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SUMMARY
We present a model of construction using iterative amorphous depositions and give a distributed
algorithm to reliably build ramps in unstructured environments. The relatively simple local strategy
for interacting with irregularly shaped, partially built structures gives rise to robust adaptive global
properties. We illustrate the algorithm in both single robot and multi-robot cases via simulations and
describe how to solve key technical challenges to implementing this algorithm via a robotic prototype.

KEYWORDS: Control of robotic systems; Bioinspired robots; Mobile robots; Multi-robot systems;
Novel applications of robotics.

1. Introduction
Robots are best suited for dirty, dull, and dangerous tasks. This paper focuses on algorithms for the
dirty and dangerous task of construction in unstructured terrain. Applications range from rapid disaster
response, such as building levees and support structures, to remote construction in mines or space.
The requirement of working in unstructured terrain frequently coincides with a lack of infrastructure,
such as global positioning or a consistent shared global state estimate, which simplify coordination
of multiple robots and deliberative planing. Distributed algorithms that use limited local information
and coordinate through stigmergy solve this problem and provide scalable solutions. Robustness to
poor sensing and irregular terrain can further be improved by using amorphous construction materials
that comply with obstacles. Such construction is locally reactive on both an algorithmic level, i.e.
where robots deposit based on local cues, and a physical level, i.e. amorphous construction materials
react by changing shape to conform to their environment.

Our approach is inspired by biological systems, such as mound building termites,20 that are very
adept at building in unstructured terrain (Fig. 1(a)). Their skill combines scalable coordination through
stigmergy and the use of amorphous building materials that interface with irregular environments. We
would like to endow scalable robot teams with similar skill, however an algorithmic foundation for
doing so is lacking. Current models for autonomous robotic construction focus on assembling pre-
fabricated building materials and cannot accommodate the continuous nature of amorphous building
materials. The contribution of this paper is two-fold: (a) A mathematical framework for reasoning
about robots that construct with amorphous materials, and (b) a distributed, locally reactive algorithm
for adaptive ramp building. This work is a step away from robots assembling discrete pre-fabricated
components and instead embracing the messy continuous world (Fig. 1(b)).

Section 2 presents mathematical models for amorphous construction and adaptive ramp building.
Section 3 gives a local strategy for creating structures that robots can climb. Section 4 extends those
results to include physical constraints for single and multiple robots. Section 5 discusses future work.
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Fig. 1. (Colour online) Examples of amorphous construction. (a) Amorphous construction in biology. A termite
preparing an amorphous dollop of mud for deposition. Inset shows a mound built around a tree. (b) Prototype
of a construction robot. The robot was remote controlled to build a ramp using amorphous foam depositions.
Inset shows a cone-shaped deposition.

1.1. Related work
Currently, there is much interest in the topic of robotic construction with mobile robots,4, 5, 7, 11, 12, 17

as well as decentralized algorithms by which multiple robots can coordinate construction.1, 10, 13, 19

These systems are mainly focused on building pre-specified structures using lattice-based building
materials.6, 22 Lattice-based building blocks have good structural properties – being strong, stiff,
and light – but place assumptions on the initial environment being level and devoid of obstacles.
These methods are difficult to extend to unstructured environments with irregularly shaped obstacles.
Furthermore, alignment and attachment restrictions affect all other aspects of design, for example,
adding complex assembly order constraints.

In contrast, amorphous building materials – e.g. foam, mud, sandbags, or compliant blocks –
sidestep these limitations.14 They can help compensate for uncertainty and measurement errors
without requiring complex sensing or reasoning. For example, compliant and amorphous materials
are used for rapidly building flood protection in disaster zones8, 21 or pouring foundations over
irregular terrain. Similarly, the requirement of fixed attachment orientations can be relaxed by using
adhesive in the autonomous robotic construction of curved walls.2, 4 The closely related works3, 18

use amorphous materials, such as hot-melt adhesive or foam, to adapt robot parts to unknown tasks.
Digital manufacturing via CAD/CAM, and some large-scale robotic construction systems, such as
Contour Crafting,9 also use amorphous materials to build continuous shapes. While these systems are
not specifically focused on construction in unstructured environments, we can exploit the materials
and design principles to design robots that utilize amorphous materials.

