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Schölte waves, waves bound to the interface between a fluid and an elastic half-space, are, for

many material combinations, evanescent; as they propagate, they are damped due to radiation.

A representation of the general evanescent Schölte wave is here obtained in terms of a solution

to the membrane equation with complex speed, linked, at each instant, to a complex-valued

harmonic function in a half-space. This derivation generalises one obtained recently for (non-

evanescent) Rayleigh, Stoneley and Schölte waves. An alternative description is also obtained,

in which the time-evolution of the normal displacement of the interface satisfies a first-order,

complex-valued, non-local evolution equation. Amongst some explicit solutions obtained are

decaying solutions allied to a general solution to the Helmholtz equation, and a solution

closely related to a Gaussian beam. In the plane–strain case, the general Schölte wave splits

into two disturbances, one right-travelling and one left-travelling, each being described at all

times in terms of a harmonic function in a half-plane, decaying with depth yet having arbitrary

boundary values. This representation highlights the dual elliptic–hyperbolic nature typical of

guided waves and gives a surprisingly compact representation for the two-dimensional case.
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1 Introduction

Rayleigh’s [21] 1885 prediction that, along the surface of a linearly elastic half-space,

sinusoidal waves of any wavelength may propagate at a unique speed, below that of both

dilatational and shear waves within the half-space, was generalised by Stoneley [20] for

waves at the plane interface between two dissimilar elastic media, and independently by

Schölte [19] and Gogoladze [8] for waves at a fluid–solid interface. All such waves are

non-dispersive. In fact, analogous waves exist at the surface of an anisotropic half-space

or between two anisotropic half-spaces, though the propagation speed then depends upon

direction but not wavelength (or frequency) of the wave. Such waves have been much

studied and utilised (see e.g. [2–4, 7] and references therein) and the theory extended to

include non-linear effects [16]. More recently, as a by-product of investigations into waves

on plates and layered half-spaces [1,14,15], it was observed that cases involving isotropic

(or transversely isotropic) half-spaces give rise to a substantially generalised theory [11,13].

Indeed, rotational invariance of material properties about the surface normal makes the

wave speed independent of both wavelength and direction. This property is shared by
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the familiar membrane equation, utt = c2(uxx + uyy), and it is a major result in [13] that

Rayleigh, Stoneley and Schölte waves have explicit representations in terms of solutions

to the membrane equation and, at each time, a linked solution to Laplace’s equation in

a half-space. The one restriction on that prediction for Stoneley and Schölte waves is

that it applies only when the material combinations allow the wave speed to be real.

Particularly for the Schölte waves, this requirement is known to be restrictive, so that, for

example, at a steel–water interface, the ‘wave speed’ must have a small imaginary part

(the wave must be accompanied by radiation away from the interface into the fluid – the

slower medium). The aim of this paper is to analyse explicit representations for this case,

specifically for evanescent Schölte waves. (It is anticipated that similar analysis applies,

but with increased algebraic complexity, for Stoneley waves at the interface between two

elastic materials in the case for which interface waves cause radiation into one of the

half-spaces so that interface waves are evanescent.)

For evanescent Schölte waves, one representation is found here in terms of a complex-

valued solution to the membrane equation with complex speed. Associated with this function

at each time is a (complex-valued) solution to Laplace’s equation in an abstract half-

space. Then, at each instant, the displacements everywhere are given explicitly in terms of

first derivatives of this ‘potential’. This representation is a natural generalisation of the

solution structure for the non-evanescent case [13], which has real propagation speed. This

case shows the dual elliptic–hyperbolic nature of guided waves [6, 9, 10] – as is typical,

the guided wave has structure defined through solution of a boundary value problem

(a feature of elliptic systems) yet propagates according to the membrane equation (the

wave equation in two dimensions, a hyperbolic equation). For Schölte waves, a standard

analysis using complex exponentials shows, in Section 2, that both the non-evanescent

and evanescent cases of spatially sinusoidal waves may be treated together, provided that

the frequency (or, equivalently, the speed) is allowed to be complex. This allows time

dependence which is a product of sinusoidal and exponential terms. The corresponding

displacement field in the evanescent case is a linear combination of terms each having

depth dependence which is a complex exponential decay. Superposing these evanescent

waves of all wavelengths and directions then gives, in Section 3, a representation of a

general disturbance in terms of three copies of a single function. This is closely similar to

the representation in the non-evanescent case [13], where displacements are given in terms

of three depth-scaled copies of a single scalar function, which is harmonic in an abstract

half-space and has boundary values evolving in time as a solution of the membrane

equation. Two copies apply within the elastic medium and one within the fluid.

The essential difference in the evanescent case is that the abstract ‘depth coordinate’

must become complex, while the surface values of the potential evolve according to

the membrane equation with complex speed. However, a general solution to that equation

requires initial conditions equivalent to four real functions defined over a plane. This is

much more information than is required in the non-evanescent case. Hence, unsurprisingly,

it is found that only a subset of solutions is relevant, in which the real and imaginary parts

of the solution are interrelated at each time. It is shown in Section 4 that there are integral

representations for initial conditions for the imaginary part in terms of those for the real

part. Thus, within the initial conditions only two real functions may be independently

specified over the plane interface. An alternative is to specify a single complex-valued
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function as the initial values of both the real and imaginary parts of the potential; for

the initial values of the time derivative of that potential there is then no freedom – they

are defined completely through an integral representation.

These features suggest that the potential evolves according to a first-order evolution

rule. Indeed, this is so. It is shown, also in Section 4, that the whole solution may be

described formally, at all times, in terms of a single complex-valued solution to Laplace’s

equation in a half-space, in which the coordinate normal to the surface is allowed to be

complex (it is a complex linear combination of depth and time). This again highlights the

elliptic–hyperbolic duality. In addition, it greatly helps, in Section 5, in the construction of

explicit solutions for evanescent waves. Besides the expected unidirectional solutions that

are either time-harmonic (hence spatially decaying) or spatially sinusoidal (hence, decaying

with time), there are decaying solutions of fixed (complex) frequency corresponding to

any solution to the Helmholtz equation (cf. Achenbach’s analysis [1] for plate waves).

Also, an exact and explicit solution analogous to a Gaussian beam is obtained (without

any approximation using high-frequency asymptotics), similar in structure to a solution

to the wave equation given by Kiselev [12]. This shows that beamlike solutions (with

time dependence, which is not exactly sinusoidal) exist to the full set of equations and

boundary conditions for an isotropic elastic solid adjoining a compressible fluid.

In Section 6, the special case of two-dimensional Schölte waves is revisited and it is

shown that the evolution equation for normal displacements at the interface involves

two real-valued functions and their Hilbert transforms, while interior displacements are

represented in terms of the two associated pairs of conjugate harmonic functions in a

half-plane. In fact, the general solution is a superposition of a right-propagating wave

and a left-propagating wave, each having arbitrary initial form. However, the wave profile

of each does not have permanent form, unlike in the non-evanescent case. It evolves with

time (or, equivalently, distance). Moreover, its time-evolution is given by evaluating, at

successively increasing depths, the harmonic function whose values on the Ox axis coincide

with its initial waveform. This representation of a general two-dimensional, evanescent

Schölte wave, in terms of two arbitrary harmonic functions is a further demonstration that

interface waves have many features of elliptic equations as well as of hyperbolic waves.

