
J. Fluid Mech. (2019), vol. 860, pp. 487–509. c© Cambridge University Press 2018
doi:10.1017/jfm.2018.846

487

The enhancement of viscous fingering with
bidisperse particle suspension
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Viscous fingering is observed experimentally when a bidisperse suspension displaces
air inside a Hele-Shaw cell, despite the stabilising viscosity ratio between the
invading (suspension) and defending (air) phases. Careful experiments are carried
out to characterise this instability by either systematically varying the large-particle
concentrations φl0 at constant total concentrations φ0, or changing φ0 with fixed
φl0. Leading to the instability, we observe that larger particles consistently enrich
the fluid–fluid interface at a faster rate than small particles. This size-dependent
enrichment of the interface leads to an earlier onset of the fingering instability for
bidisperse suspensions, compared to their monodisperse counterpart of all small
particles. In particular, even the small presence of large particles is shown to
effectively lower the total particle concentration needed for fingering, compared to the
all-small-particle case. We hypothesise that the key mechanism behind this enhanced
viscous fingering is the size-dependent nature of shear-induced migration of particles
far upstream from the interface. A reduced equilibrium model is derived based on the
modified suspension balance model to verify this hypothesis, in reasonable agreement
with experiments.

Key words: fingering instability, multiphase and particle-laden flows

1. Introduction
The classic viscous fingering refers to the instability at the interface between

two fluids when a less viscous fluid displaces a more viscous one inside porous
media (Saffman & Taylor 1958; Homsy 1987). More recently, fingering has been
observed even in the absence of this destabilising viscosity ratio, when a mixture of
oil and non-colloidal particles displaces air in a Hele-Shaw cell (Tang et al. 2000;
Ramachandran & Leighton 2010; Xu, Kim & Lee 2016; Kim, Xu & Lee 2017). This
so-called particle-induced viscous fingering is shown to originate from shear-induced
migration of particles normal to the flow direction, which refers to the tendency of
non-colloidal particles to migrate across streamlines from regions of high to low shear
(Leighton & Acrivos 1987b; Graham et al. 1991; Husband et al. 1994; Krishnan &
Leighton 1994). Once particles collect near the channel centre due to shear-induced
migration, they achieve a faster average axial velocity and accrete at the advancing
oil–air interface, which generates the destabilising effective viscosity gradient.

† Email address for correspondence: sungyon@umn.edu
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While previous studies mostly focused on the dependence of particle-induced
fingering on the particle volume fraction φ0, Kim et al. (2017) uncovered that
fingering behaviour (i.e. finger onset and wavenumber) differs drastically between
monodisperse suspensions of all small versus all large particles. Given this size-
dependent behaviour of particle-induced fingering, the natural question that follows
is how the inclusion of particles with two different radii in the suspension will
impact fingering. In this paper, we directly address this question experimentally and
theoretically by studying a bidisperse suspension that radially displaces air inside
a Hele-Shaw cell. From the practical standpoint, most industrial applications with
suspensions, such as coating (van der Kooij, Kassapidou & Lekkerkerker 2000) and
three-dimensional (3D) printing (Chahal, Ahmadi & Cheung 2012; Connell et al.
2013), involve a wide distribution of particle sizes. Hence, the current study of
bidisperse suspensions offers a logical first step from considering the interfacial
dynamics of purely monodisperse suspensions towards more practical polydisperse
mixtures.

The dynamics of bidisperse suspensions has been studied experimentally in
the low-Reynolds-number regime over the past few decades (Graham et al. 1991;
Husband et al. 1994; Krishnan & Leighton 1994; Krishnan, Beimfohr & Leighton
1996). For instance, Graham et al. (1991) employed nuclear magnetic resonance
(NMR) imaging to study the migration of concentrated suspensions undergoing
flow between rotating concentric cylinders. They reported that large particles in
bimodal suspensions form concentric cylindrical sheets inside the Couette cell, which
provided the first insight into the effects of polydispersity on shear-induced migration
of particles. Husband et al. (1994) measured the particle migration in suspensions
of bimodal spheres and showed that the coarse fraction of particles migrates much
faster than the fine fraction, which leads to the size segregation of initially well-mixed
suspensions. Following these studies, Lyon & Leal (1998b) measured the velocity and
concentration profiles for bidisperse suspensions undergoing a pressure-driven flow
in a rectangular Hele-Shaw cell. More recently, Norman, Oguntade & Bonnecaze
(2008) reported the size segregation of bidisperse suspensions in pressure-driven pipe
flows, taking into account the negative buoyancy of particles. Hence, the existing
experimental studies on bidisperse suspension systems have clearly demonstrated that
the effects of shear-induced migration depend on the particle size, which can lead to
the size segregation of particle species in different flow geometries. The present study
will add to this rich body of work on bidisperse suspensions by focusing on how
this size-dependent nature of shear-induced migration may alter the particle-induced
viscous fingering.

From the theoretical perspective, several continuum models have been developed
to study the suspension dynamics. The first approach is called the diffusive flux
model, which was originally proposed by Leighton & Acrivos (1987b) to explain
their experimental observations (Leighton & Acrivos 1987a). The model is built on
the conjecture that particles can migrate across streamlines in the gradient of shear,
particle concentration or effective viscosity, via non-hydrodynamic interactions; the
model utilises the phenomenological expression for particle diffusion that relates
the resultant particle flux to the gradient of these aforementioned quantities. This
model was further developed by Krishnan et al. (1996) to account for the effect
of the streamline curvature, enabling the model to explain the lack of migration
of particles in parallel-plate flow where there exists an outward-growing shear rate
(Chapman 1990). Another successful method is called the suspension balance model,
which was originally developed by Nott & Brady (1994) to study pressure-driven
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suspension flows. Distinct from the diffusive flux model, the suspension balance
model accounts for the normal components of particle phase stress that are induced
by shear, and the particle migration results from the normal stress gradient. More
recently, Boyer, Guazzelli & Pouliquen (2011) proposed the frictional suspension
rheology to capture the transition from the fluid-like to solid-like behaviours of
very dense suspensions, in excellent agreement with the experiments (Lecampion &
Garagash 2014; Dagois-Bohy et al. 2015).

In the relatively dilute regime, both the diffusive flux model and suspension balance
model have been proven to successfully capture the dynamics of monodisperse
suspensions in different flow geometries (Lyon & Leal 1998a; Morris & Brady 1998;
Morris & Boulay 1999; Murisic et al. 2011, 2013; Lee, Stokes & Bertozzi 2014).
However, only a limited number of studies have utilised these models to describe
bi- or polydisperse systems. For example, Shauly, Wachs & Nir (1998) studied the
effect of particle radii on shear-induced migration in Couette flow by constructing
a phenomenological model. They obtained qualitatively good agreement between the
model and experimental data reported in the literature. Lyon & Leal (1998b) applied
the suspension balance model to their bidisperse system, assuming that uniformly
distributed small particles only contribute to the viscosity of the carrying fluid, and
the results agreed reasonably well with their experiments. Norman et al. (2008)
modified the suspension balance model by adding a constitutive stress equation for a
second species of particles to calculate the particle concentration and corresponding
velocity profiles of both particle types. No application of the frictional suspension
rheology has been reported in the literature so far on polydisperse suspensions.