2. Problem Formulation and Questions
We present a solution to the adaptive ramp building problem as a particular example of a distributed
construction task in unstructured terrain. The problem is to design a deposition and motion strategy
to reach an arbitrary goal position despite irregularly shaped obstacles. Robots can sense the goal
direction, move on partially built structures, and deposit amorphous materials to make non-climbable
structures climbable. Adaptive ramp building is an example of how amorphous construction materials
can be used to create robust behavior, and also provides a primitive behavior for solving more
complex tasks. The remainder of this section presents mathematical models for continuous structures,
amorphous depositions, and climbable structures.

2.1. Mathematical model for continuous structures
We model construction in two or three dimensions. Gravity constrains robots to move along surfaces
on which they can incrementally deposit construction material. We assume that the construction area
Q is a connected, compact, and finite subset of R1 (or R2) and the domain of a bounded, non-negative
height function, h : Q → R+. The graph of h, (x, h(x)) x ∈ Q, describes a structure. Robots move
on structures and modify them.

If structures are modeled as functions, depositions are operators on functions. To distinguish the
two, function spaces are denoted by scripted letters. For example, let Q be the space of real-valued,
bounded functions on Q, and Q+ ⊂ Q is the subset of non-negative ones. Function application to
points is denoted by parentheses (·), and operator application to functions is denoted by brackets [·].
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Fig. 2. Parameter geometry. (a) Robot making an amorphous deposition (gray). The top surface is defined by
the deposition’s shape function f . The bottom is defined by the environment h. (b) and (c) Relation of K to the
maximal steepness a robot can climb and descend with (dashed) and without (solid) a discontinuity. (d) Relation
of steepness K to the required ground clearance to drive over the apex of a cone. (e) A height function on h and
its projections onto Lipschitz functions with different parameters, K3 > K2 > K1.

For example, applying function h ∈ Q+ to a point x ∈ Q is written as h(x), and applying operator
D : Q+ → Q+ to h is denoted by D[h]. In the case of functions, all relational symbols should be
interpreted pointwise, e.g. given h, g ∈ Q+, h ≤ g ≡ h(x) ≤ g(x) ∀x ∈ Q.

One limitation of modeling structures as functions is that many physical terrains have overhangs
and are not functions. However, the benefit of this restrictive model is that it comes with analysis
tools, such as continuity and integration, that can be used to reason about construction algorithms.

2.2. Model for amorphous deposition
Robots can deposit amorphous construction material and control its volume and position (Fig. 1(b)).
The top surface of each deposition is modeled by a shape function f ∈ Q, which the robot can control,
while the bottom conforms to the structure (Fig. 2(a)). As a simple, yet sufficiently general, family of
shape functions we use cones. Given an apex position (φ, σ ) ∈ Q × R+ and steepness KD ∈ R+, let

f(φ,σ )(x) = σ − KD|φ − x|. (1)

The deposition operator D : Q × Q+ → Q+ models interactions of depositions with the environment,
here simply covering it. Given a structure h ∈ Q+ with h(φ) < σ , the new structure after deposition
f(φ,σ ) is given by

D[f(φ,σ ), h](x) = max{f (x), h(x)}. (2)

Given an initial structure h0 ∈ Q+, larger structures are built up by a sequence of depositions, each
characterized by their shape parameters (φ1, σ1), (φ2, σ2), (φ3, σ3), etc. The height function hn after
n depositions is defined recursively by

hn(x) = D[f(φn,σn), hn−1](x). (3)

After the nth deposition, the local reactive rules of each robot direct it to move on hn and possibly
make a deposition resulting in a new structure hn+1.

This deposition model preserves continuity, independent of the particular parameter choices
(φn, σn). In this and the following proofs, Bε(x) denotes the open ball of radius ε around x, i.e.
y ∈ Bε(x) if and only if |y − x| < ε.

