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Abstract

We extend Thurston’s topological characterisation theorem for postcritically finite rational
maps to a class of rational maps which have a fixed bounded type Siegel disk. This makes a
small step towards generalizing Thurston’s theorem to geometrically infinite rational maps.
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1. Introduction

Let C, Ĉ, � and T denote the complex plane, the Riemann sphere, the open unit disk and
the unit circle respectively. Let f : Ĉ→ Ĉ be an orientation-preserving branched covering
map of degree at least two. We call

� f =
{

x
∣∣ degx f > 1

}
the critical set and

Pf =
⋃

1≤k<∞
f k(� f )

the postcritical set of f . We say f is PCF (postcritically finite) if Pf is a finite set. In 1982
Thurston established the topological characterisation for PCF rational maps. The reader may
refer to [3] for the details of this theory. It has since been generalised to sub-hyperbolic
rational maps [2, 7] and post-singularly finite exponential maps [6]. There are also some
other types of generalisation of the original theorem by constraining just some of the critical
points [15]. The reader may refer to Rees’ survey article [16] for a more detailed introduction
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2 GAOFEI ZHANG

of the development in this aspect. In this work we will extend this theory to a class of rational
maps with a Siegel disk of bounded type rotation number. Recall that an irrational number
is of bounded type if all the coefficients of its continued fraction have a finite upper bound.
Let 0< θ < 1 be an irrational number of bounded type and be fixed throughout.

Definition 1·1. Let Rgeom
θ denote the class of all the rational maps g such that:

(1) g has a fixed Siegel disk Dg with rotation number θ ;
(2) the forward orbit of each critical point of g either intersects Dg, or is eventually periodic,

or belongs to the basin of some attracting cycle.

The main purpose of this paper is to give a topological characterisation of the maps in
Rgeom
θ . Before we state the main result, let us introduce some terminologies first. Let f :

Ĉ→ Ĉ be an orientation-preserving branched covering map. Suppose O= {x1, . . . , x p} is
a periodic cycle of f with period p. We say O is a holomorphic attracting cycle of f if f
is holomorphic in an open neighbourhood of O, |D f p(x1)|< 1, and moreover, O attracts at
least one infinite critical orbit of f .

Definition 1·2. Let Rtop
θ denote the class of all the orientation-preserving branched

covering maps f : Ĉ→ Ĉ of degree at least two such that:

(i) f |� :�→� is the rigid rotation Rθ : z �→ e2π iθ z given by θ ;
(ii) T∩� f �= ∅;

(iii) the forward orbit of each critical point of f either intersects�, or is eventually periodic,
or converges to some holomorphic attracting cycle.

Definition 1·3. We say a map f ∈ Rtop
θ is combinatorially equivalent to a map g ∈ Rgeom

θ

if there exist a pair of homeomorphisms φ, ψ : Ĉ→ Ĉ such that:

(i) φ ◦ f = g ◦ψ ;
(ii) φ|�=ψ |� is holomorphic;

(iii) for each point xi in the holomorphic attracting cycles of f , there is a Jordan disk Di

containing xi such that φ|Di =ψ |Di is holomorphic, and moreover, φ is isotopic to ψ
rel Pf ∪∪i Di .

Since a Siegel disk of a rational map with bounded type rotation number is a Jordan
domain (actually a quasi-disk) with the boundary containing at least one critical point [18],
it follows that every g ∈ Rgeom

θ is modeled by some f ∈ Rtop
θ in the sense of Definition 1·3.

The main result of the paper is to prove the converse.

MAIN THEOREM. Suppose f ∈ Rtop
θ . Then f is combinatorially equivalent to some g ∈

Rgeom
θ if and only if f has no Thurston obstructions in Ĉ \�, and moreover, if it exists, g

must be unique up to Möbius conjugation.

The necessity part of the existence is an immediate consequence of a theorem of
McMullen, see [10, Appendix B]. The proof of the sufficiency is the main task of this paper.
The general idea is to construct a Blaschke product G such that G and f act in a similar
way in the outside of the unit disk, and when restricted on the unit circle, G is a critical
circle homeomorphism of rotation number θ . The candidate rational map g is then obtained
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Characterisation of rational maps with Siegel disks 3

by performing a quasiconformal surgery on G. The following is a sketch of the line of the
proof.

Let d denote the covering degree of f : Ĉ→ Ĉ. Since � f �= ∅ by definition, we have
d ≥ 2. We first construct a branched covering map F of degree 2d − 1 which is symmetric
about T such that when restricted on Ĉ \�, F acts in a similar way with f . We then perturb
F and get a sequence of orientation-preserving branched covering maps Fn : Ĉ→ Ĉ such
that Fn→ F uniformly, Fn is symmetric about T, and moreover, every critical orbit of Fn

either converges to some holomorphic attracting cycle or is eventually periodic.
The next part is the core of the proof where we need to deal with two main issues. Firstly,

we will show that for all n large enough, the maps Fn have no Thurston obstructions. Hence
by Thurston’s theorem and its extension to sub-hyperbolic case, Fn is combinatorially equiv-
alent to some rational map Gn . Since Fn is symmetric about T, Gn is a Blaschke product.
Secondly, we will prove that the geometry of PGn is uniformly bounded, and therefore, as
n→∞, Gn converges to some Blaschke product G. The main tool in solving both the two
issues is Lemma 4·3. The lemma asserts that, as one iterates the Thurston operator induced
by Fn , the length of certain groups of simple closed geodesics has positive lower bounds.

From the uniform boundedness of the geometry of PGn we will construct a combinatorial
equivalence between F and G. The map g ∈ Rgeom

θ is then obtained by performing a quasi-
conformal surgery on G. The existence part of the main theorem then follows. To prove the
uniqueness we first prove that the Julia set of g has zero Lebesgue measure. This, together
with the fact that the boundaries of bounded type Siegel disks of rational maps are quasi-
circles [18], implies that if f is combinatorially equivalent to both g and h in Rgeom

θ , then
g and h are quasiconformally equivalent to each other. By lifting the quasiconformal equiv-
alence, we will get a quasiconformal conjugation between g and h which is conformal in
the Fatou set of g. Since the Julia set of g has zero Lebesgue measure, the conjugation map
must be a Möbius map. This implies the uniqueness part of the main theorem.

Here is the structure of the paper. In Section 2 we give a brief introduction of Thurston’s
theory on the topological characterisation of PCF rational maps and its generalization to sub-
hyperbolic rational maps. In Section 3 we construct the branched covering map F : Ĉ→ Ĉ

by symmetrizing f about T and construct the sequence Fn by perturbing F . In Section 4 by
assuming Lemma 4·3 we prove that Fn has no Thurston obstructions and PGn has uniformly
bounded geometry. In Sections 5 and 6 we prove the existence and the uniqueness of the
main theorem respectively. The proof of Lemma 4·3 is the heart of this work and is presented
in Section 7. The appendix contains some known lemmas from [3] and [7], all of which are
used in Section 7, and a technical lemma on homotopy, which is used in Section 5.

2. Background

In this section we will give a brief introduction of Thurston’s theory on the topologi-
cal characterisation of PCF rational maps and its generalisation to sub-hyperbolic rational
maps. The reader may refer to [2, 3, 7, 14] for relative details. Suppose f : Ĉ→ Ĉ is an
orientation-preserving branched covering map. We say a simple closed curve γ ⊂ Ĉ \ Pf

is non-peripheral if each component of Ĉ \ γ contains at least two points in Pf . Let
	 = {γ1, · · · , γn} be a family of disjoint non-peripheral curves which are not homotopic
to each other. We call such 	 a multi-curve. We say a multi-curve 	 is stable if for each
γ j ∈ 	, all the non-peripheral components of f −1(γ j ) are homotopic to the elements in
	. Associated to each stable multi-curve 	, there is a linear transformation f	 :R	→R

	

with non-negative entries: let γi, j,α denote all the non-peripheral components of f −1(γ j )
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homotopic to γi , and let di, j,α denote the covering degree of f : γi, j,α→ γ j , define

f	(γ j )=
∑

i

ai, jγi ,

where ai, j =∑
α 1/di, j,α. Let λ	 denote the maximal eigenvalue of f	. We call 	 a

Thurston obstruction if λ	 ≥ 1. Most importantly, for any k ≥ 1 we have(
f	

)k = (
f k

)
	
. (2·1)

Remark 2·1. In the above setup all the concepts are still meaningful if we replace Pf by
a compact subset E ⊂ Ĉ satisfying Pf ⊂ E and f (E)⊂ E . In particular, in Section 7, for
f ∈ Rtop

θ , we will consider the f -stable multi-curves in Ĉ \ (�∪ Pf ∪∪i Di ); and for the
maps Fn constructed in Section 3, we will consider the Fn-stable multi-curves in Ĉ \ (T∪
PFn ∪∪i Di ).

2·1. Topological characterisation of PCF rational maps

In the PCF case, we define the orbifold O f associated to f to be the pair (Ĉ, ν(x)) where
ν : Ĉ→N

+ ∪ {∞} is the smallest function such that ν(x) degx( f ) is a divisor of ν( f (x)).
We say O f is hyperbolic if

2−
∑

x

(
1− 1

ν(x)

)
< 0.

We say f is combinatorially equivalent to a rational function g if there is a pair of
homeomorphisms φ, ψ : Ĉ→ Ĉ such that ψ is isotopic to φ rel Pf and φ ◦ f = g ◦ψ .

THEOREM 2·1 (Thurston). Let f : Ĉ→ Ĉ be a PCF and orientation-preserving
branched covering map. Suppose O f is hyperbolic. Then f is combinatorially equivalent
to a rational map if and only if f has no Thurston obstructions.

Let T f denote the Teichmuller space modelled on (Ĉ, Pf ). The proof of Theorem 2.1 is
by considering the iteration of the analytic operator σ f : T f → T f induced by f , which is
now called Thurston operator. The existence of the candidate rational map g is equivalent to
the existence of a fixed point of σ f . Let τ0 ∈ T f be an arbitrary point and τi = σ i

f (τ0). It turns
out that the non-existence of Thurson obstructions implies the convergence of τi , which then
implies the existence of a fixed point of σ f .

Here are some more details. As we iterate the Thurston operator σ f , we get a sequence of
Riemann surfaces Rm . The non-existence of Thurston obstructions implies the existence of
a positive lower bound of the length of all simple closed geodesics in Rm . More precisely,
let φm : Ĉ→ Ĉ be the homeomorphism which represents τm . For each non-peripheral curve
γ ⊂ Ĉ \ Pf , let l(γ, τm) denote the length of the simple closed geodesic in Ĉ \ φm(Pf )which
is homotopic to φm(γ ). The non-existence of Thurston obstructions implies that there is a
constant C > 0 depending only on τ0 such that l(γ, τm) >C for all m ≥ 1. From this one can
further deduce that dT f (τm, τm+1) decay exponentially, which then implies the existence of a
fixed point of σ f .

2·2. Topological characterisation of sub-hyperbolic rational maps

Let f : Ĉ→ Ĉ be an orientation-preserving branched covering map. We call f a sub-
hyperbolic semi-rational branched covering map if every critical orbit of f either converges
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to some holomorphic attracting cycle or is eventually periodic. By [7, Lemma 2·1], for each
xi in the holomorphic attracting cycles of f , which is necessarily an accumulation point of
Pf by definition, we can take a topological disk Di containing xi such that:

(i) Di ∩ D j =∅ for i �= j and all ∂Di are real analytic curves;
(ii) for each Di , there is an annulus Hi surrounding it with ∂Di being the inner component

of ∂Hi and Hi ∩ Pf =∅;
(iii) f is holomorphic in Di ∪ Hi and maps Di ∪ Hi into some Di ′ .

These Di are called holomorphic disks of f . Since Pf ∪∪i Di is a forward invariant
compact set, in Ĉ \ (Pf ∪∪i Di) one can define the non-peripheral curves, the f -stable
multi-curves and the Thurston obstructions in the same way as in the PCF case. We
say f is combinatorially equivalent to a rational map g if there is a pair of homeomor-
phisms φ, ψ : Ĉ→ Ĉ such that ψ is isotopic to φ rel Pf and φ ◦ f = g ◦ψ , and moreover,
φ|Di =ψ |Di is holomorphic for all Di . With different approaches in [2] and [7] the authors
prove the following independently.

THEOREM 2·2 (Cui–Tan, Jiang–Zhang). Suppose f is a sub-hyperbolic semi-rational
branched covering map. Then f is combinatorially equivalent to a rational map if and only
if f has no Thurston obstructions.

The proof of [7, Theorem 2·2] has the same spirit as in the PCF case, namely, by con-
sidering the iteration of the analytic map σ f : T f → T f induced by f where T f is the
Teichmuller space modelled on (Ĉ, Pf ∪∪i Di ). The existence of the candidate rational map
g is equivalent to the existence of a fixed point of σ f . There are two steps in the proof. In
the first step, the proof of the existence of the fixed point is reduced to the proof of cer-
tain bounded geometry. In the second step, it is shown that the non-existence of Thurston
obstructions implies the bounded geometry. More precisely, using the same notations as in
Section 2·1, it is shown that there is a constant C > 0 depending only on τ0 such that for
any non-peripheral γ ⊂ (Ĉ, Pf ∪∪i Di), if η is the geodesic in Ĉ \ φm(Pf ∪∪i Di ) which is
homotopic to φm(γ ), then the length of η is greater than C for all m ≥ 0.

The proof in the PCF case relies essentially on the finiteness of Pf and the invariance
property f (Pf )⊂ Pf (see [3]). To adapt the argument in the PCF case, a key trick in [7] is
to take a pair of distinct points {ai , bi } ⊂ Di ∩ Pf for each Di and replace Pf by the finite
set E = P1 ∪∪i {ai , bi } where

P1 = Pf \ ∪i Di .

Note that E is necessarily not forward invariant. In [7] we overcame this non-invariance
problem by introducing certain intermediate larger sets, see the proof of [7, Lemma 7·5].
Such idea will be systematically used in this work, see Lemma 4·2 and the proof of
Lemma 4·3 in Section 7.

3. Constructing Fn

3·1. Notations

Given a pointw ∈ Ĉ, letw∗ denote the symmetric image ofw about T, i.e.,w∗ = 1/w. For
a set W ⊂ Ĉ, let W ∗ = {w∗ ∣∣w ∈W } and |W | denote the cardinality of W , and W c = Ĉ \W
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denote its complement in Ĉ. We say W is symmetric about T if W =W ∗. For any α ∈R, let
Rα denote the rotation given by z �→ e2π iαz. Let id denote the identity map.

3·2. Construction of F

Suppose f ∈ Rtop
θ has no Thurston obstructions in Ĉ \�. Let d ≥ 2 be the degree of f .

We may assume that∞∈ Pf . In fact, if Pf \� �= ∅ , we take P ∈ Pf \�. Let � : Ĉ→ Ĉ

be a homeomorphism such that �(P)=∞, �|�= id and � is holomorphic in an open
neighborhood of all holomorphic attracting cycles of f . Let f̃ =� ◦ f ◦�−1. It is clear that
f̃ ∈ Rtop

θ has no Thurston obstructions in Ĉ \� and∞∈ Pf̃ . Then we need only consider f̃ .

If Pf \�=∅, we take P ∈ Ĉ \� such that f (P)= 1 and define � and f̃ in the same way
as before. Then f̃ (∞) ∈ Pf̃ . In this case we consider the forward invariant compact subset

Pf̃ ∪ {∞} instead of Pf̃ , see Remark 2·1. Note that with respect to this larger set f̃ still has
no non-peripheral curves in Ĉ \� and thus has no Thurston obstructions in Ĉ \�. In this
case, to simplify the notations, we still use Pf̃ to refer to the larger set Pf̃ ∪ {∞}.

We construct F by symmetrising f . Before that we need to make some preliminary prepa-
ration. Firstly, if f has holomorphic attracting cycles, as in Section 2·2, for each point xi in
the holomorphic attracting cycles we take a disk Di and an annulus Hi surrounding Di so
that the three properties there are satisfied. Secondly, we need make a slight modification of
f in Ĉ \�. Since � f ∩T �= ∅, we may assume that 1 ∈� f . It follows that there is a curve
segment, say � f , which is attached to 1 from the outside of �, such that f (� f )⊂T. Let

X = {z ∈� f −�
∣∣ f i(z) ∈� for some i ≥ 1}.

