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SUMMARY

Intestinal helminths of fish are of increasing interest as potential bioindicators for heavy metal contamination in aquatic

habitats. Among these parasites cestodes and acanthocephalans in particular have an enormous heavy metal accumulation

capacity exceeding that of established free living sentinels. Metal concentrations several thousand times higher in acantho-

cephalans than in host tissues were described from field and laboratory studies. Whereas larval stages inside their inter-

mediate hosts are not able to take up high quantities of metals, young worms begin to take up metals immediately

after infection of the final host. After four to five weeks of exposure, the parasites reach a steady-state concentration orders

of magnitude higher than the ambient water level. Thus, acanthocephalans are not only very effective in taking up metals,

but they can also respond very rapidly to changes in environmental exposure. The mechanism which enable acantho-

cephalans to take up metals from the intestinal lumen of the host appears to be based on the presence of bile acids, which

form organo-metallic complexes that are easily absorbed by the worms due to their lipophilicity. Investigations of the

environmental conditions affecting metal uptake have shown that the parasites are more consistent and reliable indicators

for metal pollution than the host tissues as metal levels of the latter are much more dependent on the water chemistry.

Thus, after some years of research on the uptake of metals by acanthocephalans and on the factors affecting metal ac-

cumulation in intestinal parasites it should be asked if acanthocephalans meet the criteria commonly accepted for sentinels.

If parasites can be considered as promising sentinels, we need reasons for the establishment of ‘new’ indicators. There-

fore, this review summarises the present knowledge about parasites as bioindicators and compares the accumulation

properties of parasites and established free living indicators. Finally, this review presents possible answers to the question

why it could be advantageous to have new and even more sensitive indicators for environmental monitoring purposes.

Key words: Parasites, acanthocephalans, cestodes, bioindicators, pollution.

INTRODUCTION

In recent years, aquatic parasites have attracted in-

creasing interest from an ecological viewpoint due to

interactions with their hosts and their environment

(Fig. 1). Among other factors, the viability and lon-

gevity of parasites are dependent on external en-

vironmental conditions. This direct impact of the

environment on parasite longevity could be used in

laboratory bioassays (see e.g.Morley,Crane&Lewis,

2001a, b).

Aquatic hosts of parasites are also affected by

environmental conditions. Pollution may adversely

affect their health and even cause extinction. These

detrimental changes are often associatedwith physio-

logical reactions, which might be used as biomarkers

(e.g. Segner, 1998; Segner & Braunbeck, 1998).

Host–parasite assemblages themselves are in the

focus from a pathological point of view. Pathological

studies of host–parasite interactions have led to nu-

merous publications, describing the host–parasite

interface from a morphological, immunological and

biochemical point of view.

In addition to these interfaces, a more complex

area deals with the coincidence of all parameters.

From this interdisciplinary field different ways

emerge which allow the indication of environmental

pollution using host–parasite associations. The poss-

ible use of parasites as indicators for environmental

quality has been reviewed recently (MacKenzie et al.

1995; Kennedy, 1997; Lafferty, 1997; Overstreet,

1997; Sures, Taraschewski & Siddall, 1997a ; Val-

tonen, Holmes & Koskivaara, 1997; Lafferty &

Kuris, 1999; Sures, Siddall & Taraschewski, 1999a ;

Sures, 2001). These reviews reveal that parasites

have the potential to be used as effect indicators

(Valtonen et al. 1997; Sures, 2001) and as accumu-

lation indicators (Sures et al. 1999a ; Sures, 2001) as

is known from free living animals (Gunkel, 1994).

In the case of effect indication with free living

animals, changes in the physiology or behaviour of

test organisms may be recorded in the presence or

absence of environmental pollutants (Gunkel, 1994).

One promising way to perform effect indication with

parasites is the analysis of parasite population or

community changes (e.g. Dušek, Gelnar & Šebelová,

1998; Valtonen et al. 1997) with respect to changes

of environmental conditions. Although this pro-

cedure is time consuming, toxic effects were not only
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manifested by physiological changes in test animals

but also by changes in population and community

structure. Therefore, analysis of changes in the di-

versity and structure of parasite communities may

be an integrative procedure to determine the integ-

rity and health of ecosystems as it takes the life span

of organisms into consideration.