Lemma 1. Given a continuous h0 ∈ Q+ and ε ∈ R+, then ∃δ s.t. ∀x ∈ Q, ∀y ∈ Bδ(x), and any
hn created according to (3), hn(y) ∈ Bε(hn(x)).
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Proof. By continuity of h0 and compactness of Q, for any given ε ∈ R ∃δ′ s.t. ∀y ∈ Bδ′(x),
h0(y) ∈ Bε(h(x)). By construction of hn, δ = min{δ′, ε/KD} has the above property. �

Our proposed solution to the ramp building problem can accommodate uncertainty in both
deposition location and size, see end of Section 4.1. However, for clarity we assume an exact
shape function f in the following presentation.

2.3. Navigable structures
Building a ramp means turning a structure that robots cannot climb into one they can climb. As such,
any algorithm to adaptively build ramps needs a tractable description of climbable structures. This
section defines the notion of navigable functions on Q, which represent climbable physical structures.

We use three parameters to describe robot-specific motion constraints: K ∈ R+, to model the
maximum steepness robots can drive up or down, ε ∈ R+, to model the largest discontinuity robots
can freely move past, and d ∈ R+, to limit the amount of discontinuity in a small area (i.e. robot
length) (Figs. 2(b)–(d)). Formally, navigable structures are locally (parameter d) close (parameter ε)
to K-Lipschitz continuous (Naylor and Sell, p. 594),16 i.e.

|h(x) − h(y)| ≤ K|x − y| ∀x, y ∈ Q. (4)

Specifically, function h ∈ Q is called navigable if and only if

|h(x) − h(y)| ≤ ε + K|x − y| ∀x, y ∈ Q and |x − y| ≤ d. (5)

To reason about global guarantees of our local algorithms, we construct the operator PK , defined
by (7). It maps any structure to the closest K-Lipschitz function that can be built by only adding
material, Fig. 2(e). At a given point, x ∈ Q, PK takes the maximum value of any cones that need to
be added, so all other points fulfill condition (4). There are two important properties of PK . First, by
construction

PK [h](x) ≥ h(x) ∀h ∈ Q. (6)

Since depositions are additive, it is important that PK [h] can be reached by only adding to h. Second,
PK [h] returns the smallest function in LK , the space of K-Lipschitz functions on Q, in the following
sense.

Theorem 2. Given any two functions h ∈ Q and g ∈ LK with g ≥ h, the operator

PK [h](x) = max
y∈Q

{h(y) − K|y − x|} (7)

with K ∈ R+, has the following properties:

1. PK [h] is K-Lipschitz, and
2. g ≥ PK [h].

See Section 6 for proof. The following theorem shows that if steeper features are allowed, less
material needs to be added (Fig. 2(d)).

Theorem 3. Given an arbitrary function h ∈ Q and K1, K2 ∈ R+ with K1 ≤ K2 the projections
onto LK1 and LK2 obey PK2 [h] ≤ PK1 [h].

Proof. For a given point y ∈ Q in (7), h(y) − K2|y − x| ≤ h(y) − K1|y − x| since |y − x| is
non-negative.

�

Given an initial function h0, the next section gives a locally reactive deposition strategy such that
after N depositions hN is navigable, i.e. fulfills (5), and is bounded above by PK [h0].
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Fig. 3. (Colour online) Simulations of deposition algorithms. The initial structure h0 is shown as solid black, and
the upper bound PK [h0] is shown as a dashed black line. The simulation parameters are: Q = [0, 2], K = 0.5,
KD = 1.5, ε = 0.05, and d = 0.1. Depositions progressively change colour, see colour-bar. (a) Deposition
locations are picked randomly and their heights according to Algorithm 1. (b) Deposition locations and heights
are picked according to Algorithm 2, with x0 = 0.2 and x∗ = 1.9. As the colours show, in both cases information
about the cliff on the right propagates backwards through stigmergy. Additional motion and deposition height
constraints in Algorithm 2 result in a layered structure and smaller depositions, see simulation movies.15 The
simulations incorporate additive noise to the deposition shape function, see Section 4.1.

Algorithm 1 Local deposition strategy. Pick point pairs that imply a local non-navigable feature and
deposit on the lower one.

