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1. Introduction
Topological entropy is a central property in dynamical systems and has been studied
extensively, both in the complex setting and outside. More generally, it was shown by
Misiurewicz and Przytycki [MP77] that for smooth self-maps of compact manifolds of
topological degree d the entropy is at least log(d). For polynomials and rational functions
acting on the Riemann sphere, it was shown independently by Gromov (in a preprint from
1977, published in 2003 [Gro03]) and Lyubich [Lju83] that the topological degree is equal
to log(d).

The goal in this paper is to determine the topological entropy of transcendental entire
maps. Such maps have infinite topological degree, and hence one can expect that the
topological entropy is also infinite. This is indeed the case, as we will prove here.

In [Ber00] Bergweiler proved that the Ahlfors five islands property implies for any
transcendental function f the existence of a bounded simply connected open set D ⊂ C,
and disjoint relatively compact subsets U1,U2 ⊂⊂ D which are both being mapped
univalently onto D by some iterate f k . As was pointed out by Dujardin in [Duj04],
an immediate consequence is that the topological entropy of a transcendental function
is always strictly positive. Since no bound on k is given, the argument does not provide a
definite lower bound on the entropy. The fact that the entropy is strictly positive follows
also from the results of [CF96].
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We will prove the following statement, which gives less information on the way the
image covers the domain, but which does imply arbitrarily large lower bounds on the
entropy.

THEOREM 1.1. Let f be a transcendental entire function, and let N ∈ N. There exists a
non-empty bounded open set V ⊂ C so that V ⊂ f (V ), and such that any point in V has
at least N preimages in V , counted with multiplicity.

The fact that f has infinite entropy follows from the next statement. We refer to
Appendix A for the proof and for the definition of entropy.

THEOREM 1.2. Let V ⊂ C be a bounded open set, and let g : V → C be a holomorphic
function, having a holomorphic continuation to a neighborhood of V . Suppose that every
w ∈ V has at least N preimages in V , counted with multiplicity. Then the topological
entropy of g is at least log(N ).

In [BFP18] we treated the simpler case where the function f omits some value.
In this case the domains V can be chosen equal to arbitrarily large annuli of fixed
modulus. As will be pointed out in Example 2.10, this cannot always be done for arbitrary
transcendental functions. Instead, the domain V that we construct either is a simply
connected subdomain of some annulus, or equals a large disk.

2. Proof of the main theorem
2.1. Notation. Throughout this paper we denote by 1(z, r) the open Euclidean disk of
radius r > 0 centered at z ∈ C. For a set C ⊂ C, we denote by diamEucl C its Euclidean
diameter.

For a hyperbolic domain D ⊂ C, let us denote by ρD(z)|dz| its Poincaré metric, where
ρD(z) is the hyperbolic density on D. For a subset D′ ⊂ D, we denote by diamD(D′) the
diameter of D′ in the Poincaré metric of D. Following [Ahl], we will write �0,1 for the
set C \ {0, 1}.

2.2. Estimates in the hyperbolic metric. The following estimate on the density of the
Poincaré metric of the twice punctured domain�0,1 is well known; see, for example, [Ahl,
Theorem 1–12].

LEMMA 2.1. The hyperbolic density satisfies

ρ�0,1(z) >
1

2|z| ln |z|
for |z| sufficiently large.

In fact, more precise estimates by Hempel [Hem79] and Jenkins [Jen81] show that the
above equation holds whenever

ln |z| ≥ K ,

where

K =
04(1/4)

4π2 = 4.3768796 . . . ,

hence is satisfied when |z|> e5.
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From now on we let D ⊂ C be a hyperbolic domain, let d > 0, and let C ⊂ D with
diamD C < d/2.

LEMMA 2.2. Let α ∈ C \ {0}. Let f : D→ C \ {0, α} be holomorphic. Then there exists
k > 0, depending only on d, such that if there exists wM ∈ C with | f (wM )|> M > k|α|,
then

| f (z)|> |α|(e
d
−1)/ed

· M1/ed

for all z ∈ C.

Proof. Let us first suppose that α = 1. Since �0,1 is a complete metric space, for any d
there exists k > 0 such that if | f (wM )|> k then f (C) is contained in the disk |z|> e5.
Since holomorphic maps are distance decreasing,

diam f (D) f (C) < d/2,

and hence
diamC\{0,1} f (C) < d/2

and, in particular,
distC\{0,1}( f (z), f (wM )) < d/2,

for any z ∈ C . By Lemma 2.1 and the fact that f (C) is contained in the disk |z|> e5 it
follows that

d/2> distC\{0,1}( f (z), f (wM ))≥

∫
| f (wM )|

| f (z)|

1
2t ln t

=
1
2
(ln ln | f (wM )| − ln ln | f (z)|),

which gives

| f (z)|> exp(exp(ln ln | f (wM | − d))= | f (wM )|
1/ed

> |M |1/e
d
.