2 Two-dimensional analysis for Schölte waves

At the interface z = 0 between a fluid occupying z > 0 and having density ρf and sound

speed cf and an isotropic elastic solid occupying z < 0 and having density ρ and Lamé

constants λ and µ, and unit vectors e1, e2 and e3 are taken along the axes Ox, Oy and

Oz of cartesian coordinates (x, y, z). For waves travelling along Ox, interface waves have

displacements u = ue1+we3 = u1e1+u3e3 (they are saggitally polarised, i.e. u2 ≡ u ·e2 = 0).

Within z > 0, there is a displacement potential φ(x, z, t) such that

u = φx, w = φz with φtt = cf
2(φxx + φzz) (2.1)

(subscripts x, y, z and t denote partial differentiation). The corresponding velocity com-

ponents are ut = φxt and wt = φzt and the perturbation pressure is

p̂ = −ρfφtt.
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Within the elastic solid, the Navier equations are

(λ + µ)∇(∇ · u) + µ∇2u = ρutt, (2.2)

while the traction components acting over z = 0 are (in indicial notation, with commas

denoting partial differentiation with respect to x ≡ x1, y ≡ x2 or x3 ≡ z)

σi3 = λ(∇ · u)δi3 + µ(ui,3 + u3,i) (i = 1, 2, 3),

so that

σ13 = µ(uz + wx), σ23 = 0, σ33 = λux + (λ + 2µ)wz.

Thus, continuity of traction and (normal component of) displacement imposes the condi-

tions (at z = 0)

uz + wx = 0, λux + (λ + 2µ)wz = −p̂ = ρfφtt, w = φz. (2.3)

We now seek generalised travelling wave solutions

u = A(k) V(z, k) ei(kx−|k|ct) + c.c. (2.4)

with k real but c possibly complex, provided that Im c � 0 (to ensure attenuation rather

than amplification). The term c.c. denotes the complex conjugate. Observe that the case in

which c is real corresponds to the non-evanescent Schölte waves, for which the membrane

equation arises, as shown by Kiselev and Parker [13].

Details of the depth-dependence V(z, k) are found as follows:

In z > 0, take φ = b+A e−γf|k|zei(kx−|k|ct) + c.c., so that

V = b+(ike1 − γf|k|e3) e−γf|k|z , (2.5)

where c2 = (1 − γf
2)cf

2, so that the ‘attenuation factor’ γf may be complex, with Re γf > 0.

In z � 0, the Navier equations allow special (separated) solutions

V = (iγ1|k|e1 + ke3)e
γ1|k|z ≡ V(1)(z, k),

V = (ike1 + γ2|k|e3)e
γ2|k|z ≡ V(2)(z, k),

where

γ1
2 = 1 − c2/cS

2, γ2
2 = 1 − c2/cL

2, with Re γ1 > 0, Re γ2 > 0,

and cS ≡ (µ/ρ)1/2, cL ≡ [(λ+2µ)/ρ]1/2 are the shear and longitudinal speeds, respectively.

Taking the linear combination V = a−V(1)(z, k) + b−V(2)(z, k) leads to the expressions

(in z < 0)

uz + wx = i
[
a−(1 + γ1

2)k2eγ1|k|z + 2b−γ2k|k|eγ2|k|z]ei(kx−c|k|t) + c.c.,

λux + (λ + 2µ)wz = {a−2µγ1k|k|eγ1|k|z + b−[(λ + 2µ)γ2
2 − λ]k2eγ2|k|z}ei(kx−c|k|t) + c.c.,

w =
[
a−ke

γ1|k|z + b−γ2|k|eγ2|k|z]ei(kx−c|k|t) + c.c.
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Thus, the continuity conditions (2.3) reduce to the algebraic equations

2γ2|k|b− +
(
1 + γ1

2
)
ka− = 0,

ρfc
2|k|b+ + µ

(
1 + γ1

2
)
|k|b− + 2µγ1ka− = 0,

γf|k|b+ + γ2|k|b− + ka− = 0,

for which the compatibility condition becomes

γf{4γ1γ2 − (1 + γ1
2)2} =

ρf

ρ
γ2

(
1 − γ1

2
)2
. (2.6)

This is precisely the algebraic equation for c2 governing the non-evanescent Schölte waves

(i.e. c real). While equation (2.6), after being squared twice and having substitutions made

for γf
2, γ1

2 and γ2
2, yields a polynomial equation for c2 with real coefficients, this process

introduces spurious roots. It is preferable to rewrite equation (2.6) and to seek ξ ≡ c2/cS
2,

which satisfies

√
β2 − ξ F(ξ) = ∆ξ2

√
σ2 − ξ with F(ξ) ≡ 4

√
1 − ξ

√
σ2 − ξ − σ(2 − ξ)2, (2.7)

where σ ≡ cL/cS > 1, β ≡ cf/cS and ∆ = ρfβ/(ρσ) = ρfcf/(ρcL). Moreover, in equation

(2.7) the real parts of
√

1 − ξ = γ1,
√

σ2 − ξ = σγ2 and
√

β2 − ξ = βγf must be chosen

as positive.

Real roots ξ, corresponding to the travelling (non-evanescent) Schölte waves, arise if

equation (2.7) has a root in 0 < ξ < min(1, β2). However, equation F(ξ) = 0 corresponds

to the secular equation 4γ1γ2 − (1 + γ1
2)2 = 0 of Rayleigh waves on a traction-free

half-space z < 0 and so is known to have a single root ξ = ξR ≡ cR
2/cS

2 such that

0 < ξR < 1. Moreover, it is readily shown that F(0) = 0 and F ′(ξR) < 0. Thus, if β2 > ξR,

the function
√
β2 − ξ F(ξ) is real and positive for 0 < ξ < ξR and real and negative for

ξR < ξ < min(1, β2). Since ξ2
√

σ2 − ξ > 0 throughout 0 < ξ < ξR, it can be shown that

equation (2.7) has at least one root ξ in (0, ξR) for all ∆ (> 0). Moreover, for small ∆ there

is a root ξ ≈ ξR. This defines a real speed c < cR and corresponding real, positive values

for γ1, γ2 and γf.

The above case arises for cf > cR so that a Rayleigh wave in z < 0 would travel more

slowly than sound waves within z > 0. Otherwise, if cf < cR so that β2 < ξR, the function√
β2 − ξ F(ξ) is purely imaginary on ξ ∈ (β2, ξR). In general, solutions to equation (2.7)

must be sought in Im ξ < 0. For small ∆, with ε ≡ ξR − β2 also small, writing ξ = ξR − εξ̄

allows equation (2.7) to be approximated as

Kε3/2ξ̄

√
ξ̄ − 1 = −∆ξ2

R

√
σ2 − ξR, where K ≡ −F ′(ξR) > 0.