In this paper, we experimentally inject a bidisperse suspension to radially
displace air inside a Hele-Shaw cell. The mixture consists of neutrally buoyant,
non-colloidal particles (i.e. large Péclet number) with two distinct radii and viscous oil.
Experimentally, we quantify the clear preferential accumulation of large particles (over
smaller ones) at the fluid–fluid interface. This size-dependent particle accumulation
is also shown to ‘enhance’ or expedite the onset of fingering upon the inclusion of
even a small amount of large particles, compared to the monodisperse counterpart. To
rationalise the experimental results, we also compute the particle concentration profiles
that account for size-dependent shear-induced migration, following the theoretical
framework of Nott & Brady (1994) and Norman et al. (2008). The comparison
between the experimental measurements of the depth-averaged concentrations and the
calculations shows satisfactory agreement.

This paper is organised as follows. First, § 2 consists of the description of the
experimental set-up and method, followed by the results of our key experimental
observations and measurements. Then, in § 3, we lay out the theoretical framework
based on the suspension balance model; results from the numerical calculation and
comparison to experimental measurements are also provided in this section. We
conclude the paper with a brief discussion in § 4.

2. Experiments
2.1. Apparatus and procedure

The experiments are performed by radially injecting a bidisperse suspension into
a Hele-Shaw cell that is open to air from all sides (see Xu et al. (2016) for
the original set-up). The cell consists of two pieces of Plexiglas with dimensions
30.5 cm × 30.5 cm × 3.8 cm that are separated to a constant gap thickness
h = 1.40 mm with standard shims (McMaster). There is a hole drilled at the centre
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of the bottom plate, through which the suspension is injected via a clear vinyl tube
at a constant flow rate Q= 150 ml min−1 with a syringe pump (New Era Pump Inc.,
NE-1010). A light-emitting diode (LED) panel (EnvirOasis, 75 W, 4200 lumen) is
placed under the cell to provide uniform illumination. All the experiments are recorded
from the top down with a digital camera (Nikon D500) at a rate of 60 frames per
second (f.p.s.).

The fluid used is polydimethylsiloxane-based silicone oil (PDMS, United Chemical),
with viscosity ηf = 0.096 Pa s and density ρf = 0.96 g cm−3. We assume that the
PDMS behaves as a Newtonian fluid given its relatively low kinematic viscosity
and molecular weight (Murisic et al. 2013). The suspended particles are fluorescent
spherical polyethylene beads (Cospheric) with density ρp = 1.00 g cm−3 and two dis-
tinct diameters. The larger (red) particles have a mean diameter of dl=327 µm (range
300–355 µm), while that of the smaller (green) ones corresponds to ds = 137 µm
(range 125–150 µm). The colours are specifically chosen to provide visual contrast
between the two particle types. The slight mismatch between the particle and fluid
densities gives rise to particle settling inside the suspension. The Stokes settling
speed can be estimated as us= (ρp− ρf )gd2f (φ)/(18ηf ), where the hindrance function
f (φ) = (1 − φ)4.4 captures the effects of many-particle sedimentation (Altobelli &
Mondy 2002; Beyea, Altobelli & Mondy 2003), and φ denotes the particle volume
fraction. Then, based on the characteristic parameters (e.g. φ ∼ 0.2), the settling
distance in the experimental time scale (∼20 s) corresponds to 0.17 and 0.032 mm
for large and small particles, respectively, which is much less than h. Hence, we
neglect the effects of particle sedimentation in our present analysis.

For each experiment, the volumes of each component – fluid and two types of
particles – are carefully measured out to set the total initial volume fraction φ0, as
well as the volume fraction of each particle species: φl0 for large and φs0 for small
particles. All the components are added and mixed together inside a syringe to achieve
a uniform distribution of suspended particles. The syringe containing the suspension
is left open for a sufficient amount of time to allow for trapped air bubbles to escape.
The value of φ0 ranges from 15 % to 25 % with an increment of 1 %, while φl0 is
varied from 1 % up to 5 % at given φ0; φs0 is adjusted accordingly based on φ0=φl0+

φs0. All combinations of volume fractions used in the experiments are summarised in
table 1.

2.2. Data analysis
All the videos of experiments are processed with image processing codes developed
in MATLAB. In particular, we aim to extract two sets of information from each
experiment: the shape and position of the evolving suspension–air interface as well
as the depth-averaged concentrations of the bulk suspension (i.e. φ̄(r)) and of the
respective particle component (i.e. φ̄l(r) and φ̄s(r)) as functions of the radial position r.
In terms of the interface tracking, we use the built-in edge detector in MATLAB,
which takes the smoothed images using the median filter as an input. The detector
utilises the ‘canny’ method to identify the maximum changes in the local intensity
gradient and recognises them as the edge. On the other hand, the concentration
profiles are calculated by correlating the light intensities (indicated by matrix I
hereafter) to φ̄. However, a major challenge lies in finding a correlation between I
and the concentration profiles of each particle species. To overcome this, we construct
and train a classifier with an artificial neural network (ANN), which takes the RGB
(red, green, blue) values of groups of pixels as an input; this allows for tracking of
particles of different colours.
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φ0 (× 100 %) φl0 (× 100 %)

15 4, 5
16 1, 3, 4
17 1, 2, 3, 5
18 1, 2, 3, 4, 5
19 1, 2, 3
20 1, 2, 3, 5
21 1, 3
22 1, 3, 5
23 1, 3, 5
24 1, 5
25 1, 5

TABLE 1. Summary of all combinations of the concentrations (total, φ0; and large particles,
φl0) used. For all experimental runs, the flow rate Q and the gap thickness h are kept
constant at 150 ml min−1 and 1.397 mm, respectively.

In the three-layer ANN built, the sigmoid function S(x)= 1/(1+ e−x) is employed
as the activation for the hidden layer, where x represents any arbitrary input from the
input layer. The three-layer network is thus expressed as

Zi = S

(∑
j=1

w(1)
ij xj +w(1)

i0

)
= S(W (1)

i x), (2.1a)

Hwi =
∑
j=1

w(2)
ij Zj +w(2)

i0 =W (2)
i Z, (2.1b)

where Zi is the activation acquired from the hidden layer, wij is the weight associated
with the connection from the jth node to the ith node in its predecessor layer, W is
thus the resultant weight matrix, and Hw is the output from the output layer – see
figure 1(a) for a schematic.