For each z ∈ X , let iz ≥ 1 be the smallest integer such that f iz (z) ∈�. Let X̃ = { f iz (z)
∣∣

z ∈ X} and σ : Ĉ→ Ĉ be a homeomorphism such that σ |(Ĉ−�)= id and σ(X̃)⊂�∗f .
Since X̃ is a finite set contained in �, such map obviously exists. Let f1 = σ ◦ f . Define

F(z)=
{

f1(z) if |z| ≥ 1,

( f1(z∗))∗ for otherwise.
(3·1)

Since 1 ∈� f and f |T= Rθ , by the construction it follows directly that 1 ∈�F and
F |T= Rθ .

We shall see later that with such modification the symmetrization does not produce
Thurston obstructions. From the construction we have

PROPOSITION 3·1. For z ∈ X, Fiz (z) ∈�∗f , and hence Fiz+1(z) ∈T. By symmetry, for
z ∈ X∗, Fiz (z) ∈� f , and hence Fiz+1(z) ∈T.

Note that symmetrisation may produce more post-critical points in Ĉ \�. In Figure 1,
the point C∗ is such a point. Note also that more post-critical points will cause more non-
peripheral curves, and that for any non-peripheral curve γ in Ĉ \�, F−1(γ ) may have
non-peripheral components in �. Thus, a priori, F and its perturbations Fn , which will
be constructed in the following, may have Thurston obstructions. But we shall see later that
this will not happen.

3·3. Construction of Fn

Let θn = pn/qn be any sequence of rational numbers such that (pn, qn)= 1 and θn→ θ as
n→∞. Let

On =
{
e2π ikθn

∣∣ 0≤ k < qn

}
.
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Fig. 1. Symmetrisation produces more post-critical points in Ĉ \�.

For 0< b< a let A(a, b)= {z : b< |z|< a}. By the construction of F , any infinite critical
orbit of F which does not intersect T must converge to some holomorphic attracting cycle.
So there is an 0< r0 < 1 such that

(A(1+ r0, 1− r0) \T)∩
(
�F ∪ PF ∪∪i Di

)=∅. (3·2)

Set

Y = {
z ∈ (�F ∪ PF) \T

∣∣ F(z) ∈T}
, (3·3)

and

Z = (�F ∩T)∪ F(Y ). (3·4)

Clearly, Z is a finite set.

PROPOSITION 3·2. There is a sequence of sub-hyperbolic semi-rational branched covering
maps Fn : Ĉ→ Ĉ such that Fn→ F uniformly with respect to the spherical metric, and
moreover, the following properties hold for all n large enough.

(i) Fn(z)∗ = Fn(z∗) for all z ∈ Ĉ, and Fn|T= Rθn .
(ii) If {z, Fn(z)} or {z, F(z)} is contained in Ĉ \ A(1+ r0/2, 1− r0/2), then Fn(z)= F(z).

(iii) 1 ∈�Fn , |�Fn | = |�F |, �Fn \T=�F \Tčň and PFn \T= PF \T.
(iv) Y = {z ∈ (�Fn ∪ PFn ) \T

∣∣ Fn(z) ∈T}.
(v) Let Zn = (�Fn ∩T)∪ Fn(Y ). Then Zn ⊂ On and PFn ∩T= On. Moreover, |Zn| = |Z |

and Zn→ Z as n→∞. In addition, if Fm(x)= y for some x, y ∈ Z and integer m ≥ 0,
then Fm

n (xn)= yn with xn and yn being respectively the corresponding points of x and
y in Zn.

(vi) There is a curve segment �n attached to 1 from the outside of � such that Fn(�n)⊂T,
and moreover, if Fn(z) ∈ Ĉ \� holds for some z ∈ (�Fn ∪ PFn )∩�, then Fn(z) ∈�n.
In particular, this implies that (PFn \ Pf )∩ (Ĉ \�)⊂�n.
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Proof. Since Z is a finite set and θn→ θ , we can define τn : Z→ On for all n large enough
so that:

(a) τn(1)= 1;
(b) τn(z)→ z for all z ∈ Z ; and
(c) τn preserves the orbit relations among the points in Z in the following sense: if there

exist an m ≥ 0 and x, y ∈ Z such that Rm
θ (x)= y then Rm

θn
◦ τn(x)= τn(y).

Then we define the map σn : (�F ∩T)∪ R−1
θ (F(Y ))→T as follows.

σn(z)=
⎧⎨⎩τn(z) for z ∈�F ∩T,

R−1
θn
◦ τn ◦ Rθ (z) for z ∈ R−1

θ (F(Y )).
(3·5)

Note that σn is well defined when (�F ∩T)∩ R−1
θ (F(Y )) �= ∅. To see this, suppose

z ∈ (�F ∩T)∩ R−1
θ (F(Y )). Then w= Rθ (z) ∈ F(Y ). By (c) it follows that Rθn (τn(z))=

τn(w)= τn(Rθ (z)). That is, τn(z)= R−1
θn
◦ τn ◦ Rθ (z).

By (b) it follows that σn→ id on the finite set (�F ∩T)∪ R−1
θ (F(Y )). So we can extend

σn to a homeomorphism σn :T→T so that:

(d) σn(z)→ z uniformly for z ∈T.

Now we extend σn to a homeomorphism of the sphere to itself, which is still denoted by
σn , such that:

(e) σn = id in Ĉ \ A(1+ r0/2, 1− r0/2);
( f ) σn(z)∗ = σn(z∗);
(g) as n→∞, σn→ id uniformly with respect to the spherical metric.

Next we define a homeomorphism hn :T→T by

hn(z)= Rθn ◦ σn ◦ R−1
θ (z), (3·6)

and extend it to a homeomorphism of the sphere to itself, which is still denoted by hn ,
such that:

(h) hn = id in Ĉ \ A(1+ r0/2, 1− r0/2);
(i) hn(z)∗ = hn(z∗);
( j) as n→∞, hn(z)→ id uniformly with respect to the spherical metric.

Define

Fn = hn ◦ F ◦ σ−1
n . (3·7)

Now let us show that the properties (i-vi) hold for Fn . Since hn , F and σn are all symmetric
about T, F∗n (z)= Fn(z∗) holds by (3·7). By (3·6), (3·7) and that F |T= Rθ , it follows that
Fn|T= Rθn . This proves (i).

(ii) follows from (e), (h) and (3·7).
Since 1 ∈�F and σn(1)= τn(1)= 1, it follows that 1 ∈�Fn . By (3·7) we have

�Fn = σn(�F). So |�Fn | = |�F |. From (e) and (3·2) and that σn(T)=T, it follows that
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Characterisation of rational maps with Siegel disks 9

�Fn \T=�F \T. This, together with (3·2) and the property (ii) we just proved, implies
that PFn \T= PF \T. This proves (iii).

By (iii) we have (�Fn ∪ PFn ) \T= (�F ∪ PF) \T. For z ∈ (�Fn ∪ PFn ) \T, it follows
from (3·2), (e) and (3·7) that Fn(z)= hn(F(z)). Since hn is a homeomorphism and h(T)=T,
Fn(z) ∈T if and only if F(z) ∈T. This proves (iv).

To prove (v) note that (�Fn ∩T)= σn(�F ∩T)= τn(�F ∩T). By (e) and (3·2) we have
σ−1

n (Y )= Y , and thus

Fn(Y )= hn ◦ F ◦ σ−1
n (Y )= hn(F(Y ))= Rθn ◦ σn ◦ R−1

θ (F(Y ))= τn(F(Y )).

So Zn = (�Fn ∩T)∪ Fn(Y )= τn(Z)⊂ On by the definition of τn . This, together with the
fact that On is a periodic orbit of Fn , implies that PFn ∩T= On . Since τn is injective and
τn(z)→ z for all z ∈ Z , it follows that |Zn| = |Z | and Zn→ Z . The last statement of (v)
holds since τn preserves the orbit relations among the points in Z .

Since σn(1)= 1, F(� f )⊂T and hn(T)=T, it follows from (3·7) that the curve segment
�n = σn(� f ) is attached to 1 from the outside of� and Fn(�n)⊂T. Suppose Fn(z) ∈ Ĉ \�
for some z ∈ (�Fn ∪ PFn )∩�. Then Fn(z) ∈ PFn \T. From (3·2) and property (ii), we have
Fn(z)= F(z). Since z ∈ (�Fn ∪ PFn )∩�= (�F ∪ PF)∩� by property (iii), F(z) ∈� f by
Proposition 3·1. From (3·2) we have F(z) /∈ A(1+ r0, 1− r0). From (e) and F(z) ∈� f we
have Fn(z)= F(z)= σn(F(z)) ∈ σn(� f )=�n .

If w ∈ (PFn \ Pf )∩ (Ĉ \�), then w= Fn(z) for some z ∈ (�Fn ∪ PFn )∩�. According to
what we have just proved, we get w= Fn(z) ∈�n . The property (vi) follows.

Remark 3·1. Since Pf \� is a finite set, by deforming f in its combinatorial equiva-
lence class if necessary, we may assume that f and thus F are both quasiregular maps.
From the construction we see that both σn and hn can be taken to be K -quasiconformal
with K > 1 being some constant independent of n. So besides the six assertions claimed
in Proposition 3·2 we may further assume that Fn is K0-quasiregular with K0 > 1 being
independent of n.

Remark 3·2. By the continuity of F we can take r0 > 0 in (3·2) small and an r1 > r0 such that

{z | 1< |z|< 1+ 2r1} ∩
(
PFn ∪∪i Di

)=∅,
and moreover, for any z ∈ A(1+ r0, 1− r0), F(z) ∈ A(1+ r1, 1− r1). So for any w with
|w|> 1+ r1, by (e), (h), (3·7) and (3·1) we have

F−1
n (w)∩ (

Ĉ \�)= F−1(w)∩ (
Ĉ \�)= f −1(w).

4. Proving that Fn has no Thurston obstructions and PGn has uniformly bounded geometry
by assuming Lemma 4·3

For n ≥ 1, let τ0,n denote the standard complex structure on Ĉ. For m, n ≥ 1, let
τm,n denote the complex structure on Ĉ which is obtained by pulling back τ0,n by Fm

n .
Associated to each τm,n is a quasiconformal homeomorphism φm,n : Ĉ→ Ĉ which fixes 0, 1
and∞. Then

Gm,n = φm,n ◦ Fn ◦ φ−1
m+1,n
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is a rational map. By the symmetry of Fn , it follows that τm,n is symmetric about T. By
symmetry again, both φm,n and (φm,n(z∗))∗ fix 0, 1 and∞, and are associated to the same
complex structure τm,n . By the uniqueness we have φm,n(z)= (φm,n(z∗))∗. It follows that

Gm,n (z
∗)= φm,n ◦ Fn ◦ φ−1

m+1,n (z
∗)

= φm,n ◦ Fn

((
φ−1

m+1,n (z)
)∗)

= φm,n

((
Fn

(
φ−1

m+1,n (z)
))∗)

= (
φm,n

(
Fn

(
φ−1

m+1,n (z)
)))∗

= (
Gm,n (z)

)∗
.

(4·1)

This implies that all Gm,n are Blaschke products.

Definition 4·1. Suppose P ⊂ Ĉ is a proper closed subset with |P| ≥ 3 and φ : Ĉ→ Ĉ is
a homeomorphism. Suppose γ ⊂ Ĉ \ P is a non-peripheral curve. Let η⊂ Ĉ \ φ(P) be the
unique simple closed geodesic which is homotopic to φ(γ ) in Ĉ \ φ(P). We use lφ(γ, P)
to denote the length of η with respect to the hyperbolic metric of Ĉ \ φ(P). We say γ is a
(φ, P)-geodesic if η= φ(γ ).

By (3) of Proposition 3·2 we have PF \T= PFn \T. Suppose Fn has holomorphic disks.
Otherwise we just omit this step. By Section 2·2 we may assume that

each Di satisfies the properties (i-iii) given in Section 2·2, in particular, by (ii) ∂Di ∩
PFn =∅, and by (iii) T∩ (Hi ∪ Di)= D j ∩ (Hi ∪ Di)=∅ for i �= j .

We may assume that the holomorphic disks are presented in pairs which are symmetric with
each other about T, that is

D is a holomorphic disk of Fn if and only if D∗ is a holomorphic disk of Fn .

We may further assume that each Di is small enough so that

each Di contains at most one critical value of Fn .

For each holomorphic disk Di , we take a pair of distinct points {ai , bi } ⊂ Di ∩ PFn =
Di ∩ PF . It is easy to see that we can take the pair {ai , bi } ⊂ Di so that the following three
properties hold:

(i) If∞∈ Di , then∞∈ {ai , bi }.
(ii) If v ∈ Di is the only critical value contained in Di , then v ∈ {ai , bi }.

(iii) If D j = D∗i , then {a j , b j } = {a∗i , b∗i }.
Let Y and Z be the sets defined in (3·3) and (3·4) respectively. Set

P1 = PF \
(
T∪∪i Di

)
,

Zn =
(
�Fn ∩T

)∪ Fn (Y ) ,

An = P1 ∪ Zn ∪∪i {ai , bi } ,
Bn = P1 ∪ On ∪∪i {ai , bi }
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and

A= P1 ∪ Z ∪∪i {ai , bi }.
For k ≥ 0, let

Zk
n =

k⋃
i=0

Fi
n(Zn) , Ak

n =
k⋃

i=0

Fi
n(An) , Bk

n =
k⋃

i=0

Fi
n(Bn). (4·2)

and

Zk =
k⋃

i=0

Fi(Z) and Ak =
k⋃

i=0

Fi(A).

Then Ak
n ∩ On = Zk

n ⊂ On and Bk
n ∩ On = On .

Remark 4·1. If there are no holomorphic disks, we just define An = P1 ∪ Zn , Bn = P1 ∪
On = PFn and A= P1 ∪ Z . In addition, from the construction it follows that {0, 1,∞}⊂ An ,
Ak

n = (Ak
n)
∗ and Bk

n = (Bk
n )
∗.

PROPOSITION 4·1. Let k ≥ 0. Then |Z k
n | = |Zk | and |Ak

n| = |Ak | hold for all n large enough.
Moreover, Zk

n→ Zk and Ak
n→ Ak as n→∞. In particular, there is a μ> 0 depending only

on k such that the spherical distance between any two distinct points in Ak
n is greater than

μ for all n large enough.

Proof. By (v) of Proposition 3·2 |Zn| = |Z | and Zn→ Z , and moreover the orbit relations
are preserved. Since Fn→ F , this implies that |Zk

n | = |Zk | for all n large enough and Zk
n→

Zk as n→∞. These, together with (ii) of Proposition 3·2 and the definitions of Ak
n and Ak ,

implies that |Ak
n| = |Ak | and Ak

n→ Ak . The last assertion is then obvious.

LEMMA 4·2. Let N0 ≥ 0. For 0≤ i ≤ N0, define

Ãi
n = F−i

n

(
AN0

n

)
and B̃i

n = F−i
n

(
B N0

n

)
. (4·3)

Then for all 0≤ i ≤ N0, An ⊂ Ãi
n ∩ AN0

n , Bn ⊂ B̃i
n ∩ B N0

n , and the maps

Fi
n : Ĉ \ Ãi

n→ Ĉ \ AN0
n and Fi

n : Ĉ \ B̃i
n→ Ĉ \ B N0

n

are covering maps.