1: Given h ∈ Q+.
2: h0 ← h

3: while ∃ x, y ∈ Q s.t. |x − y| ≤ d, K|y − x| + ε < |hn(y) − hn(x)| do
4: if hn(x) < hn(y) then
5: x ′ ← x

6: y ′ ← y

7: else
8: x ′ ← y

9: y ′ ← x

10: end if
11: Pick any ω ∈ [ε, hn(y ′) − hn(x ′) − K|x ′ − y ′|]
12: Deposit at x ′ with height ω, i.e. hn+1 = D[f(x ′,ω+hn(x ′)), hn]
13: end while

3. Local Reactive Deposition Algorithm
In a local deposition strategy, robots with limited sensing range r ∈ R+ (with r > d) move on top
of the structure and react to features in their sensing range. Algorithm 1 relates local checks and
depositions to global properties. It checks for points that imply a non-navigable feature and deposits in
such a way as to decrease the distance from the current structure to the closest K-Lipschitz structure.
Specifically, Algorithm 1 searches for points |y − x| ≤ d s.t.

|y − x|K + ε < |h(y) − h(x)|. (8)

3.1. Correctness of local deposition strategy
The correct behavior of Algorithm 1 is that after a finite number of depositions the resulting

structure hN is navigable. The proof proceeds in two steps: (a) Theorem 4 shows progress, i.e. every
deposition has a strictly positive volume. (b) Theorem 5 shows depositions obey the invariant upper
bound PK [h0]. By combining them, Theorem 6 shows correct behavior. Note that since PK [h0] is
the smallest dominating K-Lipschitz function, Algorithm 1 is also efficient in the sense that it avoids
unnecessary depositions, i.e. construction beyond the conservatively navigable PK [h0] (Fig. 3(a)).

The volume of the difference between two structures g and h ∈ Q+ is given by

V (g, h) = ||g − h||1 ≡
∫

Q

|g(x) − h(x)| dx. (9)

Similarly, the volume of a particular deposition is given by V (D[f(φ,σ ), h], h).
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Fig. 4. Diagrams for proofs in Sections 3 and 4.(a) Diagram of Theorem 5. When point pairs and depositions are
picked according to Algorithm 1, shown in gray, the mapping to LK remains invariant, i.e. PK [hn] = PK [h0].
(b) Parameter constraints for Algorithm 2. When robot parameters shown in Fig. 5(a) fulfill condition (11), the
maximum extent that a deposition can have into previously navigable terrain is limited by d .

Theorem 4 (Progress). Given a pair of points x, y ∈ Q s.t. hn(x) < hn(y) and the property that

|x − y|K + ε < |hn(x) − hn(y)|,

depositing on x with a height

ω ∈
[
ε,

hn(y) − hn(x)

K|x − y|
]

results in a deposition volume V (D[f(x,ω), hn], hn) > ε that is bounded below by a strictly positive
number.

Proof. Note that the deposition height is at least ε. By Lemma 1, there exists some δ s.t. hn

maps every Bδ(x) ⊂ Q into Bε/3(hn(x)). As a result, ∀p ∈ Bδ(x), h(p) < h(x) + ε
3 , and h(x) + 2ε

3 <

D[f(x,ω), hn](p). Therefore, V (D[f(x,ω), hn], hn) >
∫
Bδ(x)

ε
3 = ε > 0. �

Theorem 5 (Invariant). Assuming that KD > K , depositions made with Algorithm 1 leave the
mapping onto LKinvariant , i.e. PK [hn] = PK [h0].

See Fig. 4(a) for an illustration and Section 6 for proof.

Theorem 6. Given an initial structure h0 ∈ Q+, following Algorithm 1 terminates after a finite
number of steps, N; and for no points in Q does hN fulfill non-navigability condition (8), i.e. ∀z ∈ Q

and x, y ∈ Bd
2
(z),

|x − y|K + ε ≥ |hN (x) − hN (y)|.

Proof. The expression for the remaining volume V (P [h0], hn) = ||P [h0] − hn||1 =∫
Q

|P [h0](x) − hn(x)|dx can be rewritten as

∫
Q

|P [h0](x) − hn+1(x) + hn+1(x) − hn(x)|dx.