With the network explicitly represented above, we hereby define the following cost
function applying the logistic discrimination for multi-class classification:

J(W )=−
1
m

[
m∑

i=1

K∑
k=1

y(i)k log Hw(x
(i)
k )+ (1− y(i)k ) log(1−Hw(x

(i)
k ))

]
, (2.2)

where y corresponds to the classification vector, y∈RK , m represents the total number
of training samples and K is the number of classes for the classification problem.
The coefficients in W are determined by minimising the cost function J, which is
achieved by performing back-propagation (Alpadydin 2009). We evaluate the network
by calculating the rate of correctness C as a function of number of iterations N. As
shown in figure 1(b), the correctness rate stabilises at 98 %, suggesting very robust
performance. See appendix A for the pseudo-code utilised.

Once the classification is complete, the respective concentration profiles are acquired
assuming that the ratio of the green (small-particle) to red (large-particle) area
fractions is proportional to the volume fraction ratio (i.e. φ̄s/φ̄l). This ANN method
has been applied to sample mixtures with known concentrations for calibration
purposes (shown in appendix B). Additional details on data analysis will be given in
§ 2.3.
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FIGURE 1. (Colour online) (a) Schematic of a three-layer ANN, which contains the
input, hidden and output layers. (b) Performance of the classifier (indicated by the rate
of correctness C) as a function of iteration N.

2.3. Results
2.3.1. Observations

Figure 2(a) highlights key experimental observations with two series of images.
For consistency, all the images shown correspond to the time t = 20 s relative to
t0 that is set to the instant of the suspension’s initial entry into the Hele-Shaw cell.
In the top row of figure 2(a), φ0 is increased from 14 % to 22 %, while φl0 is held
constant at 5 %, with two noteworthy features. First, with an increase in φ0, there
are more pronounced deformations of the suspension–air interface coupled with the
formation of particle clusters, which we refer to as ‘fingering’. For instance, at
φl0 = 5 %, no fingering occurs at φ0 = 14 %, while clear interfacial deformations and
particle clustering are evident for φ0 > 18 %. This φ0 dependence of fingering will
be quantified in § 2.3.3. Second, in all the images at φl0 = 5 %, particles of different
radii do not remain well mixed and uniform throughout. There are visibly more large
(red) particles near the interface compared to small (green) ones, despite the presence
of a relatively small volume of large particles in the mixture. In some cases, this
demixing of particles may take place inside the injection tube before entering the
cell, which will be further discussed in § 3.1.

The effect of systematically adding large particles to the mixture is illustrated in
the bottom row of figure 2(a), in which φl0 ranges from 0 % to 5 % at constant
φ0 = 20 %. In the monodisperse limit (i.e. φl0 = 0), the suspension remains uniform
throughout, with a stable circular interface. As φl0 is increased, we clearly observe
the preferential accumulation of large particles on the interface even at φl0 as low
as 1 %. Then, for φl0 = 3 %–5 %, the suspension–air interface exhibits fingering that
grows more pronounced with higher φl0, while φ0 remains unchanged. Therefore, the
addition of large particles is able to induce fingering at lower values of φ0, compared
to monodisperse suspensions of small particles only.

In contrast to all-small-particle cases (h/ds ∼ 10.2), monodisperse suspensions
with all large particles (h/dl ∼ 4.2) form a densely packed band on the interface at
φ0 = φl0 = 20 %, which subsequently breaks and causes large interfacial deformations
(Kim et al. 2017). This so-called ‘band fingering’ is unique to h/d . 5 and differs
from fingering in figure 2(a) with mostly small particles; additional quantitative
features of band fingering are included in § 2.3.3. While increasing φl0 beyond 5 %
may induce band fingering in bidisperse suspensions, we are currently interested
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5 cm
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R
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ƒl0 = 5 %

ƒ0 = 20 %

ƒ014 % 18 % 20 % 22 %

ƒl00 % 1 % 3 % 5 %

(a) (b)

FIGURE 2. (Colour online) (a) Image sequences illustrating the effect of both φ0 and φl0
in experiments with bidisperse suspensions. In the first row, φl0 = 5 % is held constant
whereas φ0 increases from 14 % to 22 %; in the second row, φ0 = 20 % is kept constant
while increasing φl0 from 0 % to 5 %. The case φl0 = 0 % corresponds to a monodisperse
experiment, which is included for comparison. (b) In a typical image from experiment,
the interface is described following a curvilinear coordinate s. The instantaneous distance
from the centre of the injection hole to any arbitrary point on the interface is denoted
as Rb(s), and R represents the radius of the best-fitted circle out of all points along the
interface. A wedge with an opening of θ is shaded here, which aids the measurement of
the finger size in § 2.3.2.

in how a small amount of large particles in the mixture can influence the overall
suspension dynamics. Therefore, the rest of the paper will mainly focus on quantifying
and rationalising the key observations for φl0 6 5 %, namely, the accumulation of
large particles on the interface and resultant enhancement of fingering, compared to
suspensions of small particles only.

2.3.2. Preferential particle accumulation
In order to experimentally verify the preferential accumulation of large particles at

the interface, we measure the depth-averaged particle volume fractions for both the
bulk suspension and the respective particle species as a function of radial position
r. First, a background image is systematically subtracted from all the experimental
images to eliminate any non-uniformity inherent to the experimental set-up. Then, the
light intensity matrix I is extracted from the processed images to yield the depth-
averaged bulk concentration φ̄ as follows (Shan, Normand & Peleg 1997):

φ̄(r)= k1

log
I(r)
Imin

log
I(r)
Imax

, (2.3)

where Imin and Imax correspond to the values of the minimum and maximum light
intensity of the given image, respectively. The empirical parameter k1 can be computed
based on mass conservation; φ̄(r) is integrated from the centre to the fluid interface
to satisfy

2π

∫ R

δ

φ̄(r)r dr=πφ0R2, (2.4)
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where R is the radius of the best-fitted circle to the interface, as shown in figure 2(b).
Here, the lower bound of the integral δ is set to a small non-zero value, such that
0< δ� R, to discard the region near the injection hole.

As already introduced in § 2.2, an ANN has been trained to help identify and
classify particles of different colours on the pixel level, which are used to find
the concentration profile of each particle species. Given the classification results
from the network, we are able to acquire the location of each particle type and
calculate their respective area fractions Al(r) and As(r), where the subscripts l and
s indicate large and small particles, respectively. For simplicity, area fractions are
assumed to scale linearly with the corresponding depth-averaged volume fractions,
Al(r)/As(r)= k2φ̄l(r)/φ̄s(r). The empirical parameter k2 is computed by applying mass
conservation to either particle component, in addition to φ̄(r)= φ̄l(r)+ φ̄s(r).