When α 6= 1 the result follows directly by considering the function f (z)/α. �

From now on we define k > 0 as in the above lemma, depending on d .

COROLLARY 2.3. Let f : D→ C \ {0} be holomorphic, let wM ∈ C and write M =
| f (wM )|. Let |α|< M/k. If there is z ∈ C so that | f (z)| ≤ |α|1−1/ed

M1/ed
, then there

exists z ∈ D so that f (z)= α.

Proof. If there is no z ∈ D so that f (z)= α, then f : D→ C \ {0, α}. Moreover,
| f (wM )| = M > k|α|. Hence | f (z)|> |α|1−1/ed

M1/ed
for all z ∈ C , a contradiction. �

The following covering lemma has similarities with [RS15, Theorem 2.2].

LEMMA 2.4. Let f : D→ C \ {0} be holomorphic. Let 0≤ m < M be such that there
existwM , wm ∈ C with | f (wm)| = m and | f (wM )| = M. Then f (D) contains the annulus

A =
{(

med

M

)1/(ed
−1)

< |z|< M/k
}
.
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Proof. Let α 6= 0 and suppose that α /∈ f (D). By Corollary 2.3, if |α|< M/k then

m ≥ |α|(e
d
−1)/ed

M1/ed
,

which gives

|α| ≤

(
med

M

)1/(ed
−1)

,

which implies that α /∈ A. �

From now on we assume that the domain D ⊂ C is simply connected.

THEOREM 2.5. Let f : D→ C \ {0} be holomorphic in a neighborhood of D. Let 0≤
m < M be such that there exist wM , wm ∈ C with | f (wm)| = m and | f (wM )| = M.

Let N ∈ N and define

AN =

{(
med

M

)1/(ed
−1)

< |z|< M/k N
}
.

Then every α ∈ AN has at least N distinct preimages in D.

Proof. If AN is empty there is nothing to prove. Otherwise, since f omits 0 and D is
simply connected, we can choose an N th root g = f 1/N . Observe that |g(wM )| = M1/N ,
and that |g(wm)| = m1/N . Let α ∈ AN . Let {η j } j=1,...,N be the N th roots of α. Let

B =
{(

med/N

|g(wM )|

)1/(ed
−1)

< |z|< |g(wM )|/k
}
.

Since α ∈ AN , we have η j ∈ B for all j . By Lemma 2.4, for each j = 1, . . . , N there is
z j ∈ D so that g(z j )= η j . By definition of g, f (z j )= α. �

The following is immediate, replacing 0 by any complex number.

THEOREM 2.6. Let f : D→ C \ {α} be holomorphic in a neighborhood of D with
α ∈ C. Let 0< m < M be such that there exist wm, wM ∈ C with | f (wm)| = m and
| f (wM )| = M.

Fix N ∈ N. Let

AN =

{(
(m + |α|)e

d

|M − |α||

)1/(ed
−1)

< |z − α|< |M − |α||/k N
}
.

Then every point in AN has at least N distinct preimages in D.

For R > 0, define the annulus

AR := {R/2< |z|< 2R}.

COROLLARY 2.7. Let f : D→ C be holomorphic in a neighborhood of D. Let
0< m < M be such that there exist wm, wM ∈ C with | f (wm)| = m and | f (wM )| = M.
Let k = k(d) be as in Lemma 2.2.

Fix N ∈ N, and let R, j be such that k N < R j/2. Suppose that m, M satisfy the
conditions

|M − 2R|
k N > 4R
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and (
(m + 2R)e

d

|M − 2R|

)1/(ed
−1)

<
1

R j/2 .

Then either AR ⊂ f (D), or else there exists α ∈ AR \ f (D) so that(
AR \1

(
α,

1
R j/2

))
⊂ f (D).

In the latter case each β ∈ AR \1(α, 1/R j/2) has at least N distinct preimages in D.

