limit, it is reasonable
to expect that the scalings in (3.23) hold over a decent range of finite Stokes
numbers because the particle ensemble averages are biased toward particles with
larger residence time in the near-wall region (trapped particles). These particles with
longer residence times by definition have more time to adjust to the local near-wall
fluid scalings. In fact, the numerical results below show that scalings for the particle
velocity variance and biased sampling terms in (3.23) are observed over a generous
range of Stokes numbers.

Substituting (3.23) into (3.13),

C(y)=
N
αy4

exp
(∫ y βη3

αη4
dη
)
=

N
α

yβ/α−4. (3.24)

At τp = 0, β = 4α because the incompressibility of fluid particles implies a uniform
concentration profile with biased sampling and turbophoresis balanced according to
(3.17). For 〈uy|y〉 to remain bounded as τp becomes large, it must be that β becomes
small as Stokes number increases. (Note however that the expansion (3.20) will not
apply at sufficiently high Stokes number.) At finite Stokes numbers, provided the near-
wall scalings given by (3.23) hold, 0< β < 4α, then the concentration profile in the
viscous sublayer has the form

C(y)∼ y−γ , (3.25)

with 0 < γ < 4. Thus, the conservation of momentum in the wall-normal direction
gives a simple understanding for near-wall power laws in particle concentration
profiles, with power-law exponent bounded by γ < 4, provided the biased sampling
coefficient β behaves monotonically with τp (this is confirmed in § 4). This bound is in
agreement with previous stochastic models and observed DNS trends (Sikovsky 2014).
As volume fraction increases, inter-particle collisions can interrupt this power-law
behaviour by energizing near-wall particles and causing deviations from the 〈v2

y |y〉
scaling in (3.23).
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3.4. Higher-order moments
Higher-order moments,

〈vn
y |y〉C(y; t)=C0

∫
∞

−∞

vn
y f (y, vy; t) dvy, (3.26)

can be analysed following the same procedure. The right-hand side term in (3.3)
describing the effects of particle–particle collisions no longer vanishes exactly in
the evolution equation for higher-order moments. For simplicity, then, only the zero
volume fraction limit will be considered here. After explicitly neglecting collisional
effects, the nth moment of (3.3) gives

∂(〈vn
y |y〉C)

∂t
+
∂(〈vn+1

y |y〉C)

∂y
− n〈ayv

n−1
y |y〉C= 0. (3.27)

At steady state for particles experiencing Stokes drag,

〈vn+1
y |y〉

dC
dy
=

(
n
τp
〈(uy − vy)v

n−1
y |y〉 −

d〈vn+1
y |y〉

dy

)
C, (3.28)

which has the formal solution

C(y)=
N ′

〈vn+1
y |y〉

exp

(
n
τp

∫ y 〈(uy − vy)v
n−1
y |η〉

〈vn+1
y |η〉

dη

)
. (3.29)

Dividing this expression by (3.13) raised to the (n + 1)/2 power and rearranging
yields,

〈vm
y 〉

〈v2
y 〉

m/2
=N ′′C(y)m/2−1 exp

(
m− 1
τp

∫ y 〈(uy − vy)v
m−2
y |η〉

〈vm
y |η〉

dη−
m

2τp

∫ y
〈uy|η〉

〈v2
y |η〉

dη

)
,

(3.30)

where m= n+ 1 has been substituted.
Therefore, when the concentration profile has a power law given by (3.25), and

similar scaling arguments to those in § 3.3.5 hold, this expression gives a power law
for the skewness, flatness, and other higher-order hyper-flatness values. In particular,

〈vm
y 〉

〈v2
y 〉

m/2
∼ y−γ (m/2−1)+δ, (3.31)

where the δ comes from the exponential term in (3.30) using (3.18) and (3.20) and
following similar steps as before. Note that as τp increases, this exponential term
becomes small, leading to δ → 0 as St becomes large. This limit is in agreement
with the stochastic model of Sikovsky (2014), namely, that flatness and hyper-flatness
profiles have a power-law form near the wall with exponent γ (m/2 − 1). That
model, however, apparently misses the correction term (δ in (3.31)) coming from the
exponential term in (3.30), which is significant for smaller Stokes numbers. This is
further apparent in the fact that their results for flatness, m= 4, give better agreement
at St+ = 25 than at St+ = 5.
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4. Point-particle direct numerical simulation results
The previous section analysed conservation equations for the particle ensemble

and obtained insightful but mostly qualitative results. This section now explores
particle-laden turbulent channel flow numerically using the framework developed in
the previous section. In particular, this section verifies the expectations enumerated
above while providing quantitative results to complement many of these qualitative
observations.

4.1. Numerical methods and simulation details
The continuum equations for the fluid, equation (2.1), are discretized on a staggered
Cartesian grid, and second-order central differencing is employed. Trilinear interpola-
tion is used to compute the flow quantities (e.g. velocity) at particle locations for
the drag law, equation (2.2). While previous studies have recommended higher-order
interpolation (Yeung & Pope 1988), we find that trilinear interpolation is sufficient for
studying the concentration profile in this work, see appendix F. The Schiller–Naumann
form, aSN , is used for particle drag. In the present study, we consider the limit that
gτp/u∗ is small, and thus neglect gravitational forces on the particles. The presence
of a strong gravity force could alter the dynamics of the particles in a way that
would depend on the orientation of the gravitational field with respect to the channel
geometry. For instance, Lavezzo et al. (2010) found that acceleration statistics are
significantly altered by gravity in the wall-normal direction.