On the other hand, bioindicators can be used as

accumulation indicators. Such organisms provide

valuable information about the chemical state of their

environment through their ability to bioconcentrate

substances of environmental concern within their

tissues to levels surpassing the ambient concen-

trations. In recent years it has been shown that not

only free living organisms like mussels and crus-

taceans (Dallinger, 1994) but also parasites are able

to accumulate heavy metals within their tissues to

values orders of magnitude higher than those in the

host organs or the environment (Sures, 2001). The

value of parasites as accumulation indicators for

heavy metals in environmental monitoring will be

discussed in the present review and thoroughly com-

pared with that of established free living sentinels.

HEAVY METAL ACCUMULATION IN PARASITES

Until now, only endoparasites have been used in bio-

accumulation studies. Most of the research has been

conducted on endohelminths such as trematodes,

cestodes, nematodes and acanthocephalans as their

biomass is much greater than that of protozoans.

Little information is available onmetal accumulation

in trematodes. There is one report dealing with Pb

and Cd concentrations in the liver fluke Fasciola

hepatica from cattle (Sures, Jürges & Taraschewski,

1998), but fish trematodes have not been investi-

gated. Observations on metal levels in nematodes

(Sures, Taraschewski & Jackwerth, 1994a ; Sures

et al. 1998; Szefer et al. 1998; Baruš et al. 1999a, b ;

Tenora et al. 1999a, b, 2000) indicate that these

helminths are unsuitable as accumulation indicators

since metals are present at low concentrations.

In contrast, cestodes appear to be more promising

metal accumulation indicators (Riggs, Lemly &

Esch, 1987; Turčeková & Hanzelová, 1996; Sures,

Taraschewski & Rokicki, 1997b ; Tenora et al. 1997;

Baruš, Tenora & Kráčmar, 2000a ; Baruš et al.

2000b ; Tenora et al. 2000; Sures, Grube & Tara-

schewski, 2002a), but more experimental studies are

required to evaluate the reliability of tapeworms as

sentinels. Acanthocephalans are probably the

best investigated helminths as a result of their ex-

cellent metal accumulation capacities (see e.g. Sures

et al. 1999a ; Sures, 2001). There is not only a good

collection of field data (Sures et al. 1994a, b, c ; Sures

& Taraschewski, 1995; Sures, Taraschewski &

Rydlo, 1997c ; Sures et al. 1999b ; Sures, Franken

& Taraschewski, 2000a ; Sures, 2002a, b ; Sures &

Reimann, 2003), but there are also some results

based on laboratory investigations (Siddall & Sures,

1998; Sures & Siddall, 1999; Zimmermann, Sures &

Taraschewski, 1999; Scheef, Sures & Taraschewski,

2000; Sures, Jürges & Tarschewski, 2000b ; Sures

& Siddall, 2001, 2003). Due to the need for sentinel

species in terrestrial, especially urban, habitats

(Beeby, 2001) an increasing number of papers deal

with metals in helminths parasitising mammals,

although most of the studies cited above focus on

metal bioconcentration in parasites from fish. It is

easier to undertake experimental studies on the up-

take and accumulation of metals by parasites of

aquatic animals as they take up metals predomi-

nantly via the water rather than food. Therefore, it

will be possible to compare the rate of metal accu-

mulation and elimination by different fish-acantho-

cephalan combinations as well as the relationship

between the exposure and steady-state tissue concen-

tration. After having evaluated these relationships it

will be possible to adopt the technology to terrestrial

host parasite assemblages.

METAL ACCUMULATION IN FISH

ACANTHOCEPHALANS

The first study on metal uptake by acanthocephalans

was concerned with Cd accumulation by cystacanths

of Pomphorhynchus laevis dissected from experimen-

tally exposed, naturally infected Gammarus pulex

(Brown & Pascoe, 1989). However, in this study

these larvae had concentrations of Cd lower than in

the intermediate hosts. Additional studies on metal

levels in different larval acanthocephalan species

revealed that only adult worms located in the intes-

tine of the definitive host are able to accumulate

metals (Sures & Taraschewski, 1995; Siddall &

Sures, 1998; Sures & Siddall, 2001). Comparison of

Fig. 1. Some interactions between the environment and

host–parasite assemblages.