Proof. For 0≤ i ≤ N0, by the definition of AN0
n we have Fi

n(An)⊂ AN0
n and thus An ⊂

F−i
n (AN0

n )= Ãi
n (here F0

n = id and Ã0
n = AN0

n ). Since An ⊂ AN0
n we have An ⊂ Ãi

n ∩ AN0
n . The

same argument implies that Bn ⊂ B̃i
n ∩ B N0

n .
Note that for each critical point c of Fn , either c ∈ An or Fn(c) ∈ An . From this and the

definition of AN0
n , it follows that for each 1≤ i ≤ N0, all the critical values of Fi

n are con-
tained in AN0

n . Thus Fi
n : Ĉ \ Ãi

n→ Ĉ \ AN0
n is a covering map. The same argument implies

that Fi
n : Ĉ \ B̃i

n→ Ĉ \ B N0
n is also a covering map.
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LEMMA 4·3. The following two assertions hold:

(i) for any k ≥ 0, there exist a δ > 0 and N = N (k)≥ 1 depending only on k such that for
any non-peripheral curve γ ⊂ Ĉ \ Ak

n, lφm,n (γ, Ak
n)≥ δ holds for all m ≥ 0 and n ≥ N ;

(ii) there exists an N ≥ 1 such that for all n ≥ N, there is a δn > 0 depending only on n such
that for any non-peripheral curve γ ⊂ Ĉ \ Bn, lφm,n (γ, Bn)≥ δn holds for all m ≥ 0.

Remark 4·2. To save the notations of the constants, from now on when we say an assertion
holds for all m ≥ 0 and all n large enough, we mean that there is an N ≥ 0 such that the
assertion holds for all m, n with m ≥ 0 and n ≥ N .

The proof of Lemma 4·3 is the heart of the paper and is postponed until Section 7.

COROLLARY 4·4. Fn has no Thurston obstructions for all n large enough.

Proof. According to [14] (or [1] if Fn has holomorphic disks) the canonical Thurston
obstruction for Fn is defined to be the set of all homotopy classes of non-peripheral curves
γ with lφm,n (γ, PFn )→ 0 (or lφm,n (γ, PFn ∪∪i Di)→ 0) as m→∞. By [14, Theorem 1·1]
(or by [1, theorem 1]), if Fn has Thurston obstructions, then Fn has a canonical Thurston
obstruction. So it suffices to prove that Fn has no canonical Thurston obstructions for
all n large enough. In the case that there are no holomorphic disks, PFn = Bn . By the
second assertion of Lemma 4·3, Fn has no canonical Thurston obstructions. In the case
that there are holomorphic disks, since each Di contains two points {ai , bi } ⊂ Bn , any
(φm,n, PFn ∪∪i Di)-geodesic ξ is non-peripheral in Ĉ \ Bn , and therefore, is homotopic to
some (φm,n, Bn)-geodesic γ in Ĉ \ Bn . Since Bn ⊂ PFn ∪∪i Di , by the second assertion of
Lemma 4·3, we have

lφm,n (ξ, PFn ∪∪i Di) > lφm,n (γ, Bn) > δn.

Again Fn has no canonical Thurston obstructions. The proof of Corollary 4·4 is completed.

Let TFn denote the Teichmüller space modelled on (Ĉ, PFn ) (or modelled on (Ĉ, PFn ∪
∪i Di ) if there are holomorphic disks). By Corollary 4·4 Fn has no Thurston obstructions
for all n large enough. Now let us fix an n large enough. According to the proofs of
Thurston’s characterisation theorem and its extension to sub-hyperbolic case (see [3] and
[7] or Section 2 of this paper), [τm,n] converges to [τn] as m→∞, where [τm,n] denotes the
point in TFn represented by τm,n , and [τn] denotes a point in TFn which is fixed by σFn . Let
λm,n : Ĉ→ Ĉ denote the Teichmüller map of [τm,n] which fixes 0, 1 and∞ and is conformal
in all the Di if there are holomorphic disks. By the uniqueness of the Techmüller map and
the symmetry of Fn , λm,n must be symmetric about T, that is, λm,n(z)∗ = λm,n(z∗). Since
[τm,n] converges, all λm,n must be K (n)-quasiconformal with K (n) > 1 depending only on
n. Since φm,n is isotopic to λm,n rel PFn (or rel PFn ∪∪i Di ), we can lift the isotopy between
φm,n and λm,n to the isotopy between φm+1,n and some quasiconformal homeomorphism of
the sphere, say ηm,n , through φm,n ◦ Fn =Gm,n ◦ φm+1,n . In this way we get

Gm,n = λm,n ◦ Fn ◦ η−1
m,n.

Since λm,n is K (n)-quasiconformal and Fn is K0-quasiregular (see Remark 3·1), it follows
that ηm,n is K0 K (n)-quasiconformal. By the symmetry of λm,n and Fn , the complex structure
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associated to ηm,n is symmetric about T. Since ηm,n is isotopic to φm+1,n rel PFn (or rel PFn ∪
∪i Di ) and φm+1,n fixes 0, 1 and∞, ηm,n fixes 0, 1 and∞ also. It follows that ηm,n must also
be symmetric about T. By taking subsequence if necessary, we may assume that λm,n and
ηm,n converge uniformly to φn and ψn , both of which are quasiconformal homeomorphisms
of the sphere and are symmetric about T and fix 0, 1 and∞. It follows that

Gn = φn ◦ Fn ◦ψ−1
n (4·4)

is a Blaschke product. Since ψn and φn represent the same point [τn] in TFn , they are isotopic
to each other rel PFn (or rel PFn ∪∪i Di ). Note that by symmetry φn(T)=ψn(T)=T.

Let diamĈ(·) and distĈ(·, ·) denote respectively the diameter and the distance with respect
to the spherical metric.

COROLLARY 4·5. There exists a K > 1 independent of n such that the following asser-
tions hold for all n large enough (In the case that Fn has no holomorphic disks, the first four
assertions are just disregarded).

(i) For every Di , diamĈ(φn(Di)) > 1/K .
(ii) For every z ∈ P1 and every Di , distĈ(φn(z), φn(Di)) > 1/K .

(iii) For every Di , distĈ(φn(Di),T) > 1/K .
(iv) For every two distinct Di and D j , distĈ(φn(Di), φn(D j )) > 1/K .
(v) For every z ∈ P1, distĈ(φn(z),T) > 1/K .

(vi) For every two distinct z and w in P1, distĈ(φn(z), φn(w)) > 1/K .

Proof. Let us assume that Fn has holomorphic disks. Otherwise, the proof is the same and is
even simpler. Note that λm,n|PFn ∪∪i Di = φm,n|PFn ∪∪i Di and λm,n→ φn uniformly with
respect to the spherical metric. So we need only to prove the existence of some K > 1
independent of m and n so that the assertions hold for the maps φm,n with all m ≥ 0 and
all n large enough. The lemma then follows by letting m→∞ and taking the limit. But this
can be easily deduced from the following two facts.

Fact (1) By the first assertion of Lemma 4·3, there is a δ > 0 independent of n and m such
that the length of any simple closed geodesic in Ĉ \ φm,n(An) is greater than δ.

Fact (2) All the maps φm,n are conformal in Hi ∪ Di for each Di . Thus for any z /∈ Hi ∪ Di ,
by Koebe’s distortion theorem, we have

distĈ(φm,n(ai), φm,n(bi))� diamĈ(φm,n(Di))� distĈ(φm,n(z), φm,n(Di)).

Since T∩ (Hi ∪ Di)= D j ∩ (Hi ∪ Di)=∅ for i �= j , by Koebe’s distortion theo-
rem again, we have

distĈ(φm,n(ai), φm,n(bi))� distĈ(φm,n(Di),T)

and

distĈ(φm,n(ai), φm,n(bi ))� distĈ(φm,n(Di), φm,n(D j )).

If any of the above assertions were nor true, there would be a pair of points in φm,n(An)

whose spherical distance could be arbitrarily small. This is obvious for (vi). For (i),
(ii), (iii) and (iv) we use Fact (2). For (v) the two points are just φm,n(z) and φm,n(z∗)
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since distĈ(φm,n(z), φm,n(z∗))� distĈ(φm,n(z),T). Since {0, 1,∞}⊂ φm,n(An), (Because
{0, 1,∞}⊂ An by Remark 4·1 and φm,n fixes 0, 1 and∞), this will produce a simple closed
geodesic in Ĉ \ φm,n(An) whose length could be arbitrarily small. This contradicts Fact (1).

COROLLARY 4·6. Let R2d−1 denote the space of all the rational maps of degree 2d − 1
endowed with the metric d( f, g)=maxz∈Ĉ distĈ( f (z), g(z)). Then the sequence {Gn}
obtained in (4·4) lies in a compact subset of R2d−1.

Proof. Note that each Gn has the following form

λ

d∏
i=1

z − pi

1− p̄i z

d−1∏
j=1

z − q j

1− q̄ j z

with |pi |< 1 for 1≤ i ≤ d and |q j |> 1 for 1≤ j ≤ d − 1 and |λ| = 1, see [18, section 2].
So it suffices to prove that the spherical distance between any pole and any zero of Gn has
a positive lower bound independent of n. Since d(Gm,n,Gn)→ 0, it suffices to prove that
there is a δ > 0 so that the spherical distance between any pole and any zero of Gm,n is
greater than δ for all m ≥ 0 and all n large enough. In Lemma 4·2 let N0 = 1 and define the
set Ã1

n = F−1
n (A1

n). Let Pm,n and Zm,n denote the sets of poles and zeros of Gm,n respectively.
Since

{0, 1,∞}⊂ An ⊂ A1
n

by Remark 4·1 and Lemma 4·2, we have F−1
n ({0,∞})⊂ F−1

n (A1
n)= Ã1

n . Since φm,n fixes 0,
1 and∞, from φm,n ◦ Fn =Gm,n ◦ φm+1,n , we have

Pm,n ∪Zm,n = φm+1,n(F
−1
n ({0,∞})⊂ φm+1,n( Ã

1
n).

Since {0, 1,∞}⊂ An ⊂ Ã1
n by Lemma 4·2 and since φm+1,n fixes 0, 1 and ∞, we have

{0, 1,∞}⊂ φm+1,n( Ã1
n). Suppose there were no such positive lower bound. Then there

would be two points in Pm,n ∪Zm,n whose spherical distance could be arbitrarily small.
This would produce a (φm+1,n, Ã1

n)-geodesic η whose length could be arbitrarily small. By
Lemma 4·2

Fn : Ĉ \ Ã1
n −→ Ĉ \ A1

n

is a covering map. This, together with Lemma 8·2, implies that γ = Fn(η) must be a
(φm,n, A1

n)-geodesic whose length whose length could be arbitrarily small. This contradicts
the first assertion of Lemma 4·3.

By Corollary 4·6 {Gn} lies in a compact set of R2d−1. We can thus assume that

Gn −→G (4·5)

by taking a subsequence if necessary. Since the rotation number of Gn|T is θn and θn→ θ ,
G|T is a critical circle homeomorphism with rotation number θ ([8, Proposition 11·1·6]).
Since θ is of bounded type, by Herman–Swiatek’s theorem [12], there is a quasi-symmetric
circle homeomorphism h :T→T such that h(1)= 1 and

G|T= h−1 ◦ Rθ ◦ h. (4·6)

Let φn, ψn : Ĉ→ Ĉ be the pair of homeomorphisms in (4·4).
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LEMMA 4·7. φn|T→ h−1 and ψn|T→ h−1 uniformly.

Proof. Let us simply write φn|T and ψn|T as φn and ψn respectively. We first prove
Lemma 4·7 by assuming that φn and ψn converge uniformly. Let φ and ψ be the limit maps
respectively. Since the convergence is uniform, it follows that both φ and ψ are continu-
ous. Note that 1 ∈ On and φn(1)=ψn(1)= 1. Since Fn is conjugate to Gn on On through
φn|On =ψn|On , it follows that φn(Fk

n (1))=ψn(Fk
n (1))=Gk

n(1) for all k ≥ 0. Since Fn|T→
Rθ and Gn→G, by letting n→∞ we get φ(e2kπ iθ )=ψ(e2kπ iθ )=Gk(1) for all k ≥ 0. But
on the other hand, from G|T= h−1 ◦ Rθ ◦ h and h(1)= 1 we get h−1(e2kπ iθ )=Gk(1) for all
k ≥ 0. It follows that φ, ψ and h−1 coincide on {e2π ikθ }∞k=0, which is a dense subset of T.
This implies that φ =ψ = h−1 by the continuity.

It remains to show that φn and ψn converge uniformly. Let us do this only for φn since the
same argument works for ψn . For each N ≥ 0, define the orbit segment ON (G) by

ON (G)= {1,G1(1), . . . ,G N (1)}.
In the same way one can define ON (Gn),ON (F) and ON (Fn). Let ε > 0 be an arbitrary
small number. Since G|T is a circle homeomorphism with irrational rotation number, there
exists an N = N (ε) such that the length of each component of T \ON (G) is less than ε/4.
Since Fn→ F and Gn→G uniformly, there exists an M > 1 such that the following three
assertions hold:

(1) for all m ≥ M , the length of each component of T \ON (Gm) is less than ε/3;
(2) for all n ≥ M , the points in the orbit segments, ON (G),ON (Gn),ON (F) and ON (Fn)

have the same order;
(3) suppose m, n ≥ M . Then for any component I of T \ON (Fn), let Ĩ be the correspond-

ing component of T \ON (Fm), then I ⊂ Ĩ l ∪ Ĩ ∪ Ĩ r , where Ĩ l and Ĩ r denote the two
components of T \ON (Fm) which are adjacent to Ĩ from the left and right respectively.
Similarly, for any component J of T \ON (Gn), let J̃ be the corresponding component

of T \ON (Gm), then J ⊂ J̃ l ∪ J̃ ∪ J̃ r , where J̃ l and J̃ r denote the two components of
T \ON (Gm) which are adjacent to J̃ from the left and right respectively.

Now for any z ∈T and any m, n ≥ M , let I be the component of T \ON (Fn) such that z ∈
I . Since I ⊂ Ĩ l ∪ Ĩ ∪ Ĩ r , we have z ∈ Ĩ l ∪ Ĩ ∪ Ĩ r . Let J = φn(I ) and J̃ = φm( Ĩ ). It follows

that φn(z) ∈ J ⊂ J̃ l ∪ J̃ ∪ J̃ r . On the other hand, φm(z) ∈ φm( Ĩ l ∪ Ĩ ∪ Ĩ r )= J̃ l ∪ J̃ ∪ J̃ r .
Then |φn(z)− φm(z)| ≤ | J̃ l | + | J̃ | + | J̃ r |< ε. This proves that φn converges uniformly. The
proof of Lemma 4·7 is completed.

5. Proof of the existence part of the main theorem

Let G be the Blaschke product obtained in (4·5).

LEMMA 5·1. There exist a pair of homeomorphisms φ, ψ : Ĉ→ Ĉ which fix 0, 1 and∞
such that:

(i) φ ◦ F =G ◦ψ;
(ii) φ is isotopic to ψ rel PF ∪∪i Di and φ|Di =ψ |Di is holomorphic for each Di .
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Proof. Let φn, ψn and Gn be the maps in (4·4). Note that for each Di there is an annu-
lus Hi surrounding it such that φn|Di ∪ Hi =ψn|Di ∪ Hi is conformal. By Corollary 4·5
and by taking a subsequence if necessary, we may assume that for each Di , there is a
domain containing Di on which φn =ψn converges uniformly to a univalent map. Let
Ui = limn→∞ φn(Di). Then by Corollary 4·5 and Lemma 4·7, it follows that when restricted
to the set PF ∪∪i Di (Note that PFn \T= PF \T), φn and ψn converge uniformly to some
homeomorphism

σ : PF ∪∪i Di −→ PG ∪∪iUi . (5·1)

Note that σ |T= h−1 and σ is holomorphic in each Di , and moreover, σ ◦ F =G ◦ σ holds
on PF ∪∪i Di .