A fractional step method for time advancement for the fluid and particles is done
with Huen’s second-order method (RK2). Particle-particle collisions are computed
using a hard-sphere collision model with a specified restitution coefficient. For this
treatment, an efficient algorithm for detecting binary collisions using their collision
cylinders within a given time step is implemented. The collision outcome is computed
based on angle of incidence and the restitution coefficient. Unless otherwise given, a
restitution coefficient of 1 is used (kinetic energy preserving collisions). Particle–wall
collisions are similarly treated, with a unity restitution coefficient so that they conserve
kinetic energy. The walls are considered smooth for both the continuum carrier fluid
and for the particle–wall collisions, although it should be noted that wall roughness
can play an important role (Sommerfeld 1992; Kussin & Sommerfeld 2002; Benson,
Tanaka & Eaton 2005; Vreman 2007; Konan, Simonin & Squires 2011; Milici et al.
2014). Future work could extend this present study to consider rough walls or other
effects such as adhesion.

The computational domain for the turbulent channel flow is periodic in x and z
with domain size Lx = 4πh, Ly = 2h, and Lz = 2πh. The mean pressure gradient is
imposed by a uniform body force to match the specified friction Reynolds number
of Re∗ = u∗h/ν, where u2

∗
=−h(dp/dx)/νf is the friction velocity. The results in this

section are shown for Re∗ = 150, though appendix C shows equivalent results for
Re∗= 300 and 600; the conclusions of this section hold for higher Reynolds numbers
as well. The relative influence of particle inertia is represented by the friction Stokes
number, St+ = τp/τ∗ = u2

∗
τp/ν. When particle–particle collisions are considered, the

other dimensionless parameter varied is the volume fraction, ΦV = πd3
pNp/(6LxLyLz),

where Np is the total number of particles in the domain. The diameter of the
particles is held constant at d+p = 0.5 while the density ratio is changed to vary St+.
For some of the higher volume fractions shown in this section, the mass fraction
is significant although two-way coupling effects are ignored. Appendix D explores
two-way coupling effects and why neglecting them is justifiable in the present context.
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Further, appendix E explores the effect of restitution coefficient for particle–particle
collisions. A restitution coefficient of e= 1.0 is used for the results in this section.

The (DNS) grid resolution used in the homogeneous directions is 1x+ ≈ 11,
1z+ ≈ 7. The grid is stretched in the wall-normal direction using a hyperbolic
tangent to yield 1y+min≈ 0.5 for the first grid point at the wall (wall-parallel velocities
at y+≈ 0.25) and 1y+max≈ 7 in the centre of the channel. The resulting number of grid
points was 172 × 86 × 128 in the streamwise, wall-normal and spanwise directions,
respectively. Sensitivity of the particle concentration profile to further refinement was
explored and found to be small, so this grid resolution may be considered sufficient
for the present purposes while keeping computational costs low. The particles are
initialized with a uniform random distribution, and the simulation proceeds until the
particles obtain a stationary distribution before statistics are computed. Aside from
the cases shown in this paper, we also verified that the present numerical approach
produced results consistent with the benchmark results from Marchioli et al. (2008c).
Appendix F briefly explores the impact of grid resolution and interpolation scheme
on the results of this section.

4.2. Simulation results without inter-particle collisions
Figure 3 shows the main results for the statistics of particle ensembles without inter-
particle collisions at Re∗ = 150 for a range of 0 6 St+ 6 512, using d+p = 0.5 and
varying the particle density 1446ρp/ρf 636 864 to change St+. The results from these
particle ensembles represent the limit of ΦV→ 0 since collisions are neglected. As can
be seen from figure 3(a), in the absence of inter-particle collisions, the concentration
near the wall can reach values hundreds of times larger than the mean concentration
level. The concentration profiles are computed on a uniform grid with spacing of 0.5δ∗.
Note that the St+ = 0 tracer particles have a flat distribution with slight interpolation
and time discretization errors leading to an almost imperceptibly reduced concentration
in the viscous sublayer.

The particle root-mean-square velocity fluctuations, vy,rms =

√
〈v2

y |y〉, shown in

figure 3(b) reveal that the asymptotic vy ∼ y2 behaviour near the wall persists even
up to relatively high St+. Meanwhile, figure 3(c) shows the sampling bias term
〈uy|y〉, demonstrating that the ∼y3 behaviour of that term also extends to relatively
large values of St+. Taken together, these two figures justify the scaling behaviour,
equation (3.23), used in § 3.3.5 well outside of the St+�1 range. Further investigation
into this observation (not shown) elucidates that this happens because particle statistics
near the wall are dominated by trapped particles with long enough residence times
to adjust to viscous sublayer fluid fluctuations despite nominally large St+.

The resulting phoresis integrals, equations (3.11) and (3.12), are shown in
figure 3(d). The integrals are both positive in all cases and are computed on a
uniform grid with spacing 0.5δ∗ using a trapezoidal rule integration. The exponential
of their difference is the concentration profile, as verified in figure 4. At St+= 2, the
sampling bias term mostly cancels the turbophoresis term. As the Stokes number is
increased, however, the sampling bias term decreases sharply, leading to the more
extreme near-wall enhancements of the concentration profile seen in figure 3. At a
large enough Stokes number, say St+ > 128, the sampling bias integral is negligible
compared to the turbophoresis integral, showing that the concentration profile is
simply inversely proportional to the particle velocity variance as in (3.14). It should
be noted, however, that for these high Stokes numbers, the particle wall-normal
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FIGURE 3. Particles statistics from turbulent channel flow at Re∗= 150 in the zero volume
fraction limit (no inter-particle collisions) at various Stokes numbers: (a) concentration
profiles; (b) root-mean-square wall-normal particle velocity, where the dashed grey curve
indicates vy ∼ y2 asymptotic behaviour near the wall; (c) sampling bias 〈uy|y〉 for the
particle ensembles with dashed grey line indicating ∼y3 behaviour near the wall; (d)
sampling bias and turbophoresis integrals, see (3.11) and (3.12).

velocity variance deviates significantly from that of the fluid at any given distance
from the wall. Therefore, it is still non-trivial that a WMLES designed to reproduce
fluid velocity variances in the near-wall region would necessarily produce accurate
particle velocity variances and concentration profiles, even in the high Stokes number
limit.