B. Sures S54

https://doi.org/10.1017/S003118200300372X Published online by Cambridge University Press

https://doi.org/10.1017/S003118200300372X


lead and cadmium concentrations in larval and adult

Acanthocephalus lucii with those in their intermedi-

ate and definitive hosts (all animals sampled at the

same site) revealed that the adults contained 370

times higher lead levels than the muscle of perch and

30 times more lead than the larvae (Sures et al.

1994c ; Sures & Taraschewski, 1995). A similar pic-

ture emerged for cadmium with levels in the adults

being 120 times higher than in the muscle of perch

and 180 times higher than in larvae dissected from

Asellus aquaticus (Sures et al. 1994c ; Sures & Tara-

schewski, 1995). Also other common fish species

such as chub (Leuciscus cephalus) and eel (Anguilla

anguilla), both infected with acanthocephalans, have

been sampled from moderately polluted sites in

Germany. Again, the concentrations of lead and

cadmium in the parasites were orders of magnitude

higher than in the host tissues (muscle, liver and

intestine) or the aquatic environment. For example,

mean concentrations of lead and cadmium in Pom-

phorhynchus laevis were, respectively, 2700 and 400

times higher than the muscle of the host (L. cephalus)

and 11000 and 27000 times higher than in the water

column (Sures et al. 1994b ; Sures & Taraschewski,

1995).

Following these field studies, laboratory exper-

iments were conducted to study the time-course of

lead accumulation in different fish tissues and the

acanthocephalans over five weeks of exposure to an

aqueous lead concentration of 0.01 mg lx1 (Sures &

Siddall, 2003). Lead was accumulated rapidly in in-

testinal worms reaching a steady-state concentration

after 4 weeks, which was 9000 times higher than the

exposure concentration (Fig. 2). There were marked

differences in the accumulation kinetics for lead in

the parasite and the tissues of chub. After a 4–5

weeks exposure to lead the levels of this metal con-

tinued to increase significantly in the liver and in-

testine of chub but not in the muscle. After 5 weeks

of exposure the parasites contained 20, 58 and 930

times more lead than the intestine, liver and muscle

of their host, respectively.

Additional experiments showed that the mass of

lead accumulating in P. laevis was positively corre-

lated with the exposure concentration but there was

no relationship with either parasite intensity or with

pooled or individual worm weight. The lead con-

centrations were higher in specimens of P. laevis at-

tached in the posterior part of the intestine than in

more anteriorly located worms (Sures & Siddall,

2003). Furthermore, the high metal accumulation

capacity of P. laevis results in a reduction in the

amount of lead accumulating in the intestinal wall

but not in the amount accumulating in the liver of

chub (Sures & Siddall, 1999).

Parasites and fish hosts may compete for several

other elements as well as for lead (Sures, 2002a),

demonstrating that concentrations of metals such as

calcium, iron, zinc and strontium in the liver of

perch were negatively correlated with the size of

Acanthocephalus lucii infrapopulations. Competition

of essential metals by A. lucii may explain parasite-

induced skeleton deformation of final hosts such as

shortened gill opercula and deformation of the spinal

cord of trout (Taraschewski, 2000), heavily infected

by acanthocephalans. Although similar symptoms

in fish have also been described in association with

other infectious agents (Amlacher, 1992) and even

with heavy metal intoxication (Spry &Wiener, 1991)

the uptake of minerals by acanthocephalans might be

involved in skeletal deformations.

In addition to competition for elements between

the host and its parasites there is also competition

among essential elements (Ba, Ca, Fe, Mn, Sr and

Zn) between individual acanthocephalans inside the

gut of the host (Sures, 2002a). As these metals are of

physiological importance to most animals (Merian,

1991), it is conceivable that competition between

parasites for these may lead to an increased absorp-

tion of other, non-essential or even toxic elements

such as lead and cadmium. This idea is supported

by experimental data on lead accumulation in the

acanthocephalan Paratenuisentis ambiguus and its fi-

nal hostAnguilla anguilla. Following exposure of the

host–parasite-system to Pb depending on the water

hardness (Sures et al., unpublished), decreased Pb

levels were found with increased Ca concentrations

of the water.