Proof. If f (D)⊃ AR there is nothing to prove. Otherwise there is α ∈ AR \ f (D)
and we are in the case where f : D→ C \ {α}, hence Theorem 2.6 applies, with |α|<
2R. In particular, f (D) covers the annulus AN defined in Theorem 2.6 at least N
times. The conclusion follows by observing that the conditions on m, M imply that
(AR \1(α, 1/R j/2))⊂ AN . �

For R > 0 and θ ∈ [0, 2π ], we define

DR := {R/2+ 1/9< |z|< 2R − 1/9, |Arg(z)− θ |< 3π/4},

CR := {2R/3< |z|< 3R/2, |Arg(z)− θ |< 2π/3}.

Note that DR is simply connected, that CR ⊂ DR ⊂ AR , and that CR has finite hyperbolic
diameter in DR , say d/2, which is independent of R and θ . From now on we let k > 0 be
the corresponding constant found in Lemma 2.2.

THEOREM 2.8. Let f be a transcendental entire function. Let N ∈ N. Then there exist
arbitrarily large R and j large and θ ∈ [0, 2π ] so that either AR ⊂ f (DR) or else there
exists α ∈ AR \ f (DR) so that (AR \1(α, 1/R j/2))⊂ f (DR). In the latter case, each
β ∈ (AR \1(α, 1/R j/2)) has at least N distinct preimages in DR .

Remark 2.9. We can, moreover, guarantee that CR contains at least two points of
maximum modulus which are at least R/10 apart from each other as well as from the
boundary of CR , and that there is a point wm ∈ CR with | f (wm)|< 3 and whose distance
from ∂CR is at least R/10.

Proof of Theorem 2.8 and Remark 2.9. Observe that the hypotheses on m and M in
Corollary 2.7 are satisfied provided that there exist wm, wM ∈ CR such that | f (wM )| =

M > R j and | f (wm)| = m < 3R for large enough R, j . Since the maximum modulus of
f on {|z| = R} grows faster than any polynomial in R, for R large enough we can always
assume that there is a point wM with |wM | = R and | f (wM )|> R j .

By Picard’s theorem, f takes on every value infinitely many times except at most one
value, so we can choose arbitrarily large R so that there also exists a pointwm with |wm | =

R and | f (wm)| = m < 3R. Since CR contains strictly more than half the circle |w| = R,
and there are points of maximum modulus for every R, it follows that we can choose θ so
that both wm and wM are contained in CR , and such that CR contains at least two points
of maximum modulus which are at least R/10 apart from each other as well as from the
boundary of CR . The claim follows from Corollary 2.7. �
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Example 2.10. It is not true in general that for any entire transcendental function f there
exists R > 0 such that f (AR) covers AR arbitrarily many times. Indeed, let

f (z)=
∞∏

i=1

zi − z
zi

,

where zi →∞ very rapidly. For any R the set f (AR) covers AR at most once. To see this,
notice that for |z j−1| � |z| � |z j+1| one obtains

f (z)∼ c j z j−1
·

z j − z
z j

,

where c j = (z0 · z1 · · · · · z j−1)
−1. Let w ∈ AR . By Rouché’s theorem the difference

between the number of solutions to the equation f (z)= w on the two disks 1(0, R/2)
and 1(0, 2R) is at most 1, hence f (AR) covers AR at most once.

We note, however, that this example does have infinite entropy. Indeed, for |zi | �

R� |zi+1|, consider the image of the disk 1(0, R). By the above estimates each point
in 1(0, R) will have exactly i preimages in 1(0, R), counted with multiplicity. By
Theorem 1.2 the entropy of f is at least log(i).

2.3. Final preparations. We will make a few elementary observations before we start
the proof of our main result.

LEMMA 2.11. Let N ∈ N, and let D ⊂ C be a bounded simply connected domain, let f
be a holomorphic function defined in a neighborhood of D, and suppose that there exists
r > 0 such that | f (z)| ≥ r for all z ∈ ∂D. If there exists ξ ∈1(0, r) with N preimages in
D, then every point in 1(0, r) has N preimages in D (counted with multiplicity).

Proof. For w ∈1(0, r), let gw = f − w. We claim that gw has the same number of zeros
(counted with multiplicity) as f . Observe that |gw − f |< | f | on ∂D because |w|< r
and | f | ≥ r on ∂D. The claim follows by Rouché’s theorem since the function gξ has N
zeros. �

LEMMA 2.12. Let R, j > 4. There exists d > 0 such that the following statement holds.
Let z1, z2 ∈ CR , α ∈ AR , and assume that zi /∈1(α, R/20) for i = 1, 2. Then there
exists a simply connected open set D ⊂ DR \1(α, 1/R j/2) with z1, z2 ∈ D such that
distD(z1, z2) < d/2.