For completeness, equation (3.10) for the concentration profile is directly verified
by comparing left and right sides in figure 4(a). In figure 4(b), the same comparison
is done using (3.14) instead, i.e. neglecting the sampling bias effect. This further
emphasizes that for St+ > 128, the details of the interactions between particles and
turbulent structures near the wall are not as important. Instead, the concentration
profile can be predicted with good accuracy simply by the inverse of the particle
wall-normal velocity variance.
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FIGURE 4. For ΦV = 0, the comparison of left (continuous lines) and right sides (dashed
lines) of (a) (3.10) and (b) (3.14). Colours and symbols indicate St+ following the legend
in figure 3.

4.3. Simulation results with inter-particle collisions
In the near-wall region, the combination of higher local volume fractions due
to turbophoresis with sharp flow gradients enhances the role of inter-particle
collisions even at relatively modest bulk volume fractions (Kuerten & Vreman
2015). Inter-particle collisions, therefore, become non-negligible at much lower bulk
volume fractions in wall-bounded flows compared to what one might expect using
traditional heuristics which do not consider the near-wall region (Elghobashi 1994).
The main effect of the collisions is to reduce the near-wall concentration levels
by flattening the wall-normal fluctuation profiles (Li et al. 2001; Yamamoto et al.
2001). Caraman, Borée & Simonin (2003) emphasized that particle–particle collisions
enhance the wall-normal transport of particles by transfer of streamwise fluctuation
energy into wall-normal fluctuations. Because of turbophoresis and enhanced relative
velocities, most particle–particle collisions happen very close to the wall (Kuerten &
Vreman 2016). As volume fraction increases, inter-particle collisions tend to bring the
concentration profile toward a uniform profile, attenuating the effects of turbophoresis.
Point-particle methods, therefore, must account for inter-particle collisions to produce
accurate concentration profiles.

Figure 5 shows the same results as figure 3, but for particle ensembles including
inter-particle collisions. For brevity, only St+ = 32 is shown (ρp/ρf = 2304), although
the main observations made here apply to other Stokes numbers as well. The most
striking observation to be made from figure 5(a) is that the enhanced concentration
near the wall due to turbophoresis is suppressed by the effect of inter-particle
collisions even at seemingly innocuous bulk volume fractions. With volume fraction
increased to ΦV = 10−4, the peak concentration profile at the wall is less than five
times the bulk concentration. At the highest volume fraction, the mass fraction is
certainly appreciable, but it is shown in appendix D that the two-way coupling force
does not strongly impact the concentration profile compared to the particle–particle
collisions for the volume fractions considered here. Other quantities such as turbulence
modulation or particle acceleration statistics may be more sensitive to the two-way
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FIGURE 5. Statistics for St+ = 32 particles in a turbulent channel flow at Re∗ = 150 at
various volume fractions. Descriptions of panels are the same as in figure 3.

coupling force, but we do not consider these at the present. Collisional effects on the
concentration profile are seen even for volume fractions as low as ΦV = 10−6.

The main cause of this change is demonstrated in figure 5(b), where the particle
wall-normal fluctuations near the wall increase dramatically above the fluid fluctuation
levels as volume fraction is increased. The increased levels of fluctuation can be
attributed to a more ballistic behaviour of particles as they collide more frequently
and redistribute streamwise fluctuations into wall-normal fluctuations. This also
impacts the sampling bias, as shown in figure 5(c). However, in terms of the
resulting concentration profile, the dominant effect of collisions is the decrease
in the turbophoresis integral, figure 5(d), leading to the decreased near wall (relative)
concentration. The increased fluctuations near the wall, far in excess of local fluid
fluctuation levels, break the scaling behaviours of (3.23) which are responsible for the
near-wall power law in concentration. In fact, figure 5 shows that the concentration
profiles for higher volume fraction cases no longer display convincing power laws
near the wall. It is also apparent from figure 5(d) that the biased sampling effect
is also significantly attenuated by particle–particle collisions as volume fraction
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FIGURE 6. For St+= 32, the comparison of left (continuous lines) and right sides (dashed
lines) of (a) (3.10) and (b) (3.14). Colours indicate ΦV following the legend in figure 5.

increases. This may be attributed to the enhanced collision rates limiting the tendency
of particles to preferentially concentrate in low-speed streaks (figure 2).

The verification of (3.10) is included in figure 6(a) for the cases with inter-particle
collisions. The conservation of momentum by particle collisions ensures that the ḟcoll
term does not contribute, and (3.13) accurately describes the concentration profiles in
both cases. As the volume fraction increases, the sampling bias integral becomes more
negligible compared to the turbophoresis integral, meaning that the higher volume
fraction cases have concentration profiles very close to the inverse of their wall-normal
particle velocity variance profiles, equation (3.14).

5. Wall-modelled large-eddy simulation results
The DNS results in the previous section included sufficient grid resolution to

capture all the flow structures in the near-wall region. At higher Reynolds numbers,
the computational cost of DNS or even WRLES becomes very steep, motivating the
consideration of WMLES. With this in mind, this section explores the transport of
particles in a WMLES framework.