This implies that arg ξ̄ + 1
2
arg (ξ̄ − 1) = π, for which a parametric representation of

solutions is arg ξ̄ = q + 1
2
π and arg(ξ̄ − 1) = π − 2q, so leading to

ξ̄ =
2 sin q

1 − 4 sin2 q
ieiq
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with q related to ε through

2 sin q

(1 − 4 sin2 q)3/2
=

∆ξ2
R

√
σ2 − ξR

ε3/2K
for 0 < q <

1

6
π.

Note that as ∆/ε3/2 becomes small, arg ξ̄ decreases from 2
3
π to 1

2
π so that ξ̄ becomes

close to the positive imaginary axis, so keeping Im ξ < 0, as required. In fact, for ∆ � 1

but with cf significantly smaller than cR so that ξR − β2 = O(1), the approximation to

equation (2.7) simplifies considerably to

ξ ≈ ξR − i∆ξR
2

K

√
σ2 − ξR

ξR − β2
or c2 ≈ cR

2

⎡
⎣1 − i∆cR

2

Kc2
S

√
cL

2 − cR
2

cR
2 − cf

2

⎤
⎦ .

Thus, evanescent Schölte waves with Re c > 0 and Im c < 0 certainly exist, for cf < cR

with ∆ small. The temporal decay is due to radiation of energy into the fluid, which has

sound speed below the Rayleigh speed of the solid.

It may be noted that even for the ‘free space’ case limit ρf = 0 which defines Rayleigh

waves, the secular equation (2.6), or equivalently equation (2.7), possesses complex roots c2,

with correspondingly complex values for γ1, γ2 and γf. However, in the general case, only

those roots with |Im c| � |Re c| are of practical significance, since other roots correspond

to modes that attenuate appreciably on the scale of a wavelength. For this reason,

attention should be confined to cases with small, but negative, arg c and hence small

|arg ξ|. Analysis of uniqueness, or otherwise, of admissible solutions in a related problem

for viscoelastic surface waves, in which the secular equation has complex coefficients, has

been treated by Romeo [17].

The displacements within the generalised travelling wave (2.4) are found from

b+ : b− : a− = γ2

(
1 − γ1

2
)
k : −2γfγ2|k| : γf

(
1 + γ1

2
)
k.

Choosing as normalisation the condition e3 · V(0, k) = 1
2
, so that w = ReA(k)ei(kx−|k|ct),

then gives

2V(z, k) =

⎧⎪⎪⎨
⎪⎪⎩

[−i(sgn k)e1/γf + e3]e
−γf|k|z in z � 0(

1 − γ1
2
)−1

i(sgn k)[2γ1e
γ1|k|z − γ2

−1
(
1 + γ1

2
)
eγ2|k|z]e1

+
(
1 − γ1

2
)−1[

2eγ1|k|z −
(
1 + γ1

2
)
eγ2|k|z]e3 in z � 0.

(2.8)

From (2.4) and (2.8) it is seen that, when c is written as c = c+ − ic− with c− > 0,

the normal displacement w(x, t) (and indeed each displacement component at each depth)

propagates so that

∂w

∂t
+ c+

∂w

∂x
sgnk = −c−|k|w.

This evolution equation has affinity with those derived recently for surface wave energy

by Rousseau and Maugin [18], who interpret surface waves as quasi-particles. However,

it applies only to waves with a single wave number. Since the decay in amplitude is
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inversely proportional to wavelength, no similar equation applies to waves propagating in

all directions at all wave numbers, as developed in subsequent sections.

3 Superposition as a wave of general form and direction

Since the governing equations and interface conditions are invariant in form under

rotations about the Oz axis, a generalisation to three dimensions of the complex-valued

displacements (2.4) is given by first defining a (real) surface wave vector k ≡ k1e1 + k2e2

and its associated unit vector k̂ as

u = A(k)V(z, k) ei(k·x−c|k|t) + A∗(k)V∗(z, k) e−i(k·x−c∗|k|t) (3.1)

for any complex A(k), where ∗ denotes the complex conjugate and

V(z, k) ≡

⎧⎪⎪⎨
⎪⎪⎩

(2γf)
−1(γfe3 − ik̂) e−γf|k|z z � 0(

1 − γ1
2
)−1

(e3 + iγ1k̂) eγ1|k|z

−[2γ2

(
1 − γ1

2
)
]−1

(
1 + γ1

2
)
(γ2e3 + ik̂) eγ2|k|z z � 0.

(3.2)

For any c chosen so that Re c > 0 and Im c < 0, equations (3.1) and (3.2) describe a

real-valued, spatially sinusoidal wave travelling in the direction of k̂ and decaying with

time. By selecting c as such a root of (2.6) (i.e. with −π/2 < arg c < 0), we observe that

−c∗ is also an allowable complex speed (since Im − c∗ < 0), but Re − c∗ < 0 so that the

corresponding wave travels in the direction of −k̂. As

γ1 ≡
(
1 − c2/cS

2
)1/2

, γ2 ≡
(
1 − c2/cL

2
)1/2

and γf ≡
(
1 − c2/cf

2
)1/2

are defined with Re γ1 > 0, Re γ2 > 0 and Re γf > 0, then

γ∗
1 ≡

[
1 − (−c∗)2/cS

2
]1/2

, γ∗
2 ≡

[
1 − (−c∗)2/cL

2
]1/2

and γ∗
f ≡

[
1 − (−c∗)2/cf

2
]1/2

,

with Re γ∗
1 > 0, Re γ∗

2 > 0 and Re γ∗
f > 0.

Also, observe from equation (3.2) that displacements within the complex-valued atten-

uating wave with wave vector k but with complex speed −c∗ are given by

V∗(z,−k) ei(k·x+c∗|k|t).

Hence, by writing the general superposition of attenuating travelling waves in two equi-

valent forms as

u =

∫ ∞

−∞
{A(k)V(z, k) ei(k·x−c|k|t) + Ā(k)V∗(z,−k) ei(k·x+c∗|k|t)} dk1 dk2

=

∫ ∞

−∞
{A(k)V(z, k) ei(k·x−c|k|t) + Ā(−k)V∗(z, k) e−i(k·x−c∗|k|t)} dk1 dk2, (3.3)

we see that u is a real-valued, generalised, attenuating, interface-bound disturbance,

provided that Ā(k) is chosen to satisfy

Ā(k) = A∗(−k) (i.e. Ā(−k) = A∗(k)).
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Moreover, equations (3.2) and (3.3) may be written in terms of P (k) ≡ |k|−1A(k) as

u = 2Re

∫ ∞

−∞

∫ ∞

−∞
P (k)|k|V(z, k) ei(k·x−c|k|t) dk1 dk2, (3.4)

together with

|k|V(z, k) =

⎧⎪⎪⎨
⎪⎪⎩

−(2γf)
−1(ik − γf|k|e3) e−γf|k|z , z � 0,(

1 − γ1
2
)−1

(iγ1k + |k|e3) eγ1|k|z

− 1+γ1
2

2γ2(1−γ1
2)
(ik + γ2|k|e3) eγ2|k|z , z � 0.