By Theorems 5 and 6, P [h0](x) − hn+1(x) ≥ 0 and hn+1(x) − hn(x) ≥ 0, therefore

V (P [h0], hn) =
∫

Q

|P [h0](x) − hn+1(x)|dx +
∫

Q

|hn+1(x) − hn(x)|dx

= V (P [h0], hn+1) + V (hn+1, hn).
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Fig. 5. Physical parameters. (a) Relevant robot dimensions based on the prototype shown in Fig. 1(b). (b)
Parameters for bounds of an arbitrary deposition shape function.

Algorithm 2 Adaptive ramp building. Given a structure h0, an initial position x0, and a goal position
x∗, the following algorithm builds a ramp over irregular structures based on local sensing. Assume,
w.l.o.g. that x0 < x∗.

1: while x = x∗ do
2: Move toward goal until ∃y ∈ [x, x + r] that the pair y and x + d violate condition (8) , or

x = x∗
3: if x = x∗ then
4: Move to the lower point. (Note that all points in [x0, x + r) are climbable.)
5: Pick height according to Algorithm 1 and condition (12).
6: x ← x − 2d

7: end if
8: end while

By Theorem 4 the second term is bounded below by a positive number ε, thus

V (P [h0], hn+1) < V (P [h0], hn) − ε.

Since volume is always non-negative, condition (8) for making depositions must be violated after a
finite number of steps N . �

4. Adaptive Ramp Building
The local deposition Algorithm 1 does not specify the points to be picked if the non-navigability
condition (8) is true for multiple pairs, nor does it consider physical robot size or whether robots can
reach deposition locations. The benefit of this vagueness is generality. Algorithm 1 works in arbitrary
dimensions with an arbitrary number of robots making depositions in any order. It forms theoretical
underpinning for Algorithm 2 (Fig. 3(b)), which takes such physical considerations into account. It
gives a local deposition and motion strategy that allow robots in an arbitrary starting position x0 ∈ Q

to reach a goal position x∗ ∈ Q. By using a more or less conservative ε, the built structures can
be made more or less smooth. While we focus on correctness, we point out some opportunities for
improving efficiency.

4.1. Adaptive ramp building with a single robot
To solve the adaptive ramp building problem via Algorithm 1, robots need to identify point pairs that
imply non-navigable features and make depositions. The strategy in Algorithm 2 is to move toward
the goal x∗ unless a robot encounters a non-navigable feature that impedes its progress. In that case,
a robot deposits according to Algorithm 1 and backs up to check that the new deposition does not
itself represent a non-navigable feature.

Since deposition and motion constraints depend on a robot’s physical dimensions (Fig. 5(a)),
additional parameter constraints are necessary to prove correctness of Algorithm 2. First, to guarantee
that robots have enough room to back up, we assume that they start at a point x0 ∈ Q on the initial
structure h0 and can move freely within a radius of r0 ∈ R+ without making any depositions,

PK [h0](y) = h0(y), ∀y ∈ Br0 (x0) ⊂ Q. (10)
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Second, key dimensions of the robot as well as the deposition parameter KD need to obey the
following constraints (Fig. 5(a)):

KD ≥ K + ε + lheight

d
, (11)

lheight > ε, (12)

r0 > 2d + lrobot. (13)

Condition (11) limits how far backward new depositions can extend into previously navigable terrain
(Fig. 4(b)). It ensures that the motion and deposition strategy will not direct robots to deposit directly
underneath themselves. Condition (12) ensures that the deposition mechanism has enough clearance
to make depositions that conform with the assumptions in Algorithm 1. Condition (13), conservatively,
ensures that a physical robot has enough space to back up.

Theorem 7. Given a robot that fulfills parameter conditions (11)–(13) with starting position x0

that fulfills (10) following Algorithm 2 will reach a goal point x∗ after a finite number of steps.

