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SUMMARY

Nitric oxide (NO) has been demonstrated to be the principal effectormoleculemediating intracellular killing ofLeishmania,

both in vitro and in vivo. We investigated the type of cell death process induced by NO for the intracellular amastigote

stage of the protozoa Leishmania. Specific detection methods revealed a rapid and extensive cell death with morphological

features of apoptosis in axenic amastigotes exposed to NO donors, in intracellular amastigotes inside in vitro – activated

mouse macrophages and also in activated macrophages of regressive lesions in a leishmaniasis-resistant mouse model.

We extended our investigations to the dog, a natural host-reservoir of Leishmania parasites, by demonstrating that co-

incubation of infected macrophages with autologous lymphocytes derived from dogs immunised with purified excreted-

secreted antigens of Leishmania resulted in a significant NO-mediated apoptotic cell death of intracellular amastigotes.

From the biochemical point of view, NO-mediated Leishmania amastigotes apoptosis did not seem to be controlled by

caspase activity as indicated by the lack of effect of cell permeable inhibitors of caspases and cysteine proteases, in contrast

to specific proteasome inhibitors, such as lactacystin or calpain inhibitor I. Moreover, addition of the products of two NO

molecular targets, cis-aconitase and glyceraldehyde-3-phosphate dehydrogenase, also had an inhibitory effect on the cell

death induced by NO. Interestingly, activities of these two enzymes plus 6-phosphogluconate dehydrogenase, parasitic

enzymes involved in both glycolysis and respiration processes, are overexpressed in amastigotes selected for their NO

resistance. This review focuses on cell death of the intracellular stage of the pathogen Leishmania induced by nitrogen

oxides and gives particular attention to the biochemical pathways and the molecular targets potentially involved. Questions

about the role of Leishmania amastigotes NO-mediated apoptosis in the overall infection process are raised and discussed.

Key words: Leishmania, nitrogen oxides, programmed cell death, proteasome, calpain, aconitase.

INTRODUCTION

Leishmaniasis paradox is to be considered as a

neglected disease and to be the second-most dreaded

parasitic disease in the modern world. There are an

estimated 12 million cases worldwide with an annual

incidence of about 2 million new cases and more

than 350 million women, men and children in 97

countries of the world are at risk of infection (WHO.

Leishmaniasis Control home page: http://www.

who.int/ctd/html/leish.html). Protozoan trypano-

somatids of the genus Leishmania cause a wide

spectrum of human diseases in many tropical and

subtropical regions of the world that range from a

self-healing cutaneous ulcer to a potentially fatal

visceral infection, depending on the parasite species

and host immune responses. The differentiation

from metacyclic promastigotes to amastigotes is the

first crucial step that determines Leishmania patho-

genesis (Mallinson and Coombs, 1989). The second

step is the adaptation of amastigotes to diverse hos-

tile host environmental conditions and the selection

of the fittest individuals to continue the infectious

process (Alexander and Russell, 1992).

The activation of the host immune system as

a consequence of Leishmania infection implies

expansion of various cell types; from dendritic cells

favouring Leishmania dissemination and antigen

presentation to lymphocytes that will determine the

different possible outcomes of leishmanial infection

(Fig. 1; Scott, 1991; Sacks and Noben-Trauth,

2002). In fact, macrophages play a central role in

determining Leishmania control or multiplication

(Fig. 1). Depending on the cytokine environment,

macrophages can differentiate into distinct sub-

populations, depending on their classical or alterna-

tive activation pathway, playing opposite but

complementary immunological roles (Fig. 1; Bogdan

and Rollinghoff, 1998; Noel et al. 2004). Finally,

immune control of leishmaniasis involves a dominant
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Th1 response, leading to macrophage classical

pathway activation and elimination of intracellular

amastigotes through the induction of type II nitric

oxide synthase (NOS II) and nitric oxide (NO)

synthesis from L-arginine (Fig. 1). This prototypical

model has been clearly evidenced in the murine

experimental model for leishmaniasis but is now

enlarged to natural hosts, such as humans and dogs

(Green et al. 1990; Panaro et al. 1999; Sisto et al.

2001).

NO is a small molecule being a gas and a powerful

intra- and extracellular messenger and that stirs up

biological concepts of cellular communication. In

the past, radicals had been associated with patho-

physiology; now it is being appreciated that NO is

a molecule with important signalling qualities (re-

viewed in Brune, 2003). Biological actions can often

be attributed to ‘reactive nitrogen species’ (RNS)

rather than NO itself. NO redox species effects can

be propagated via addition or substitution reactions

with thiol groups on cysteines and glutathione

resulting in S-nitrosothiol (–S–NO) formation, or

protein haeme groups that may account for protein

nitrosylation (Eu et al. 2000; Jaffrey et al. 2001;

Daiber et al. 2002; Espey et al. 2002; Thomas et al.