(3.5)

Just as the non-evanescent case (c real) allows u to be written [13] compactly in terms

of copies of a single scalar function Φ(x, y, Z; t) (with Z being an abstract variable

formally independent from the spatial coordinate z), representations (3.4) and (3.5) allow a

representation in terms of a complex-valued potential χ(x, y, Z; t). First, define χ(x, y, Z; t)

as

χ(x, y, Z; t) ≡ 2

∫ ∞

−∞

∫ ∞

−∞
P (k) ei(k·x−c|k|t)e−|k|Zdk1 dk2, (3.6)

which is readily seen to satisfy

χxx + χyy + χZZ = 0, (3.7)

so that at each instant t the function χ(x, y, Z; t) is a complex-valued harmonic function

of x, y and Z . Moreover, its evolution with time t is simply given by

χt = icχZ . (3.8)

Indeed, by defining ζ = Z + ict, it is found that

χ(x, y, Z; t) = 2

∫ ∞

−∞

∫ ∞

−∞
P (k) e(ik·x−|k|ζ)dk1 dk2 ≡ Θ(x, y, ζ), (3.9)

so that Θ satisfies

Θxx + Θyy + Θζζ = 0. (3.10)

The connection with u is seen by observing that, in the fluid-filled region z > 0,

u = −Re

∫ ∞

−∞

∫ ∞

−∞
P (k)γf

−1(ik − γf|k|e3) ei(k·x−c|k|t)e−γf|k|zdk1 dk2

= −Re γf
−1∇

∫ ∞

−∞

∫ ∞

−∞
P (k) ei(k·x−c|k|t)e−γf|k|zdk1 dk2

= −Re γf
−1∇

∫ ∞

−∞

∫ ∞

−∞
P (k) e[ik·x−|k|(γfz+ict)]dk1 dk2

= −Re (2γf)
−1∇Θ(x, y, γfz + ict). (3.11)
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A similar representation exists in the half-space z < 0, in the form

u = Re

(
γ1

1 − γ1
2

∇ +
e3

γ1

∂

∂z

)
Θ(x, y, γ1|z| + ict)

− Re
1 + γ1

2

2γ2(1 − γ1
2)

∇Θ(x, y, γ2|z| + ict). (3.12)

In particular, the normal displacement w̄(x, y, t) at the interface z = 0 is given by

w̄(x, y, t) ≡ w(x, y, 0; t) =

∫ ∞

−∞

∫ ∞

−∞
{A(k) ei(k·x−c|k|t) + A∗(k) e−i(k·x−c∗|k|t)} dk1 dk2

= 2Re

∫ ∞

−∞

∫ ∞

−∞
A(k) ei(k·x−c|k|t) dk1 dk2

= −Re χZ (x, y, 0; t) = −Re Θζ(x, y, ict). (3.13)

Hence, the general displacement field carried along with the evolving normal displacement

w̄(x, y, t) is expressed at typical z through (3.11) and (3.12) in terms of three depth-

scaled and time-shifted versions of the complex-valued harmonic function χ(x, y, Z; t) =

Θ(x, y, ζ).

Moreover, differentiation of (3.8) shows that

χtt = −c2χZZ ,

so that substitution into (3.7) then yields

χtt = c2(χxx + χyy). (3.14)

Thus, at each Z , the complex potential χ satisfies the membrane equation with complex

speed. So also does the function W (x, y, Z; t) ≡ −χZ (x, y, Z; t) = −Θζ(x, y, ζ) and, in

particular, its boundary value W̄ (x, y, t) ≡ W (x, y, 0; t) = Θζ(x, y, ict). Specifically this

gives

W̄tt = c2(W̄xx + W̄yy), (3.15)

so that the normal displacement w̄(x, y, t) = Re W̄ (x, y, t) is the real part of a function

satisfying the membrane equation with complex speed (3.15). It is readily seen that, whenever

c is real, equation (3.15) reduces to the membrane equation, and the description reduces

to that of non-evanescent Schölte waves, as described in [13].

4 Evolution of the interface data

While w̄(x, y, t) has been shown in Section 3 to evolve as the real part of a solution to

(3.15), in order to identify a solution to that equation it is necessary to specify initial

conditions for both of the complex-valued functions W̄ and W̄t. However, these are not

independent, since W (x, y, Z; t) satisfies Laplace’s equation

Wxx + Wyy + WZZ = 0, (4.1)
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for each t and, moreover, decays as x2 + y2 + Z2 → ∞ in Z > 0. It has a Fourier

representation

W (x, y, Z; t) = 2

∫ ∞

−∞

∫ ∞

−∞
A(k) ei(k·x−c|k|t)e−|k|Z dk1 dk2,

from which it is readily found (cf. (3.8)) that

Wt = icWZ. (4.2)

However, by applying Green’s identity to the pair of functions W (x′, y′, Z ′; t) and

G+ ≡ 1

[(x − x′)2 + (y − y′)2 + (Z − Z ′)2]1/2
+

1

[(x − x′)2 + (y − y′)2 + (Z + Z ′)2]1/2
,

in the half-space Z ′ > 0, excluding a small sphere centered at (x′, y′, Z ′) = (x, y, Z), yields

a representation for W (x, y, Z; t) in terms of its normal derivative as

W (x, y, Z; t) = − 1

2π

∫ ∞

−∞

∫ ∞

−∞

WZ (x′, y′, 0; t)

[(x − x′)2 + (y − y′)2 + Z2]1/2
dx′ dy′. (4.3)

Setting Z = 0 and using equation (4.2) then shows that Wt(x, y, 0; 0) defines W (x, y, 0; 0).

More generally, W and Wt are interrelated at each value of t.

Observe that, for all t, displacements are represented, through equations (3.11) and

(3.12), in terms of the complex-valued potential χ(x, y, Z; t). Since, at each time t, χ

satisfies equations (3.7) and (3.8) thoughout Z > 0 and decays as x2 + y2 + Z2 → ∞ in

Z > 0, Green’s identity may be applied to χ(x′, y′, Z ′; t) and

G− ≡ 1

[(x − x′)2 + (y − y′)2 + (Z − Z ′)2]1/2
− 1

[(x − x′)2 + (y − y′)2 + (Z + Z ′)2]1/2

in the half-space Z ′ > 0, again excluding a small sphere centered at (x′, y′, Z ′) = (x, y, Z),

to yield

χ(x, y, Z; t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

Zχ(x′, y′, 0; t)

[(x − x′)2 + (y − y′)2 + Z2]3/2
dx′ dy′. (4.4)

A similar equation applies to W in the form

W (x, y, Z; t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

ZW (x′, y′, 0; t)

[(x − x′)2 + (y − y′)2 + Z2]3/2
dx′ dy′. (4.5)

Then, by differentiating equations (4.4) and (4.5) and specialising to Z = 0, it is found

that

χZ (x, y, 0; t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

χ(x′, y′, 0; t)

[(x − x′)2 + (y − y′)2]3/2
dx′ dy′ ≡ L χ(x, y, 0; t),

WZ (x, y, 0; t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

W (x′, y′, 0; t)

[(x − x′)2 + (y − y′)2]3/2
dx′ dy′ ≡ L W̄ . (4.6)

Hence, one form of the evolution equation is, from (3.8) and (4.2),

χt(x, y, 0; t) = icL χ(x, y, 0; t) and, similarly, W̄t = icL W̄ , (4.7)
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where the integral operator L is the ‘Dirichlet-to-Neumann’ map for Laplace’s equation

(3.7) in Z � 0 subject to |χ| → 0 as x2 + y2 + Z2 → ∞. The inverse M of L is found by

using the representation for χ throughout Z > 0 (analogous to (4.3))

χ(x, y, Z; t) = − 1

2π

∫ ∞

−∞

∫ ∞

−∞

χZ (x′, y′, 0; t)

[(x − x′)2 + (y − y′)2 + Z2]1/2
dx′ dy′.