The accumulation ofmetals also occurs in acantho-

cephalan parasites of marine fish like Gadus morrhua

(Sures, 2001) andNotothenia coriiceps (Sures, 2002b ;

Sures & Reimann, 2003). Experimental studies on

the impact of the water chemistry on lead accumu-

lation in the host parasite system eel (A. anguilla)

and Paratenuisentis ambiguus showed that salinity

reduces the lead burden in host tissues whereas it has

no effect on the lead accumulation in the acantho-

cephalans (Zimmermann et al. 1999). Furthermore,

although the lead uptake by fish is still a controversial

issue (Spry & Wiener, 1991), water-borne and

trophic exposures of eels to lead cause similar lead

Fig. 2. Uptake of lead by chub (Leuciscus cephalus)

experimentally infected with Pomphorhynchus laevis (data

from Sures & Siddall, 2003).
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concentrations in the parasites whereas the mode of

lead application significantly affects metal levels in

eel tissues. Therefore, acanthocephalans appear to

be promising biological indicators for water quality,

not only in freshwater, but also in marine and estu-

arine ecosystems regardless of the pollution source.

MECHANISM OF METAL UPTAKE

Although cystacanths inside their intermediate hosts

are not able to take up metals (see previous para-

graph), young acanthocephalans only four days post-

infection of the definitive host were able to bio-

concentrate metals to a very high degree (Siddall &

Sures, 1998). The chemistry of the gut microhabitat

is the decisive factor determining the accumulation

of metals by acanthocephalans (Sures & Siddall,

1999, 2001). Bile acids facilitate the uptake of metals

by forming organo-metallic complexes which are

more bioavailable than ionic metals (Sures & Sid-

dall, 1999; Zimmermann et al. 2002a). As acantho-

cephalans cannot synthesise their own cholesterol

and fatty acids they have become proficient in seques-

tering them from the host’s intestinal lumen. The

production of bile by the host is therefore extremely

important in the development of acanthocephalans.

Recent in vitro studies demonstrated that bile salts

are necessary to activate the larval cystacanths and

enhance the metal uptake of acanthocephalans

(Sures & Siddall, 1999). After three weeks main-

tenance of P. laevis cystacanths in medium (RPMI

1640) containing bile acids the mean individual

weight of the worms increased threefold compared

with cystacanths which were maintained in medium

without bile. This activation of the bile-treated

acanthocephalans was also manifested by an eversion

of the proboscis. Comparison of lead uptake by these

larvae revealed that lead levels in acanthocephalans

exposed to Pb in medium nearly doubled when 1%

bile was added, from an approximate mean con-

centration of 11 mg gx1 wet weight (bile absent) to

18 mg gx1 wet weight (bile present, see Sures &

Siddall, 1999).

In conclusion, the absorption of bile-bound lead

by P. laevis in the host’s intestine benefits the fish

host by reducing the reabsorption of the metal by the

intestinal wall (Sures & Siddall, 1999).

HEAVY METAL ACCUMULATION IN

ACANTHOCEPHALANS COMPARED WITH

ESTABLISHED BIOINDICATORS

Before parasites can be established as accumulation

indicators for heavy metals it is necessary to compare

their accumulation capacity with that of established

free living organisms such as the zebra mussel

Dreissena polymorpha (Cope et al. 1999; Roditi &

Fisher, 1999; Sures et al. 1999b ; Roditi, Fisher &

Sanudo-Wilhelmy, 2000;Zimmermann et al. 2002b).

Accordingly, studies were carried out to determine

metal concentrations in Acanthocephalus lucii from

naturally infected perch, Perca fluviatilis, and in

zebra mussels from the same site (Sures et al. 1997c,

1999b). The comparison of lead and cadmium con-

centrations in these organisms sampled at a site

which receive effluent from a highway compared to

a reference site, not obviously affected by traffic re-

lated pollution, demonstrate that zebra mussels are

more suitable to detect localized differences in con-

tamination than fish or their endoparasites (Sures

et al. 1997c). The ability to discriminate between

gradients of pollution is most likely due to the im-

mobility of the mussel which is attached to the sub-

stratum by byssal threads. In contrast to mussels,

perch and their acanthocephalans are more mobile

and thus less precise indicators of localized differ-

ences in pollution. However, the bioconcentration of

lead and cadmium inA. luciiwas several times greater

than that in zebra mussels (Sures et al. 1997c). Fur-

thermore, not only lead and cadmium were bio-

concentrated in the parasites to a higher degree than

in the mussels, but also several other metals (see Fig.