The maps φ and ψ are constructed by perturbing φn and ψn for a large n. Take δ > η > 0
small such that BT(δ), BDi (δ) and Bz(δ), z ∈ P1, are all disjoint with each other. Here B∗(δ)
denotes the δ-neighbourhood of the object. Let � and � denote the δ-neighbourhood and
η-neighbourhood of PF ∪∪i Di respectively. Then PFn ∪∪i Di ⊂�⊂�⊂�. Since Fn→ F
uniformly, Fn(F−1(�))= Fn(F−1(�))⊂� for all n large enough. By deforming φn through
homotopy rel PFn ∪∪i Di , we can make φn|� converge uniformly to a homeomorphism
χ :�→ χ(�). It follows that {φn} is equicontinuous on Fn(F−1(�)). This, together with
φn ◦ Fn =Gn ◦ψn , Fn→ F and Gn→G uniformly with respect to the spherical metric,
implies that {ψn} must be equicontinuous on F−1(�). By taking a subsequence if necessary
we can assume that ψn|F−1(�) converges uniformly to a continuous map τ : F−1(�)→
τ(F−1(�)), and moreover, the following diagram commutes.

F−1(�)
τ−−−−→ τ(F−1(�))

F

⏐⏐� ⏐⏐�G

�
χ−−−−→ χ(�).

Since ψn maps any critical point of Fn to the corresponding critical point of Gn with the
same local degree, τ maps any critical point of F to the corresponding critical point of G
with the same local degree. This, together with the last diagram, implies that τ is locally
homeomorphic. Since 0, 1,∞∈ F−1(�) and ψn fixes 0, 1 and∞, τ fixes 0, 1 and∞. It is
also clear that χ |PF ∪∪i Di = τ |PF ∪∪i Di = σ .

Let � denote the set of the critical values of F . Take 0<ρ < η. Then all the closed
disks Bv(ρ), v ∈�, are disjoint with each other. Let X =⋃

v∈� Bv(ρ). Then X ⊂�. Let
Y = F−1(X). Then Y ⊂ F−1(�) and ∂Y is the union of finitely many disjoint Jordan curves.

Take a small ε > 0 and a large n, which, in each of the following steps, will be required
to be even smaller and larger respectively. By perturbing φn we can construct a home-
omorphism φ : Ĉ→ Ĉ which fixes 0, 1 and ∞, such that φ = χ holds on � and dist
(φ, φn) < ε.

Now let us construct the homeomorphism ψ : Ĉ→ Ĉ. Let x ∈ Ĉ \ Y be an arbitrary point.
Then F(x) /∈� and φ ◦ F(x) is not a critical value of G. Since the degree of G is 2d − 1,
G−1(φ ◦ F(x)) contains exactly 2d − 1 points. Define ψ(x) to be the one in G−1(φ ◦ F(x))
which is closest to ψn(x) ∈G−1

n (φn ◦ Fn(x)). Such definition does not cause any ambiguity
provided that ε > 0 is small and n is large enough. This is because by taking ε > 0 small and
n large, the set G−1(φ ◦ F(x)) can be arbitrarily close to the set G−1

n (φn ◦ Fn(x)), and on
the other hand, for x ∈ Ĉ \ Y any two points in G−1(φ ◦ F(x)) are uniformly bounded away
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from each other. So ψ is well defined on Ĉ \ Y and is locally homeomorphic on Ĉ \ Y . For
x ∈ Y , let ψ(x)= τ(x). Since τ is the limit of ψn , the two definitions of ψ coincide on ∂Y .
Since τ is locally homeomorphic on F−1(�) and Y ⊂ F−1(�), it follows that ψ : Ĉ→ Ĉ is
locally homeomorphic on Ĉ and is thus a covering map, and moreover, φ ◦ F =G ◦ψ holds
on the sphere. By Riemann–Hurwitz formula, the degree of a covering map from the sphere
to itself must be equal to one. So ψ : Ĉ→ Ĉ is a homeomorphism. Since ψ |F−1(�)= τ and
τ fixes 0, 1 and∞, ψ fixes 0, 1 and∞. By the construction of ψ , it follows that ψ can be
arbitrarily close to ψn provided that ε > 0 is small and n is large enough.

By the construction φ|PF ∪∪i Di =ψ |PF ∪∪i Di = σ and when restricted to each Di , φ
and ψ are holomorphic. It remains to show that there is an isotopy between φ and ψ rel
PF ∪∪i Di . Since for orientation-preserving surface homeomorphisms, homotopy implies
isotopy (see [5, appendix C3]), it suffices to show the existence of a homotopy between φ
and ψ rel PF ∪∪i Di .

Since φn|On =ψn|On and since each component of T \On can be arbitrarily small pro-
vided that n is large enough, we can construct a homeomorphism ωn : Ĉ→ Ĉ by deforming
ψn in a small neighborhood of T so that ωn|T= φn|T and ωn is homotopic to ψn rel
PFn ∪∪i Di , and moreover, ωn can be arbitrarily close to ψn and thus arbitrarily close to
ψ provided that ε > 0 is small and n is large enough.

Let H(t, ·), 0≤ t ≤ 1, be the homotopy between φn and ωn . Since φn|T=ωn|T, H can be
constructed such that H(t, ·)|T=ωn|T= φn|T for 0≤ t ≤ 1. Thus ωn and φn are homotopic
to each other rel PF ∪∪i Di . Let ξ = φ ◦ φ−1

n . By taking ε > 0 small and n large enough, ξ
and ωn can be arbitrarily close to the identity andψ respectively, and thus (ξ ◦ωn) ◦ψ−1 can
be arbitrarily close to the identity. Since (ξ ◦ωn) ◦ψ−1|PG ∪∪iUi = id, from Lemma 8·5 it
follows that (ξ ◦ωn) ◦ψ−1 is homotopic to id rel PG ∪∪iUi . So ψ is homotopic to ξ ◦ωn

rel PF ∪∪i Di , which is homotopic to ξ ◦ φn = φ rel PF ∪∪i Di , since ωn is homotopic to φn

rel PF ∪∪i Di .
The proof of Lemma 5·1 is completed.

Remark 5·1. Note that PF \ (T∪∪i Di) is a finite set and each ∂Di is a real analytic curve.
Since φ is quasisymmetric on T and conformal in an open neighborhood containing each
Di , we can assume that φ is quasiconformal by deforming it rel PF \ (T∪∪i Di), and thus
ψ is also quasiconformal by lifting φ through φ ◦ F =G ◦ψ .

Let h :T→T be the quasisymmetric circle homeomorphism in Lemma 4·7. Let H :
�→� be the Ahlfors–Bers quasiconformal extension of h. Define

Ĝ(z)=
⎧⎨⎩G(z) for |z| ≥ 1,

H−1 ◦ Rθ ◦ H(z) for |z|< 1.
(5·2)

Let Ui , 1≤ i ≤ l, denote the components of Ĝ−1(�) other than �. Let φ and ψ be the
homeomorphisms guaranteed by Lemma 5·1. Define

G̃(z)=
⎧⎨⎩H−1 ◦ f ◦ψ−1 for z ∈Ui , 1≤ i ≤ l,

Ĝ(z) otherwise.
(5·3)
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Define homeomorphisms λ, ρ : Ĉ→ Ĉ by setting

λ(z)=
⎧⎨⎩φ(z) for |z| ≥ 1

H−1(z) for |z|< 1,
(5·4)

and

ρ(z)=
⎧⎨⎩ψ(z) for |z| ≥ 1

H−1(z) for |z|< 1,
(5·5)

By (3·1), (5·2-5·5) and φ ◦ F =G ◦ψ , we have

λ ◦ f = G̃ ◦ ρ. (5·6)

Let μ0 denote the complex structure in � obtained by pulling back the standard one by H .
We then pull back μ0 to the whole sphere by the iterations of G̃. Let� be the qc homeomor-
phism of the sphere which fixes 0, 1 and∞ and solves the Beltrami equation given by μ. It
follows that g=� ◦ G̃ ◦�−1 is a rational map and belongs to Rgeom

θ . From (5·6) we have

(� ◦ λ) ◦ f = g ◦ (� ◦ ρ).
Since λ is isotopic to ρ rel Pf ∪∪i Di by Lemma 5·1, � ◦ λ is isotopic to � ◦ ρ rel Pf ∪
∪i Di . Note also that� ◦ λ|�=� ◦ ρ|� and� ◦ λ|Di =� ◦ ρ|Di are all holomorphic. This
completes the proof of the existence part.

6. Proof of the uniqueness part of the main theorem

Let G̃, � and g be the maps obtained at the end of Section 5. Let Jg denote the Julia
set of g.

LEMMA 6·1. Jg has zero Lebesgue measure.

Let us first prove the uniqueness by assuming Lemma 6·1. Suppose f is also combinatori-
ally equivalent to some h ∈ Rgeom

θ . By Definition 1·3 we get the following diagram where φ
and φ′ are isotopic to ψ and ψ ′ respectively rel Pf ∪∪i�, and all of which are holomorphic
on �∪∪i Di .

Ĉ
ψ←−−−− Ĉ

ψ ′−−−−→ Ĉ

g

⏐⏐� ⏐⏐� f

⏐⏐�h

Ĉ
φ←−−−− Ĉ

φ′−−−−→ Ĉ

Let Pg and Ph , Dg and Dh denote the post-critical sets and the Siegel disks of f and g
respectively. Let φ1 = φ′ ◦ φ−1 and φ2 =ψ ′ ◦ψ−1. Then

(1) φ1 ◦ g= h ◦ φ2, and
(2) φ1 is isotopic to φ2 rel Pg, and
(3) when restricted to Dg and an open neighbourhood U =∪iφ(Di) of all attracting cycles

of g, φ1 = φ2 is holomorphic.
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Note that φ and ψ can be chosen quasiconformal by the proof of the existence part. Since φ′

can be chosen quasiconformal by C0 perturbation, and since f can be assumed quasi-regular
by Remark 3·1, ψ ′ is therefore quasiconformal by pulling back φ′ by f .

Suppose φk : Ĉ→ Ĉ is a quasiconformal homeomorphism which is isotopic to φ1 rel
Pg ∪ (Dg ∪U ) with k ≥ 2. Since φ1 ◦ g= h ◦ φ2, we can define φk+1 by lifting φk through

φk ◦ g= h ◦ φk+1. (6·1)

Then φk+1 is isotopic to φ2 and is thus isotopic to φ1 rel Pg ∪ (Dg ∪U ). By induction we
get a sequence of quasiconformal homeomorphisms φk : Ĉ→ Ĉ all of which are isotopic to
φ1 rel Pg ∪ (Dg ∪U ) and satisfy (6·1). Since g and h are holomorphic, the quasiconformal
constant of each φk is bounded by that of φ1. Let μk be the Beltrami coefficient of φk . Note
that the forward orbit of any point in the Fatou set of g either converges to some attracting
cycle of g, or eventually enters Dg. Since φ1 is conformal in Dg ∪U , it follows that μk→ 0
on the Fatou set of g. Since Jg has zero Lebesgure measure by Lemma 6·1, μk→ 0 a.e. It
follows that φk converges to some Möbius map uniformly in the sphere. From (6·1) it follows
that g is conjugate to h through a Möbius map. This implies the uniqueness assertion of the
main theorem.

Proof of Lemma 6·1 Let JG̃ =�−1(Jg). Since � is quasiconformal, it suffices to prove
that JG̃ has zero measure. Suppose it were not true.

Let z0 be a Lebesgue point of JG̃ . For n ≥ 1 let zn =Gn(z0) (Note that G̃ =G on JG̃). By
[9, proposition 1·14], {zn} accumulates to PG̃ ∩ JG̃ . Note that (PG̃ ∩ JG̃) \T is either empty
or contains finitely many points whose forward orbits eventually enter into some repelling
periodic cycles or intersect T. It follows that {zn} accumulates to T. The idea of the proof
is adapted from [11] and [17]. If L is a ray with one end point z ∈T, let us use ∠(L ,T) to
denote the smaller angle formed by L and T at z. Then 0≤∠(L ,T)≤ π/2.

Claim. There exist a critical point c ∈T of G, an 0<α < 1/2, and a cone � attached
to T at c from the outside of � and bounded by two rays L and R starting from c, and a
subsequence zn j , such that ∠(L ,T)=∠(R,T)= απ , and zn j ∈� for all j ≥ 1.

Let us first prove the lemma by assuming the claim. In the following proof, we abuse the
notations A j and Bj to denote topological disks, which have different meanings in other
sections. Since c is a critical point, there is another cone �′ attached at c from the outside of
� and bounded by two rays L ′ and R′ such that ∠(L ′,T),∠(R′,T) > βπ with 0<β < 1/2,
and moreover, all the points in Bc(r)∩�′ are mapped into � with r > 0 being some small
number. Here and in the following we use diam(·) and dist(·, ·) to denote the diameter and
the distance with respect to the Euclidean metric. Then for each n j large enough, we can
take a small disk Bj , such that:

(1) Bj ⊂ Bc(r)∩�′ and thus G(Bj )⊂�;
(2) dist(Bj , zn j )� dist(Bj ,T)� diam(Bj )� dist(zn j ,T).

From (2) we can take a Jordan domain A j which is disjoint with PG and contains both Bj

and zn j such that

diam(A j )� dist(A j ,T)� diam(Bj ). (6·2)
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Fig. 2. �, �′, zn j , B j , A j and Ã j .

Fig. 3. diamX (A
ni
j ) < δ · diamX (A

ni+1
j ).

Please see Figure 2 for an illustration of the above construction. Let X denote the compo-
nent of Ĉ \ PG which contains zn j . It follows that diamX (A j )� 1 by (6·2) where diamX (·)
denotes the diameter with respect to the hyperbolic metric in X . Now we pull back A j along
the orbit z0, . . . , zn j , and denote the component of G−k(A j ) which contains zn j−k by A

n j−k
j .

In particular, A
n j

j = A j .
Let Xk be the component of G−k(X) containing zn j−k . Then Gk : Xk→ X is a holomor-

phic covering map preserving the hyperbolic metric and Xk ⊂ X . Note that A
n j−k
j ⊂ Xk . It

follows that

diamX

(
A

n j−k
j

)
≤ diamXk

(
A

n j−k
j

)
= diamX

(
A j

)� 1 (6·3)

and

diamX

(
A

n j−k
j

)
≤ diamX1

(
A

n j−k
j

)
= diamX

(
A

n j−k+1
j

)
. (6·4)

For each 1≤ i ≤ j , from (6·3) we get diamX (A
ni
j )� 1.

Since Ani
j contains zni and zni is contained in the cone � by the claim, it follows from

diamX (A
ni
j )� 1 that there is some 0< ε < 1/2 such that Ani

j is contained in a cone spanned
at c so that the angles formed by the two boundary rays and T are equal to επ . Please see
Figure 3 for an illustration. By [13, Lemma 1·11] or [17, Lemma 3·2], the inclusion of X1

in X contracts the hyperbolic metric in Ani
j by by a definite factor 0< δ < 1 depending only

on ε. Since G : X1→ X is holomorphic covering which preserves the hyperbolic metric, we
thus have

diamX

(
Ani

j

)
< δ · diamX1

(
Ani

j

)= δ · diamX

(
Ani+1

j

)
.
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This, together with (6·4), implies that

diamX

(
A0

j

)
< δ j−1 · diamX

(
A j

)� δ j−1 −→ 0

as j→∞ and thus diam(A0
j )→ 0 as j→∞. Since dist(A j , PG)� diam(A j ), we can take

a larger disk Ã j ⊃ A j so that Ã j ∩ PG =∅ and mod( Ã j \ A j ≥μ with μ> 0 being indepen-
dent of j . Then by Koebe’s distortion theorem the distortion of any branch of G−n j on A j

is uniformly bounded. Let B0
j denote the component of G−n j (Bj ) which is contained in A0

j .
We have

area
(
B0

j

)� diam
(

A0
j

)2
.

Since Bj is disjoint from JG̃ , it follows that B0
j is disjoint from JG̃ . This is a contradiction

with the assumption that z0 is a Lebesgue point of JG̃ .
Now it suffices to prove the Claim. For each open arc I ⊂T, Let �I = Ĉ \ (PG \ I ). Let

d�I (·, ·) denote the hyperbolic distance in �I . For d0 > 0, let �d0(I )= {z ∈�I | d�I (z, I ) <
d0}. When |I | is small, �d0(I ) is almost like the domain bounded by two arcs of Euclidean
circles which are symmetric about T and such that the four exterior angles formed by the
two arcs and T are all equal to σ with d0 = ln cot(σ/4) (see [19, Lemma 2·2]). Define

Hd0(I )= {z | |z|> 1 and z ∈�d0(I )}.
Take d0 > 0 such that

σ =
(

1− 1

4(2d − 1)

)
π.