Specialisation to Z = 0 then gives the operator M (the ‘Neumann-to-Dirichlet’ map) as

χ(x, y, 0; t) = − 1

2π

∫ ∞

−∞

∫ ∞

−∞

χZ (x′, y′, 0; t)

[(x − x′)2 + (y − y′)2]1/2
dx′ dy′ ≡ M χ. (4.8)

Note that L and M must satisfy

LM = ML = I, (4.9)

where I is the identity operator.

Now, splitting χ(x, y, 0; t) ≡ χ̄(x, y, t) into its real and imaginary parts as χ̄(x, y, t) =

χ̃(x, y, t) + iχ̂(x, y, t) gives

χ̃t = −c+L χ̂ + c−L χ̃ and χ̂t = c+L χ̃ + c−L χ̂.

Upon rearrangement, using the operator M, these show that at each instant t the imaginary

parts of χ and χt may be expressed in terms of the real parts, using the pair of maps L

and M, as

χ̂(x, y, t) = (−M χ̃t + c−χ̃)/c+ and χ̂t(x, y, t) = (|c|2L χ̃ − c−χ̃t)/c+. (4.10)

Equations (4.10) allow initial conditions for the membrane equation with complex speed

(3.14) (evaluated at Z = 0) to be expressed in terms of just two real-valued functions

f(x, y) ≡ χ̃(x, y, 0) and g(x, y) ≡ χ̃t(x, y, 0) as

χ̄(x, y, 0) = χ̃(x, y, 0) + iχ̂(x, y, 0) =
1

c+
[c∗f(x, y) − iM g(x, y)]; (4.11)

χ̄t(x, y, 0) = χ̃t(x, y, 0) + iχ̂t(x, y, 0) =
1

c+
[cg(x, y) + i|c|2L f(x, y)]. (4.12)

Alternatively, the initial conditions may be expressed, using χ̄t = icLχ̄, in terms of a

single complex-valued function F(x, y) ≡ f(x, y) + if̂(x, y) as

χ(x, y, 0; 0) = F(x, y, χt(x, y, 0; 0) = icLF, (4.13)

or, equivalently as the real conditions

χ̃(x, y, 0) = f(x, y), χ̂(x, y, 0) = f̂(x, y),

χ̃t(x, y, 0) = c−Lf − c+Lf̂ (= g), χ̂t(x, y, 0) = c+Lf + c−Lf̂.

It should not be surprising that only one complex-valued function F(x, y) (or two real-

valued functions f(x, y) and g(x, y)) may be independently specified, since equation (3.8) is
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a first-order evolution equation, while equation (4.4) determines χ(x, y, Z; t) at all Z > 0

in terms of its boundary behaviour χ̄(x, y, t) = χ(x, y, 0; t) at that same instant.

4.1 A first-order, non-local equation

In the non-evanescent case described in [13], where c− = 0, expressions (4.10) reduce to

χ̂ = −c−1Mχ̃t and χ̂t = cLχ̃, so explaining why it was unnecessary there to introduce a

second function ŵ satisfying the membrane equation (with real c) – it is no more than a

Dirichlet-to-Neumann map of w̃ and so does not allow additional initial conditions to be

specified.

In the evanescent case, solutions to equation (3.15) subject to initial conditions in either

of the forms (4.11) or (4.13) should lie in the subspace for which W̄t − icLW̄ = 0 and,

equivalently, cW̄ − iMW̄t = 0 for all subsequent times. This may be checked by defining

the quantities s̃ ≡ w̃t , ŝ ≡ ŵt and S̄ ≡ s̃+ iŝ so that equation (3.15) becomes equivalent to

S̄t = c2∇2
2W̄ with W̄t = S̄ , (4.14)

where ∇2
2 = ∂2/∂x2 + ∂2/∂y2 is the two-dimensional Laplacian. It is readily checked that

∇2
2(MS̄ ) = LS̄ ,

so that the use of identities (4.6) and (4.8) then yields

∂

∂t
[S̄ − icLW̄ ] = c2∇2

2W̄ − icLS̄ = −ic
[
ic∇2

2W̄ + ∇2
2(MS̄ )

]
= −ic∇2

2{M(S̄ − icLW̄ )} = 0.

Hence, whenever the constraint S̄ = icLW̄ (or, equivalently, cW̄ = iMS̄) is applied at

t = 0 for all (x, y), it is found that

S̄ = icLW̄ and cW̄ = iMS̄ for all (x, y, t). (4.15)

Thus, the evolution of the interface values W̄ (x, y, t) is governed by the single first-order,

non-local evolution equation

W̄t = icLW̄ =
ic

2π

∫ ∞

−∞

∫ ∞

−∞

W̄ (x′, y′, t)

[(x − x′)2 + (y − y′)2]3/2
dx′ dy′. (4.16)

However, in a numerical integration scheme, evaluation of an integral at each time step

is best avoided by integration of the system (4.14), with accuracy controlled through

intermittent projection into the subspaces S̄ = icLW̄ , cW̄ = iMS̄ .

4.2 An alternative evolution equation

Recall that W (x, y, Z; t) = −χZ (x, y, Z; t), so that there exist two companion harmonic

functions P (x, y, Z; t) ≡ χx and Q(x, y, Z; t) ≡ χy (each being complex-valued), which

satisfy (at each and every instant)

PZ = χxZ = −Wx, QZ = χyZ = −Wy, Px + Qy = −χZZ = WZ. (4.17)
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Then, differentiation of equation (4.4) gives

P (x, y, Z; t) = χx =
−1

2π

∫ ∞

−∞

∫ ∞

−∞

(x − x′)W (x′, y′, 0; t)

[(x − x′)2 + (y − y′)2 + Z2]3/2
dx′ dy′ ≡ M1W̄ (x, y, t),

Q(x, y, Z; t) = χy =
−1

2π

∫ ∞

−∞

∫ ∞

−∞

(y − y′)W (x′, y′, 0; t)

[(x − x′)2 + (y − y′)2 + Z2]3/2
dx′ dy′ ≡ M2W̄ (x, y, t),

(4.18)

which shows how P and Q are related to W̄ (x, y, t) through the operators M1 and M2. In

particular, after setting Z = 0 to define operators M̄1 and M̄2, these specialise to

P̄ (x, y, t) ≡ P (x, y, 0; t) = M̄1W̄ (x, y, t), Q̄(x, y, t) ≡ Q(x, y, 0; t) = M̄2W̄ (x, y, t), (4.19)

while, since an alternative form for (4.3) is obtained through the use of Green’s identity

as

W̄ (x, y, t) = −χZ (x, y, 0; t)

=
1

2π

∫ ∞

−∞

∫ ∞

−∞

(x − x′)χx(x
′, y′, 0; t) + (y − y′)χy(x

′, y′, 0; t)

[(x − x′)2 + (y − y′)2]3/2
dx′dy′,

then

W̄ (x, y, t) = −M̄1P̄ (x, y, t) − M̄2Q̄(x, y, t). (4.20)

Observe that (4.19) and (4.20) imply the identity relation M̄2
1 + M̄2

2 + I = 0. Also, use of

Wt = icWZ gives the non-local evolution equation for W̄ ≡ w̃ + iŵ as

W̄t = ic[(M1W̄ )x + (M2W̄ )y], (4.21)

which is an alternative version of the non-local equation (4.16).