2002). S-nitrosothiol formation is reversible and

is considered as the prototypic redox-based NO-

signalling mechanism, predominantly implicated

in cytostatic, cytotoxic or protective NO effects

(Stamler, Lamas and Fang, 2001). NO has long

been recognized as an important molecule involved

simultaneously in the regulation of apoptotic death

and cell viability (Bosca and Hortelano, 1999;

Nicholson and Thornberry, 2003). First reports on

NO-mediated apoptosis were proposed in 1993

(Albina et al. 1993; Sarih, Souvannavong and

Adam, 1993). Nowadays, NO is described as an

inducer of apoptosis in many different cell types

(reviewed in Brune, vonKnethen and Sandau, 1999).

The mitochondrion represents a selective target

for NO and there is accumulating evidence that

inhibition of respiration may contribute to the pro-

apoptotic effect of NO by membrane potential

reduction, transition pore opening and release of
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Fig. 1. Immunological determinants influencing Leishmania infection. Cytokines expressed by macrophages, dendritic

cells and T- and B-lymphocytes determine the outcome of Leishmania parasites: from survival and proliferation to

death. What role plays parasite apoptosis in this balance? Th: T helper, Thp: precursor T helper, Treg: T regulator,

NK: natural killer, CD: cluster of differentiation, IL: interleukine, IFN-a : interferon a, IFN-c : interferon c, TNF-a :
tumour necrosis factor a, TGF-b : transforming growth factor b, MHC: major histocompatibility complex, NOS:

nitric oxide synthase, NO: nitric oxide.
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cytochrome c (Boyd and Cadenas, 2002; Moncada

and Erusalimsky, 2002). In fact, RNS and reactive

oxygen species (ROS) interact for targetting sub-

strate binding sites in several enzyme components of

the bioenergetic pathways, thus inhibiting catalytic

activity by forming complexes with haeme and iron-

sulphur clusters present in many mitochondrial

proteins (Hortelano et al. 1997, 1999; Brookes et al.

2002; Brown and Borutaite, 2002; Radi, Cassina and

Hodara, 2002; Costa et al. 2003).

Cell death is now well defined in higher eukaryote

cells. In fact, many studies have subdivided pro-

grammedcell death (PCD) into the three categories of

apoptosis (type I), autophagy (type II) and necrosis

(type III) based on criteria such as morphological

alterations, initiating death signal, or the implication

of a family of aspartate-directed cysteine proteases,

the caspases (reviewed in Green et al. 2004 and in

Bras, Queenan and Susin, 2005). Macrophages

themselves are a notable and important exception,

resisting apoptotic death upon activation. In the case

of infectious diseases, this could help to prevent the

development of parasitic strategies by phagocytosed

pathogens. Nevertheless, an apoptotic-like death of

phagocytosed pathogens induced by oxidative

species such as NO could represent an escape mech-

anism at the parasitic population level. When in-

fecting a mammalian host, Leishmania parasites are

confronted by RNS and ROS and they exhibit a cell

death that shares at least morphological features

with apoptosis (Das, Mukherjee and Shaha, 2001;

Holzmuller et al. 2002, 2005a, b, 2006; Mukherjee

et al. 2002; Zangger, Mottram and Fasel, 2002;

Mehta and Shaha, 2004; Gallego et al. 2005; Sousa-

Franco et al. 2005). Interestingly, apoptotic-like

programmed cell death seems to be the preferred

way of dying for Leishmania parasites exposed

to several stimuli, such as heat shock (Moreira

et al. 1996), chemotherapeutic drugs (Sereno et al.

2001; Lee et al. 2002; Sudhandiran and Shaha, 2003;

Jayanarayan and Dey, 2004, 2005; Paris et al. 2004;

Verma and Dey, 2004), inhibitors of DNA topo-

isomerases (Mittra et al. 2000; Chowdhury et al.

2003; Sen et al. 2004a, b ; Marquis, Hardy and

Olivier, 2005; Singh, Jayanarayan and Dey, 2005),

inhibitor of protein kinase (Arnoult et al. 2002),

inhibitor of NAD-dependent deacetylases (Vergnes

et al. 2005), water soluble cationic trans-platinum

complexes (Nguewa et al. 2005), mutations

(Selvapandiyan et al. 2004), growth factors (Tavares

et al. 2005), or more naturally in culture or even

in vivo (Lee et al. 2002; Vergnes et al. 2002; Lindoso

Cotrim and Goto, 2004). Nevertheless, it is difficult

to compare all these works since the type of pro-

grammed cell death is hard to define in Leishmania

and there are many differences between the inducers

used, the Leishmania species studied, the parasitic

stage considered (i.e. promastigote or amastigote),

and the state of maturation of the parasitic stage

(i.e. dividing or non-dividing). This highlights the

interest of studying ‘natural ’ apoptosis-like inducers

that are involved in anti-leishmanial strategies

developed either by the host (vector or mammal) or

by the clinician.