So if V is a cone spanned at some z ∈T \ I and ∠(∂V,T)= π/3(2d − 1), then V ∩
Hd0(I )=∅.

Now let h :T→T be the quasi-symmetric circle homeomorphism in (4·6). For each zn ,
let In ⊂T be the arc such that zn ∈ Hd0(In) and moreover, In has the minimal property in the
following sense

|h(In)| =min{|h(I )| | I ⊂T and zn ∈ Hd0(I )}.
Since zn→T, we have |In|→ 0 and thus |h(In)|→ 0 as n→∞. So there is an increasing
subsequence of integers, say m j , such that |h(Im j )|< |h(In)| for all 1≤ n <m j .

Let n j =m j − 1. Let us prove that there is a critical point c ∈T and a cone � spanned at
c such that zn j and � satisfy the requirement in the Claim. Since |Im j |→ 0, by disregarding
finitely many m j we may assume that Hd0(Im j ) \ Im j contains no critical value of G and Im j

contains at most one critical value of G. Let J ⊂T be the arc such that G(J )= Im j . Then
we have the following two cases.

In the first case, Im j contains no critical values. By assumption Hd0(Im j ) \ Im j contains no
critical values of G. Let K be the component of G−1(Hd0(Im j ))which is attached to J . Let X
denote the component of G−1(�Im j

) which contains J . Since �Im j
does not contain critical

values of G, G : X→�Im j
is a holomorphic covering map which preserves the hyperbolic

metric. So K is contained in the d0-neighbourhood of J with respect to the hyperbolic metric
in X . Note that X ⊂�J , it follows that K ⊂ Hd0(J ). Since |h(I )| = |h(J )|, by the minimal
property of Im j , it follows that zm j−1 = zn j /∈ Hd0(J ). This means that zm j has at least two

https://doi.org/10.1017/S0305004121000098 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000098


22 GAOFEI ZHANG

Fig. 4. ∠([c, zn j ],T)≥∠([c, wm+1
2
],T) with m = 7.

pre-images near T. So zm j must be close to a critical value in T, and Hd0(J ) is close to some
critical point c in T. Let 3≤m ≤ 2d − 1 be the local degree of G at c. Since G is a Blaschke
product m must be an odd integer by symmetry. In a small neighbourhood of c, we may
regard G approximately as the map z �→ λ · (z − c)m + v where λ �= 0 is some constant and
v=G(c). By the choice of d0, Hd0(J ) belongs to the angle domain bounded by T and a
ray L starting from c with ∠(L ,T)= π/3(2d − 1). Let w ∈ Hd0(J ) be the pre-image of zm j .
Then ∠([c, w],T) < π/3(2d − 1). Note that zm j has exactly (m + 1)/2 preimages in a small
neighborhood of c and belonging to the outside of �. These (m + 1)/2 preimages are dis-
tributed in the “half circle” which has center at c and radius |w− c| and which belongs to the
outside of �, and moreover, the angle between any two such pre-images, which are adja-
cent to each other, is approximately equal to 2π/m. If we label these m + 1/2 preimages
anticlockwise as w1, . . . , w m+1

2
, then ∠([c, w1],T)+∠(c, w m+1

2
],T)≈ π/m, and for 1<

i < (m + 1)/2, ∠([c, wi ],T)≥ π/m approximately. Since ∠([c, w],T) < π/3(2d − 1) <
π/m, we may assume that w=w1. Since zn j is one of such pre-images except w1,
we have

∠([c, znj ],T)≥∠([c, w m+1
2
],T)≈ π

m
−∠([c, w1],T) > π

2(2d − 1)
. (6·5)

Please see Figure 4 for an illustration. Let V be the cone spanned at c such that ∠(∂V,T)=
π/2(2d − 1). Then zn j ∈ V .

In the second case, Im j contains exactly one critical value v. Let c be the critical point in T

such that G(c)= v. Then zn j = zm j−1 is near c. By [17, Lemma 4·9], there is a 0< δ < 1/2
such that if ∠([v, zm j ],T) < δπ , we would have an arc I ⊂T such that zm j ∈ Hd0(I ) and
|I |< |Im j |, which would contradict the minimality of Im j . So we must have ∠([v, zm j ],T)≥
δπ . Please see Figure 5 for an illustration. Since G behaves almost like the map z �→ λ ·
(z − c)m + v, λ �= 0 where 3≤m ≤ 2d − 1, we have

∠([c, zn j ],T) > δπ/2(2d − 1). (6·6)

Since there are only finitely many critical points in T, from (6·5) and ( 6·6) the Claim
follows by taking α = δ/2(2d − 1) and taking a subsequence of {n j } if necessary so that zn j

converges to some critical point c ∈T.
This completes the proof of the uniqueness part of the main theorem.

7. Proof of Lemma 4·3
We need a few lemmas before the proof of Lemma 4·3.
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LEMMA 7·1. There is a constant C0 > 0 independent of m and n such that if P ⊂ (PFn ∪
∪i Di) is a closed subset and γ is a non-peripheral curve in Ĉ \ P, then

e−2C0 · lφm,n (γ, P)≤ lφm+1,n (γ, P)≤ e2C0 · lφm,n (γ, P). (7·1)

Proof. The proof is an adaptation of the proof of [3, Proposition 7·2]. Assume that Fn

has holomorphic disks. Otherwise the proof is the same and is even simpler. Let TFn be
the Teichmüller space modelled on (Ĉ, PFn ∪∪i Di). Then σFn : TFn → TFn is analytic and
does not increase the Teichmüller metric on TFn . By Remark 3·1 Fn is K0-quasiregular with
K0 > 1 being a constant independent of n. Since τ0,n is the standard complex structure and
τ1,n is the pull back of τ0,n by Fn , φ1,n is K0-quasiconformal. It follows that

dTFn
(τm+1,n, τm,n)≤ dTFn

(τ1,n, τ0,n)≤C0

with C0 = ln K0/2. So there is a K0-quasiconformal homeomorphism h : Ĉ→ Ĉ which
maps φm,n(PFn ∪∪i Di) to φm+1,n(PFn ∪∪i Di), and when restricted to φm,n(∪i Di), h =
φm+1,n ◦ φ−1

m,n is conformal, and moreover, φm+1,n is isotopic to h ◦ φm,n rel PFn ∪∪i Di . Since
P ⊂ PFn ∪∪i Di , h(φm,n(γ )) is homotopic to φm+1,n(γ ) in Ĉ \ φm+1,n(P). The map h can
then be lifted to a K0-quasiconformal homeomorphism between the annular covering sur-
faces of Ĉ \ φm,n(P) and Ĉ \ φm+1,n(P) associated to the homotopy classes of φm,n(γ ) and
φm+1,n(γ ) respectively. This implies (7·1) and the lemma follows.

LEMMA 7·2. For any 0< κ < 1, there is an integer k1 depending only on κ and
θ such that for any two distinct points a, b ∈T, if the length of each components of
T \ {a, b} is greater than 2πκ , then a, b and their images under the map Rk1

θ appear
as a, Rk1

θ (a), b, Rk1
θ (b) anticlockwise, and moreover, the length of each component of

T \ {a, Rk1
θ (a), b, Rk1

θ (b)} is greater than πκ/2.

Proof. For any integer k ≥ 1, let [a, Rk
θ (a)] denote the the arc from a to Rk

θ (a) anticlock-
wise. Since θ is irrational, {Ri

θ (a), i ≥ 0} is dense in T. So there is a smallest integer k1 ≥ 1
depending only on κ and θ such that the length of [a, Rk1

θ (a)] is between πκ/2 and 3πκ/2.
It is clear that such k1 satisfies the requirement in the lemma.

LEMMA 7·3. Suppose k ≥ 0 is an integer. Then there is a λ= λ(k) > 0 depending only
on k such that for all m ≥ 0 and all n large enough, if γ is a (φm,n, Ak

n)-geodesic (or a
(φm,n, Bk

n )-geodesic) with lφm,n (γ, Ak
n) < λ (or lφm,n (γ, Bk

n ) < λ), then γ does not intersect
the closure of any holomorphic disk Di .

Proof. By the construction of Fn , for each holomorphic disk Di , there is an annulus Hi

around Di so that Hi ∩ PFn =∅, and the inner component of ∂Hi coincides with ∂Di , and
moreover, Fn is holomorphic in the disk Hi ∪ Di , and maps each Hi ∪ Di into some D j .
Since τm,n is the pull back of the standard complex structure by Fm

n , it follows that on all
the disks Hi ∪ Di τm,n = 0 and thus φm,n is conformal. Suppose γ is a (φm,n, Ak

n)-geodesic
which intersects Di . The same argument works if γ is a (φm,n, Bk

n )-geodesic which intersects
Di . By composing with a Möbius map, we may assume that φm,n maps ai , bi and 1 to 0, 1
and∞ respectively. Take a Jordan domain Ci such that Di ⊂Ci ⊂Ci ⊂ Di ∪ Hi . Then there
are two cases.
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Fig. 5. ∠([v, zm j ],T)≥ δπ .

In the first case, γ ⊂Ci . In this case, Since Hi ∩ Ak
n ⊂ Hi ∩ PFn =∅, γ surrounds at least

two points in Ak
n ∩ Di . Since φm,n({ai , bi })= {0, 1} and since the spherical distance between

any two points in Ak
n ∩ Di has a positive lower bound depending only on k (Proposition 4·1),

by Koebe’s distortion theorem, the Euclidean distance between any two points in φm,n(Ak
n ∩

Di) has a positive lower bound depending only on k. Thus the Euclidean length of φm,n(γ )

has a positive lower bound depending only on k. Note that φm,n(γ )⊂ φm,n(Ci). By Koebe’s
distortion theorem, there is an R > 0 depending only on Di ,Ci and Hi such that φm,n(Ci)⊂
{z | |z| ≤ R} = BR . Since the density of the hyperbolic metric of Ĉ \ φm,n(Ak

n) is bounded
from below by that of Ĉ \ {0, 1,∞}, which has a positive lower bound on BR with respect to
the Euclidean metric, it follows that lφm,n (γ, Ak

n)must have a positive lower bound depending
only k.

In the second case, γ is not contained in Ci . Since γ intersects Di , φm,n(γ ) contains
an curve segment 	 connecting φm,n(∂Di ) and φm,n(∂Ci ). Since {0, 1} ⊂ φm,n(Di) and
mod(φm,n(Ci \ Di ))=mod(Ci \ Di), the Euclidean length of 	 must have a positive lower
bound depending only on Di and Ci . Since 	 ⊂ φm,n(Ci)⊂ BR , as in the first case, the den-
sity of the hyperbolic metric in Ĉ \ φm,n(Ak

n) with respect to the Euclidean metric, when
restricted to 	, is bounded from below by a positive constant depending only on Di ,Ci and
Hi . It follows that lφm,n (γ, Ak

n) must have a positive lower bound depending only on Di ,Ci

and Hi .
Since there are only finitely many Di and since Ci and Hi are all fixed, the lemma fol-

lows by taking λ to be the minimum of all the above lower bounds which clearly depends
only on k.

LEMMA 7·4. Let P ⊂ Ĉ be a proper closed subset such that P∗ = P and |P| ≥ 3.
Suppose γ is a (φm,n, P)-geodesic such that lφm,n (γ, P) < log(

√
2+ 1) and γ ∩T �= ∅. Then

γ is symmetric about T, and in particular, γ intersects T at exactly two points.

Proof. By symmetry γ ∗ is also a (φm,n, P)-geodesic with the same length. Since γ ∩T �= ∅,
we have γ ∩ γ ∗ ⊃ γ ∩T �= ∅. Since the length of both γ and γ ∗ is less than log(

√
2+ 1),

by Lemma 8·1 we must have γ = γ ∗.
Note that the sets Ak

n and Bk
n are all symmetric about T. From Lemma 7·4 it follows that

if γ is a (φm,n, Ak
n)-geodesic or (φm,n, Bk

n )-geodesic with length less than log(
√

2+ 1) and
γ ∩T �= ∅, then γ is symmetric about T and γ ∩T contains exactly two points. In this case,
by symmetry 0 and∞ belong to one component of Ĉ \ γ . For such γ we use D(γ ) to denote
the other component of Ĉ \ γ which does not contain 0 and∞ and use D(γ )c to denote the
complement of D(γ ) in Ĉ, that is, D(γ )c = Ĉ \ D(γ ).

Proof of Lemma 4·3. Without loss of generality we may assume that both lφm,n (γ, Ak
n) and

lφm,n (γ, Bn) are less than log(
√

2+ 1). The proof is divided into five steps. In the first four
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steps, we assume that γ ∩T �= ∅. By Lemma 7·4 γ is symmetric about T and intersects T at
exactly two points. Recall that D(γ ) denotes the component of Ĉ \ γ which does not contain
0 and∞ and D(γ )c = Ĉ \ D(γ ). Also recall that Zk

n = Ak
n ∩T and On = Bn ∩T.

Step 1. Prove the assertion (i) under the assumption that both D(γ )∩ Zk
n and D(γ )c ∩ Zk

n

contain at least two points.
Step 2. Prove the assertion (ii) under the assumption that both D(γ )∩ On and D(γ )c ∩ On

contain at least two points.
Step 3. Prove the assertion (i) under the assumption that either D(γ )∩ Zk

n or D(γ )c ∩ Zk
n

contains at most one point.
Step 4. Prove the assertion (ii) under the assumption that either D(γ )∩ On or D(γ )c ∩ On

contains at most one point.
Step 5. Prove the assertions (i) and (ii) under the assumption that γ ∩T=∅.

Step 1. Suppose γ is a (φm,n, Ak
n)-geodesic which intersects T so that both D(γ )∩ Zk

n

and D(γ )c ∩ Zk
n contain at least two points. By Proposition 4·1 there is a κ > 0 depending

only on k such that the length of each component of T \ Ak
n is greater than 2πκ for all n large

enough. For such κ , let k1 be the integer guaranteed by Lemma 7·2. Let k2 ≥ 0 be an integer
depending only on κ such that for any open arc I ⊂T with |I |>πκ/3, I ∩ Ak2

n contains at
least one point for all n large enough. Note that k1 and k2 depend only on κ which depends
only on k. So k1 and k2 are bounded by some constant M(k)≥ 1 depending only on k.