Proof. We consider three cases.
(i) 1(α, R/20) ∩ DR = ∅. Then we choose D = DR .
(ii) 1(α, R/20) ∩ CR = ∅. Let D be the tubular neighborhood of CR with radius R/20.
(iii) 1(α, R/20) ∩ CR is non-empty. Let I1, . . . , I4 be four arcs starting at α, two radial

segments and two circular arcs, ending when they hit the boundary of DR (see
Figure 1 for an illustration). Then we let D = DR \ (1(α, R/20) ∪ Ii ) for a suitable
i depending on the position of the points z1, z2. It is clear that D is simply connected,
and that i can be chosen to obtain a uniform bound on distD(z1, z2) not depending
on the positions of z1, z2 and α.

�
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FIGURE 1. Illustration of the proof of Lemma 2.12, showing the point α, the boundary of the disk 1(α, R/20)
and the four arcs Ii .

LEMMA 2.13. Let ε > 0 and ` ∈ N. Let α, z1, z2 and x1, . . . , x` be points in the annulus

AR(ε) := {R/2+ εR ≤ |z| ≤ 2R − εR},

and assume that |α − z j | and |xi − z j | ≥ εR for all i = 1, . . . , ` and j = 1, 2. Then there
exist d > 0, depending only on ε and `, and a simply connected domain D ⊂ AR avoiding
all the points xi and satisfying

D ∩1
(
α,

1
R j/2

)
= ∅,

such that distD(z1, z2) < d/2.

Proof. Up to rescaling, we may assume that R = 1. Observe that for each choice of points
α, z1, z2 and x1, . . . , x` we can find such a simply connected domain D containing z1, z2

by removing the disk 1(α, 1/R j/2) and for each point α or xi a path connecting the point
α or xi to ∂AR . Each path can be chosen to be either a radial interval, or a combination of
a small circular interval and a radial interval.

Note that the construction also works when the points lie in the closed annulus AR(ε)

and that each construction gives uniform estimates on the hyperbolic distance between z1

and z2 for nearby locations of the points. Compactness of the initial conditions implies
that the constant d depends only on ε and `. �

2.4. Main statement and proof. Let us recall the statement of our main theorem.

THEOREM 1.1. Let f be a transcendental entire function, and let N ∈ N. There exists a
non-empty bounded open set V ⊂ C so that V ⊂ f (V ) and such that any point in V has
at least N preimages in V under f , counted with multiplicity.

Proof. Fix N ∈ N. Let d/2 be such that Lemmas 2.12 and 2.13 hold for `= N and ε =
R/2N (N + 2). Observe that if Lemma 2.13 is satisfied for d/2 with `= n, it is also
satisfied for all ` < n. Let k be so that Lemma 2.2 holds for d/2. Let j and R be large
enough so that Corollary 2.7 holds for k. Choose R, θ and j such that the hypotheses in
Theorem 2.8 are satisfied.
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It follows that either AR ⊂ f (DR), or f (DR) covers AR \1(α, 1/R j/2) at least N
times for some α ∈ AR \ f (DR).

Case I. f (DR) 6⊃ AR . In this case there exists α ∈ AR \ f (DR) such that f (DR) covers
the set AR \1(α, 1/R j/2) at least N times. Let us look for a subset of DR such that its
image covers itself at least N times.

If
f (1(α, 1/R j/2) ∩ DR) ∩ DR = ∅, (2.1)

we can choose V = DR \1(α, 1/R j/2) and the proof is complete. Hence we can assume
that f (1(α, 1/R j/2) ∩ DR) ∩ DR 6= ∅, and, in particular, that there exists a point ξ ∈
1(α, 1/R j/2) ∩ DR with | f (ξ)|< 2R.

We will also assume that 1(α, R/20)⊂⊂ DR . Indeed, if this is not the case, the
proof is completely analogous by replacing DR by a slightly larger simply connected open
set D̃R ⊂⊂ AR for which 1(α, R/20)⊂⊂ D̃R is satisfied. In this case, if f (D̃R) keeps
omitting α we apply the proof of case I, otherwise we move to case II.

Let wM be a point in CR \1(α, R/20) for which | f (wM )| ≥ R j . Recall that we may
assume that such a point exists, since by Remark 2.9 we can choose CR to contain at least
two points of maximum modulus of distance at least R/10 apart from each other.