Proof. Denote the interval [x0 − r0, x + d] in which no point pairs fulfill (8) by A (accessible
region). Robots stay inside the accessible region at all times while finding points to deposit on.
First, condition (12) guarantees that a robot can make a deposition of height ε, as required by
Algorithm 1. Second, condition (11) guarantees that depositions with a maximum height of lheight

made in the interval [x, x + d] will not extend into [x0 − r0, x − d]. As a result, moving to x − 2d

after a deposition guarantees that no point pair in A fulfills (8). By (10) and the deposition strategy,
there are always accessible points, i.e. [x0 − r0, x0] ⊂ A. By Theorem 6 this algorithm terminates
after a finite number of depositions with x = x∗. �

Figure 3(b) shows a series of depositions made via Algorithm 2. This strategy also guarantees
that robots can always reach x0 without requiring additional depositions, which could allow robots
to replenish supplies. Conversely, the accessible region provides cooperating robots access to the
deposition site, Section 4.2.

Physical depositions are not perfect cones (Fig. 1(b)). Algorithm 2 explicitly allows for uncertainty
in the target structure (via ε), but not for deposition uncertainty. In fact, the upper bound for target
structures requires that no depositions accidentally make intermediate structures larger than PK [h0].

Following is a short description on how to address this problem and allow depositions with arbitrary
continuous shape functions f (and bounded derivative f ′

max) as long as f can be sandwiched between
two cones (Fig. 5(b)). As long as ldep < ε, Algorithm 1 (and as a result Algorithm 2) still works with
the following substitutions: In Lemma 1 f ′

max takes the place of KD . In Theorem 4 the minimum
height is ε − ldep instead of ε. In Theorem 5 and condition (11) KD is replaced with Ka . In addition
to uncertainty in shape, this approach of bounding cones also allows for uncertainty in the exact
deposition location and volume.

4.2. Adaptive ramp building with multiple robots
The locally reactive nature of Algorithm 2 makes extension to multiple robots easy. Robots do not
need to communicate the state of the building process in order to cooperate. However, they still need
to coordinate locally to determine which one deposits as to not obstruct one another. This section
outlines two different approaches: first, cooperation to build large structures where each robot only
has a limited amount of building material; second, cooperation to achieve speedup through parallelism
when robots are initially distributed in the terrain.

Sensible strategies of what a robot should do after it runs out of building material depend on
wether robots can move past one another. If they can, then multiple robots can cooperate by returning
to the starting position and resupplying their stock of building material while other robots continue
building. This approach takes advantage of the fact that Algorithm 2 maintains an accessible region
A, which always allows robots to return to the starting position without having to make additional
depositions.

A distributed implementation of this strategy that requires only local coordination between robots
is shown in Fig. 6(a). It consists of three behavioral states. In follow mode a robot moves toward the
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Table I. Results of cooperative ramp building
simulations with varying number of robots and
deposition capacities. The table shows the 95%
confidence intervals for estimating the mean number of
simulation steps (5 samples). The speed of each robot
is 0.05 per simulation step. Each deposition takes one
simulation step. Reloading building supplies takes one
simulation step. Variations in completion times arise
from both additive noise to the deposition shape and
random selection of deposition parameters from their

legal ranges in Algorithm 1.

Capacity 1 Robot 2 Robots 3 Robots

5 1614 ± 82 869 ± 56 680 ± 40
10 1077 ± 39 577 ± 50 507 ± 31
20 719 ± 59 451 ± 31 436 ± 22
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Fig. 6. (Colour online) Simulations of cooperative adaptive ramp building with limited building supplies.
Parameters are x0 = 0.2, x∗ = 1.9, d = 0.05, and otherwise the same as in Fig. 3. (a) Behavioral state diagram
for building when robots can pass one another, see text for state descriptions. (b) Final structure when three
robots are limited to 20 depositions. Each deposition set is indicated by a different colour. (c) State diagram
for building when robots cannot pass one another and, when depleted, become part of the ramp structure. (d)
Simulation with 10 robots where each is limited to making 20 depositions, see simulation movies.15

goal and starts following any other robots that are not in resupply mode. When it senses an obstacle, it
switches to executing Algorithm 2. Robots execute Algorithm 2 until they run out of building material
and switch to a resupply mode. When a robot is in resupply mode, other robots cease following it
and instead let the resupplying robot pass. The robot moves back toward the starting point where its
stock of building material is restored. Once the resupply is finished, the robot switches back to follow
mode.