From equations (4.17) and (3.8) it is found that

P̄t = −icW̄x, Q̄t = −icW̄y, W̄t = ic(P̄x + Q̄y)

and that every solution has the representation

P̄ (x, y, t) = χ̄x(x, y, t), Q̄(x, y, t) = χ̄y(x, y, t). (4.22)

Hence, the required solutions evolve according to

W̄t = ic∇2
2χ̄ together with χ̄t = −icW̄ = ic(M̄1χ̄x + M̄2χ̄y). (4.23)

This version shows (like (4.13)) that initial conditions χ̄(x, y, 0) = F(x, y) are sufficient to

define the general wave-like solution. Alternatively, for (4.21) initial conditions W̄ (x, y, 0) =

w̃(x, y, 0) + iw̃(x, y, 0) are sufficient.

The relationship of either of the above initial conditions to general initial conditions in

the two media requires further elucidation. Of course, interface waves form only a small

part of the excitation due to general initial conditions. Even for surface waves on an

isotropic half-space, efficient techniques for projecting this component out of the general

excitation are still being sought (see e.g. Touhei [22]).
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5 Some explicit solutions for W (x, y, Z; t)

Equations (3.11) and (3.12) give expressions for displacements u(x, y, z, t) in terms of a

single complex-valued scalar function χ(x, y, Z; t) = Θ(x, y, Z + ict). Here, some explicit

forms for W (x, y, Z; t) satisfying equations (4.1) and (4.2) are obtained, each allowing χ

to be determined from χZ = −W (x, y, Z; t).

5.1 Spatially sinusoidal disturbances

By seeking W (x, y, Z; t) in the form W = eik·xV (Z, t), it is found from Vt = icVZ and

VZZ = −∇2
2V = k · kV so that V ∝ e−|k|(Z+ict). Hence, for each a = constant,

W = a exp i(k · x − c+|k|t) e−|k|Ze−|k|c−t,

describes waves travelling at speed c+, which decay with c−t as well as with the depth Z .

Clearly, the analogous solution for χ is χ = W (x, y, Z; t)/|k| and has the same functional

form as W (x, y, Z; t).

5.2 An omni-directional generalisation

It is readily seen that W = U(x, y) e−|k|(Z+ict) satisfies both (4.1) and (4.2) whenever

(complex-valued) U satisfies the two-dimensional Helmholtz (reduced membrane) equation

∇2
2U + |k|2U = Uxx + Uyy + |k|2U = 0. (5.1)

Corresponding solutions for χ also satisfy ∇2
2χ + |k|2χ = 0, while decaying with both Z

and t. They describe oscillatory patterns decaying with depth and decaying exponentially

with time.

5.3 Time-harmonic leaky waves

Expressions W = e−iωtV (x, y, Z) satisfy equation (4.2) whenever V = e−ωZ/cU(x, y), with

U a solution to

∇2
2U +

ω2

c2
U = 0, (5.2)

which is the two-dimensional Helmholtz equation with complex parameter.

Special solutions travelling in the direction of n = k̂ have

U ∝ exp i(ω/c)n · x.

The substitutions c = c+ − ic− ≡ c+(1 − iβ) and k = ωc+n/|c|2 = ωn/[c+(1 + β2)] convert

this to

U ∝ eik·xe−βk·x,

so showing that 2πβ is the radiative damping factor per wavelength. The corresponding

expression for W may be written as

W (x, y, Z; t) ∝ e−|k|Ze−βk·x exp i{k · x − (1 + β2)c+|k|t − β|k|Z}. (5.3)
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Again, it is readily confirmed that solutions for χ may have the same functional form

χ = be−|k|Ze−βk·x exp i{k · x − (1 + β2)c+|k|t − β|k|Z} (5.4)

for all vectors k ≡ k1e1 + k2e2. Using this within equation (3.9) then gives Θ(x, y, ζ) =

b exp[(1 + iβ)(ik · x − |k|ζ)], so that expression (3.11) gives, within the fluid,

u = − Re
b(1 + iβ)

2γf
[ik − γf|k|e3] exp −[βk · x + (γf

+ − βγf
−)|k|z]

× exp i{k · x − ωt − (βγf
+ + γf

−)|k|z}, (5.5)

where c and γ have been split into their real and imaginary parts as c = c+ + ic− and

γf = γf
+ + iγf

− and where ω = c+(1 + β2)|k|. Only for β � 1 do expressions (5.3) and

(5.4) describe weakly evanescent (leaky) waves.

Observe that unless arg γf < arg c = − tan−1 β so that βγf
+ + γf

− < 0, the loci of

constant phase at each z > 0 precede those at the interface z = 0. This behaviour would

not be expected of solutions to hyperbolic problems. It is a manifestation of the dual

elliptic–hyperbolic nature of surface- and interface-guided waves.

5.4 A Gaussian beam

In equation (3.10), write ξ ≡ x + iζ, η ≡ x − iζ and Θ(x, y, ζ) ≡ Φ(ξ, η, y), so giving

Φyy + 4Φξη = 0. (5.6)

Then, seek solutions of the form

Φ(ξ, η, y) = eiaξφ(η, y),

where a is a complex constant, so that equation (5.6) yields

φyy + 4iaφη = 0. (5.7)

The fundamental similarity solution to (5.7) (cf. the heat equation) is

φ(η, y) = (η + η0)
−1/2 eiaq, where q ≡ (y + y0)

2

η + η0
.

Thus, for any complex a, a solution to equation (3.9) is

Θ(x, y, ζ) =
eia(x+iζ)

(x − iζ + η0)1/2
exp ia

(y + y0)
2

x − iζ + η0
. (5.8)

Here, y0 and η0, like a, are arbitrary complex constants. Since

x + iζ = x − c+t + i(Z + c−t) and x − iζ + η0 = x + c+t + η+
0 − i(Z + c−t − η−

0 ),
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the choice y0 = 0, with a and η0 real, gives

χ(x, y, Z, t) =
e−a(Z+c−t)eia(x−c+t)

[x − c+t + η0 − i(Z + c−t)]1/2
exp

−ay2

Z + c−t + i(x + c+t + η0)

≡ Θ(x, y, Z + ict), (5.9)

from which both W (x, y, Z, t) = −χZ and u(x, y, z, t) are readily derived through the use

of equations (3.11) and (3.12).