We claim that there also exists a point wm ∈ CR \1(α, R/20) so that | f (wm)|<

3R. Let wm ∈ CR be as in Remark 2.9. If 1(α, R/20) ∩ ∂CR 6= ∅, then wm ∈ CR \

1(α, R/20) as required. Otherwise 1(α, R/20)⊂⊂ CR . In this case, let us assume
by contradiction that | f (z)|> 3R for all z ∈ CR \1(α, R/20). Then we also have that
| f (z)| ≥ 3R on ∂1(α, R/20). By Lemma 2.11, since there is ξ ∈1(α, R/20) with
| f (ξ)|< 2R, we have that f (1(α, R/20))⊃1(0, 3R). This contradicts the fact that
α ∈1(0, 3R) was assumed not to lie in f (DR).

Now let D be as in Lemma 2.12, where z1 := wM and z2 := wm . Since AR is not
contained in f (D), it follows by Corollary 2.7 that f (D) covers AR \1(α, R j/2) at least
N times. Since D is contained in AR \1(α, R j/2) this concludes the proof of case I.

Case II. f (DR)⊃ AR . Observe that for each fixed N , Theorem 2.8 holds for arbitrarily
large radii R. If there is at least one of them for which case I holds, we are done. Otherwise,
for every R given by Theorem 2.8, we have that f (DR)⊃ AR and hence that f (AR)⊃ AR .

If there are arbitrarily large R for which f (AR) covers itself at least N times we are
also done. Hence we may assume that there exists 1≤ ` < N such that, for any of the
R given by Theorem 2.8, there is a point α = α(R) ∈ AR which has at most ` preimages
in AR , counted with multiplicity. We can therefore find a sequence of values of R for
which the maximum number of preimages in AR of some point α is at most `, and write
ζ1 = ζ1(R), . . . , ζ` = ζ`(R) ∈ AR for the preimages of α in AR .

Let W := AR ∩ {z ∈ C : | f (z)|< 2R}. For i = 1 . . . `, let Wi be the connected
component of W which contains ζi ( they may not all be distinct). Now one of the two
following cases occurs.

Case IIa. For arbitrarily large R, there exists R/2< r < 2R such that the circle {|z| = r}
does not intersect the set W . We claim that if R is chosen large enough then f (1(0, r))
covers 1(0, r) at least N times, giving the claim. Let v ∈ C be a non-exceptional value
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for f with |v|< 1. By Picard’s theorem, f takes on the value v infinitely many times in
any neighborhood of infinity, hence by choosing R sufficiently large we may assume that v
has at least N preimages in the disk 1(0, R/2)⊂1(0, r). Since W does not intersect the
circle ∂1(0, r), we have that | f (z)| ≥ 2R on ∂1(0, r). Hence by Lemma 2.11, in1(0, r),
the function f takes on any value in 1(0, 2R)⊃1(0, r) at least N times, counted with
multiplicity.

Case IIb. For arbitrarily large R, the set W intersects all circles {|z| = r} for R/2< r <
2R. Then there is some Wi , say W0 up to relabeling, with diameter at least 3R/2` for
arbitrarily large R.

We claim that there exist wm, wM ∈ AR with | f (wm)|< 2R and | f (wM )|> R j , and
such that |wm − ζi |, |wM − ζi |> R/2`(`+ 2) for i = 1, . . . , `, and |wm − α|, |wM −

α|> R/2`(`+ 2). We also claim that the distance between wm, wM and the boundary of
AR is at least R/2`(`+ 2).

Indeed, there are at most `+ 1 points in W0 that need to be avoided (all of the
ζi and α), so we can always find wm ∈W0 which is at Euclidean distance at least
diamEucl W0/2(`+ 2) > 3R/4`(`+ 2) from all of the ζi and from α, as well as from the
boundary of AR . By definition | f (wm)|< 2R.

To find wM it is enough to find a point of maximum modulus in AR minus the
set U =

⋃
i 1(ζi , R/2`(`+ 2)) ∪1(α, R/2`(`+ 2)), and which is at distance at least

R/2`(`+ 2) from ∂AR . This means that we have to avoid at most `+ 2 disks of diameter
R/`(`+ 2), hence there are circles in AR \U in which we can choose a point of maximum
modulus as required, which settles the claim.