In this review, we have focused on cell death of

the intracellular stage of the pathogen Leishmania

induced by nitric oxide and redox derivatives: do we

consider this cell suicide as apoptosis-like? Is it a

way to maximise the Leishmania biological fitness?

Could PCD represent a potential target for proto-

zoan parasites control?

NO-MEDIATED APOPTOSIS-LIKE CELL DEATH

IN LEISHMANIA AMASTIGOTES

Apoptosis or type I PCD ismarked bymorphological

characteristics occurring in the dying cell including

cell shrinkage, oligonucleosomal DNA fragmen-

tation, chromatin condensation leading to the

appearance of pyknotic nuclei, and controlled dis-

integration of the cell into so-called apoptotic bodies

(Kerr, Wyllie and Currie, 1972; Clarke, 1990). NO-

mediated cell death of Leishmania axenically-grown

amastigotes was first assessed by Lemesre et al. in

1997. NO-mediated DNA fragmentation exhibiting

features of apoptosis was further demonstrated

in axenic amastigotes incubated with several NO

donors (acidified sodium nitrite, nitrosylated albu-

min, SNAP, DETA/NONOate) by monitoring the

genomic DNA status of treated versus untreated

parasites. Nuclear DNA fragmentation into oligo-

nucleosomal-sized fragments (720, 360 and 180 bp),

a typical phenotypical characteristic of apoptotic

cells, was readily visible in agarose gel in the case

of NO-treated amastigotes and was confirmed by

the use of the in situ TUNEL technique (Fig. 2A

and B; Holzmuller et al. 2002). This characteristic

of the DNA status during the course of cell death

by apoptosis was also found in Leishmania under-

going programmed cell death induced by other

stimuli (Moreira et al. 1996; Das et al. 2001; Sereno

et al. 2001; Arnoult et al. 2002; Lee et al. 2002;

Zangger et al. 2002; Sudhandiran and Shaha, 2003;

Lindoso et al. 2004; Paris et al. 2004; Sen et al.

2004a, b ; Verma and Dey, 2004; Gallego et al. 2005;

Jayanarayan and Dey, 2005; Marquis et al. 2005;

Singh et al. 2005; Tavares et al. 2005). The use of

the molecular DNA intercalatant YOPRO-1, which

penetrates specifically apoptotic cells exhibiting the

phospholipid phosphatidylserine on their surface,

which is normally hidden within the plasma

membrane, was a new criterion defining the cell

death induced by NO as apoptosis-like (Fig. 2C;

Holzmuller et al. 2002). The Annexin V apoptotic

detection method was used by other investigators to

demonstrate the plasma membrane phospholipids

reorganisation in Leishmania undergoing cell death

(Mittra et al. 2000; Arnoult et al. 2002; Sudhandiran
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and Shaha, 2003; Paris et al. 2004; Singh et al. 2005;

Tavares et al. 2005). Nevertheless, we must also

take into account that living amastigotes can exhibit

phosphatidylserine (PS) on their surface. Exposed

PS participates in amastigote internalization and

induction of the macrophage alternative activation

pathway increasing intracellular Leishmania amasti-

gotes growth (de Freitas Balanco et al. 2001).

Otherwise, by using our in vitro culture system

for axenically-grown amastigotes (Lemesre, 1994;

Sereno and Lemesre, 1997), we showed that trivalent

antimony induced Leishmania amastigotes cell

death (Sereno et al. 2001). Changes upstream

of DNA fragmentation included generation of oxi-

dative molecules among which was nitric oxide that

was primarily concentrated in the parasitophorous

vacuole (Sudhandiran and Shaha, 2003). As an

indirect proof of potential coordination of natural

and chemotherapeutic anti-leishmanial molecules,

we demonstrated recently that antimonial-resistant

amastigotes were less susceptible to NO-mediated

PCD (Holzmuller et al. 2005b). These data suggest

that trivalent antimony could act both as an anti-

leishmanial molecule and as a macrophage activating

compound (Carter et al. 1989). Activation of mouse

macrophages by the classical pathway leads to

L. amazonensis intracellular amastigotes apoptosis-

like death mediated by L-arginine-derived nitrogen

oxides (Fig. 2D; Holzmuller et al. 2002). Very re-

cently, Sousa-Franco et al. (2006) found that Balb/C

peritoneal macrophages, which are unable to elim-

inate L. amazonensis without previous activation

with cytokines or lipopolysaccharide (LPS), can

kill L. guyanensis amastigotes through an apoptotic

process that is independent of NO and is mediated

by reactive oxygen species. As a whole, the oxidative

machinery of macrophages leads to induction of

Leishmania amastigotes’ programmed cell death.