Figure 3 shows typical profiles of the depth-averaged concentrations for φl0 = 3 %
(figure 3a,c) and φl0 = 5 % (figure 3b,d) at time t= 20 s. The error bars account for
uncertainties associated with extracting I , Imin and Imax from the processed images.
Based on the error estimate in all three intensity values, we compute the overall
margin of error for φ̄ in (2.3), using the standard method for error propagation
(Beckwith & Marangoni 1993). In all plots displayed, φ̄ is observed to decrease
slightly upon the entrance into the cell. It plateaus at a value lower than φ0 before
rising above φ0 further downstream, indicating the occurrence of particle accumulation
at the interface. The rise in φ̄ is notably higher for φl0= 5 % than for φl0= 3 %. More
importantly, this increase in φ̄ directly parallels that in φ̄l, while φ̄s remains relatively
flat for both plots or even decreases slightly near the interface for φl0 = 5 %.

This striking difference in behaviour between large and small particles leads to two
key results. First, as evident in figure 2, the accretion of particles on the interface is
mostly caused by large particles. Therefore, injecting more large particles (increasing
φl0) directly leads to more particles that accumulate on the expanding interface, even
if φ0 remains unchanged. Second, the presence of large particles in the mixture
appears to ‘shield’ small particles from reaching the interface. This is evident from
comparing the plot of φ̄(r) in the monodisperse suspension of all small particles
(inset of figure 2), which exhibits a rise towards the interface. We will provide
further explanation regarding those observations in § 3.

2.3.3. Interfacial deformations – fingering
In order to quantify the fingering phenomenon in a more systematic way, we

measure the deformations of the fluid–fluid interface. As illustrated in figure 2(b), s
refers to the curvilinear coordinate defined tangent to the edge, and Rb(s) represents
the instantaneous distance between the centre of the cell and any arbitrary point
on the interface. Then, we apply a ‘wedge’-shaped mask of an opening angle θ on
the image and identify the local maxima and minima in Rb(s) within the masked
segment (see figure 2b). The difference between each pair of local extrema (i.e.
max(Rb)−min(Rb)) is further defined as λ, which roughly corresponds to the length
of the interfacial finger. Considering that there are on average 40–50 fingers in the
fingering regime, we specifically choose θ = 15◦ so that the corresponding mask
covers at most two consecutive fingers, if any. Subsequently, the mask is rotated at a
fixed increment about the centre to scan the entire interface and to yield a series of
λ values. The average of all λ values, or λ̄, represents the overall deformation of the
suspension–air interface.

The time evolution of λ̄ exhibits a couple of characteristic behaviours that are
currently not well understood. First, for φ0 6 20 % and φl0 6 5 %, λ̄ appears to grow
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FIGURE 3. (Colour online) The depth-averaged concentration profiles as a function of
radial position acquired for different combinations of φ0 and φl0 at t = 20 s. In (a–d),
φ̄ experiences a slight drop upon entrance into the cell and remains relatively flat in the
region away from the interface. There is a clear rise in φ̄ towards the interface, indicating
the occurrence of particle accumulation. The preferential accumulation of large particles
is evident when comparing the profiles of φ̄s and φ̄l. The corresponding φ̄ profiles from
monodisperse experiments at the same φ0 are also included as insets. Comparison between
the mono- and bidisperse φ̄s suggests that the accumulation of small particles near the
interface in the bidisperse suspension is suppressed.

linearly with time with a slope that increases with φ0 and φl0 (see figure 4a,b),
while R(t) ∝ t−1/2. Second, as shown in figure 4(b), when φ0 > 20 % and φl0 = 5 %,
λ̄ increases nonlinearly with t and even plateaus to a constant value at φ0 = 22 %.
Finally, for a monodisperse mixture of all large particles (i.e. φ0 = φl0 = 20 %), λ̄
grows steeply with time in figure 4(a) before reaching a local peak around t ≈ 5 s;
this corresponds to the instance of the particle band breakup (Kim et al. 2017).
Qualitatively, we conjecture that the growth rate of λ̄ must be set by the interplay
between the destabilising viscosity gradient due to particle accumulation and the
stabilising effects of surface tension. However, a quantitative analysis remains outside
the scope of this paper. For instance, modelling λ̄(t) and emergent finger structures
involves a detailed stability analysis and a description of the complete base flow.
The development of the base flow model is still under way, as it must combine the
quasi-fully developed flow far upstream and the complex secondary flow near the
interface, known as a ‘fountain flow’ (Karnis & Mason 1967).

Overall, λ̄ is only millimetric in magnitude, as the interfacial fingers that emerge
are consistently small for all the parameters considered. Also, as evident in the images
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FIGURE 4. (Colour online) (a) Evolution of finger size λ̄ over time for different
experiments at φ0 = 20 %. The transition region from ‘no fingering’ to ‘fingering’ is
shaded in green. Clearly increase in φl0 leads to growth in finger size. (b) The plot of
λ̄ versus time for different values of φ0 at fixed φl0 = 5 %. (c) Comparison of images
from φl0= 20 %, 5 % and 3 % upon entrance into the transient region, as indicated by the
vertical line in (a). (d) Images acquired at the same time at fixed φl0 = 5 %, as indicated
by the vertical line in (b). Each image represents a different regime: no fingering, transient
and fingering. Zoomed-in images of the interface are included to show the difference in
particle distribution as well as the interfacial deformation.

in figure 2, the fingering onset is accompanied by the emergence of particle clusters
near the interface in addition to interfacial deformations, which is not captured by
λ̄ alone and needs to be visually verified. Hence, by carefully going through all the
experimental videos, we have determined the fingering regime to initiate when λ̄
reaches a threshold value between 0.6 and 0.8 mm. In figure 4(a,b), this threshold
range is shaded in green to indicate the ‘transition’ from no fingering to fingering.
However, it is important to acknowledge that the present analysis of fingering regimes
is limited by the time scale set by the flow rate Q and the size of the cell. Owing
to the time-dependent nature of λ̄, even λ̄ curves that stay below the threshold in the
current set-up may eventually enter the fingering regime if given more time.

Figure 4(a) consists of λ̄(t) plots for constant φ0 = 20 %, while φl0 ranges from
0 % to 5 %. Based on the aforementioned threshold for fingering, the monodisperse
case of all small particles does not finger within the current experimental set-up, while
all the non-zero φl0 cases do. More importantly, even an incremental increase in φl0
is shown to expedite the onset of fingering. In figure 4(c), the experimental images
at the onset (or when λ̄ ≈ 0.6 mm) confirm that the particle accumulation at the
interface and the corresponding interfacial deformations occur at an earlier time, or
equivalently at a smaller radius, for φl0 = 5 % compared to 3 %. When φl0 is held
constant at 5 %, figure 4(b) demonstrates that the transition to fingering is observed
around φ0= 16 %, as φ0 is varied from 14 % to 22 %. Accordingly, figure 4(d) shows
final images of three different experiments: φ0= 14 % (left – no fingering), φ0= 16 %
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FIGURE 5. (Colour online) The phase diagram summarising the classification of different
experiments into ‘fingering’, ‘no fingering’ or ‘transition’ regimes. The transition between
fingering and no fingering is observed to go through a consistent shift to the lower end
in terms of φ0 with the increase in φl0, suggesting that the addition of large particles in
the bidisperse experiments can induce fingering at lower bulk concentrations.