3). Except for barium and chromium, all other ele-

ment concentrations were significantly lower in D.

polymorpha than inA. lucii and all except cobalt, iron

and chromium were accumulated above fish host li-

ver levels in the parasites (for details see Sures et al.

1999b). However, there is a higher degree of varia-

bility among the metal burden of the parasites than

among individual mussels. This variability, which

may reflect the mobility of the fish host, can obscure

the differences that might otherwise be detected be-

tween sites. Despite this, acanthocephalans can

provide ecologically valuable information on the

average exposure of a mobile fish host within its

natural home range. For active monitoring purposes

infected fish could be exposed in weir-baskets at

different locations to eliminate problems associated

with the fish host’s mobility. Presently there is an

ongoing field study comparing metal concentrations

in water and sediment of the river Danube with

Fig. 3. Element concentrations (mean¡S.D.) in the liver

of perch, its intestinal parasiteAcanthocephalus lucii and in

Dreissena polymorpha, sampled at the same site in lake

Mondsee, Austria (data from Sures et al. 1999b).
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those in barbel and its acanthocephalan parasites,

as well as in D. polymorpha (Schludermann et al.

2003).

The high accumulation potential for several metals

suggests that acanthocephalans are even more useful

as environmental indicators for assessing metal pol-

lution in aquatic habitats than established indicator

organisms. Therefore, it is necessary to evaluate if

acanthocephalans meet the criteria commonly ac-

cepted for sentinels. The most important character-

istics for ideal sentinel species (according to Martin

& Coughtrey, 1982; Phillips & Segar, 1986; Phillips

& Rainbow, 1993; Beeby, 2001) are listed in Table 1.

Although the idea to use parasites as sentinels is

comparatively new, we know from recent studies that

acanthocephalans meet most of the criteria for ideal

sentinels (see Table 1). However, there are some

characteristics where we do not have enough data to

decide whether parasites fulfil the necessary criteria.

But we should see this mainly as a request to inten-

sify research on parasites as indicators.

The only demand which could not be addressed

for acanthocephalans is that they should be easily

aged and long lived. An age determination of acan-

thocephalans appears to be impossible. But as the

estimated life-time of acanthocephalans ranges from

50 to 140 days (Dobson & Keymer, 1985; Kennedy,

1985), it seems unnecessary to specify the exact age.

Due to the outer appearance it is possible to decide

whether the worms are very young or fully mature.

Furthermore, as suggested by Sures et al. (1999a)

the most informative way to perform accumulation

indication with acanthocephalans may be the use of a

two component model, which comprises the parasite

and its host. Following metal analysis in the para-

sites and in selected host tissues like e.g. liver and

muscle, ratios of the metal concentration in the para-

sites to those in the host tissue (C[parasite]/C[host tissue])

can be determined. For example, the ratio between

metal concentrations of the parasites and host mus-

cle tissue could provide information on the duration

of environmental exposure as metal uptake occurs

more rapidly in the parasites. Thus, after short-term

exposure a high ratio could be expected as the para-

site would have accumulated much more of the con-

taminant than the muscle of the host (see e.g. Sures

& Siddall, 2003). Relatively high metal levels in both

host muscle and parasites (i.e. low ratio) would in-

dicate a longer exposure time. By combining the

information which derives from the host and its

parasites in the form of such a ratio, an estimation

of the concentration and duration of the exposure

may be possible which could not be achieved by

using only one indicator species like the zebra mus-

sel. Additionally, in respect of an integration of the

pollutant over long periods of time the use of host-

parasites assemblages is a combination of a short-

term indicator (acanthocephalan, some days to

months) and a long-term indicator (fish host, up to

some years). These combined results seem very

useful for environmental monitoring purposes.

However, we are just at the beginning to recognize

these advantages associated with the use of parasites

and their hosts as accumulation indicators and there-

fore need more studies aiming at the applicability

and reliability of this system as sentinel.

WHY DO WE NEED ‘NEW’ ACCUMULATION

INDICATORS?