Nevertheless, depending on the Leishmania species

considered, the innate microbicidal mechanisms

may be sufficient or supplemented by mechanisms

triggered through the classical activation pathway

of the macrophage by either acquired immunity or

chemotherapeutic molecules. Finally, as previously
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Fig. 2. NO-mediated programmed cell death exhibiting morphological features of apoptosis in Leishmania amastigotes.

Control versus NO donor-treated axenic amastigotes DNA banding pattern in ethidium bromide-stained agarose gel

(A), recognition of apoptotic DNA strand breaks by the in situ Terminal deoxynucleotidyl Transferase-mediated dUTP

Nick-End Labeling (TUNEL assay kit, Alexis Biochemicals) in control versus NO donor-treated axenic amastigotes

(B) and in intracellular amastigotes within control versus NO producing mouse macrophages (D), apoptotic

fluorescent YOPRO-1 probe staining in flow cytofluorometry analysis of control versus NO donor-treated (6 hours

with 5 mM acidified sodium nitrite) axenic amastigotes (C) and in situ in intracellullar amastigotes within control versus

NO producing dog macrophages (E). Evolution of footpad lesion size and nitrate/nitrite levels in sera of Balb/C and

C57/Black6 mice infected with Leishmania amazonensis (F) and in situ TUNEL in histological thin cryosections

counterstained with Giemsa of footpad lesions of Balb/C (G) and C57/Black6 (H) mice.
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suggested in cured Leishmania-infected dogs

(Vouldoukis et al. 1996), integration of the above

data strengthens the idea that usual chemotherapy

and protective immunity are linked as they both

lead to generation of reactive oxygen and nitrogen

species (ROS an RNS) within the host cell. Under

these conditions Leishmania parasites undergo a

programmed cell death exhibiting morphological

features of metazoan apoptosis and that can be con-

sidered as their preferred mode of death inside their

mammalian hosts.

This raises the question of the occurrence of

Leishmania apoptotic-like cell death in vivo. Fig. 2F

shows the outcome of the infection byL. amazonensis

promastigotes in both a susceptible and a resistant

mouse model. In Balb/C mice (i.e. Leishmania-

susceptible mice) the footpad lesion grows continu-

ously during the time-course of the experiment

without development of a Th1-type cellular immune

response, as indicated by the absence of increasing

levels of NO-end products in the serum (Fig. 2F).

By contrast, regression of the footpad lesion size in

C57/Black6 mice (i.e. Leishmania-resistant mice)

correlates with increased detection of nitrites in

the serum indicative of NO production, due to an

efficient Th1 cellular immune response (Fig. 2F).

The in situ TUNEL technique reveals amastigotes

dying by apoptosis in histological thin sections of

the regressive lesion (Fig. 2H). Interestingly, apop-

totic amastigotes were also observed in the spleen

and the liver of hamsters infected with L. chagasi,

but the potential stimuli involved are only suggested

and discussed (Lindoso et al. 2004). Nevertheless,

according to the available data, we can reasonably

postulate that phenotypically-defined apoptosis is

the natural type of cell death induced in vivo by

nitric oxide, or more generally by both ROS and

RNS, as a consequence of a Th1-type polarised

cellular immune response involved in Leishmania

resistance.

Furthermore, we recently described the capacity

of naturally secreted antigens easily purified from

culture supernatant of L. infantum promastigotes

(LiESAp), successfully cultivated in completely

defined medium (Lemesre, 1994; Merlen et al.

1999), to protect dogs, a natural host for visceral

leishmaniasis, against experimental L. infantum

infections (Lemesre et al. 2005). We show that

vaccine-induced protection correlates with an early

establishment of a strong and long-lasting pre-

dominantly Th1-type cellular immune response

specifically directed againstLiESAp as demonstrated

by anti-LiESAp IgG2 reactivity, LiESAp-specific

lymphocyte proliferation assays and enhanced

NO-mediated anti-leishmanial activity of canine

monocyte-derived macrophages (CM-DM) in

response to higher IFNc production by T cells. The

use of both in situ TUNEL and in situ YOPRO-1

techniques (Fig. 2E) indicates Leishmania amastigote

death by apoptosis inside T lymphocytes-activated

CM-DM derived from dogs immunised with

LiESAp (Holzmuller et al. 2005a). These studies

confirm that the NO-mediated apoptosis of intra-

cellular Leishmania amastigotes that we previously

demonstrated in a murine laboratory experimental

model, also occurs in a canine model, a natural

reservoir for L. infantum/L. chagasi, the etiologic

agents of visceral leishmaniasis, in response to cell-

mediated protective immunity.