In Lemma 4·2 let N0 = k + k1 + k2 and define the set Ãk1
n . By Lemma 7·1,

lφm+k1 ,n

(
γ, Ak

n

)≤ e2k1C0 · lφm,n

(
γ, Ak

n

)
(7·2)

with C0 > 0 being the constant in Lemma 7·1. Note that Ak
n ⊂ Ãk1

n (Since Fk1
n (A

k
n)⊂ AN0

n by
(4·2)) and the number of the points in Ãk1

n \ Ak
n is bounded by some constant depending only

on k. By Lemma 8·3 there is a (φm+k1,n, Ãk1
n )-geodesic γk1 which is homotopic to γ in Ĉ \ Ak

n

so that

lφm+k1 ,n

(
γk1, Ãk1

n

)
<C(k) · lφm+k1 ,n

(
γ, Ak

n

)
(7·3)

provided that lφm+k1 ,n
(γ, Ak

n) <C(k)−1 with C(k) > 1 being some constant depending only

on k. By Lemma 4·2 Fk1
n : Ĉ \ Ãk1

n → Ĉ \ AN0
n is a covering map. So by lemma 8·2 ηk1 =

Fk1
n (γk1) is a (φm,n, AN0

n )-geodesic with

lφm,n

(
ηk1, AN0

n

)≤ lφm+k1 ,n

(
γk1, Ãk1

n

)
(7·4)

provided that lφm+k1 ,n
(γk1, Ãk1

n ) < log(
√

2+ 1). Since both D(γ )∩ Zk
n and D(γ )c ∩ Zk

n con-
tain at least two points by assumption and since γk1 is homotopic to γ in Ĉ \ Ak

n , it follows
that both D(γk1)∩ Zk

n and D(γk1)
c ∩ Zk

n contain at least two points also. Thus the length
of both the two arc components of T \ γk1 is greater than 2πκ . Note that Fn|T is the rigid
rotation given by θn and ηk1 = Fk1

n (γk1). Since θn→ θ , from Lemma 7·2 γk1 and ηk1 well
intersect each other in the following sense for all n large enough. Let {a, b} = γk1 ∩T and
{c, d} = ηk1 ∩T. Then the four intersection points can be labeled so that they appear in the
order a, c, b, d anticlockwise and moreover, the length of each component of T \ {a, c, b, d}
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Fig. 6. γk1 , ηk1 , ξk1 , ζk1 and points in Ak2
n .

is greater than πκ/3. By the choice of k2, each component of T \ {a, c, b, d} contains at least
one point in Ak2

n . Since k2 + k1 ≤ N0, we have

Ak2
n ⊂ Ãk1

n ∩ AN0
n . (7·5)

Since each component of T \ {a, c, b, d} contains at least one point in Ak2
n , γk1 and ηk1 are

both non-peripheral in Ĉ \ Ak2
n , see Figure 4. Let ξk1 and ζk1 be the (φm,n, Ak2

n )-geodesics
which are homotopic to γk1 and ηk1 in Ĉ \ Ak2

n respectively. Let {a′, b′} = ξk1 ∩T and
{c′, d ′} = ζk1 ∩T. Then a′, c′, b′, d ′ have the same order as a, c, b, d, and each component
of T \ {a′, c′, b′, d ′} contains at least one point in Ak2

n . This implies that ξk1 and ζk1 are two
distinct simple closed geodesics which intersect with each other. But on the other hand,

lφm,n

(
ξk1, Ak2

n

)≤ e2k1C0 · lφm+k1 ,n

(
ξk1, Ak2

n

)
= e2k1C0 · lφm+k1 ,n

(
γk1, Ak2

n

)
≤ e2k1C0 · lφm+k1 ,n

(
γk1, Ãk1

n

)
<C (k) e4k1C0 · lφm,n

(
γ, Ak

n

)
(7·6)

and

lφm,n

(
ζk1, Ak2

n

)= lφm,n

(
ηk1, Ak2

n

)≤ lφm,n

(
ηk1, AN0

n

)
<C (k) e2k1C0 · lφm,n

(
γ, Ak

n

)
. (7·7)

The first inequality of (7·6) comes from Lemma 7·1. Both the equalities in (7·6) and (7·7)
hold because, by Definition 4·1, lφm,n (ξ, P) depends only on the homotopy class of ξ in
Ĉ \ P . The second inequality of both (7·6) and (7·7) hold because of (7·5). The last inequal-
ities of both (7·6) and (7·7) hold by combining the inequalities (7·2-7·4). Now the assertion
in Step 1 follows by taking

δ =C(k)−1e−4M(k)C0 · log
(√

2+ 1
)
.

In fact, if lφm,n (γ, Ak
n) < δ, by (7·6), (7·7) and k1 ≤ M(k), we get lφm,n (ξk1, Ak2

n ) <

log(
√

2+ 1) and lφm,n (ζk1, Ak2
n ) < log(

√
2+ 1). But we have seen ξk1 ∩ ζk1 �= ∅ and ξk �= ζk ,

which contradicts Lemma 8·1.

COROLLARY 7·5. Suppose l ≥ 0 is an integer. Then there is a δ = δ(l) < log(
√

2+
1) depending only on l such that for all m ≥ 0 and all n large enough, if γ is a
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Fig. 7. The construction of ζ .

(φm,n, Al
n)-geodesic such that γ ∩T �= ∅ and lφm,n (γ, Al

n) < δ, then either D(γ )∩ Zl
n or

D(γ )c ∩ Zl
n contains at most one point.

Step 2. Suppose γ is a (φm,n, Bn)-geodesic which intersects T so that both D(γ )∩ On

and D(γ )c ∩ On contain at least two points. The idea of the proof is almost the same as in
the Step 1. Since On is forward invariant, the argument is even simpler.

Let l = l(n)≥ 1 be the least integer such that Fl
n maps any point in On to the one which

is on the right and adjacent to it. Then l depends only on n. In Lemma 4·2 let N0 = l and
define the set B̃l

n . By Lemma 7·1 it follows that

lφm+l,n (γ, Bn)≤ e2lC0 · lφm,n (γ, Bn). (7·8)

Note that Bn ⊂ B̃l
n and the number of the points in B̃l

n \ Bn depends only on n. By
Lemma 8·3, there is a (φm+l,n, B̃l

n)-geodesic γl which is homotopic to γ in Ĉ \ Bn such that

lφm+l,n (γl, B̃l
n)≤C(n) · lφm+l,n (γ, Bn) (7·9)

provided that lφm+l,n (γ, Bn) <C(n)−1 where C(n) > 1 is a constant depending only on n.
Since γl is homotopic to γ in Ĉ \ Bn , both D(γl)∩ On and D(γl)

c ∩ On contain at least two
points. Then, by Lemmas 4·2 and 8·2, ηl = Fl

n(γl) is a (φm,n, Bl
n)-geodesic provided that

lφm+l,n (γl, B̃l
n) < log(

√
2+ 1). By the choice of l, γl and ηl well intersect each other in the

following sense: Let γl ∩T= {a, b} and ηl ∩T= {c, d}. Then the four intersection points
can be labeled so that they appear in the order a, c, b, d anticlockwise, and each component
of T \ {a, c, b, d} contains at least one point in On .

Since Fn|T is the rotation given by θn and On is periodic under Fn , and since both D(γl)∩
On and D(γl)

c ∩ On contain at least two points, from ηl = Fl
n(γl) it follows that both D(ηl)∩

On and D(ηl)
c ∩ On contain at least two points. In particular, ηl is non-peripheral in Ĉ \ Bn .

Let ζ be the (φm,n, Bn)-geodesic which is homotopic to ηl in Ĉ \ Bn . Then

lφm,n (ζ, Bn)= lφm,n (ηl, Bn)

≤ lφm,n

(
ηl, Bl

n

)
≤ lφm+l,n

(
γl, B̃l

n

)
≤ e2lC0C(n) · lφm,n (γ, Bn) .

(7·10)

The equality holds since, by Definition 4·1, lφm,n (ζ, Bn) depends only on the homotopy class
of ζ in Ĉ \ Bn . The first inequality holds because Bn ⊂ Bl

n . The second inequality holds
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by Lemma 8·2. The last equality follows from (7·8) and (7·9). Since γ and ζ are homo-
topic respectively to γl and ηl in Ĉ \ Bn , γ and ζ well intersect each other in the same
sense as above. In particular, it follows that γ �= ζ and γ ∩ ζ �= ∅. Please see Figure 7 for an
illustration.

Now the assertion follows by taking

δn = e−2lC0 C(n)−1 · log
(√

2+ 1
)
.

In fact, if lφm,n (γ, Bn) < δn , then both ζ and γ are (φm,n, Bn)-geodesics with length less than
log(
√

2+ 1) by (7·10). But we have seen that ζ and γ are distinct and intersect with each
other. This contradicts Lemma 8·1.

Step 3. Suppose γ is a (φm,n, Ak
n)-geodesic which intersects T so that either D(γ )∩ Zk

n

or D(γ )c ∩ Zk
n contains at most one point.

Let N1 be the number of the points in P1 \� and N2 be the number of the holomorphic
disks in Ĉ \�. Since Fn|T= Rθn and θn→ θ which is irrational, there is a smallest integer
i0 ≥ k which depends only on k such that the following holds for all n large enough: if I and
J are any two adjacent components of T \ Zi0

n and S = I ∪ J , then

S, Fn(S), . . . , F N1+N2+1
n (S)

are disjoint, and moreover, each component of T \ ∪N1+N2+1
i=0 Fi

n(S) contains at least one point
in Zi0

n .
In Lemma 4·2 let N0 = N1 + N2 + i0 + 1 and for 0≤ i ≤ N1 + N2 + 1 define the sets Ãi

n .
Since Ak

n ⊂ Ai0
n (because i0 ≥ k) and the number of the points in Ai0

n \ Ak
n depends only on

k (because i0 depends only on k), by Lemma 8·3 there is a (φm,n, Ai0
n )-geodesic γ̃ which is

homotopic to γ in Ĉ \ Ak
n such that

lφm,n (γ̃ , Ai0
n )≤C1(k) · lφm,n

(
γ, Ak

n

)
(7·11)

provided that lφm,n (γ, Ak
n) <C1(k)−1, where C1(k) > 1 is a constant depending only on k.

Now for 0≤ i ≤ N1 + N2 + 1, by Lemma 7·1,

lφm+i,n

(
γ̃ , Ai0

n

)≤ e2iC0 · lφm,n

(
γ̃ , Ai0

n

)
. (7·12)

Since Ai0
n ⊂ Ãi

n , 0≤ i ≤ N1 + N2 + 1, and the number of the points in Ãi
n \ Ai0

n is bounded
by some constant depending only on k, by Lemma 8·3 again there is a (φm+i,n, Ãi

n)-geodesic
γi which is homotopic to γ̃ in Ĉ \ Ai0

n such that

lφm+i,n

(
γi , Ãi

n

)
≤C2(k) · lφm+i,n

(
γ̃ , Ai0

n

)
. (7·13)

provided that lφm+i,n (γ̃ , Ai0
n ) <C2(k)−1 where C2(k) > 1 is some constant depending

only on k.
Let us show that the assertion holds by taking

δ =C1(k)
−1C2(k)

−1e−2(N1+N2+1)C0 ·min {δ(N0), δ(i0), λ(N0)} ,
where δ(N0), δ(i0) are respectively the constants guaranteed by Corollary 7·5 by taking
l = N0, i0, and λ(N0) is the constant guaranteed by Lemma 7·3 by taking k = N0. Note that
δ(i0) < log(

√
2+ 1) by Corollary 7·5.
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Assume lφm,n (γ, Ak
n) < δ. By (7·11) it follows that

lφm,n

(
γ̃ , Ai0

n

)
< δ(i0) < log

(√
2+ 1

)
. (7·14)

By (7·14) and Corollary 7·5 it follows that D(γ̃ )∩ Zi0
n or D(γ̃ )c ∩ Zi0

n contains at most one
point. For 0≤ i ≤ N1 + N2 + 1, from (7·11-7·13) we have

lφm+i,n

(
γi , Ãi

n

)
<min {δ(N0), λ(N0)}< log

(√
2+ 1

)
. (7·15)

By (7·14), (7·15) and Lemma 7·4 all γi and γ̃ are symmetric about T and intersect T at
exactly two points. For 0≤ i ≤ N1 + N2 + 1, let {ai , bi } = γi ∩T and {a, b} = γ̃ ∩T. Since
all γi are homotopic to γ̃ in Ĉ \ Ai0

n and since D(γ̃ )∩ Zi0
n or D(γ̃ )c ∩ Zi0

n contains at most
one point, it follows from Ai0

n ∩T= Zi0
n that all the points in {a, b, ai , bi , 0≤ i ≤ N1 +

N2 + 1} are contained in either one component of T \ Zi0
n or the union of two adjacent com-

ponents of T \ Zi0
n . For all 0≤ i �= j ≤ N1 + N2 + 1 and all n large enough, by the definition

of i0, we have {
Fi

n

(
ai

)
, Fi

n

(
bi

)}∩ {
F j

n

(
a j

)
, F j

n

(
b j

)}=∅, (7·16)

and moreover, for any p ∈ {Fi
n(a

i), Fi
n(b

i )} and q ∈ {F j
n (a

j ), F j
n (b

j )}, if I is a component
of T \ {p, q}, then I contains at least one point in Zi0

n .
From Lemma 8·2 and that Fi

n : Ĉ \ Ãi
n→ Ĉ \ AN0

n is a covering map, and that
lφm+i,n (γi , Ãi

n) < log(
√

2+ 1), it follows that ηi = Fi
n(γi) is a (φm,n, AN0

n )-geodesic so that

lφm,n

(
ηi , AN0

n

)≤ lφm+i,n

(
γi , Ãi

n

)
<min {δ (N0) , λ (N0)}< log

(√
2+ 1

)
. (7·17)

From (7·17) and Corollary 7·5 it follows that:

fact 1. for 0≤ i ≤ N1 + N2 + 1, either D(ηi)∩ Z N0
n or D(ηi )

c ∩ Z N0
n contains at most one

point.

Note that ηi ∩T= {Fi
n(a

i ), Fi
n(b

i)} for 0≤ i ≤ N1 + N2 + 1. From (7·16) all ηi are
distinct with each other. By Lemma 8·1 and (7·17) we have:

fact 2. all ηi , 0≤ i ≤ N1 + N2 + 1, are disjoint with each other.

Since Zi0
n ⊂ Z N0

n and ηi ∩T= {Fi
n(a

i), Fi
n(b

i )} for 0≤ i ≤ N1 + N2 + 1, as we have seen
before,

fact 3. for any 0≤ i �= j ≤ N1 + N2 + 1, if p ∈ ηi ∩T and q ∈ η j ∩T, then each arc com-
ponent of T \ {p, q} contains at least one point in Zi0

n , and therefore, must contain at
least one point in Z N0

n .

Now by Fact 1 we have two cases.

Case I. D(ηi )∩ Z N0
n contains at most one point for all 0≤ i ≤ N1 + N2 + 1. In this case, all

D(ηi ) must be disjoint with each other. Since otherwise, by Fact 2 we must have D(ηi )⊂
D(η j ) for some i �= j . But by Fact 3, this implies that D(η j ) would contain at least two
points in Z N0

n . This is a contradiction. Since ηi is non-peripheral in Ĉ \ AN0
n and Z N0

n =
AN0

n ∩T, by symmetry each D(ηi) contains at least one point in P1 \� or one holomorphic
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Fig. 8. Case I. all D(ηi ), 0≤ i ≤ N1 + N2 + 1, are disjoint.

disk in Ĉ \� (Note that from (7·17) and Lemma 7·3 ηi does not intersect the holomorphic
disks). But this is impossible since there are N1 + N2 + 2 disjoint domains D(ηi ), 0≤ i ≤
N1 + N2 + 1, but only N1 points in P1 \� and N2 holomorphic disks in Ĉ \�. Please see
Figure 8 for an illustration.

Case II. There is some 0≤ j ≤ N1 + N2 + 1 such that D(η j )∩ Z N0
n contains at least two

points. Thus, by Fact 1, D(η j )
c ∩ Z N0

n contains at most one point. By Facts 2 and 3, for each
0≤ i �= j ≤ N1 + N2 + 1, D(ηi )⊂ D(η j ) and D(ηi )

c ∩ Z N0
n contains more than one point.

This, together with Fact 1, implies that for 0≤ i �= j ≤ N1 + N2 + 1, D(ηi )∩ Z N0
n contains

at most one point. Now using the same argument as in the first case, one can first deduce
that all these N1 + N2 + 1 domains D(ηi ) are disjoint and then get a contradiction by the
symmetry of D(ηi ) and by counting the number of the points in P1 \� and the number of
the holomorphic disks in Ĉ \�. Please see Figure 9 for an illustration.