5.1. Modelling and simulation details
The friction Reynolds number for the simulations in this section is Re∗ = 600,
which is high enough for WMLES to make sense while keeping the cost of DNS
at a reasonable level. The number of grid points in each direction for the DNS is
682× 342× 512, in keeping with the grid spacings given in the previous section. The
WMLES grid is just 128× 20× 96, a reduction by a factor of almost 500. Unlike the
DNS grid described in the previous section, the WMLES grid has uniform spacing
in the wall-normal direction, so the first grid point is at y+1 = 60 for the wall-normal
velocities and at y+1/2 = 30 for the streamwise and spanwise velocities. The details
of the discretization are the same, but the WMLES solves the filtered Navier–Stokes
equations,

∂tũ+ ũ · ∇ũ=−
1
ρf
∇p̃+ νf∇

2ũ−∇ · σ , (5.1)
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where σij = ũiuj − ũiũj is the subgrid stress tensor computed using the dynamic
Smagorinsky model (Germano et al. 1991), where the dynamic constant is found
using the least-squares approximation of Lilly (1992). The algebraic equilibrium wall
model is used in lieu of the no-slip condition because the wall is not resolved. This
wall model computes the wall shear stress locally (at each wall-adjacent grid point)
from,

u‖(y1/2)= u∗

[
1
κ

ln
(

y1/2u∗
νf

)
+ B

]
, (5.2)

using the wall-parallel velocity magnitude, u‖(y1/2)=
√

u2
x + u2

z , at the first grid point,
y1/2, to find τw= ρf u2

∗
via Newton iterations. Constants κ = 0.41 and B= 5.2 are used.

The coarse-grained WMLES velocity field captures the large-scale motions and mean
flow, but is lacking small-scale features throughout the channel, most critically below
the first grid point, y < y1/2, where much of the physics related to biased sampling
occurs.

The discretization schemes for WMLES are the same as the DNS described above.
The same equations for advancing particle trajectories are used, equation (2.2), but
with the filtered velocity, ũ, used for the fluid velocity seen by the particle instead
of the (unknown) full velocity, u. While deconvolution schemes for approximately
reconstructing u from ũ (Kuerten 2006) may work well with WRLES, it is unlikely
to produce significant improvements in WMLES because of the much more severe
lack of resolution in the near-wall region. Instead, no attempt is presently made to
model the SGS velocity fluctuations (as seen by the particle) in the near-wall region.
The Smagorinsky subgrid stress model that is used does imply subgrid fluctuations,
so in that sense, the fluid velocity seen by the particles is not fully consistent with
the fluid momentum equation solved (Minier 2016). Nevertheless, the purpose of
this investigation is to first focus on how the velocity seen by the particle can be
interpolated from the first grid point off the wall, seeing that standard linear or
higher-order interpolation schemes assume the flow variation is captured on the grid.
Particle–particle collisions are computed deterministically using the same hard-sphere
collision model so that the impact of volume fraction, ΦV , can be demonstrated as
well. The particle dynamics has no stochastic input, and so remains deterministic as
in the case of DNS.

In the general case, it should be appreciated that the lack of subgrid fluctuations
in the present WMLES approach can impact the collision rates predicted by the
simulation. The collision cylinder approach used at present is based on smooth
particle trajectories within a given time step. Additional sub time step variation
in the trajectory (e.g. from a stochastic model) could change the collision rate,
most likely increasing it. For the case of inertialess particle–wall collisions in a
stochastic modelling framework, Dreeben & Pope (1998) proposed a method for
dealing with this effect. Henry et al. (2014) proposed a model for collisions between
inertial particles in a stochastic framework. In the present work, because of the
relatively moderate Reτ (time-scale separation) along with the St+ � 1 values used,
1tWMLES/τp� 1 so that these effects are not crucial at present.

5.2. Interpolation near the wall
While no attempt is made in the WMLES cases to model subgrid coherent structures,
the interpolation scheme can have an important impact on the results. The baseline
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interpolation scheme is simply the trilinear interpolation used in DNS, which is
consistent with a no-slip boundary condition. Because the viscous and buffer layers
are not resolved by the WMLES, even the mean streamwise velocity seen by the
particles below the first grid point is not well represented by linear interpolation.
For that reason, a wall-parallel velocity interpolation consistent with the equilibrium
stress model, denoted by I‖, is developed. This interpolation scheme computes the
wall-parallel velocity at a particle location as,

ũ‖(yp)= F‖(y+)ũ‖(y1/2), (5.3)

where F‖(y+)= 〈ux〉(y+p )/〈ux〉(y+1/2) is specified for the present purposes by a universal
velocity profile from Liakopoulos (1984) which reproduces viscous, buffer, and log-
law layers of a typical turbulent wall-bounded flow. An equivalent model could solve
the RANS equations on a one-dimensional (1-D) grid below the first grid point, as
often done for the equilibrium stress model (Cabot & Moin 2000; Bose & Park 2018),
and use this velocity to advect particles.

Furthermore, the analysis in § 3 showed that the concentration profile for high
Stokes number particles could potentially be predicted without knowledge of the
details of near wall flow structures, provided that the profile of wall-normal velocity
variance is accurately represented. To test this idea, the linear interpolation of the
wall-normal velocity can be replaced by a more detailed interpolation scheme, denoted
by I⊥, which is designed to reproduce a realistic profile of wall-normal fluid velocity
variance. To do this, the vertical velocity at a particle location is interpolated using,

ũ⊥(yp)= F⊥(y+)ũ⊥(y1), (5.4)

where F⊥(y+)=
√
〈u′2⊥〉(yp)/

√
〈u′2⊥〉(y1) is given by a wall-normal velocity root-mean-

square profile. For the present work, this profile was simply extracted from DNS and
fitted with a sixth-order polynomial function with a 0.9 % relative error with respect
to the DNS profile. This strategy (I⊥) enforces the right profile of the sampled wall-
normal fluid velocity variance that the particles experience near the wall. As with the
Liakopoulos profile, this approach is chosen for simplicity of implementation, since
this work is viewed more as a conceptual test rather than as a specific modelling
proposal. One could imagine constructing F⊥(y+) by using an existing Reynolds stress
transport (Durbin 1993) or v2

− f (Durbin 1991) model to solve for 〈u′2
⊥
〉 on a 1-D grid

similar to what is done for the mean velocity in equilibrium wall models. Pursuing
the details and implementation of the model is beyond the scope of the present work,
rather we seek to demonstrate how well such a model could be expected to perform.