BIOCHEMICAL PATHWAYS INVOLVED IN

NO-MEDIATED PROGRAMMED CELL DEATH

IN LEISHMANIA

Apoptosis defined in higher eukaryote cells

(i.e. mammalian cells) is regulated by two well-

characterized executive pathways (reviewed in

Green, 2000). The first involves the proteolytic

activation of caspases (reviewed in Hengartner,

2000), and could be considered as an evolutionary

step acquired by metazoa. The second one is more

complex and involves the mitochondrion, with outer

membrane permeabilisation leading to the release

into the cytosol of mitochondrial intermembrane

space proteins that either induce caspase activation,

e.g. cytochrome c, or promote the induction of

caspase-independent pathways, e.g. apoptosis

inducing factor (AIF) (reviewed in Zamzami and

Kroemer, 2001). This second pathway can be con-

sidered as inherited during the nucleated cell/

bacteria-derived mitochondrion symbiosis and is

characterized by apoptosis regulators belonging to

the Bcl-2 protein family (Reed, 1994; Henkart and

Grinstein, 1996; Gross, McDonnell andKorsmeyer,

1999; Martinou and Green, 2001). Caspase activities

seem to be essential for the induction of the typical

nuclear features of apoptosis, such as chromatin

condensation and oligonucleosomal DNA frag-

mentation, whereas they are not required, in several

circumstances, for the induction and execution of

PCD (Sperandio, de Belle and Bredesen, 2000).

Moreover, evidence is now accumulating that non-

caspase proteases including cathepsins, calpains,

granzymes and the proteasome complex, also have

roles in mediating and promoting cell death

(Orlowski, 1999; Johnson, 2000).

Caspase-like activities have been described in

Leishmania through the cleavage of specific sub-

strates or the use of specific inhibitors. In 2001, Das

et al. made the first report of a caspase-like-regulated

cell death in L. donovani promastigotes exposed to

ROS. They demonstrated a significant increase

in the ability of parasite lysates to cleave a substrate

for the CED-3/CPP32 group of proteases. Pre-

treatment of cells with a specific inhibitor of this

group of proteases reduces the number of cells show-

ing apoptosis-like features and inhibits the cleav-

age of a poly(ADP)ribose-polymerase (PARP)-like
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protein (Das et al. 2001). Camptothecin, an inhibitor

of topoisomerase I, induces formation of ROS in

L. donovani, which increases cytosolic calcium levels

and decreases both intracellular pH and potassium

levels inducing the apoptotic process through

activation of caspase 3-like proteases CED-3/CPP32

(Sen et al. 2004a). Endogenous ROS formation

causes subsequent elevation in the level of lipid

peroxidation that are potentially involved in the

loss of mitochondrial membrane potential and cyto-

chrome c release (Sen et al. 2004b). Activation of

CED-3/CPP32 and ICE group of proteases occurs

downstream of mitochondrial injuries (Sen et al.

2004b). Interestingly, novobiocin, an inhibitor of

topoisomerase II, also induces a CED-3/CPP32-

regulated apoptosis but without inducing ROS

(Singh et al. 2005). This suggests that different bio-

chemical pathways could be exploited by Leishmania

parasites to die by apoptosis. This hypothesis is

strengthened by the partial effect of cell permeable

caspase inhibitors on amphotericin B-induced

apoptosis in Leishmania promastigotes and axenic

amastigotes (Lee et al. 2002). Moreover, drug

resistance may influence the biochemical pathway

involved in PCD since PARP cleavage was evident

in the wild type strain but not in the arsenite

resistant strain of L. donovani undergoing apoptosis

(Jayanarayan and Dey, 2004).

Furthermore, in our experiments with nitric oxide,

there was no evidence of CED-3/CPP32 proteases

family activation in the L. amazonensis amastigote

NO-induced apoptosis as indicated by the lack of

effect of specific caspase inhibitors Z-VAD-fluoro-

methylketone and Z-DEVD-fluoromethylketone,

or a general cysteine-protease inhibitor [(2S,3S)-

trans-epoxysuccinyl-L-leucylamido-3-methylbutane

ethyl ester E-64d (Holzmuller et al. 2002). No

inhibitory effect was observed with the caspase

inhibitors in L. mexicana axenic amastigotes under-

going apoptosis whereas they were active in amasti-

gotes isolated from mouse macrophages (Zangger

et al. 2002). The authors hypothesised either

uptake of macrophage caspases by the parasite or

the involvement of Leishmania cathepsins in the

DEVDase activity measurement used to provide

evidence of caspases 3 and 7 (Zangger et al. 2002).

This shows the limits of the specificity of the sub-

strates used to characterize caspase-like activities

in PCD in Leishmania. Moreover, to date no caspase

homologues have been demonstrated in any uni-

cellular eukaryotes (Aravind, Dixit and Koonin,

2001). However, genes encoding for metacaspases,

which belong to an ancestral metacaspase, para-

caspase and caspase super-family have been ident-

ified in protozoa (Uren et al. 2000; Szallies, Kubata

and Duszenko, 2002; Mottram et al. 2003). The

functions of these metacaspases, in particular in

promoting cell death, and sensitivity to classical

caspase inhibitors have yet to be elucidated. In fact,

to our present knowledge, cathepsin or calpain-

like cysteine protease activities strengthen the

evolutionary hypothesis of a less complex ancestral

biochemical pathway mediating PCD in Leishmania.