From the assertions in Steps 1 and 3 we have:

COROLLARY 7·6. For any l ≥ 0, there exists a 0< δ = δ(l) < log(
√

2+ 1) depending
only on l such that for all m ≥ 0 and all n large enough, if γ is a (φm,n, Al

n)-geodesic which
intersect T, then lφm,n (γ, Al

n)≥ δ.
Step 4. The argument is similar with that used in the Step 3. Again, since On is forward

invariant, the argument is even simpler. Suppose γ is a (φm,n, Bn)-geodesic which intersect
T so that either D(γ )∩ On or D(γ )c ∩ On contains at most one point. Let N1 and N2 be the
integers defined in the Step 3. In Lemma 4·2 let N0 = N1 + N2 + 1 and define the sets B̃i

n ,
0≤ i ≤ N0. For 0≤ i ≤ N0, by Lemma 7·1 we have

lφm+i,n (γ, Bn)≤ e2iC0 · lφm,n (γ, Bn) . (7·18)

For 0≤ i ≤ N0, from Lemma 8·3, Bn ⊂ B̃i
n and that the number of the points in B̃i

n \ Bn

is bounded by some number depending only on n, it follows that there is a (φm+i,n, B̃i
n)-

geodesic γi which is homotopic to γ in Ĉ \ Bn such that

lφm+i,n

(
γi , B̃i

n

)
≤C1(n) · lφm+i,n (γ, Bn) (7·19)
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Fig. 9. Case II. all D(ηi ), 0≤ i �= j ≤ N1 + N2 + 1, are disjoint and are contained in D(η j ).

provided that lφm+i,n (γ, Bn) <C1(n)−1 where C1(n) > 1 is some constant depending
only on n.

Let λ= λ(N0) be the constant guaranteed by Lemma 7·3. Let us show that the assertion
holds by taking

δn =C1(n)
−1e−2N0C0 ·min

{
λ, log

(√
2+ 1

)}
.

Assume that lφm,n (γ, Bn) < δn . Let us get the contradiction. Since either D(γ )∩ On or
D(γ )c ∩ On contains at most one point, so does D(γi )∩ On or D(γi )

c ∩ On . It follows that
(γ ∩T)∪⋃N0

i=0(γi ∩T) either belongs to the same component of T \ On or belongs to the
union of two adjacent components of T \ On . So the points in (γ ∩T)∪⋃N0

i=0(γi ∩T) can
be arbitrarily close to a single point in T, say z0, provided that n is large enough. Let
zi = Fi

n(z0), 0≤ i ≤ N0. Since Fn|T= Rθn and θn→ θ which is irrational, as n is large
enough, all zi , 0≤ i ≤ N0, are bounded away from each other with the bound indepen-
dent of n. Let ηi = Fi

n(γi), 0≤ i ≤ N0. Since Fi
n : Ĉ \ B̃i

n→ Ĉ \ B N0
n is a covering map

and lφm+i,n (γi , B̃i
n) < log(

√
2+ 1) by (7·18-7·19), from Lemma 8·2 it follows that all ηi ,

0≤ i ≤ N0, are (φm,n, B N0
n )-geodesics, and moreover,

lφm,n

(
ηi , B N0

n

)≤ lφm+i,n

(
γi , B̃i

n

)
. (7·20)

Since both the two points in γi ∩T are close to z0, it follows that both the two points in
ηi ∩T are close to zi , 0≤ i ≤ N0. Since all zi are bounded away from each other, it follows
that all ηi are distinct with other provided that n is large enough.

Since either D(γi )∩ On or D(γi )
c ∩ On contains at most one point, and since ηi = Fi

n(γi )

and On is Fn-invariant, we have:

fact 1. Either D(ηi )∩ On or D(ηi )
c ∩ On contains at most one point.

From (7·18-7·20) we have lφm,n (ηi , B N0
n ) <min{λ, log(

√
2+ 1)}. Since all ηi are distinct

with each other, by Lemma 8·1 we have:
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fact 2. all ηi , 0≤ i ≤ N1 + N2 + 1, are disjoint with each other.

Since for each 0≤ i ≤ N0, both the two points in ηi ∩T are close to zi , and since all zi

are bounded away from each other with the bound independent of n, it follows that, as n is
large enough,

fact 3. For any 0≤ i �= j ≤ N1 + N2 + 1, if p ∈ ηi ∩T and q ∈ η j ∩T, then each arc
component of T \ {p, q} contains at least one point in On .

Note that by Lemma 7·3 and lφm,n (ηi , B N0
n ) < λ, all ηi do not intersect the holomorphic disks.

Now the situation is the same as the one that we met at the end of Step 3. The remaining
argument is completely the same and we leave it to the reader.

Step 5. Instead of proving the two assertions claimed in Lemma 4·3 under the assumption
that γ ∩T=∅, it suffices to prove the following one assertion:

Assertion. There exists a δ > 0 such that for all m ≥ 0 and all n large enough, if γ is a
(φm,n, An)-geodesic with γ ∩T=∅, then lφm,n (γ, An)≥ δ.

To see this, first suppose that γ is a (φm,n, Ak
n)-geodesic for some integer k ≥ 1 such that

γ ∩T=∅. We may assume that γ dose not intersect the holomorphic disks since otherwise
we have lφm,n (γ, Ak

n)≥ λ(k) with λ(k) > 0 being the constant guaranteed by Lemma 7·3.
Since Ak

n \ An ⊂T∪∪i Di and γ ∩ (T∪∪i Di)=∅, and since each Di contains two points
ai and bi in An , γ must be non-peripheral in Ĉ \ An . Since Ĉ \ Ak

n ⊂ Ĉ \ An we have
lφm,n (γ, Ak

n)≥ lφm,n (γ, An)≥ δ. This implies that

lφm,n

(
γ, Ak

n

)≥min{δ, λ(k)}.

Now suppose that γ is a (φm,n, Bn)-geodesic such that γ ∩T=∅. Since the points in Bn \ An

are contained in T and since γ ∩T=∅, it follows that γ must be non-peripheral in Ĉ \ An .
Since Ĉ \ Bn ⊂ Ĉ \ An it follows that

lφm,n (γ, Bn)≥ lφm,n (γ, An)≥ δ.

Now let us prove the assertion claimed above. We first define two constants, M and m0,
which depend only on f . Define

M = |An| − 3. (7·21)

Note that |An| is independent of n by Proposition 4·1. By Lemma 8·1 it follows that the
number of (φm,n, An)-geodesics with length less than log (

√
2+ 1) is not greater than M .

Since f has no Thurston obstructions in Ĉ \�, the maximal eigenvalues of all the linear
transformation matrices induced by the f -stable multi-curves in Ĉ \ (�∪ Pf ∪∪i Di) are
less than 1 (see Remark 2·1). Note that the number of the elements in any f -stable multi-
curves in Ĉ \ (�∪ Pf ∪∪i Di) and the number of the possible values taken by the entries of
the linear transformation matrices are both bounded by some constants depending only on
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f . It follows that there are only finitely many such linear transformation matrices. So there
is an m0 ≥ 1 depending only on f such that for any such matrix A, let Am0 = (bi, j ), then

max
j

∑
i

bi, j < (2M)−1. (7·22)

Claim 1. There is a τ > 0 such that for all m ≥ 0 and all n large enough, if η is a
(φm,n, An)-geodesic such that lφm,n (η, An) < τ , then η⊂ Ĉ \ (T∪ PFn ∪∪i Di), and more-
over, for each 1≤ j ≤m0, there is a unique (φm,n, A j

n)-geodesic ξ which is homotopic in
Ĉ \ (T∪ PFn ∪∪i Di) to η. Moreover, lφm,n (ξ, A j

n) < 2lφm,n (η, An).

Proof. For 0≤ j ≤m0, let λ( j) > 0 and δ( j) > 0 be respectively the constants guaran-
teed by Lemma 7·3 and Corollary 7·6. In Lemma 8·3 Let us take X = Ĉ \ φm,n(An),
P = φm,n(A j

n \ An), l = lφm,n (η, An) and

K =min{λ( j), δ( j), 0≤ j ≤m0}.
Note that the number the points in A j

n \ An is bounded by some constant p(m0) depending
only on m0. By considering all the (φm,n, A j

n)-geodesics ηi which have length li < K and
which are homotopic to η in Ĉ \ An and applying Lemma 8·3, we get

1

l
− 2

π
− p(m0)+ 1

K
<

∑
i

1

li
. (7·23)

Now let us prove Claim 1 by taking

τ =
(

4

π
+ 2(p(m0)+ 1)

K

)−1

.

It is clear that τ < K/2. Suppose l < τ . Then l < K/2. By the definition of K , Lemma 7·3
and Corollary 7·6, η does not intersect T∪∪i Di , and so η⊂ Ĉ \ (T∪ PFn ∪ Di). From
l < τ and the definition of τ , the left-hand side of (7·23) is greater than 1/2l. Thus the
sum on the right-hand side contains at least one term, that is, there is at least one (φm,n, A j

n)-
geodesic ηi which is homotopic to η in Ĉ \ An so that lφm,n (ηi , A j

n) < K . From Lemma 7·3,
Corollary 7·6 and the definition of K , such ηi do not intersect holomorphic disks and T,
and thus contained in Ĉ \ (T∪ PFn ∪ Di ) also. Since T∩ An �= ∅ and Di ∩ An �= ∅, such
ηi are actually homotopic to η in Ĉ \ (T∪ An ∪∪i Di)= Ĉ \ (T∪ PFn ∪∪i Di ). It is clear
that there is at most one such (φm,n, A j

n)-geodesic, because any two such ones must be
homotopic to each other in Ĉ \ (T∪ PFn ∪∪i Di ), and thus in Ĉ \ A j

n , and are thus identified
with each other. This means, there is exactly one term in the sum on the right-hand side
of (7·23). Let ξ denote this ηi . Then lφm,n (ξ, A j

n) < 2lφm,n (η, An). The proof of Claim 1 is
completed.

Claim 2. There exists a constant κ > 0 such that for all m ≥ 0 and all n large enough,
if γ ⊂ Ĉ \� is a (φm,n, An)-geodesic with lφm,n (γ, An) < κ , then all components of F−1

n (γ )

which are non-peripheral in Ĉ \ An are contained in Ĉ \�.

Proof. Suppose η⊂� is a component of F−1
n (γ ) which is non-peripheral in Ĉ \ An . Let �

denote the component of Ĉ \ γ which does not contain the origin. Let us deform γ in �
into a single point. Then we have two cases. In the first case, the deformation of γ can be
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lifted to a deformation of η by F−1
n so that η is deformed into a point. In this case we must

meet a point z ∈ PFn ∩� so that Fn(z) ∈�⊂ Ĉ \�. In the second case, the deformation of
γ can not be lifted to a deformation of η by F−1

n . In this case we must meet some critical
point z ∈� so that Fn(z) ∈�⊂ Ĉ \�. By (vi) of Proposition 3·2 in both the cases we have
Fn(z) ∈�n where �n ⊂ Ĉ \� is a curve segment connecting Fn(z) to the point 1 such that
Fn(�n)⊂T. Since Fn(z) ∈�, γ must separate 1 and Fn(z). In Lemma 4·2 let N0 = 1 and
define the set Ã1

n . By Lemma 7·1
lφm+1,n (γ, An)≤ e2C0 · lφm ,n (γ, An) . (7·24)

Since An ⊂ Ã1
n and the number of the points in Ã1

n \ An does not depend on n, by Lemma 8·3
there is a (φm+1,n, Ã1

n)-geodesic γ1 which is homotopic to γ in Ĉ \ An such that

lφm+1,n

(
γ1, Ã1

n

)
≤C1 · lφm+1,n (γ, An) (7·25)

provided that lφm+1,n(γ, An) <C−1 with C1 > 1 being some constant independent of m and n.
In particular, γ1 must separate 1 and Fn(z) and thus intersect�n . Let δ = δ(1) < log(

√
2+ 1)

be the constant guaranteed by Corollary 7·6. Now take

κ =C−1
1 e−2C0δ.

Let us show that the κ is the desired constant by contradiction. Assume that lφm ,n(γ, An) < κ .
Then lφm+1,n(γ1, Ã1

n) < δ < log(
√

2+ 1) by (7·24-7·25). Since Fn : Ĉ \ Ã1
n→ Ĉ \ A1

n is a
covering map (see Lemma 4·2) and γ1 intersects �n , by Lemma 8·2, η1 = Fn(γ1) is a
(φm,n, A1

n)-geodesic which intersects T such that

lφm ,n

(
η1, A1

n

)≤ lφm+1,n

(
γ1, Ã1

n

)
< δ.

This contradicts Corollary 7·6 and Claim 2 has been proved.

Recall that any point in PFn \ (Pf ∪�) is connected to the point 1 by the curve segment
�n , see assertion (vi) of Proposition 3·2. So the proof of Claim 2 actually proves:

Claim 3. Let κ > 0 be the constant in Claim 2. Then for all m ≥ 0 and all n large enough,
if γ ⊂ Ĉ \� is a (φm,n, An)-geodesic with lφm,n (γ, An) < κ , then γ does not separate the
point 1 and the points in PFn \ (Pf ∪�).

Let

L =max
{
(τ A)−1, (κA)−1, 2(2d − 1)e2C0

}
(7·26)

with and A= 1/ log (
√

2+ 1), and τ, κ,C0 > 0 being respectively the constants determined
in the Claims 1 and 2 and Lemma 7·1.

Claim 4. Let m ≥ 0 and n be large enough. Suppose the following two conditions hold
for some a ≥ A= 1/ log (

√
2+ 1):

(i) there is no (φm,n, An)-geodesic γ satisfying a < 1/ lφm,n (γ, An)≤ La;
(ii) � = {γ : γ is a (φm,n, An)-geodesic with 1/ lφm,n (γ, An) > La} �= ∅.
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Let 	 = {γ ∈� : γ ⊂ Ĉ \�} and 	∗ = {γ ∈� : γ ⊂�}. Then � = 	 ∪ 	∗ and moreover,
the following two assertions hold:

(1) both 	 and 	∗ are Fn-stable multi-curves in Ĉ \ (T∪ PFn ∪∪i Di );
(2) for every γ ∈ 	, γ does not separate the point 1 and the points in PFn \ (Pf ∪�).
Proof. Suppose (i) and (ii) hold. Let γ ∈�. From 1/ lφm,n (γ, An) > La and (7·26) we have

lφm,n (γ, An) <min{τ, κ}< log
(√

2+ 1
)
. (7·27)

By (7·27), Claim 1 and Lemma 8·1 all the elements in � are contained in Ĉ \ (T∪ PFn ∪
∪i Di) and are disjoint with other. Since An ⊂ (T∪ PFn ∪∪i Di ), all the elements in � are
non-peripheral and non-homotopic to each other in Ĉ \ (T∪ PFn ∪∪i Di). So � = 	 ∪ 	∗
and both 	 and 	∗ are multi-curves in Ĉ \ (T∪ PFn ∪∪i Di).

To prove that 	 is Fn-stable, let N0 = 1 in Lemma 4·2 and define the set Ã1
n . For each

γ ∈ 	, by Claim 1, there is a unique (φm,n, A1
n)-geodesic ξ which is homotopic to γ in

Ĉ \ (T∪ PFn ∪∪i Di) with

lφm,n

(
ξ, A1

n

)
< 2 · lφm,n (γ, An). (7·28)

Suppose η⊂ Ĉ \ (T∪ PFn ∪∪i Di ) is a non-peripheral component of F−1
n (γ ). Since each

Di contains two points ai and bi in An , η is also non-peripheral in Ĉ \ An . By (7·27) and
Claim 2, we have

η⊂ Ĉ \�. (7·29)

Since ξ is homotopic to γ in Ĉ \ (T∪ PFn ∪∪i Di), and since Fn : Ĉ \ Ã1
n→ Ĉ \ A1

n is a
covering map and A1

n ⊂ (T∪ PFn ∪∪i Di) , there is a (φm+1,n, Ã1
n)-geodesic ζ which is

homotopic to η in Ĉ \ (T∪ PFn ∪∪i Di) such that ξ = Fn(ζ ). In particular, by Definition 4·1
we have

lφm,n (η, An)= lφm,n (ζ, An) . (7·30)

Since Fn is of degree 2d − 1, we have

lφm+1,n

(
ζ, Ã1

n

)
≤ (2d − 1) · lφm,n

(
ξ, A1

n

)
. (7·31)

By Lemma 7·1 there is some C0 > 0 independent of m and n such that

lφm,n (ζ, An) < e2C0 · lφm+1,n (ζ, An) . (7·32)

Since An ⊂ Ã1
n , we have

lφm+1,n (ζ, An)≤ lφm+1,n

(
ζ, Ã1

n

)
. (7·33)

Now by tracking these inequalities according to the order (7·30, 7·32, 7·33, 7·31, 7·28),
we have

lφm,n (η, An) < 2(2d − 1)e2C0 · lφm,n (γ, An) .