5.3. Results
In this section, the results from three different WMLES variants are compared with
DNS in terms of particle statistics. Since the underlying particle model is not changed
between cases, this comparison highlights the impact of coarse resolution of the
turbulent flow on the particle dynamics in WMLES. Since particular attention is given
to the mean concentration profile, the effects of biased sampling and turbophoresis
are highlighted.

One of the effects of biased sampling is that particles tend to preferentially sample
the low-speed streaks in the buffer layer. As a result, 〈ux|y〉 for the particle ensemble
will tend to be slower than the mean flow velocity using Eulerian averaging. That
is, on average, particles at a given distance from the wall tend to move more slowly
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FIGURE 7. Mean streamwise fluid velocity as sampled by the particle ensembles at (a,b)
St+ = 8 and (c,d) St+ = 128. Results at two volume fractions are shown: (a,c) ΦV = 1×
10−6 and (b,d) ΦV = 1 × 10−5. In all panels, the dashed grey line indicates the log-law
profile u+ = κ−1 ln(y+) + B and the dotted grey line shows the viscous sublayer profile
u+= y+. The vertical dash-dot lines indicate the location of the first ux grid point at y+1/2=
30. The WMLES–I‖ and WMLES–I‖, I⊥ results are virtually indistinguishable.

in the streamwise direction compared to the mean fluid velocity at the wall-normal
location. As a result, streamwise particle velocities will be over-predicted in a
WMLES–I‖ where buffer layer structures are largely absent but the mean velocity
profile takes into account the law of the wall. This is shown in figure 7. Without the
I‖ interpolation, simple trilinear interpolation under-predicts the mean flow velocity
below the first grid point leading to an under-prediction of particle velocities as well.
The effect of biased sampling is stronger at St+ = 8 than St+ = 128, as indicated by
larger discrepancy between the DNS results and the WMLES–I‖ results (which follow
closely the u+= y+ relation in the viscous sublayer). There is no noticeable effect of
changing ΦV , so particle–particle collisions seems to have a negligible impact here.

While the I‖ interpolation is designed to improve the streamwise fluid velocities
below the first grid point, § 3 showed that turbophoresis is driven by the variance
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FIGURE 8. Particle wall-normal velocity fluctuation magnitudes as a function of distance
from the wall at (a,b) St+ = 8 and (c,d) St+ = 128. Results at two volume fractions are
shown: (a,c) ΦV = 1× 10−6 and (b,d) ΦV = 1× 10−5. In all panels, the dashed grey line
represents uy ∼ y2 behaviour expected from the fluid velocity. The vertical dash-dot lines
indicate the location of the first uy grid point at y+1 = 60. Significant particle slip and
particle–particle collision effects prevent the particle velocity from following that scaling.
The I⊥ interpolation scheme significantly improves the WMLES results.

of (particle) wall-normal velocities. The interpolation based on fluid wall-normal
velocity variance profiles, I⊥, is designed to address this facet. Figure 8 demonstrates
the improved particle velocity variance profiles achieved using WMLES–I‖, I⊥.
While improving the fluid variance profiles certainly helps, it by no means guarantees
accurate particle variance profiles, since how particles sample the flow also impacts
their velocity variance. Furthermore, particle–particle collisions can also change the
variance profiles, particularly close to the wall as shown in figure 5(b). The profiles
of particle wall-normal velocity fluctuations are shown in figure 8 for the same four
cases shown in figure 7. In particular, the effect of I⊥ in generating better agreement
with DNS is demonstrated for all four cases. Some discrepancy is still observed,
particularly very close to the wall in the St+ = 128 cases, because the higher inertia
leads to a stronger tendency for the particles to deviate from local fluid velocities.
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FIGURE 9. Biased sampling (3.11) and turbophoresis integrals (3.12) at (a,b) St+= 8 and
(c,d) St+= 128. Results at two volume fractions are shown: (a,c) ΦV = 1× 10−6 and (b,d)
ΦV = 1 × 10−5. The biased sampling term is poorly predicted by WMLES in all cases,
but this term is more negligible in the St+ = 128 case.

The competing effects of biased sampling and turbophoresis are shown in figure 9
for both DNS and the three WMLES approaches. The logarithmic scale highlights
the discrepancies between DNS and WMLES in terms of biased sampling, since
the WMLES does not contain the near-wall structures which dominate this effect.
Instead the biased sampling is much smaller in WMLES, particularly below the first
WMLES grid point where it even becomes negative for some y+ values (only the
positive branch is shown in the plot). The DNS results show that the biased sampling
is approximately one order of magnitude smaller for the St+ = 128 cases compared
to the St+ = 8 cases. This means that the (absolute) error made in WMLES with the
biased sampling is more negligible in the higher Stokes number cases, as expected.

The concentration profiles in figure 10 can be viewed as the exponential of the
difference between the two phoresis integrals in figure 9, see (3.10). From the results
in figure 10(a,b), it is clear that the enhanced interpolation methods provide no
benefit at St+ = 8 in obtaining accurate concentration profiles in WMLES. This is
because, while the turbophoresis may be more accurately represented due to a better
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FIGURE 10. Particle concentration profiles at (a,b) St+ = 8 and (c,d) St+ = 128. Results
at two volume fractions are shown: (a,c) ΦV = 1× 10−6 and (b,d) ΦV = 1× 10−5. Changes
to the interpolation do not significantly help WMLES accuracy at St+ = 8 but significant
improvements can be seen for St+ = 128.

wall-normal velocity variance profile, the biased sampling is very influential at low
Stokes numbers. Without substantial enrichment of near-wall turbulent structures,
biased sampling cannot be predicted well by WMLES. At higher Stokes numbers,
figure 10(c,d) demonstrates that this is less pressing. The WMLES–I‖, I⊥ model
reproduces the fluid wall-normal velocity variance, but some discrepancies exist
in the particle wall-normal velocity which means that there are still remaining
discrepancies in the predicted concentration profile at St+ = 128, even when biased
sampling becomes negligible. This occurs partly because the fluid fluctuations below
the first grid point, while having a corrected magnitude, are essentially slaved to the
fluctuations at the first grid point (60 viscous units in this case) rather than having
their own unique small-scale signature.