In contrast to the lack of effect of caspase inhibitors,

we observed a significant inhibitory effect on NO-

induced apoptosis in L. amazonensis amastigotes

with specific proteasome inhibitors, in particular

lactacystin and calpain inhibitor I (Holzmuller et al.

2002). The delay in NO-mediated amastigote

apoptosis-like death in the presence of reversible

proteasome inhibitors supports the view that pro-

tease activities of the proteasome complex are

involved in promoting apoptosis-like changes in

NO-exposed amastigotes (Holzmuller et al. 2002).

Recent studies have pointed out in two Leishmania

species the existence of an active proteasome, one

similar to the proteasomes of other eukaryotes

(Robertson, 1999; Christensen et al. 2000; Paugam

et al. 2003). Protease activities of this proteasome,

in particular calpain, could participate in the cleavage

of PARP-like proteins inhibiting DNA repair and

favouring nuclear events of apoptosis, as demon-

strated in human neuroblastoma cells (McGinnis

et al. 1999). More recently, calpain inhibitor I was

shown to interfere with apoptotic DNA fragmen-

tation in L. donovani promastigote death induced

by miltefosine (Paris et al. 2004). Moreover, Arnoult

et al. (2002) have identified a calpain-like sequence

in the kinetoplastid database and suggested that

L. major cysteine proteinases, inhibitable by both

broad caspase and cysteine protease inhibitors, are

calpain-like proteases.

Finally, as caspase activities have only been

indicated by the use of inhibitors or substrates

that are also effective on other cysteine proteases,

oxidative stress-mediated PCD in Leishmania could

be executed by cysteine proteases belonging to the

cathepsin or the calpain families, or to a new cysteine

protease family generated during the evolution of

protozoans. In fact, Leishmania parasites contain

different cysteine proteases, among which cathepsin

B- and L-like proteases play an important role in the

proliferation and differentiation processes (Frame,

Mottram and Coombs, 2000) and could participate

in the regulation of parasite death or survival in the

host (Selzer et al. 1999). After the activation of

the death programme, cysteine proteases related to

the calpain family could promote the induction of

nuclear apoptosis-like features in Leishmania para-

sites. Sequential involvement of both cathepsin and

calpain families could represent a prototype of the

caspase cascade occurring in metazoan apoptosis.

Further investigations that must consider both the

Leishmania species studied and the apoptotic stimuli

used, are needed to determine either the precise

role of cysteine proteases in executing PCD or the

existence of other biochemical pathways controlling

PCD.
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NO MOLECULAR TARGETS ASSOCIATED WITH

LEISHMANIA PROGRAMMED CELL DEATH

S-nitrosylation reactions with thiol groups on

cysteines represent the prototypic molecular NO

redox-based mechanism of interaction with proteins

(reviewed in Stamler, Lamas andFang, 2001). In this

regard, there is unquestionable evidence that the

active site of caspases can be S-nitrosylated, which

results in loss of enzyme function (Dimmeler et al.

1997; Liu and Stamler, 1999). Although caspase

homologues have, to date, not been formally demon-

strated in any unicellular eukaryotes (Aravind et al.

2001), we could hypothesise that if caspase-like or

rather metacaspase activities (Uren et al. 2000;

Szallies et al. 2002; Mottram et al. 2003) exist in

Leishmania, they represent high affinity NO molec-

ular targets and that NO-mediated PCD is under

control of other molecules. Moreover, recent studies

demonstrate inactivation of Leishmania cysteine

protease by NO (Fig. 3, A and B; Salvati et al. 2001;

Ascenzi et al. 2004). Although the exact role of cys-

teine proteases in Leishmania killing is unclear, it

has been demonstrated that Leishmania can not grow

within macrophages in the presence of cysteine

protease inhibitors (Mottram et al. 1996). Cysteine

proteases are involved in several biological functions

of the parasite (Mottram, Brooks and Coombs 1998).

For example, cathepsin-B and -L-like proteases are

essential for Leishmania virulence (Denise et al.

2003). Furthermore, calpain-like cysteine proteases

are present in Leishmania (Arnoult et al. 2002;

Mottram,Coombs andAlexander, 2004) and they are

described as playing a crucial role in NO-mediated

cell injuries (Volbracht et al. 2005). In fact, con-

sidering the definition of apoptosis characterized in

metazoans, almost all potential effector molecules

belong to the cysteine protease super-family and

represent targets inhibitable by NO. Nevertheless,

kinetics of inactivation of protozoan cysteine

proteases by NO exhibit second-order to pseudo-

first-order reaction kinetics depending on NO

concentration (Bocedi et al. 2004). Based on the ob-

servation of differential inhibition of L. amazonensis

cysteine proteases of amastigotes incubated with

NO donors (Holzmuller et al. unpublished data),

we could also suggest differential sensitivity to NO

depending on the catalytic site conformation. In

this view, further research is needed to analyse

the potential role of cysteine proteases in promoting

NO-mediated Leishmania PCD.