Compared with a single robot resupplying this cooperative approach is faster because the team can
keep building while individual robots resupply (Table I). The benefit of this strategy depends on the
deposition capacity and the number of robots relative to the particular geometry of the problem. If
the time it takes a robot to resupply and return to the building site is shorter than the time it takes all
other robots to exhaust their building materials, there is no benefit to adding more robots to the team
or expanding their capacity to carry building material, e.g. last line of Table I.

If robots cannot pass one another, the locally reactive nature of the algorithm can be used to treat
spent robots as obstacles. The strategy is shown in Fig 6(c). Similar to the previous case, it consists of
three behavioral states. The follow and ramp building modes are the same. Robots start in follow mode
and execute it until they sense an obstacle. When a robot runs out of building material, it enters stop
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(a)

Alg. 2 stop

Become stuck

Robots=3  Deposition Capacity=0  Deposition Number=128  Simulation Step=333

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Fig. 7. (Colour online) Simulation of parallel adaptive ramp building. Parameters are the same as in Fig. 6.
(a) Behavioral state diagram for parallel ramp building. Robots with unlimited supplies of building material
execute Algorithm 2 until they become stuck. (b) Final structure (333 simulation steps) of multiple robots
working concurrently. If a robot becomes stuck, it is treated as a obstacle by other robots.

(a) (b) (c)

Fig. 8. (Colour online) Scanning foam deposition mechanism. (a) A scanning carriage holds a downward facing
IR-distance sensor and mixing nozzle. Pressurized foam precursors are delivered to the nozzle by flexible tubing.
(b) Top: Initial obstacle before leveling deposition; bottom: final structure after deposition episode. (c) Cross
sections of final structure. Each leveling deposition episode represents one cone-like deposition in Algorithm 2.

mode, becomes inactive, and is treated as an obstacle by other robots (Fig. 6(d)). Strictly speaking,
the correctness proof of Theorem 7 is no longer valid since robots cannot be resized like depositions,
i.e. it is possible for a depleted robot to violate the upper bound constraint used in proving the
stopping condition, Theorem 6. However, if a robot occasionally violates the upper bound, it simply
creates a new one for subsequent depositions. As long as this bad behavior occurs rarely, one would
expect Algorithm 2 to still yield correct results, e.g. Fig. 6(d). Investigating the exact conditions for
termination with this execution model would be an interesting extension of this work. Alternatively,
the depleted robot could make additional moves to optimize building progress or ensuring that it does
not violate the invariant upper bound.

In the second scenario the starting positions of multiple robots are distributed along the construction
path, e.g. dropped there to speed up construction, and each robot starts building a ramp via Algorithm 2.
However, without initially fulfilling the starting condition (10) robots might become stuck, i.e.
cannot move to an appropriate place to make the next deposition (Fig. 7(b) right). Further, without
coordination one robot might deposit on another (Fig. 7(b) middle). Despite these failures, if one
robot initially fulfills (10), the process will successfully complete. Other robots can provide speed up
through parallelism until they become stuck. This approach is similar to Fig. 6(c) and illustrated in
Fig. 7(a).

As the previous examples illustrate, the locally reactive nature of Algorithm 2 can be exploited to
create distributed cooperative construction strategies for multiple robots. When structures are only
modified by depositions, the proofs carry over directly. When defunct robots are treated as part of the
structure, Algorithm 2 often works, but care must be taken to not repeatedly violate the upper bound
PK [hn].

4.3. Physical implementation and experimental results
We built a remote-controlled prototype robot (Fig. 1(b)) and a scanning foam deposition mechanism
(Fig. 8(a)) for testing solutions to the key technical challenges presented by Algorithm 2. The
prototype shows that robots can, in principle, build and navigate relatively large foam structures.
The scanning deposition mechanism demonstrates autonomous leveling behavior that can be used
to turn the physical construction problem into the simplified problem solved by Algorithm 2. The
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approach is to fix a path in the building domain and run the adaptive ramp building algorithm along
this 1-dimensional subspace.

One major challenge is designing a deposition mechanism and selecting an appropriate material.14

Both the prototype robot and scanning deposition mechanism use two compartment syringes with
mixing nozzles (McMaster-Carr PN: 74695A11 with 74695A63, 7451A22 with 7816A32) and high
expansion polyurethane casting foam (US-Composites 2 lb foam) to make amorphous depositions.