Although there are good arguments to establish new

organisms as sentinels, ecologists prefer to use ani-

mals like mussels, crustaceans and fish for indication

purposes (Rosenberg & Resh, 1993). On the one

hand, they are familiar with these organisms and on

the other hand one may ask why we should need new

accumulation indicators. This question is especially

important as we are dealing with endoparasites of

vertebrates. That means, it is necessary to kill and

dissect a vertebrate host before the parasites can

be isolated. But the need to monitor the heavy metal

contents in fish and other aquatic animals taken for

human consumption is generally accepted from a

public health viewpoint. Therefore, after dissecting

Table 1. Characteristics of ideal sentinal species

(according to Martin & Coughtrey, 1982; Phillips

& Segar, 1986; Phillips & Rainbow, 1993;

Beeby, 2001)

Criteria Acanthocephala

Rapid equilibration with source Yes
A linear relationship with source over
the range of ambient concentrations

Yes1

The relationship between the tissue
and source concentrations should be
the same at all sites studied

1

Abundant species from which large
numbers can be taken without
altering the age structure or having
some other significant effect on
the population

Yes

Easily identified Yes
Large body of knowledge about the
species’ physiology, including the
effects of age, size, season
and reproductive activity
on the assimilation of the pollutant

No1

Large body – to provide abundant
tissue for analysis

Yes

Sedentary or with a well defined
home range

Yes2

Uptake is from a well defined
pollution source

Yes

Easily aged and long lived – allowing
integration of the pollutant over
long periods

3

1 More information required.
2 The home range of a parasite species corresponds to that
of its host.
3 See discussion in the text.
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fish, their parasites can be easily removed from the

intestine. But instead of considering parasites like

acanthocephalans as indicators while routinely ana-

lysing the metal contents of edible parts of fish, free

living invertebrates such as mussels or crustaceans,

which have even lowermetal accumulation rates than

adult acanthocephalans, are commonly sampled from

ecosystems and analysed for their metal burden.

Additionally, by using acanthocephalans in en-

vironmental impact studies, even the lowest metal

concentrations can be detected in the water due to

the enormous accumulation capacity of these worms.

Therefore, the use of parasites might be helpful for

the exploration of remote areas, like e.g. the Ant-

arctic (see Sures, 2002b ; Sures & Reimann, 2003) to

investigate whether a specific metal is present in a

given habitat at bioavailable concentrations or not.

In addition to remote areas where concentrations of

metals are rather low (Sanchez-Hernandez, 2000), a

newman-mademetal pollution justifies the use of the

most efficient accumulation indicators. This pol-

lution is caused by cars which are equipped with

catalytic converters. Following the introduction of

automotive catalytic converters the platinum group

elements (PGE) palladium (Pd), platinum (Pt) and

rhodium (Rh) are emitted with exhaust fumes

(Palacios et al. 2000). These noble metals are used

as active components in converters for reducing the

emission of hydrocarbons, carbon monoxide and

nitrogen oxides. Although field studies demonstrate

a cumulative increase of PGE concentrations in road

dust and soils along heavily frequented roads (re-

viewed in Hoppstock & Sures, 2003), there is pres-

ently only a poor dataset on the biological availability

of these metals (Sures et al. 2001, 2002b, 2003;

Zimmermann et al. 2002b). In a recent study on

European eels naturally infected with the eoacantho-

cephalan parasite, Paratenuisentis ambiguus, which

were experimentally exposed to ground catalytic

converter material, the parasites take up and accu-

mulate Pt and Rh whereas in the host tissues exam-

ined no metal uptake was detected (Sures et al.

2003). Compared to the concentrations in the water

the worms contained 1600 times higher Rh and

50 times higher Pt concentrations. This study

showed that acanthocephalans can be used to indi-

cate whether a specific metal is present in a given

habitat or not. Furthermore, due to their enormous

accumulation capacity such effective bioindicators

may enable the chemical proof of pollutants by a

preconcentration of metals inside their body prior to

metal analysis.

The studies reviewed here provide good evidence

that acanthocephalans and their hosts are promising

indicators for metal pollution. Very high metal levels

were not only described for acanthocephalans in

aquatic habitats but also for parasites from terrestrial

hosts. Therefore, it is worth intensifying the research

in this field.
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Content of microelements of heavy metals in males and

females of Toxocara canis and Protospirura muricola

(Nematoda). Helminthologia 36, 127.
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