Equation (5.9) has the form of a Gaussian beam symmetric in the plane y = 0.

However, like expressions (72)–(75) of Kiselev [12] for solutions to the wave equation

in three dimensions, these are exact solutions to the original set of partial differential

equations, rather than to a paraxial approximation arising through the use of high-

frequency asymptotics. Observe that, associated with the basic phase variable a(x − c+t),

there is time-decay e−ac−t (evanescence) as well as decay with |z|. Indeed, within the fluid,

where Z = γfz, the first factor is

e−a(Z+c−t) = e−a(c−t+γf
+z)e−iaγf

−z .

Also, the ‘beam width’ ∆f described by

∆f
2 = [(γf

+z + c−t)
2 + (x + c+t + γf

−z + η0)
2]/a

depends not only on the propagation coordinate x but also on time t and depth z. There

are also, of course, corrections to the phase due to the arguments of the two denominators

in equation (5.8).

5.5 Fundamental ‘source’ solution

Equation (3.10) has, by analogy with Laplace’s equation, a fundamental solution

Θ = H(x, y, ζ + ζ0) ≡ [x2 + y2 + (ζ + ζ0)
2]−1/2,

which, in z > 0 where ζ = γfz + ict, gives the fluid displacements as

u = Re
1

2γf

xe1 + ye2 + (γfz + ict + ζ0)e3

[x2 + y2 + (γfz + ict + ζ0)2]3/2
.

The choice of complex constant ζ0 = γfz0, with z0 real, gives (in z > 0)

u = Re
1

2γf

xe1 + ye2 + [γf(z + z0) + ict]e3

{x2 + y2 + [γf(z + z0) + ict]2}3/2
. (5.10)

Since the denominator is [x2 + y2 + {γf
+(z + z0) + c−t + i[c+t + γ−

f (z + z0)]}2]3/2, this

describes an axisymmetric disturbance first converging upon, and later diverging from,

(x, y, z) = (0, 0,−z0). Since this is associated with two similar disturbances in the solid,

expression (5.10) appears to have little physical applicability.
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6 The plane–strain case

In the two-dimensional (plane–strain) case, evanescent Schölte waves may be regarded as

a superposition of right- and left-travelling disturbances. Although each has a compact

representation in terms of conjugate harmonic functions, neither may be regarded as a

wave of permanent form as in the non-evanescent case. The representation generalising

that of Kiselev and Parker [13] and of Chadwick [5] becomes more subtle.

In equations (3.9)–(3.12), taking Θy ≡ 0 gives

Θ = Θ(x, ζ) = χ(x, Z; t) with ζ = Z + ict = Z + c−t + ic+t,

where Z ≡ γz and γ ≡ γ+ + iγ− takes, in turn, one of the values γf, −γ1 and −γ2. Thus,

equation (3.9) specialises to

χ(x, Z; t) = 2

∫ ∞

−∞
P (k)eikx−|k|(Z+c−t+ic+t)dk = 2

∫ ∞

−∞
P (k)eikxe−|k|ζ dk. (6.1)

Similarly, the function W (x, Z; t) ≡ −χZ specialises to

W = 2

∫ ∞

−∞
A(k) eikxe−|k|ζdk,

so that, at z = 0,

w̃ + iŵ ≡ W̄ (x, t) = W (x, 0; t) = 2

∫ ∞

−∞
A(k) ei[kx−|k|(c+−ic−)t]dk. (6.2)

Now define, in the upper half Y > 0 of a real (x, Y ) plane, the two complex-valued

functions

Υ±(x, Y ) = 2

∫ ∞

0

A(±k) e±ikxe−kY dk, (6.3)

and also write

Υ (x, Y ) ≡ Υ+(x, Y ) + Υ−(x, Y ) = 2

∫ ∞

−∞
A(k) eikxe−|k|Y dk, (6.4)

in which Υ+ is the contribution due to k > 0, while Υ− is the contribution due to k < 0.

When the functions Υ± are split into their real and imaginary parts ξ± and η± through

ξ±(x, Y ) =

∫ ∞

0

[A(±k)e±ikx + A∗(±k)e∓ikx]e−kY dk,

η±(x, Y ) =

∫ ∞

0

i[A∗(±k)e∓ikx − A(±k)e±ikx]e−kY dk,

(6.5)

it is readily seen that each of the functions ξ±(x, Y ) and η±(x, Y ) is harmonic in the upper

half Y > 0 of the real (x, Y ) plane, with

ξ+
x = η+

Y , ξ+
Y = −η+

x ; ξ−
x = −η−

Y , ξ−
Y = η−

x . (6.6)
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Indeed, since ξ+ + iη+ = Υ+(x, Y ) and ξ− − iη− = Υ−∗(x, Y ) each are analytic functions

of x + iY , expressions (6.6) are merely the Cauchy–Riemann equations stating that

(ξ+, η+) and (ξ−,−η−) each are pairs of conjugate harmonic functions throughout Y > 0.

Moreover, the functions decay as Y → ∞.

Now, equation (6.2) shows that W̄ (x, t) = Υ+(x − c+t, c−t) + Υ−(x + c+t, c−t), which

may be regarded as the superposition of right- and left-travelling disturbances. Moreover,

splitting into real and imaginary parts shows that

w̃(x, t) = ξ+(x − c+t, c−t) + ξ−(x + c+t, c−t),

ŵ(x, t) = η+(x − c+t, c−t) + η−(x + c+t, c−t),
(6.7)

so that the normal displacement at the interface is given in terms of the two harmonic

functions ξ±(x ∓ c+t, Y ), which correspond to right- and left-travelling disturbances. The

accompanying function ŵ(x, t) is given in terms of their harmonic conjugates. However,

during propagation the evolution and decay of the surface disturbance are simply given

by evaluating the two harmonic functions ξ±(x ∓ c+t, Y ) at ‘depth’ Y = c−t. This result

brings into prominence the elliptic nature of the evanescent Schölte waves, since the

surface displacement is related to its initial value just through the depth-dependence of

the two harmonic functions ξ±
Y (x, Y ).

Representation (6.7) suggests the splitting of W̄ , w̃ and ŵ into right- and left-travelling

parts, defined by

w̃±(x, t) = ξ±(x ∓ c+t, c−t), ŵ±(x, t) = η±(x ∓ c+t, c−t), W̄±(x, t) = w̃±(x, t) + iŵ±(x, t).

Then, differentiation shows that

W̄t = W̄+
t + W̄−

t = −cW̄+
x + cW̄−

x ,

which leads to the two uncoupled pairs of equations

w̃+
t + c+w̃

+
x = −c−ŵ

+
x , ŵ+

t + c+ŵ
+
x = c−w̃

+
x

and

w̃−
t − c+w̃

−
x = c−ŵ

−
x , ŵ−

t − c+ŵ
−
x = −c−w̃

−
x .

Each pair may be readily transformed into one of the sets of the Cauchy–Riemann

equations in (6.6), so confirming the representations (6.7) for both w̃ and ŵ. However, two

useful observations follow.