The scanning deposition mechanism consists of a mixing nozzle and distance sensor mounted
on a moving carriage, Fig 8(a). By running Algorithm 1 along the direction of carriage travel
(with K = 0, ε = 2 cm and d covering all of Q), this mechanism autonomously creates a level
structure from amorphous depositions. Mounting this mechanism on a robot and treating each leveling
deposition episode as a single application of the deposition operator D, turns this physical construction
task into the simplified problem solved by Algorithm 2. Viewed from the side, each leveled line under
the carriage represents the apex of a conical deposition. Algorithm 2 simply picks the next point to
level.

5. Conclusion
We developed a continuous model for amorphous depositions, and used it to prove correctness of
a distributed algorithm that solves the adaptive ramp building problem. This example application
illustrates how locally reactive behavior and amorphous building material together can create reliable
building behavior in unstructured terrain.

Adaptive ramp building can also serve as a base behavior for composing more complicated
behaviors. For example, it could guarantee accessibility to locations where support structures need
to be built. With the ability to consistently encode virtual points in a group of robots, adaptive ramp
building could be used to build arbitrary (K-Lipschitz) structures by building ramps to a carefully
chosen set of virtual points: an approach we plan to explore.

There are a number of ways the presented algorithms could be improved. Our presentation focuses
on correctness, not optimality. Robots could be much smarter about coordination between robots
and deposition point selection to maximize the volume of each deposition, especially if their sensing
radius was much larger than d. For implementations, it would also be worthwhile to explicitly consider
different shape functions and structures that are not well modeled as functions, i.e. have overhangs.

6. Proofs

Proof. (Theorem 2) (1) Assume to the contrary that ∃x, y ∈ Q s.t.

|PK [h](x) − P [h](y)| > K|x − y|. (14)

Assume w.l.o.g. that PK [h](y) ≤ PK [h](x) and since PK [h] is a positive scalar function, |PK [h](x) −
P [h]K (y)| = PK [h](x) − PK [h](y). Rearranging the terms in (14) leads to the contradiction
PK [h](x) − K|x − y| > PK [h](y), since the max in PK [h](y), see (7), is taken over the entire
domain, including x. Therefore, points violating the Lipschitz condition cannot exist in P [h]. �

(2) Assume to the contrary that there exists a point x ∈ Q s.t. PK [h](x) > g(x) ≥ h(x). Since there
cannot be equality between PK [h](x) and g(x), the maximization in (7) must take its maximum value
at some other point y ∈ Q. Rearranging PK [h](x) = h(y) − k|x − y| > g(x) results in h(y) − g(x) >

k|x − y|, and since g > h g(y) − g(x) > k|x − y|, which is a contradiction as it would violate the
Lipschitz continuity of g. �

Proof. (Theorem 5) First, note that P can be applied to non-continuous functions, specifically
continuous structures with a single discontinuous point. Let h̃n,(φ,σ )(x) = hn(x) + (σ − hn(φ))δφx,
where δ denotes the Kronecker delta, and σ and φ are selected according to Algorithm 1.

Next, since φ is in the search set of max for point PK [hn](x) in (7), hn(φ) ≤ σ = hn(φ) + ω ≤
PK [hn](φ), consequently

h̃n,(φ,σ ) ≤ PK [hn]. (15)
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Finally, since restricting y ∈ {x, φ} ⊂ Q in (7) results in the same expression as (2), thus
D[f(φ,σ ), hn] = hn+1 ≤ PKD

[̃hn,(φ,σ )].
By Theorem 3 and assuming that KD > K , PKD

[̃hn,(φ,σ )] ≤ PK [̃hn,(φ,σ )]. Together Theorem 2.2
and (15) imply that PK [̃hn,(φ,σ )] ≤ PK [hn], which results in the series of relations hn+1 ≤
PK [̃hn,(φ,σ )] ≤ PK [hn]. And again, by Theorem 2.2 PK [hn+1] ≤ PK [hn]. However, hn+1 ≥ hn implies
PK [hn+1] ≥ PK [hn], thus PK [hn+1] = PK [hn]. By induction, PK [hn] = PK [h0]. �
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