(center – transition to fingering) and φ0 = 17 % (right – fingering). As previously
mentioned, while the difference in λ̄ between fingering and no fingering is minimal,
what sets them apart is the formation of particle clusters near the interface (see the
inset), which becomes increasingly more pronounced at φ0 = 17 %.

Based on the trend in λ̄, we systematically determine fingering regimes and
summarise them in the φl0–φ0 phase diagram in figure 5. The squares and triangles
represent the ‘no fingering’ and ‘fingering’ regimes, respectively, while the crosses
correspond to the transition between the two. Clearly, there is a consistent shift of the
transition regime to smaller φ0 with φl0, and this shift increases with the increase in
φl0. For example, the transition from ‘no fingering’ to ‘fingering’ occurs at φ0= 16 %
with the initial large-particle concentration at 5 %, compared to the transition at
φ0 = 22 % in the monodisperse limit. Therefore, even the small addition of large
particles in the bidisperse experiments is effective in lowering the total mixture
concentration φ0 required for fingering. Analogously, for given φ0, the inclusion of
large particles expedites the time of fingering onset, so that fingering is observed
within the time scale of our current experiments.

3. Theory
3.1. Fingering mechanism

The particle-induced viscous fingering is a result of particle accumulation at the fluid–
fluid interface (Tang et al. 2000; Ramachandran & Leighton 2010; Xu et al. 2016;
Kim et al. 2017). Specifically, fingering is shown to depend directly on the amount of
particles that accumulate on the advancing interface (Xu et al. 2016). Then, a resultant
higher particle concentration near the interface corresponds to a higher local effective
viscosity. This leads to miscible fingering and inhomogeneous particle distribution,
or the formation of particle clusters, along the interface, as illustrated in figure 6(c).
Subsequently, the suspension–air interface deforms due to the greater flow resistance
of clusters compared to that of the surrounding medium.
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FIGURE 6. (Colour online) (a) Schematic side view of the suspension flow. Particles
in the monodisperse suspension will gather near the centreline due to shear-induced
migration and acquire a higher average velocity than the bulk flow. (b) In the bidisperse
suspension, particles with larger diameter collect near the centreline of the channel while
the distribution of small particles is relatively uniform across the channel. (c) Schematics
showing the evolution of the preferential accumulation of large particles on the interface
(left), the occurrence of miscible fingering (middle) and the interfacial deformations (right).

The physical mechanism behind particle accumulation is shear-induced migration of
particles in the thin gap. Shear-induced migration (Leighton & Acrivos 1987b) refers
to the migration of non-colloidal particles from high- to low-shear regions, i.e. from
near the wall (z=±h/2), where particles are more likely to collide, to the centreline
of the channel (z= 0) in this case. In the monodisperse case, depicted in figure 6(a),
shear-induced migration in the z-direction yields a faster average particle velocity in
the r-direction than that of the bulk suspension, such that ūr < ūp

r (see schematic in
figure 6a). Then, the resultant net flux of particles towards the advancing interface
leads to an accretion of particles there.

Shear-induced migration also holds for bidisperse suspensions, but in a particle size-
dependent manner, as previously reported by Graham et al. (1991), Husband et al.
(1994), Chow, Hamlin & Ylitalo (1995) and Lyon & Leal (1998b). As the rate of
migration is proportional to the particle diameter squared (Snook, Butler & Guazzelli
2016), the ratio of migration rates between large and small particles must be (dl/ds)

2
≈

6. Hence, large particles collect at the centreline faster and screen out small particles.
Then, the resultant average velocity of large particles is greater than that of small
ones, or ūs

r < ūl
r (see figure 6b), leading to a higher net flux of large particles towards

the interface. Hence, as shown in figure 3, even a small addition of large particles
in the bidisperse mixture prevents small particles from accumulating at the interface
by suppressing their migration to z = 0, in clear contrast to the monodisperse case
with all small particles (inset). The uniform small-particle concentration φ̄s and the
rise in φ̄l are directly evident in our experiments and also consistently follow from
the observations by Lyon & Leal (1998b).

It is important to acknowledge that particles may migrate towards the channel
centre and accumulate on the advancing meniscus inside the injection tube, as
previously observed by Ramachandran & Leighton (2007) and Kim et al. (2017).
Consistent with that physical picture, the concentration profiles at early times reveal
a slight rise towards the interface for different values of φ0 and φl0 (see figure 12 in
appendix C). However, this enrichment effect inside the tube is minimal in comparison
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to the gradual particle accumulation on the interface inside the Hele-Shaw cell.
Therefore, we presently neglect the non-uniform injection conditions that may arise
from shear-induced migration of particles inside the tube.

3.2. Suspension balance model for bidisperse suspensions
We model the problem as a radially expanding thin-film flow of a bidisperse
suspension between parallel plates, which consists of viscous oil and non-colloidal
neutrally buoyant particles. The viscous liquid is assumed to be Newtonian and
incompressible, and the particles are rigid regardless of their size. We primarily focus
on the region that is far upstream of the suspension–air interface, so that we can
assume a quasi-fully developed uniaxial flow (Xu et al. 2016). Our continuum model
is based on the well-established suspension balance model (Nott & Brady 1994),
which has been carefully modified to account for bidisperse suspensions following
the work of Norman et al. (2008).

We consider the mass and momentum conservation of the bulk suspension in the
inertialess limit,

∇ · u= 0, (3.1a)
∇ ·Σ = 0, (3.1b)

in addition to the mass and momentum conservation for each particle component,

∂φi

∂t
+∇ · (φiu

p
i )= 0, (3.2a)

∇ ·Σ
p
i +Fi = 0, (3.2b)

where the subscript i corresponds to either l for large particles or s for small,
respectively. In addition, the superscripts or subscripts f and p are used to differentiate
between quantities corresponding to suspending fluid and particles. In the equations
above, u = (ur, uθ , uz) and Σ represent the velocity vector and stress tensor in
the cylindrical coordinate system, respectively. The inner drag force is given by
Fi = −18ηfφi(u

p
i − u)/(d2

i f (φ)), with ηf being the viscosity of the suspending fluid
and the hindrance function, f (φ)= (1− φ)4.4 (Altobelli & Mondy 2002; Beyea et al.
2003).