Other molecular targets, involved in both glyco-

lysis and citric acid cycle, have been shown to be

inhibited by NO in Leishmania parasites, in par-

ticular cis-aconitase (Fig. 3C; Lemesre et al. 1997)

and glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) (Mauel and Ransijn, 1997). Interestingly,

NO seems to disrupt crucial steps of the energetic

metabolism to induce cell death. Up-stream

impairment of mitochondrial respiration (Szabo

and Salzman, 1995; Lemesre et al. 1997), NO

inhibition of glycolysis through ADP ribosylation

of GAPDH (Zhang and Snyder, 1993; Mauel and

Ransijn, 1997), concomitant with depletion of

cellular NAD+ pools (Radons et al. 1994), could

represent the death signal initiating PCD. In fact,

apoptosis is a form of cell death that requires energy.

By blocking the metabolic pathway involved in the

conversion of the source of energy (i.e. glucose), we

can postulate that NO action forces Leishmania

parasites to use the stocks of energy to ensure a

silent cell death. It makes sense if we consider the

NO disruption of the citric acid cycle as the effector

signal promoting PCD since inhibition of respira-

tion may contribute to the NO pro-apoptotic

effect (Boyd and Cadenas, 2002; Moncada and

Erusalimsky, 2002). A biologically indirect argu-

ment supporting our hypothesis is that amastigotes

appeared to be less sensitive than corresponding

promastigotes to NO action (Lemesre et al. 1997).

This difference was consistent with the relatively

weak development of the mitochondria in amasti-

gotes compared to promastigotes (Mukkada et al.

1985). In terms of co-evolution of Leishmania inside

the host cell, decreased mitochondrial development

could represent an adaptative strategy to manage

NO toxicity and related cell death induction.

Furthermore, NO-mediated PCD in Leishmania

amastigotes is abolished by supplementationwith the

products of these two enzymes: either cis-aconitate

for cis-aconitase or 1,3-bisphosphoglycerate for

GAPDH (Fig. 3D). This suggests that these two

enzymes are key targets involved in NO-mediated

apoptosis. We recently demonstrated that L.

infantum amastigotes selected in vitro for their

NO resistance over-express both cis-aconitase and

GAPDH (Fig. 3E; Holzmuller et al. 2006). In fact,

parasitic over-expression of NO molecular targets

may protect the amastigotes both directly and

indirectly. Directly, enzymes act as NO scavengers

and consequently detoxify the cell. Indirectly,

increased GAPDH could prevent ATP depletion

and consequently cell death, by engaging anaerobic

glycolysis as observed in NO-treated glucose-

fed human epithelial cells (Le Goffe et al. 2002).

Moreover, over-expression of cis-aconitase, which is

considered as a two-faced protein, i.e. acting firstly

as an enzyme and secondly as an iron regulatory

protein (Beinert andKennedy, 1993), would increase

regulation of iron homeostasis, which plays a

crucial role in tumour cell protection from the

pro-apoptotic effect of NO (Feger et al. 2001). In

addition to cis-aconitase and GAPDH, we evidenced

over-expression of 6-phosphogluconate dehydro-

genase (6PGDH) (Fig. 3E; Holzmuller et al.

2006). The 6PGDH is the third enzyme of the

pentose phosphate pathway (PPP), which generates

NADPH and ribulose-5-phosphate (Barrett, 1997).
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One hypothesis is that the principal function of

PPP in Leishmania amastigotes is the production

of NADPH, which is known to protect the para-

site Trypanosoma brucei against oxidative stress

(Dardonville et al. 2003).

As a whole, data on NO molecular targets open

the way for further investigations on the mol-

ecular characterization of NO-mediated PCD in

Leishmania. In particular, it would be of interest

to elucidate the NO targeting of mitochondrial

enzymes, correlated with subsequent release of

calcium from the de-energized organelle to the

cytosol (Richter et al. 1994), leading to activation

of calpain-related enzymes for the execution of the

nuclear features of cell death. This could therefore

define a PCD specific to protozoan parasites and

represent the first evolutionary step to apoptosis

defined in metazoa.
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Fig. 3. NO molecular targets in Leishmania. Proteinase activities in gelatin-copolymerised SDS-PAGE stained by