Since 1/ lφm,n (γ, An) > La, by (7·26) we get 1/ lφm,n (η, An) > a. By (i) it follows that
1/ lφm,n (η, An) > La and thus η is homotopic in Ĉ \ An to some element β ∈�. Since
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η⊂ Ĉ \� by (7·29), we must have β ∈ 	. Since both η and β do not intersect T∪∪i Di ,
and since T and each Di contain points in An , the homotopy between η and β can be
made in Ĉ \ (T∪ An ∪∪i Di)= Ĉ \ (T∪ PFn ∪∪i Di). This proves that 	 is Fn-stable in
Ĉ \ (T∪ PFn ∪∪i Di ). By symmetry 	∗ is also Fn-stable in Ĉ \ (T∪ PFn ∪∪i Di). This
proves (1).

The assertion (2) follows from Claim 3 and that lφm,n (γ, An) < κ .

Claim 5. Let 	 be a Fn-stable multi-curve in Ĉ \ (T∪ PFn ∪∪i Di ) described in Claim 4.
Then 	 is a f -stable multi-curve in Ĉ \ (�∪ Pf ∪∪i Di), and moreover, 	 induces the same
linear transformation for Fn and f .

Proof. Let 	= {γl : 1≤ l ≤ N } with 1≤ N ≤ M and M being the constant in (7·21). By
deforming γl in Ĉ \ (T∪ PFn ∪∪i Di), we may assume that γl ⊂ Ĉ \ {z : |z| ≤ 1+ r1} for all
1≤ l ≤ N , where r1 > 0 is the constant in Remark 3·2. Then Claim 5 follows obviously if
the following three assertions hold. Let γl ∈ 	 be an arbitrary element.

(i) If a component of F−1
n (γl) is non-peripheral in Ĉ \ (T∪ PFn ∪∪i Di ), then it is

contained in Ĉ \�.
(ii) F−1

n (γl)∩ (Ĉ \�)= f −1(γl) and when restricted to each component of f −1(γl), Fn

and f coincide with each other.
(iii) A component of f −1(γl) is non-peripheral in Ĉ \ (T∪ PFn ∪∪i Di) if and only if it is

non-peripheral in Ĉ \ (�∪ Pf ∪∪i Di ).
The first assertion follows since 	 is Fn-stable in Ĉ \ (T∪ PFn ∪∪i Di ) and all the

elements in 	 are contained in Ĉ \�. The second one follows from Remark 3·2.
To see the third one, let η be a component of f −1(γl). Suppose η is non-peripheral in

Ĉ \ (T∪ PFn ∪∪i Di ). Then η is contained in Ĉ \� and is homotopic to some element β ∈ 	
in Ĉ \ (T∪ PFn ∪∪i Di). Thus by (2) of Claim 4, η does not separate the point 1 and the
points in PFn \ (Pf ∪�). This implies that the component of Ĉ \ η, which does not contain
T, does not contain the points in PFn \ (Pf ∪�). So η must be non-peripheral in Ĉ \ (�∪
Pf ∪∪i Di). On the other hand, suppose η is non-peripheral in Ĉ \ (�∪ Pf ∪∪i Di ). Since
Pf ⊂ PFn , the component of Ĉ which does not contain T must contain at least two points
in Pf and thus contains at least two points in PFn . Since the other component contains T, it
follows that η must be non-peripheral in Ĉ \ (T∪ PFn ∪∪i Di).

Claim 6. Let A= 1/ log (
√

2+ 1) and L be the constant defined by (7·26). Then there
exists a C1 > 0 such that for all m ≥ 0 and all n large enough, if (i) and (ii) in Claim 4 hold
for some A≤ a ≤ L M A, then∑

γ∈	
1/ lφm+m0 ,n

(γ, An) < (2M)−1 ·
∑
γ∈	

1/ lφm,n (γ, An)+C1, (7·34)

where 	 is the Fn-stable multi-curve guaranteed by Claim 4 and M is the constant defined
by (7·21).

Proof. In Lemma 4·2 let N0 =m0 and define the set Ãm0
n . Then An ⊂ Ãm0

n . Let p= | Ãm0
n \

An|. Then p≥ 1 is independent of m and n. Let

K =min
{
δ(m0), λ(m0), L−M A−1

}
< log

(√
2+ 1

)
,
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where δ(m0) and λ(m0) are the constants guaranteed by Corollary 7·6 and Lemma 7·3
respectively. Let us prove Claim 6 by taking

C1 = M

(
2

π
+ p+ 1

K

)
.

Let 	 = {γi , 1≤ i ≤ N } with 1≤ N ≤ M . Recall that for each γi ∈ 	, lφm,n (γi , An) < τ , see
(7·27). By Claim 1, there is a unique (φm,n, Am0

n )-geodesic γ ′i homotopic in Ĉ \ (T∪ PFn ∪
∪i Di) to γi . Let

	′ = {
γ ′i , 1≤ i ≤ N

}
.

Note that Fm0
n : Ĉ \ Ãm0

n → Ĉ \ Am0
n is a covering map by Lemma 4·2. Let γ ′i, j,α denote all

the components of F−m0
n (γ ′j ) which are homotopic to γ ′i in Ĉ \ (T∪ PFn ∪∪i Di ). Then γ ′i, j,α

are (φm+m0,n, Ãm0
n )-geodesics. Let di, j,α ≥ 1 denote the covering degree of the map Fm0

n :
γ ′i, j,α→ γ ′j . Now let us prove∑

i

1/ lφm+m0 ,n
(γi , An) <

∑
i, j,α

1/ lφm+m0 ,n

(
γ ′i, j,α, Ãm0

n

)
+C1 (7·35)

Note that An ⊂ Ãm0
n . In Lemma 8·3 let X = Ĉ \ φm+m0(An) and P = φm+m0( Ã

m0
n \ An). For

each γi ∈ 	, by the left-hand inequality in Lemma 8·3 we get

1/ lφm+m0 ,n
(γi , An) <

∑
η

1/ lφm+m0 ,n

(
η, Ãm0

n

)
+ 2

π
+ p+ 1

K
, (7·36)

where the sum is taken over all (φm+m0, Ãm0
n )-geodesics η which are homotopic to γi in

Ĉ \ An and satisfy lφm+m0 ,n
(η, Ãm0

n ) < K . For any such η, since Fm0
n : Ĉ \ Ãm0

n → Ĉ \ Am0
n is a

covering map, it follows from Lemma 8·2 that Fm0
n (η) is a (φm,n, Am0

n )-geodesic with

lφm,n

(
Fm0

n (η), Am0
n

)≤ lφm+m0 ,n

(
η, Ãm0

n

)
< K .

By Corollary 7·6 and Lemma 7·3 Fm0
n (η) does not intersect T∪∪i Di , hence η does not

intersect T∪∪i Di either. Since η is homotopic to γi ∈ 	 in Ĉ \ An and γi ⊂ Ĉ \�, we must
have η⊂ Ĉ \�. Since (Am0

n \ An)⊂ (T∪∪i Di ) and Fm0
n (η) does not intersect T∪∪i Di ,

and since each Di contains two points ai and bi in An , Fm0
n (η) must be non-peripheral in

Ĉ \ An . Since An ⊂ Am0
n , we have lφm,n (F

m0
n (η), An)≤ lφm,n (F

m0
n (η), Am0

n ) < K ≤ 1/a. Thus
1/ lφm,n (F

m0
n (η), An) > a. By (i) of Claim 4, we must have 1/ lφm,n (F

m0
n (η), An) > La. Thus

either Fm0
n (η)⊂� and is homotopic in Ĉ \ An to some element in 	∗, or Fm0

n (η)⊂ Ĉ \�
and is homotopic in Ĉ \ An to some element in 	. Since Fm0

n (η) and all the elements in 	 and
	∗ do not intersect T∪∪i Di , and since T and each Di contain points in An , in both the cases,
the homotopy can be made in Ĉ \ (T∪ PFn ∪ Di). The first case can not happen. Because
otherwise, since 	∗ is Fn-stable and η is a non-peripheral component of F−m0

n (Fm0
n (η)), η

would be homotopic in Ĉ \ (T∪ PFn ∪ Di) to some element in 	∗. But this is impossible
since η⊂ Ĉ \� and all the elements in 	∗ are contained in �. So Fm0

n (η)⊂ Ĉ \� and is
homotopic in Ĉ \ (T∪ PFn ∪ Di) to some element in 	. This, together with the definition
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of 	′, implies that Fm0
n (η) ∈ 	′. Assume that Fm0

n (η)= γ ′j . Then η must be one of the γ ′i, j,α.
From (7·36) we get

1/ lφm+m0 ,n
(γi , An) <

∑
j,α

1/ lφm+m0 ,n

(
γi, j,α, Ãm0

n

)
+ 2

π
+ p+ 1

K
.

From N ≤ M , (7·35) follows by taking the sum of the above inequalities for 1≤ i ≤ N . By
Claim 5. 	 induces the same linear transformation for Fn and f . Thus by (2·1, and (7·22)
we have

max
j

∑
i,α

1

di, j,α
=max

j

∑
i

bi, j < (2M)−1. (7·37)

We thus have ∑
i, j,α

1/ lφm+m0 ,n

(
γ ′i, j,α, Ãm0

n

)
=

∑
j

( ∑
i,α

1

di, j,α

)
1/ lφm,n

(
γ ′j , Am0

n

)
< (2M)−1 ·

∑
j

1/ lφm,n

(
γ ′j , Am0

n

)
< (2M)−1 ·

∑
j

1/ lφm,n

(
γ ′j , An

) (7·38)

The last inequality holds since An ⊂ Am0
n and thus lφm,n (γ

′
j , An)≤ lφm,n (γ

′
j , Am0

n ). (7·34) then
follows from (7·35), (7·38) and that lφm,n (γ

′
j , An)= lφm,n (γ j , An).

Now let us complete the proof in the Step 5. Let N ∗ ≥ 1 be an integer such that all the
assertions proved until now hold for all m ≥ 0 and all n ≥ N ∗, see Remark 4·2. Take an
arbitrary n ≥ N ∗ and let it be fixed. For m ≥ 0, let

xm =max
γ
{1/ lφm,n (γ, An)},

where the max is taken over all non-peripheral curves γ in Ĉ \ An . Since φ0,n = id and since
the spherical distance between any two distinct points in An has a positive lower bound
independent of n (see Proposition 4·1), it follows that lφ0,n (γ, An) has a positive lower bound
independent of γ and n. So we have a constant 0< c0 <∞ independent of n so that x0 ≤ c0.
From Lemma 7·1 it follows that xm+1/xm ≤ e2C0 holds for all m ≥ 0 with 0<C0 <∞ being
the constant in Lemma 7·1.

Let M0 =max{2C1, A · e2m0C0 · L M+1} with C0 > 0 being the constant in Lemma 7·1,
L > 1 being the constant given by (7·26) and C1 > 0 being the constant in Claim 6 and
A= 1/ log (

√
2+ 1).

Now suppose xm ≥ M0 for some m ≥ 0. Then there is a (φm,n, An)-geodesic η so that
xm = 1/ lφm,n (η, An)≥ A · e2m0C0 · L M+1. Since there are at most M (φm,n, An)-geodesics
with length less than log (

√
2+ 1), there is some 1≤ i ≤ M + 1 such that there is no

(φm,n, An)-geodesic γ satisfying Li−1 A< 1/ lφm,n (γ, An)≤ Li A. In Claim 4 let a = Li−1 A≤
L M A. Then the two conditions in Claim 4 are satisfied. Let 	 be the Fn-stable multi-curve
guaranteed by Claim 4.

Suppose xm+m0 = 1/ lφm+m0 ,n
(ξ, An) for some (φm+m0,n, An)-geodesic ξ . There are two

cases.
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In the first case, 1/ lφm,n (ξ, An)≤ La. By Lemma 7·1 we have

xm+m0 = 1/ lφm+m0 ,n
(ξ, An)≤ e2m0C0/ lφm,n (ξ, An)≤ A · e2m0C0 · L M+1 ≤ xm .

In the second case, 1/ lφm,n (ξ, An) > La. By the definition of 	, it follows that ξ is
homotopic in Ĉ \ An to some γ ∈ 	. By Claim 6 we have

xm+m0 ≤
∑
γ∈	

1/ lφm+m0 ,n
(γ, An) < (2M)−1 ·

∑
γ∈	

1/ lφm,n (γ, An)+C1

≤ 1

2
xm +C1 ≤ xm .

The last inequality holds because xm ≥ M0 ≥ 2C1 by the definition of M0.
Now by Lemma 8·4 we have

xm ≤ D =max
{

bm0−1
0 c0, bm0

0 M0

}
, ∀m ≥ 0.

Since n ≥ N ∗ is arbitrary and b0, c0,m0, M0 are independent of n, the proof of the Step 5 is
completed by taking δ = D−1. Lemma 4·3 has been proved.

8. Appendix

For the convenience of the reader we state three lemmas which are repeatedly used in
Section 7. For the proofs, see [3].

LEMMA 8·1. [3, corollary 6·6] Let X be a hyperbolic Riemann surface and γ1, γ2 be two
simple closed geodesics with length < log(

√
2+ 1). Then either γ1 = γ2 or γ1 ∩ γ2 =∅.

LEMMA 8·2. [3, corollary 6·7] Let X be a hyperbolic Riemann surface. Let γ
be a geodesic in X which intersects itself transversally at least once. Then lX (γ ) >

2 log(
√

2+ 1). In particular, if f : X→ Y is a holomorphic covering map between two
hyperbolic Riemann surfaces, and if γ ⊂ X is a simple closed geodesic with lX (γ ) <

2 log(
√

2+ 1), then f (γ ) must be a simple closed geodesic in Y such that

lX (γ )= d0 · lY ( f (γ ))

with d0 ≥ 1 being the covering degree of f : γ → f (γ ).

LEMMA 8·3. [3, theorem 7·1] Let X be a hyperbolic Riemann surface, P ⊂ X a finite
set with |P| = p> 0. Choose K < log(

√
2+ 1). Let X ′ = X − P. Let γ be a simple closed

geodesic in X and {γ ′1, . . . , γ ′s } be the simple closed geodesic in X ′ which is homotopic to
γ in X with length less than K . Let l = lX (γ ) and l ′i = lX ′(γi ). Then s ≤ p+ 1 and

1

l
− 2

π
− p+ 1

K
<

∑
1≤i≤s

1

l ′i
<

1

l
+ 2(p+ 1)

π
.

In particular, there is a constant C(p) > 1 depending only on p such that if l <C(p)−1, then
there is some γ ′i with 1≤ i ≤ s so that

l ′ <C(p) · l.
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Note. The last assertion of Lemma 8·3 follows by taking K = (1/2) log(
√

2+ 1) and

C(p)=max

{
2(p+ 1), 2

(
p+ 1

K
+ 2

π

)}
.

LEMMA 8·4. ([7, Lemma 7·6]) Let b0 > 1, c0, M0 > 0 and integer m0 ≥ 1 be given. Then
for any sequence {xm}m≥0 of positive numbers satisfying:

(i) x0 ≤ c0;
(ii) xm+1/xm ≤ b0;

(iii) if xm ≥ M0, then xm+m0 ≤ xm.

Then

xm ≤max{bm0−1
0 c0, bm0

0 M0}, ∀m ≥ 0.

The following is a technical lemma on homotopy. We use it in Section 5. Its proof is rather
elementary and we leave it to the reader.

LEMMA 8·5. Let Ui , 1≤ i ≤ l, be Jordan domains with Ui ⊂� and Ui ∩Ui ′ = ∅ for
1≤ i �= i ′ ≤ l. Let Q = {q1, . . . , qm} ⊂� be a set consisting of finitely many points. Suppose
Q ∩∪iUi =∅. Let X =� \ (Q ∪∪iUi). Then there exists a τ > 0 such that for any
homeomorphism h : X→ X, if dist(h, id) < τ and h|∂X = id, then h is homotopic to id
rel ∂X.
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