The constitutive relationships relating stress tensors to the strain rate tensor E and
pressure p are as follows:

Σ
p
i = 2ηf (η̂s − 1)

φi

φ
E +Σp

ni
, (3.3)

Σ =−pI + 2ηf E +Σ
p
l +Σp

s , (3.4)

where Σp
ni

pertains to the normal stress tensor for each particle component. Here,
the shear viscosity of the suspension (Storms, Ramarao & Weiland 1990; Shapiro &
Probstein 1992) corresponds to

η̂s =

1+
αφ

1−
φ

φm


3.3φm

, (3.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

84
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.846


500 F. Xu and S. Lee

where the value of the empirical parameter α depends on the particle size ratio and
the volume fraction of the particle of smaller radii (i.e. φs), and φm corresponds to the
maximum packing fraction of particles. In this study, considering the particle sizes in
the bidisperse suspension, the values of the aforementioned parameters are chosen as
α = 0.92 and φm = 0.74, respectively (Storms et al. 1990). In addition, far upstream
from the interface, the flow can be considered quasi-fully developed, so that the fluxes
of the suspension and the particle phases must match the constant injection conditions
at the inlet:

Q= 2πr
∫ h/2

−h/2
ur dz, (3.6a)

Qφi0 = 2πr
∫ h/2

−h/2
up

r,iφi dz. (3.6b)

We now non-dimensionalise our governing equations and boundary conditions,
based on the following scales:

r∗ = r/R0, z∗ = z/h, u∗r = ur/U0, u∗θ = uθ/U0, u∗z = uz/(εU0), (3.7a−e)

t∗ = tU0/R0, γ̇ ∗ = γ̇ h/U0, Σ∗ =Σh/(ηf U0), P∗ = p(εh)/(ηf U0), (3.7f−i)

where R0 ∼ 10 cm is the characteristic radial length scale, and h = 1.40 mm is
the constant channel gap thickness. Hence, ε = h/R0 ∼ 0.01 is a small parameter
appropriate for lubrication approximations. The characteristic velocity U0 is then
given by Q/(2πR0h). All the equations henceforward are dimensionless, unless stated
otherwise, and we drop the asterisk for brevity.

By rearranging (3.2b) and combining it with the expression for Fi, we obtain the
dimensionless particulate velocity,

up
i =

d2
i

18h2

f (φ)
φi
∇ ·Σ

p
i + u. (3.8)

Further substitution into (3.2a) yields the following particle transport equation to the
leading order in ε:

∂φi

∂t
+ u · ∇φi =

d2
i

18h2ε

∂

∂z

[
f (φ)

∂

∂z

(
η̂nγ̇

φi

φ

)]
. (3.9)

Here η̂n = (φ/φm)
2Knη̂s is the dimensionless normal viscosity of the suspension;

and Kn = 0.75 is an empirical constant (Norman et al. 2008). In particular, the
transient term in (3.9) scales as (di/h)2, which suggests that large particles must
reach equilibrium due to shear-induced diffusion a factor of 6 faster than small
particles (Snook et al. 2016). Hence, as previously noted, more large particles must
be located near the channel centre z = 0 in the quasi-steady state and achieve a
greater average radial velocity.

In order to simplify the analysis, we presently focus on the regime in which
particles locally reach equilibrium in the z-direction due to shear-induced migration
(Murisic et al. 2013). Combined with the continuum limit (di � h), the equilibrium
condition requires that ε � (di/h)2 � 1, so that we may neglect the left-hand side
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of (3.9). In a typical experiment, the particle diameters are ds = 137.5 µm and
dl = 325 µm, respectively, so that (ds/h)2 ∼ O(10−2) and (dl/h)2 ∼ O(10−1), while
ε ∼ 0.01. Hence, we would argue that the equilibrium condition may be appropriate
for the large particles but clearly breaks down for the small ones. In addition, the
continuum assumption for large particles may not be completely valid, as dl/h∼ 0.21.
Despite these limitations, let us presently carry on with the equilibrium assumption
in the manner of Murisic et al. (2011, 2013); we will later address the discrepancies
of the model assumptions.

Once the left-hand side of (3.9) vanishes under the equilibrium condition, we
integrate the right-hand side with respect to z and apply the symmetry boundary
condition (i.e. γ̇ |z=0 = 0) to obtain the following equation:

∂

∂z

(
η̂nγ̇

φi

φ

)
= 0, (3.10)

where the leading-order shear rate corresponds to γ̇ = ∂ur/∂z in the lubrication limit.
Physically, equation (3.10) suggests that, under shear-induced migration, both particle
components rearrange themselves in such a way that the particulate normal stress
is constant in the z-direction. Similarly, under the same lubrication and equilibrium
assumptions, the reduced momentum equations for the suspension are given by

∂P
∂r
=
∂

∂z
(η̂sγ̇ ),

∂P
∂z
= 0. (3.11a,b)

Integrating both sides of the r-momentum equation with respect to z yields

dP
dr

z= η̂sγ̇ , (3.12)

once the symmetry condition at the centreline (i.e. γ̇ |z=0=0) has been applied. Finally,
we arrive at the following ordinary differential equation for each particle species by
combining (3.10) and (3.12):

η̂n

η̂s

φi

φ
z= η̂nγ̇

φi

φ

(
dP
dr

)−1

= const., (3.13)

which can be solved numerically subject to the fixed injection rate and input particle
concentrations (3.6).

The system of equations described by (3.13) and (3.6) is highly coupled, given
that φ = φs + φl. Interestingly, Lyon & Leal (1998b) experimentally showed that
the small-particle concentration remains uniform across the gap and successfully
incorporated the uniform φs assumption into their mathematical model. Following
their work, we will presently assume that small particles remain uniformly dispersed
(i.e. φs = φs0) and only impact the effective viscosity of the background suspending
fluid. Our experimental measurement of the depth-averaged particle concentrations in
figure 3 also supports the hypothesis that small particles remain uniform throughout
the expanding suspension. In addition to decoupling the equations, this assumption
allows us to work around the breakdown of the equilibrium condition for small
particles (i.e. ε� (di/h)2� 1). The failure of small particles to meet the equilibrium
condition is thus circumvented by assuming the uniform distribution of small particles
in the bidisperse suspension.
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FIGURE 7. (Colour online) (a) The distribution of particles at φ0 = 20 % with φl0
increasing from 1 % to 5 %. Shear-induced migration is evident with concentration
increases from the near-wall region to the centreline for all cases. (b) The corresponding
normalised velocity profiles are presented. The classic bluntness of the velocity profile
near the centreline is observed. The inset shows the zoomed-in view of the blunted region,
indicating that the increase in φl0 leads to more blunted velocity profile.

The results of our simplified equilibrium model are shown in figure 7. For
φ0 = 20 % and φl0 ranging from 1 % to 5 %, the total particle concentration φ(z)
and corresponding axial velocity profiles are plotted along the z-axis. As expected,
all three φ(z) plots in figure 7(a) show a monotonic increase from the wall (z= 0.5)
towards the centre (z = 0) due to shear-induced migration; this increase is notably
greater for higher values of φl0. Here, φ′(z) appears discontinuous at z = 0, where
the prime denotes the derivative with respect to z. This discontinuity in φ′(z) is the
byproduct of the suspension balance model that caps φ off at φm as φ diverges with
the vanishing local shear rate. Owing to the presence of particles, the velocity profiles
are no longer parabolic but exhibit a blunted tip at z = 0, as shown by the plot of
the normalised velocity in figure 7(b). The inset includes the zoomed-in plot of the
velocity tip that becomes more blunted with an increase in φl0.