Since all the harmonic functions decay as Y → +∞, their values at Y = 0 (and indeed

at each constant value of Y ) are related as the Hilbert transforms, namely

ξ±(x, Y ) = ±H η±(x, Y ), η±(x, Y ) = ∓H ξ±(x, Y ), (6.8)

where H is defined through the principal-value integral

Hφ(x, Y ) ≡ −1

π
−
∫ ∞

−∞

φ(x̄, Y )

x − x̄
dx̄. (6.9)
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Thus, the evolution equations may be replaced by the pair of non-local equations

w̃±
t + c+w̃

±
x = ∓(H w̃±)x (6.10)

for the left- and right-travelling parts of the normal displacement at the interface.

Observe that, since the equation W̄tt = c2W̄xx obtained from (3.15) may be factorised

formally as (
∂

∂x
− c

∂

∂t

)(
∂

∂x
+ c

∂

∂t

)
W̄ = 0,

it is hardly surprising that its general solution W̄ (x, t) may be written as

W̄ = W̄+(x, t) + W̄−(x, t) = Υ+(x − c+t, c−t) + Υ−∗(x + c+t, c−t). (6.11)

Moreover, the two functions Υ+(x, Y ) and Υ−(x, Y ) defined by (6.3) are analytic functions

of x+iY and x− iY , respectively. Each is determined throughout Y � 0 by the boundary

data w̃±(x, 0) = ξ±(x, 0) = Re Υ±(x, 0). Consequently, the displacements in both z < 0

and z > 0 may be represented at all later times, using the two analytic functions Υ±(x, Y ),

in terms of the two real functions w̃±(x, 0).

In the fluid-filled region (z > 0), equations (3.11) give the displacements

u = −Re
1

γf
[∇Υ+(x − c+t − γ−

f z, γ
+
f z + c−t) + ∇Υ−(x + c+t + γ−

f z, γ
+
f z + c−t)], (6.12)

while, in the elastic medium (z < 0), equation (3.12) gives

u = Re

(
γ1

1 − γ1
2

∇ +
e3

γ1

∂

∂z

)
[Υ+(x − c+t + γ−

1 z,−γ+
1 z + c−t)

+ Υ−(x + c+t − γ−
1 z,−γ+

1 z + c−t)]

− Re
1 + γ1

2

2γ2(1 − γ1
2)

∇[Υ+(x − c+t + γ−
2 z,−γ+

2 z + c−t)

+ Υ−(x + c+t − γ−
2 z,−γ+

2 z + c−t)]. (6.13)

Thus, all displacements are represented in terms of three copies of the two pairs ξ+
x , ξ

+
Y

and ξ−
x , ξ

−
Y of conjugate harmonic functions. However, at each time t, only the portions

Y � c−t of the (x, Y ) plane are relevant.

In particular, since Υ±
x = ξ±

x + iη±
x = ∓i(ξ±

Y + iη±
Y ) = ∓iΥ±

Y , expression (6.12) yields

throughout the fluid-filled region z > 0

w = −Re
1

γf
(γ+

f Υ
+
Y − γ−

f Υ
+
x + γ+

f Υ
−
Y + γ−

f Υ
−
x )

= −ξ+
Y (x − c+t − γ−

f z, γ
+
f z + c−t) − ξ−

Y (x + c+t + γ−
f z, γ

+
f z + c−t). (6.14)

7 Conclusion

This paper describes how the recently derived representation of omni-directional Rayleigh,

Stoneley and Schölte–Gogoladze waves [13] in terms of a solution of the membrane
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equation and Laplace’s equation in a half-space having the solution of the membrane

equation as boundary data may itself be generalised to the evanescent case. Taking Schölte

waves at the interface between a fluid and an isotropic elastic half-space as an illustrative

case, a representation in terms of a solution of the membrane equation with complex

speed is obtained. It is demonstrated that though this solution is complex-valued, initial

conditions for the imaginary part cannot be specified independently of those for the real

part. Furthermore, alternative descriptions in terms of a first-order, non-local evolution

equation for a complex-valued potential exist. In the two-dimensional case, for which the

membrane equation reduces to the wave equation with complex speed, there also exists a

representation in terms of right-and left-travelling disturbances, each described in terms

of an analytic function in a half-plane. This, like the earlier representations, is a telling

illustration of the fact that surface and interfacial waves have both an elliptic and a

hyperbolic nature.
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[8] Gogoladze, V. G. (1948) Rayleigh waves on the interface between a compressible fluid medium

and a solid elastic half-space. Trudy Seismolo. Inst. Acad. Nauk USSR 127, 27–32.

[9] Kaplunov, J., Nolde, E. & Prikazchikov, D. A. (2010) A revisit to the moving load

problem using an asymptotic model for the Rayleigh wave. Wave Motion 47(7), 440–451,

doi:10.1016/j.wavemoti.2010.01.005

[10] Kaplunov, J., Zakharov, A. & Prikazchikov, D. A. (2006) Explicit models for elastic and

piezoelastic surface waves. IMA J. Appl. Math. 71, 768–782.

[11] Kiselev, A. P. (2004) Rayleigh wave with a transverse structure. Proc. R. Soc. Lond. A 460,

3059–3064.

[12] Kiselev, A. P. (2007) Localized light waves: Paraxial and exact solutions of the wave equation

(a review). Opt. Spectrosc. 207, 661–681.

[13] Kiselev, A. P. & Parker, D. F. (2010) Omni-directional Rayleigh, Stoneley and Schölte waves

with general time dependence. Proc. Roy. Soc. Lond. A 466, 2241–2258.

[14] Parker, D. F. (2009) Waves and statics for functionally graded materials and laminates. Int.

J. Eng. Sci. 47, 1315–1321.

https://doi.org/10.1017/S0956792511000362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792511000362


Evanescent Schölte waves of arbitrary profile and direction 287

[15] Parker, D. F. & Kiselev, A. P. (2009) Rayleigh waves having generalized lateral dependence.

Quart. J. Mech. Appl. Math. 62, 19–29.

[16] Parker, D. F. & Maugin, G. A. (1988) Recent Developments in Surface Acoustic Waves,

Springer, New York.

[17] Romeo, M. (2002) Uniqueness of the solution to the secular equation for viscoelastic surface

waves. Appl. Math. Lett. 15, 649–653.

[18] Rousseau, M. & Maugin, G. A. (2011) Rayleigh SAW and its canonically associated quasi-

particle. Proc. Roy. Soc. Lond. A 467, 495–507.

[19] Schölte, J. G. (1947) The range of existence of Rayleigh and Stoneley waves. Mon. Not. R.

Astron. Soc. Geophys. Suppl. 5, 120–126.

[20] Stoneley, R. (1924) Elastic waves at the surface of separation of two solids. Proc. R. Soc.

London A 106, 416–428.

[21] Strutt, J. W. (Lord Rayleigh) (1885) On waves propagated along the plane surface of an

elastic solid. Proc. Lond. Math. Soc. 17, 4–11.

[22] Touhei, T. (2009) Generalized Fourier transform and its application to the volume integral

equation for elastic wave propagation in a half-space. Int. J. Solids Struct. 46, 52–73.

https://doi.org/10.1017/S0956792511000362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792511000362