6. Conclusions
This paper demonstrates that many of the features known about particle concentra-

tion profiles in wall-bounded turbulence can be understood simply by considering
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the implications of wall-normal momentum conservation for the particle phase,
without any stochastic modelling assumptions. In particular, the balance equation for
wall-normal particle momentum in a turbulent channel flow can be formally solved for
the non-uniform concentration profile in terms of turbophoresis and biased sampling
contributions, here referred to as phoresis integrals. Analysis of the y → 0 limit
(viscous sublayer) provides straightforward reasoning, without stochastic modelling
assumptions, for the existence of a power-law shape to the near-wall concentration
profile at low volume fractions. This observation brings clarity to the underlying
reason that concentration profiles have been observed to have power-law behaviours
near the wall over a range of Stokes numbers. However, particle–particle collisions
break the scalings as volume fraction is increased owing to the higher fluctuation
levels near the wall that deviate from the asymptotic behaviour of fluid fluctuations. In
the absence of significant collisional effects, further results such as related near-wall
power laws for particle velocity skewness and flatness are also derived directly from
the analysis, including low St+ correction to the stochastic modelling results of
Sikovsky (2014).

Although the turbophoresis pseudo-force has been known and explored in many
previous theoretical studies (Caporaloni et al. 1975; Reeks 1983; Guha 1997), the
biased sampling term has not received the same attention. In some cases, it is
(presumably) absorbed into a stochastic model (Sikovsky 2014) and in other cases
it has been simply neglected (Guha 1997, 2008). Stochastic models for the fluid
velocity seen by particles have recognized the importance of this effect as a drift
velocity (Minier et al. 2014), and the results of this study may help guide or assess
further developments in that modelling framework. Physically speaking, the tendency
of inertial particles to preferentially accumulate in ejection events leads to a net
force on the particle ensemble away from the wall, which mitigates the effect of
turbophoresis on the near-wall concentration, particularly at small and moderate St+
values. Previous numerical studies have focused on how near-wall coherent structures
influence turbophoresis (Marchioli & Soldati 2002) and developed simplified models
for particle interactions with coherent structures which do not include biased sampling
effects (Guingo & Minier 2008; Jin et al. 2015). The analysis here reveals that these
small-scale flow structures are more directly influential through the biased sampling
term.

On the other hand, the results in this paper do show that biased sampling becomes
less important at high Stokes numbers (St+ & 100), leading to a concentration
profile that is inversely proportional to the particle wall-normal velocity variance.
While in the infinite Stokes number limit, the wall-normal velocity variance profile
should become uniform, effectively eliminating the turbophoresis effect, we find
that near-wall particle fluctuations are still significantly reduced up to St+ = 512.
Therefore, a range of St+ is observed for which turbophoresis is still active but
biased sampling is rather negligible. This has potentially important consequences
for WMLES, which in the high St+ regime may only require accurate fluctuation
intensity profiles and likely need not recover the spatio-temporal details of interactions
between particles and near-wall turbulent structures. Tests of this hypothesis using a
DNS-tuned interpolation kernel below the first grid point showed that it is possible
to obtain improved concentration profiles using this approach. However, the details
of the near-wall structures still matter in a secondary way due to the mismatch
between fluid and particle fluctuation intensities near the wall at high St+. On the
other hand, as can be seen from the analysis, simply producing correct wall-normal
velocity variance profiles is not a viable approach at lower St+. This is because
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such an approach ignores the biased sampling effect predominantly caused by flow
structures unresolved by WMLES. This effect cannot be imparted in WMLES simply
by changing the interpolation kernel near the wall. Instead, further work is required
to provide an efficient method of enriching WMLES with small-scale information
representative of these near-wall coherent structures. One possible direction could
be the use of multi-scale ‘inner–outer’ simulation approaches (Pascarelli, Piomelli &
Candler 2000; Tang & Akhavan 2016; Sandham, Johnstone & Jacobs 2017).
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Appendix A. Biased sampling integral using Schiller–Naumann drag
The biased sampling is written in terms of Stokes drag, aSt = (u − v)/τp, in the

body of the paper. The numerical results shown, however, use the nonlinear Schiller–
Naumann correction to Stokes drag for finite Reynolds number, Rep = |u − v|dp/ν.
This modified drag form is aSN = aSt(1 + 0.15Re0.687

p ). The Reynolds numbers in the
cases shown for this paper were Rep . 1, meaning the drag correction was small, but
non-negligible. Therefore, the biased sampling terms plotted in the figures are actually
computed using,

Ibias =
1
τp

∫ y

0

〈uy|η〉

〈v2
y |η〉

dη+
1
τp

(
dp

ν

)0.687 ∫ y

0

〈(uy − vy)|u− v|0.687
|η〉

〈v2
y |η〉

dη, (A 1)

rather than (3.11). This follows by using the Schiller–Naumann drag law in the
analysis of § 3 rather than the Stokes drag law. The first term in (A 1) is simply
the Stokes drag term from (3.11). Including the second term in (A 1) changes the
expression to be consistent with the Schiller–Naumann form, which was observed to
quantitatively improved the agreement in figures 4(a) and 6(a).