Coomassie blue of L. amazonensis amastigotes protein lysates either incubated in the presence or absence of 5 mM

acidified sodium nitrite during gel revelation steps (A) or prepared from axenic parasites cultured for 4 hours in

acidified PBS in the absence or presence of 5 mM sodium nitrite (B). Cis-aconitase activity of N2- versus NO-treated

promastigotes (P) and axenic amastigotes (A) of L. amazonensis (L. amaz.) and L. mexicana (L. mex.) by multilocus

enzyme electrophoresis (MLEE) (C). Apoptosis of L. amazonensis axenic amastigotes cultured in the presence of NO

donor in a medium supplemented by either cis-aconitate (product of cis-aconitase) or 1,3-bisphosphoglycerate

(product of glyceraldehyde-3-phosphate dehydrogenase) (D). MLEE profiles revealed with the cis-aconitase hydratase

(E.C.4.2.1.3), glyceraldehyde-3-phosphate dehydrogenase (E.C.1.2.1.12), 6-phosphogluconate dehydrogenase

(EC1.1.1.44) of wild-type amastigotes (LiWT) and amastigotes resistant to 50 mM (LiNOR50) and to 100 mM

(LiNOR100) DETA/NONOate (E).
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WHY DO LEISHMANIA PARASITES DIE

BY APOPTOSIS?

The important question still remaining is what

could be the role of PCD in trypanosomatid

parasites? It is fair to assume that, if unicellular

organisms have retained such a very complex PCD

pathway during evolution, it is because this pathway

must be beneficial or essential for survival of the

species or population. Two main hypotheses have

been proposed to answer the fascinating question

concerning the benefits of apoptosis for unicellular

organisms (Debrabant et al. 2003; Debrabant and

Nakhasi, 2003; Nguewa et al. 2004; Wanderley

et al. 2005). First, cell death can be important for

population size control in response to limited

resources (Welburn, Barcinski and Williams, 1997;

Al-Olayan, Williams and Hurd, 2002; Lee et al.

2002) or to avoid host death (parasitic organisms)

(Heussler, Kuenzi and Rottenberg, 2001). In this

case unicellular apoptotic cells show altruistic

behaviour, dying for the benefit of others. The

second explanation is that apoptotic cells, which will

not necessary die (apoptotic mimicry), could pro-

vide signals that enhance the survival of the entire

population (Lee et al. 2002; Zangger et al. 2002).

For example, the evidence that phagocytosis of

apoptotic cells reduces the secretion of mammalian-

derived pro-inflammatory cytokines or signals as

growth factors, offers the interesting speculation

that the ability of intracellular Leishmania to

undergo apoptosis may reduce the host immune

response and favour overall parasite survival (de

Freitas Balanco et al. 2001; DosReis and Barcinski,

2001).

Apoptosis in Leishmania promastigotes and

axenically-grown amastigotes has been well demon-

strated in vitro (Das et al. 2001; Sereno et al. 2001;

Arnoult et al. 2002; Holzmuller et al. 2002; Lee et al.

2002) and then ex vivo in interacellular amastigotes

(Sereno et al. 2001; Holzmuller, 2002, 2005a). For

the moment, only one published study reports the

occurrence of apoptosis in Leishmania amastigotes

in vivo (Lindoso et al. 2004), suggesting that PCD

could constitute a mechanism that regulates growth

of the parasite population during Leishmania infec-

tion. Moreover, we show in this paper that apoptotic

amastigotes were detected in regressive lesions of

experimentally infected resistant mice, allowing

us to suggest that PCD could occur in vivo as a

consequence of a Th1-type polarised cellular im-

mune response involved in Leishmania resistance.

Furthermore, even if apoptotic PCD also seems to

be important in vector/parasite interactions in

both malaria (Hurd, Carter and Nacer, 2005) and

African trypanosomiasis (Welburn and Murphy,

1998), apoptosis during Leishmania metacyclo-

genesis within the sandfly vector still needs to be

demonstrated.

In order to demonstrate successfully the real

purpose of the PCD, whether altruistic or otherwise,

in Leishmania or other trypanosomatid parasites, it

is essential to establish definitively that PCD really

occurs in vivo in the insect vectors and/or in the

mammalian hosts (inside or outside the macrophage

for Leishmania). A better and more detailed under-

standing of the in vivo role of PCD in Leishmania,

as in other unicellular parasites, is needed because

it could be exploited to identify new targets for

therapeutic intervention. The clarification of its

potential relevance in silencing the host immune

response to favour parasite survival or infection

(alternative activation of macrophages, limitation

of antigen presentation to the immune system,

Leishmania antigen-specific suppression of the T-cell

response) and in increasing the host survival time

allowing the pathogen to live in pseudo-symbiosis

with the host (regulation of cell population in tissues

and organs, control of the growth and/or selection

of parasitic population by parasite-derived signals,

control of the virulence, mechanisms to promote

and maintain clonality within the population) will

help to define precisely the role played by PCD in

the establishment and the maintenance of the

Leishmania/host relationship.

Finally, the most important benefit of PCD

knowledge in kinetoplastids would be the design of

more active and less toxic drugs directed towards

specific molecular targets of the parasites.
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