3.3. Comparisons to experiments
Since our model is only applicable to the quasi-steady flow far upstream, it cannot
quantitatively describe the fingering behaviour at the interface for varying φ0 and φl0.
However, the model should be able to capture the particle accretion dynamics towards
the interface, which originates from shear-induced migration of particles upstream.
Based on that, we will also consider the connection between the total amount of
accumulated particles and the enhanced fingering upon the addition of large particles.

Let us first test the validity of our reduced model against the measurable quantities
in the experiments. For instance, figure 3 consists of the depth-averaged concentration
profiles that are extracted from the experiments at time t = 20 s. Presently, we
are unable to measure φ(z) experimentally, due to the lack of visualisation tools.
Replotting φ̄ at different times in figure 8(a) illustrates that the curves collapse when
r is normalised by the location of the interface R(t) at the given time. We hereby
define the upstream region as the portion of the collapsed curve that remains relatively
flat, or 0< r<Ri(t), where Ri(t)/R(t) appears time-independent. Then, we extract the
corresponding value of φ̄ as the upstream depth-averaged particle concentration (i.e.
φ̄exp) for both the bulk suspension and large-particle component, respectively.
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FIGURE 8. (Colour online) (a) The depth-averaged concentration profiles acquired from
experimental measurements collapse onto a single curve when normalised by the radius of
the corresponding fitted circle R. We thus argue that the upstream region corresponds to
the relatively flat portion of the collapsed curve of φ̄, whose boundary is further defined as
Ri. (b,c) Plots comparing the experimental measurements of φ̄l and φ̄ with the theoretical
prediction show reasonable agreement.

Figure 8(b,c) shows the plots of φ̄exp versus φ̄sbm, the upstream depth-averaged
concentrations from the simplified model, for all values of φ0 and φl0 considered.
For both total and large-particle concentrations upstream, the agreement between
experiments and theory is reasonable, shown by their close collapse onto a line with
slope of 1. However, given the breakdown of the continuum assumption and the
discontinuity at z= 0 (see figure 7a), the model is not expected to fully resolve the
details of concentration profiles in z. Despite these limitations, the agreement between
theory and experiments in φ̄ demonstrates the usefulness of our reduced equilibrium
model.

With the upstream theoretical model verified against experimental data, we now
address one of the key observations of the bidisperse experiments – the preferential
accumulation of large particles on the interface. As the amount and rate of particles
injected into the cell are fixed, the accumulation of particles on the interface must be
met by the depletion of particles from the upstream regime, or φ̄ <φ0 for 0< r<Ri(t).
In particular, the value of upstream φ̄l relative to φl0 directly informs the depletion of
large particles from the upstream and, thereby, their accumulation near the interface.
Figure 9(a) shows the plot of φ̄l versus φl0 for φ0 = 20 % both from experiments
(triangle) and from the suspension balance model (solid line). A dashed line of slope 1
is included to visually showcase the deviation of φ̄l from φl0, which clearly grows
with φl0. This indicates that an increase in φl0 directly increases the accumulation of
large particles on the interface. Also, the same trend is evident experimentally for all
values of φ0, as shown in the inset of figure 9(a). On the other hand, figure 9(b)
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FIGURE 9. (Colour online) (a) Plots of φ̄l from both experimental measurements and
theoretical prediction with respect to φl0 at φ0= 20 %. The observation that φ̄l falls below
the auxiliary curve of slope 1 clearly indicates the occurrence of preferential accumulation
of large particles near the interface. The inset shows all experimental measurements of φ̄l
against φl0, suggesting the trend is true for all experiments. (b) Plot of φ̄l against φ0 for
φl0 = 3 % and 5 %. All data points fall below the auxiliary lines of their corresponding
φl0, again confirming our observation of the preferential accumulation of large particles at
the interface. Here, φ̄l appears to be independent of φ0.

shows that φ̄l is mostly independent of φ0 for φl0 = 3 % and 5 %, respectively, for
both experiments (symbols) and theory (solid line).

As illustrated in figure 9, our reduced model successfully captures the trend in
φ̄l with φ0 and φl0 and can help rationalise the preferential accumulation of large
particles on the interface. For instance, the model assumes that small particles remain
uniformly distributed in the suspension, while the large particles migrate to the
channel centre under shear-induced diffusion. Therefore, any particle accretion on the
interface, or depletion from upstream, can only directly come from φl0. An increase
in φl0 − φ̄l with φl0 naturally follows from this model assumption. In addition, our
model predicts that, for given φl0, increasing φ0 (or φs0) only acts to enhance the
background viscosity. As the shear-induced migration of large particles should be
independent of the background viscosity, this explains why φ̄l does not depend on
φ0. Overall, as previously hypothesised, the suppression of shear-induced migration
of small particles and their uniform distribution are central to the notable accretion
of large particles near the interface.

Finally, based on mass conservation, the total particle volume that collects near the
interface can be approximated by the difference between the total particle volume at
time t, φ0πR(t)2h, and that inside the upstream regime, φ̄πRi(t)2h. Normalising by
πR(t)2h yields the following expression for the dimensionless amount of particles that
have accumulated near the interface:

Vp
≡ φ0 − φ̄

(
Ri

R

)2

, (3.14)

which is independent of time; it is straightforward to compute the value of Vp from
the experiments for all φ0 and φl0. Interestingly, the Vp dependence on φl0 comes
most directly from Ri/R. Figure 10(a) shows that Ri/R monotonically decreases with
φl0, independent of φ0. Qualitatively, this implies that the addition of large particles
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FIGURE 10. (Colour online) (a) The ratio of Ri/R is plotted against φl0 for all experiments
available. The measurements of corresponding monodisperse experiments are also included
here for comparison. The ratio appears to decrease monotonically with φl0 but is
independent of φ0 as depicted by the inset. (b) Plot of Vp with respect to φ0, where
each colour represents a different value of φl0. The region above the critical value 0.45
is shaded in grey and almost all data points therein correspond to the ‘fingering’ regime.

expedites the particle accumulation (or shortens Ri). Similarly, the inclusion of large
particles was shown to expedite the time of fingering onset in § 2.3.3. While we
conjecture that both expedited accumulation and fingering may be related to the time
scale of particle migration, the quantitative analysis remains outside the scope of the
current paper.

Plotting Vp from data in terms of φ0 for varying φl0 reveals another surprising
feature (see figure 10b). The values of φ0 and φl0 at which fingering initiates (see
the phase diagram in figure 5) happen to fall on approximately a constant value of
Vp, i.e. Vp

c ≈ 0.45. Alternatively, the values of φ0 and φl0 for which Vp & Vp
c yield

fingering in the current experimental time scale, while those for which Vp<Vp
c are in

the ‘no fingering’ regime. Consistent with Xu et al. (2016), the existence of Vp
c itself

suggests that the critical onset of fingering depends on the total amount of particles
that accumulate on the interface, which will be explored in future studies.