By Lemma 2.13 and our choice of d at the beginning of the proof, we can find
D ⊂ AR simply connected with wm, wM ∈ D and ζi /∈ D for i = 1, . . . `, and with
D ∩1(α, 1/R j/2)= ∅, and such that distD(wm, wM ) < d/2. By our choice of the
constants k, j and R, Corollary 2.7 holds, and since f (D) omits α by construction, we
have that, for R sufficiently large, f (D) covers the set

AR \1(α, 1/R j/2)⊃ D

at least N times. �

Let us observe that each of the three cases I, IIa and IIb can occur. Indeed, case I occurs
when f has an omitted value [BFP18]; case IIa occurs in Example 2.10; and case IIb
occurs for f (z)= ez .

A. Appendix. Topological entropy on C
For maps acting on compact spaces the concept of topological entropy has been introduced
in [AKM65]. In the literature there are several non-equivalent natural generalizations
for the definition of topological entropy on non-compact spaces (see, for example,
[Bow71, Bow73a, Bow73b, Hof74], and more recently [HNP08]). We will use the
following definition.

Definition A.1. (Definition of topological entropy) Let f : Y → Y be a self-map of a
metric space (Y, d). Let X be a compact subset of Y. Let n ∈ N and δ > 0. A set E ⊂ X is
called (n, δ)-separated if:
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• for any z ∈ E , its orbit {z, f (z), . . . , f n−1(z)} ⊂ X ;
• for any z 6= w ∈ E , there exists k ≤ n − 1 such that d( f k(z), f k(w)) > δ.
Let K (n, δ) be the maximal cardinality of an (n, δ)-separated set. Then the topological
entropy htop(X, f ) is defined as

htop(X, f ) := sup
δ>0

{
lim sup

n→∞

1
n

log K (n, δ)
}
.

We define the topological entropy htop( f ) of f on Y as the supremum of htop(X, f ) over
all compact subsets X ⊂ Y.

When Y is compact the definition coincides with the usual definition. In the literature
the finite orbits {z, f (z), . . . , f n−1(z)} are often not required to remain in X . A
disadvantage of this definition is that the entropy is then dependent on the metric; for
example, the entropy of a polynomial acting on the complex plane is then infinite with
respect to the Euclidean metric. Our definition above, which may give a smaller value
for the entropy, is independent of the metric inducing the topology, and is invariant under
topological conjugation.

We are now ready to prove Theorem 1.2. The ideas of the proof are similar to the ideas
used in [MP77].

Proof of Theorem 1.2. Denote the set of critical points of g in V by C. Note that C is finite.
Let C0 ⊂ C contain only those critical points that are not periodic. Write D for the product
of the local degrees of g at the critical points in C0.

Fix a pointw ∈ V not contained in a periodic cycle containing a critical point. It follows
that all inverse orbits of w avoid a sufficiently small neighborhood of each super-attracting
periodic cycle. Let us denote the complement of these neighborhoods in V by V ′.

Let m ∈ N, and let ρ = ρ(m) > 0 be such that, for every x ∈ C0 and every
n = 1, . . . , m,

gn(1(x, ρ)) ∩1(x, ρ)= ∅.

Such ρ can be chosen by finiteness of C0, and since the points x are not periodic. By
decreasing ρ > 0 if necessary we may assume that the disks1(x, ρ) are pairwise disjoint.

There exists an ε = ε(m) > 0 such that the following two properties hold. For each
y ∈ V ′ \

⋃
x∈C0

g(1(x, ρ)), there are at least N preimages of y that are ε-separated. On
the other hand, if y ∈ g(1(x, ρ)) then the number of preimages (counted with multiplicity)
near x that are not ε-separated is at most the local degree of g at x , and the other preimages
have distance at least ε to the preimages near x .

Consider a finite inverse orbit y0, y−1, y−m of a point y0 ∈ V ′. By the estimates on the
number of preimages that may not be separated, and by the fact that any inverse orbit of
length m enters each disk 1(x, ρ) at most once, it follows that there are at most D − 1
other inverse orbits of y0 of length m that are not ε-separated from y0. Thus, a lower bound
for the number of ε-separated backwards m-orbits of y0 is given by N m/D.

Since the lower estimate holds for any y ∈ V ′, it holds in particular for any point in
f −km(w). Hence, for any k ∈ N, the number of ε-separated backwards orbits of w of
length km is at least (

N m

D

)k

=

(
N

D1/m

)km

,
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which is therefore a lower bound for K (km, ε), the maximal cardinality of a (km, ε)-
separated set. Since D is a fixed constant and we can let m converge to infinity as ε→ 0,
it follows that the topological entropy is at least log(N ). �
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