Appendix B. Preferential concentration in homogeneous turbulence
The same procedure for single-particle statistics in a turbulent channel flow may

also be followed for two-particle statistics in a homogeneous isotropic turbulent
flow with a mean kinetic energy dissipation rate 〈ε〉. In the latter case, consider
two identical particles following (2.2) with Stokes drag having relative position
r= x(1) − x(2) and relative velocity w= v(1) − v(2),

ṙ=wr, ẇr =
1
τp
(δur −wr)+

1
r

w2
t , (B 1a,b)

where δur is the fluid velocity increment between the particle positions in the radial
direction, wr is the radial relative particle velocity and w2

t = |w2
| −w2

r is the tangential
relative particle velocity magnitude. The statistical evolution of the particle pair is,

∂t f + ∂r(wrf )+ ∂wr

[
1
τp
(〈δur|r,wr〉 −wr)+

1
r
〈w2

t |r,wr〉

]
= ḟcoll, (B 2)
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where

f (r,wr; t)= 〈δ(r− r̂(t))δ(wr − ŵr(t))〉. (B 3)

Defining,

g(r; t)=
∫
∞

−∞

f (r,wr; t) dwr (B 4)

and following the same procedure as was above used for the single-particle PDF in
the channel flow, the conservation of relative radial momentum at steady state gives,

〈w2
r |r〉

dg
dr
=

 1
τp
〈δur|r〉︸ ︷︷ ︸

biased sampling

+
1
r
〈w2

t |r〉︸ ︷︷ ︸
centrifugal force

−
1
r2

d(r2
〈w2

r |r〉)
dr︸ ︷︷ ︸

‘turbophoresis’

 g. (B 5)

In the tracer particle limit, the sampling bias term vanishes, and the centrifugal force
balances the turbophoresis term exactly according the the relation between longitudinal
and transverse structure functions in isotropic turbulence (Pope 2000). Equation (B 5)
may be formally solved,

g(r)=
N
〈w2

r |η〉
exp

[
1
τp

∫ r
〈δur|η〉

〈w2
r |η〉

dη+
∫ r 1

η

(
〈w2

t |η〉

〈w2
r |η〉
− 2
)

dη
]
. (B 6)

In the limit that r < η, where η = ν
3/4
f 〈ε〉

−1/4, the relative flow follows a Taylor
expansion, i.e. 〈δur|r〉 ∼ r. For small enough Stη = τp/τη (where τη = ν

1/2
f 〈ε〉

−1/2), the
particle velocities will scale as 〈w2

r |r〉 ∼ r2 and 〈w2
r |r〉 ∼ r2. Substituting these scalings

into (B 6) a pure power law is recovered for the radial distribution function (RDF) at
r<η,

g(r)= c0r−c1, (B 7)

where 0 6 c1 6 2 assuming the sampling bias is negligible or positive (particle pairs
preferentially sample extensional flow). Furthermore, the exponential correction to the
power-law in (B 6) is reminiscent of the RDF curve fit used by Reade & Collins
(2000). Radial and tangential relative velocity statistics for inertial particles in DNS
of homogeneous turbulence were recently studied by Salazar & Collins (2012) and
Ireland, Bragg & Collins (2016a,b).

Appendix C. Effect of Re∗ on turbophoresis
The DNS results in § 4 of the main body of this paper use simulations at

Re∗ = 150, which allows for significant computational savings compared to higher
Reynolds numbers. The WMLES and DNS results in § 5 are at Re∗ = 600. The
wall-modelling technique does not make much sense at Re∗ lower than this. For
understanding WMLES approaches to simulating higher Reynolds numbers, therefore,
it is important to understand what effects the Reynolds number may have on the
physics of turbophoresis (and biased sampling). To this end, the DNS results at
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FIGURE 11. Particle concentration profiles for St+ = 32 at various volume fractions in a
flow at (a) Re∗ = 300 and (b) Re∗ = 600. The equivalent results for Re∗ = 150 are shown
in figure 5(a).

Re∗ = 150 can be compared to results in this appendix for equivalent simulations at
Re∗ = 300 and Re∗ = 600.

Figure 11 shows concentration profiles for Re∗=300 and Re∗=600 for St+=32 and
06ΦV 61×10−4. Figure 5(a) in § 4 shows the equivalent results for Re∗=150. These
results are qualitatively representative of other Stokes numbers (not shown). At zero
volume fraction, the particle concentration in the near wall region increases from ∼200
to ∼1000 times the bulk concentration as Re∗ is increased from 150 to 600. This
appears to be mainly an effect of the normalization by C0, since the extent of the near-
wall region with elevated concentration scales with viscous units and so in comparably
smaller to the width of the channel at higher Re∗. The effect of Re∗ at zero volume
fraction (i.e. in the absence of particle–particle collisions) is explored in more detail
by Bernardini (2014), and the present results are consistent with those findings. At
finite volume fraction, however, the concentration near the wall is remarkably similar
across the range of Re∗.

Figure 12 shows the magnitude of wall-normal particle velocity fluctuations at
different wall-normal locations for these higher Re∗ cases. It is apparent that the
similarity in the concentration profiles at finite volume fraction is reflected by similar
collisional effects near the wall. The impact of collisions on energizing particles near
the wall and thus decreasing the turbophoretic effect appears mostly independent of
Re∗. This observation motivated and justified the use of relatively low Re∗ = 150
results for the main body of the paper. In other words, within the framework of this
paper, it was computationally more efficient to study turbophoresis at lower Reynolds
numbers, knowing that not much additional may be learned from higher Reynolds
number cases. The main cause for this finding is the approximate universality of
near-wall turbulence (viscous and buffer layers).

Figure 13 shows that the biased sampling is also quite similar across the range
of Re∗ studied. Some differences may be noted near the centreline, but it is not
unexpected that some features of the flow would change with Re∗ in the wake region.
Given the relative insensitivity of turbophoresis and biased sampling to Re∗, it is
unsurprising that the concentration profiles are similar across Re∗.
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FIGURE 12. Particle wall-normal velocity root-mean-square profiles for St+=32 at various
volume fractions in a flow at (a) Re∗= 300 and (b) Re∗= 600. The equivalent results for
Re∗ = 150 are shown in figure 5(b).
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FIGURE 13. Phoresis integrals (turbophoresis and biased sampling) for St+= 32 at various
volume fractions in a flow at (a) Re∗= 300 and (b) Re∗= 600. The equivalent results for
Re∗ = 150 are shown in figure 5(d).