4. Discussion
In this paper, we experimentally demonstrate that the previously reported particle-

induced fingering for monodisperse suspensions (Tang et al. 2000; Xu et al. 2016;
Kim et al. 2017) can be enhanced by introducing a second species of particles with
larger diameter. The experiments are performed by injecting a bidisperse suspension
at a constant flow rate Q into a Hele-Shaw cell to displace air. The mixture consists
of viscous silicone oil and non-colloidal neutrally buoyant particles with two distinct
diameters, dl and ds, where dl/ds∼2–3; the key experimental parameters are the initial
total particle volume fraction φ0 and initial large-particle concentration φl0. As we are
mainly interested in the potentially significant effects that even the small addition of
large particles can have on fingering, φl0 never exceeds 5 % and is always below φs0
by a factor of 2 or more.

Two series of experiments are conducted by systematically varying φ0 at fixed
φl0, or by modulating φl0 at given φ0. Using image processing tools and the ANN,
we then extract the depth-averaged particle concentrations inside the suspension and
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the deformation of the suspension–air interface. Consistent with previous results, an
increase in φ0 appears to induce fingering and lead to larger interfacial deformations
regardless of φl0. However, there are two noteworthy results that are directly due to
the inclusion of larger particles. First, despite the relatively small amount present in
the suspension, large (red) particles are observed to consistently enrich the expanding
fluid–fluid interface, in lieu of more prevalent small (green) particles. Second, for
given φ0, increasing φl0 expedites the onset of fingering and, hence, shifts the
transition between ‘fingering’ and ‘no fingering’ regimes.

The key to particle-induced fingering is the accumulation of particles on the
interface, which generates the destabilising viscosity gradient for miscible viscous
fingering. Therefore, understanding the mechanism of particle accumulation must
precede the characterisation of fingering dynamics at the interface. Accordingly, we
use the reduced model based on the suspension balance approach (Nott & Brady 1994;
Norman et al. 2008) to rationalise the particle accumulation of bidisperse suspensions
due to shear-induced migration (Graham et al. 1991; Husband et al. 1994; Chow et al.
1995; Lyon & Leal 1998b). The model is used to describe the quasi-fully developed
flow far upstream of the interface, where equilibrium assumptions are appropriate
(Murisic et al. 2013). By assuming a uniform distribution of small particles, as
evident in both our data and those of Lyon & Leal (1998b), the particle concentration
and velocity profiles are numerically calculated as a function of z. We also compute
the depth-averaged concentrations of large particles in satisfactory agreement with the
experimental data. The model results suggest that the suppression of shear-induced
migration of small particles upstream drives the preferential accumulation of large
particles at the meniscus and enhanced fingering.

This combined experimental and theoretical study builds on the previous study of
particle-induced viscous fingering of monodisperse suspensions and is the first of its
kind to demonstrate the role of polydispersity on fingering. Future work includes
understanding the existence of the critical particle volume Vp

c that is connected to
fingering, as well as deriving a theoretical model for the onset radius of accumulation,
Ri/R, as a function of φl0. The present work could also be strengthened by widening
the experimental parameter space, for instance, by modulating flow rates, including
more than two particle types, or even changing the channel geometry. Finally, the key
point to take away from the current study is that any small changes to the particle
mixture that changes shear-induced migration can make a huge difference in fingering
phenomena. Therefore, another exciting direction of future research lies in finding
other seemingly ‘small’ ways of dramatically changing the particle-induced viscous
fingering, such as the inclusion of non-spherical particles or particles of varying
rigidity that alter shear-induced migration.

Appendix A. Pseudo-code for artificial neural network
In addition to the symbols introduced in § 2.2, we further define δ as the error

vector, which is the difference between the classification vector and the output of
the network in each iteration, ∆ and D are matrices used to store the coefficients in
the process of back-propagation, and ξ represents a constant chosen empirically. The
pseudo-code is given as follows:

(1) Get the training set (x(1), y(1)), . . . , (x(m), y(m))
(2) Set ∆(l)

ij = 0 for all l, i, j
(3) For i= 1 to m

(i) Set a(1) = x(i)
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FIGURE 11. (Colour online) Plots of the depth-averaged concentration profiles (φ̄ (black),
φ̄s (green) and φ̄l (red)) as functions of radial position r for stationary bidisperse mixtures
that are placed on a glass plate. All five samples have φ0= 20 %, while φl0 is varied from
1 % to 5 % by an increment of 1 %.

(ii) Perform forward propagation to compute a(l) for l = 2, 3, . . . , L: a(l) =
g(W (l−1)a(l−1))

(iii) Using y(i), compute δ(L) = a(L) − y(i)

(iv) Compute δ(L−1), δ(L−2), . . . , δ(2)

(v) ∆(l)
ij :=∆

(l)
ij + a(l)j δ

(l+1)
i

(4) D(l)
ij := (1/m)∆

(l)
ij + ξW (l)

ij if j 6= 0
(5) D(l)

ij := (1/m)∆
(l)
ij if j= 0

By the end of the algorithm, we have (∂/∂W (l)
ij )J(W ) = D(l)

ij , which contains the
desired coefficients of the network.

Appendix B. Calibration results for artificial neural network
For calibration purposes, the ANN method has been applied to a series of bidisperse

samples with known concentrations, namely φl0= 1 %–5 %, while φ0 is fixed at 20 %.
The samples are prepared by carefully measuring out each component (i.e. large (red)
and small (green) particles) and mixing them thoroughly in oil, before they are placed
onto a plate and imaged from directly above. We then compute the depth-averaged
particle concentrations using the ANN method and plot them against the radial
position r in figure 11. The results exhibit the average deviation of ∆=0.75 %, 2.87 %
and 3.34 % for φ0, φs0 and φl0, respectively, where ∆= 100 % |φ̄ANN

−φ0|/φ0. Overall,
the calibration results demonstrate that the ANN technique effectively produces
physically meaningful values of depth-averaged particle concentrations in the current
set-up.
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FIGURE 12. (Colour online) Plots of the depth-averaged concentration profiles (φ̄ (black),
φ̄s (green) and φ̄l (red)) over r at early times. The top-left plot in each panel corresponds
to the earliest time, and time then evolves clockwise.

Appendix C. Particle concentrations at early times
Here, we include the plots of the depth-averaged particle concentrations, i.e.

φ̄ (black), φ̄s (green) and φ̄l (red), at early times (around r = 2 cm) for three
concentration combinations. Each panel in figure 12 contains four plots that show
progression in time (starting with the top-left plot and going clockwise). A slight
increase in φ̄ in the top-left subplot indicates that particles might have enriched the
meniscus inside the injection tube, prior to entering the Hele-Shaw cell.
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