Appendix D. Two-way coupling and collision effects at various St+

The results shown in the body of the paper were computed neglecting two-way
coupling. However, for the largest volume fractions shown, the equivalent mass
fraction was ∼10 %, indicating there could be significant effects of the particle forces
on the fluid. This appendix documents the impact of two-way coupling, showing
these effects to be secondary compared with collisional effects.

Figure 14 shows concentration profiles for particle ensembles with four different
St+ at three different volume fractions. The mass fraction is dependent also on the
density ratio, which changes for each St+ case while the particle diameter is kept
constant. At each St+, the largest bulk mass fraction simulated exceeds 10 %. Note that
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FIGURE 14. Particle concentration profiles for (a) St+ = 8, (b) St+ = 32, (c) St+ = 128
and (d) St+ = 512.

the turbophoresis and accumulation of the particles at the wall means that the local
mass fractions near the wall significantly exceed the bulk mass fraction, providing
even more weight to the two-way coupling force. Even so, the concentration profile
is much more sensitive to particle-particle collisions than two-way coupling for the
range of volume fractions studied in this paper. While the present study focuses on the
concentration profile, the impact of two-way coupling is likely much more important
at these conditions for other quantities of interest such as particle acceleration or
turbulence modulation.

The particle–particle collisions (deviation from the ΦV = 0 case) significantly reduce
the near-wall concentration at all St+. As St+ increases, the particle–particle collisions
have a more significant impact at increasingly lower volume fractions. The effect of
two-way coupling can also be seen in each case. In most of the cases, the two-way
coupling is negligible. It is noticeable at lower St+ and higher ΦV , but still secondary
to the impact of particle–particle collisions.

It is worthwhile to note that the particle diameter d+p = 0.5 used in this study was
comparable to the wall-normal grid spacing near the wall, 1ymax ≈ 0.5. The point-
particle drag law relies on accurate representation of the ‘undisturbed’ fluid velocity
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FIGURE 15. Comparison of (a) particle concentration profiles and (b) particle wall-normal
velocity root-mean-square profiles for St+ = 32 and ΦV = 3× 10−5.

seen by the particle which is not readily available if the particle size is near the
grid size (Horwitz & Mani 2016). In such a case, a correction to the interpolated
fluid velocity from the Eulerian grid is necessary to recover the undisturbed velocity
(Esmaily & Horwitz 2018; Horwitz & Mani 2018). This is particularly problematic for
wall-bounded flows (Bijlard et al. 2010) and a generally applicable correction scheme
has yet to be demonstrated.

Appendix E. Restitution coefficient

In the hard-sphere collision model used in this paper, the restitution coefficient,
e = −1vrn/1vin, is the single parameter governing the outcome of each collision.
Here, 1vin denotes the normal component of the incident velocity difference between
the colliding particles, while 1vrn denotes the normal component of the reflected
velocity difference after the collision occurs. The results in the body of the paper
used e= 1.0, that is, kinetic energy preserving collisions. Figure 15 shows the effect
of varying e on the particle concentration profile at St+ = 32 and ΦV = 3 × 10−5.
Decreasing the restitution coefficient removes energy from the particle ensemble,
leading to lower particle wall-normal velocity fluctuation levels, particularly in the
near-wall region. This increases the gradient which drives turbophoresis, increasing
the near-wall concentration. Qualitatively similar effects are observed for other Stokes
numbers and volume fractions (not shown). In reality, the restitution coefficient
can depend on properties of each individual collision, and therefore a more careful
accounting of collision dynamics could use empirical results, e.g. Yang & Hunt
(2006).

Appendix F. Higher-order interpolation and grid resolution

In this section, the impact of grid resolution and interpolation scheme on the results
of the point-partice DNS is briefly explored. The results in the body of the paper
used second-order Lagrange interpolation with uniform grid spacings 1x+ = 11 and
1z+= 7.4 in the periodic directions and a stretched grid in the wall-normal direction
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FIGURE 16. Effect of grid resolution on (a) mean fluid velocity profile, (b) wall-normal
fluid velocity root-mean-square profile, (c) St+ = 32 particle concentration profiles,
(d) St+ = 32 wall-normal particle velocity root-mean-square profiles.

having 1y+min = 0.5 for the first grid point and 1y+max = 7.3 at the centreline. In this
appendix, we separately test higher-order interpolation and twice the grid resolution
to elucidate discretization effects on the results presented in the paper.

Figure 16 summarizes the impact of grid resolution. The mean fluid velocity profile
is nearly indistinguishable when the mesh is refined. The wall-normal fluctuation
levels increase slightly on the refined mesh. The impact of this on the concentration
profiles and particle statistics is minimal, however. The results shown for St+ = 32 at
two different volume fractions are representative of other Stokes numbers and volume
fractions (not shown). Therefore, we concluded that the grid resolutions used in the
main body of the paper were sufficient for the present purposes.

Figure 17 compares particle statistics from simulations using different interpolation
schemes. Specifically, Lagrange interpolation with various orders of accuracy is
compared. It is evident that both the particle concentrations and wall-normal
fluctuation intensities are insensitive to the interpolation scheme for the cases shown
here. Other St+ results (not shown) displayed similar insensitivity to the interpolation
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FIGURE 17. For St+ = 32, effect of interpolation scheme on (a) particle concentration
profiles and (b) wall-normal velocity root-mean-square profiles. Two different volume
fractions are shown. Lagrange interpolation of second-order (L2), fourth-order (L4) and
eighth-order (L8) are compared.

order. As a result, the second-order Lagrange interpolation was considered appropriate
for the present work and is used throughout the body of the paper.
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