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Abstract

The modulation instability of a circularly polarized laser pulse in a magnetized non-Maxwellian plasma is investigated.
Based on a relativistic fluid model, the nonlinear interaction of an intense circularly polarized laser beam with a non-
Maxwellian magnetized plasma is described. Nonlinear dispersion relation and growth rate of the instability for left-
and right-hand polarizations are derived. The effect of temperature, external magnetic field, value of Kappa and state of
polarization on the growth rate are analyzed. It is shown that the growth rate increases with increase in the magnetic
field for the right-hand polarization and inversely it decreases for the left-hand one. Also it is observed that existence
of super-thermal particles causes the decrease in the growth.

Keywords: Kappa distribution; Magnetized plasma; Modulation instability; Nonlinear wave equation; Non-Maxwellian
plasma; Super-thermal

1. INTRODUCTION

In the last decade, the rapid development of the laser technol-
ogy has aroused considerable interest in the problem of
laser–plasma interactions. The Ultrahigh intensity lasers
(Perry & Mourou, 1994; Mourou et al., 2006; Minami
et al., 2013; Novak et al., 2013) are high enough (up to
I > 1025 W/cm2) to cause nonlinearity, which can give rise
to a number of nonlinear effects. In this case, nonlinearity
arises because of the electrons oscillations at relativistic ve-
locities in laser fields and it leads to the consideration of
problems in the relativistic regime. The study of the nonlinear
interaction of ultra-intense laser pulses with plasmas is sub-
jected to many instabilities such as the parametric Raman
and Brillouin instabilities, modulational, and filamentational
instabilities (McKinstrie & Bingham, 1992; Esarey et al.,
1996; Mori, 1997; Shalabi & Al-Khateeb, 2001; Mendonc
et al., 2009; Mishra & Pallavi, 2011; 2013; Paknezhad &
Dorranian, 2011; 2013; Panwar et al., 2012; Hao et al.,
2013; Singh, 2013; Sepehri Javan & Adli, 2013a; 2013b;
Sepehri Javan & Nasirzadeh, 2012).

The modulation instability (MI) is a nonlinear instability.
The pondermotive force originating from the electromagnetic
(EM) wave stimulates low frequency perturbations of the
electron density; then, they interact with the primary high fre-
quency EM wave in which the amplitude of the pump wave
becomes modulated, and the MI of the EM wave occurs. The
development of the MI has brought a variety of nonlinear
process, such as envelope solitons, field collapse, envelope
shocks, etc. (Liu & Li, 2000; 2001; Lehmann et al., 2008;
Zakharov & Ostrovsky, 2009). The MI of laser beams in
plasmas and dielectrics has been the subject of several pub-
lications (McKinstrie & Bingham, 1992; Esarey et al.,
1996; Sprangle et al., 1997; Shukla et al., 2004; Marklund
& Shukla, 2006; Asenjo et al., 2009). The MI of strong
EM waves in plasmas with arbitrary large amplitude is stud-
ied by Shukla and Bharuthram (1987). Most of the early pub-
lications about MI considered ID-models in which the laser
beam is represented as a plane wave (McKinstrie & Bing-
ham, 1992; Sprangle et al., 1997). The MI of a laser pulse
in the cold nonmagnetized plasma has been considered by
several authors (Shukla et al., 1986; Shukla & Bharuthram,
1987; Esarey et al., 1994; Sprangle et al., 1997). The MI
of a linearly polarized laser pulse propagating in cold magne-
tized plasma is studied by Jha et al. (2005). The MI of
right-hand elliptically laser pulse in cold magnetized
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plasma has been investigated by Chen et al. (2011). Recently,
the MI of an intense circularly polarized laser beam in the hot
magnetized electron–positron and electron gas plasmas is
studied by Sepehri Javan (2012; 2013).
In this paper, we theoretically investigate the MI of the cir-

cularly polarized laser beam propagating along an external
magnetic field in a non-Maxwellian magnetized plasma.
Nonlinear effects, existence of external forces, and interac-
tion of waves with plasma results in the deviation of non-
Maxwellian distribution from Maxwellian one. In effect of
the mentioned mechanisms, high energy (super-thermal) par-
ticles can be formed and it can lead to a distribution with
high-energy tail. Presence of superthermal particles in non-
Maxwellian plasmas has already been proved in the laborato-
ry (Hellberg et al., 2000) and space plasmas (Feidman et al.,
1973; Steinberg et al., 2005), experimentally. A situation in
an underdense plasma, where the electrons are relativistic and
ions are superthermal, is difficult to visualize in real experi-
ments, but there are several applications for this situation.
The application for the situation where the velocity of elec-
trons in plasma is relativistic is relevant to many scenarios
in high-energy-density science, such as fast ignition of
fusion targets, fast electron transport in solid targets, proton
acceleration, or shocks.
In this paper, we consider MI of circularly polarized laser

in the interaction with non-Maxwellian plasma, containing
electrons and ions with Kappa distribution. The first observa-
tions of the ions non-Maxwellian distribution in a hot mag-
netized tokamak plasma were reported by Korotkov et al.
(2000). Such high-energy ions can be produced by close
elastic collisions (knock-on) between deuterium–tritium
fusion α-particles and thermal plasma fuel ions. We consid-
ered relativistic nonlinear interaction of intense laser beam
with such plasmas. However, in the interaction of laser
with ions of plasma, we supposed that the ion slow motion
is nonrelativistic. When the phase velocity of the ion oscilla-
tion is much smaller than the thermal velocity, the quasi-
static ion number density can obtain from a balance of the
ion thermal pressure and the slow field. Since the quasi-static
interaction arises on very slow time scale [typically larger
than the ion plasma period ω−1

pi = (4πn0ie2/m0i)−1/2, where
n0i and m0i are unperturbed density of ion and rest mass of
ion, respectively], one may assume an isothermal equation
of state for ions, and obtain the ion number density expres-
sion. Kappa distribution (Vasyliunas, 1968) is the well-
known one in the astrophysics, ionospheric plasma physics,
and laboratory complex plasmas (Maksimovic et al., 1997).
A literature review indicates that Kappa distributions have
been widely used in the variety of phenomena, either in la-
ser–plasma interaction phenomena or in the astrophysical
events. Self-modulation of dust acoustic waves in the pres-
ence of non-Maxwellian ion and electron populations is stud-
ied by Kourakis and Shukla (2005). Furthermore, recently,
by Sepehri Javan (2014) it has been shown that the existence
of super-thermal particles can magnificently improve the
self-focusing property of circularly polarized laser

propagating in a magnetoactive plasma. As far as our knowl-
edge tells, the effect of the super-thermal particles on the MI
of laser pulse in non-Maxwellian magnetized plasma has not
been studied so far. Only MI of linearly polarized EM waves
in the unmagnetized non-Maxwellian plasma is considered
by the perturbation method (Rios & Galvao, 2010). Since
non-Maxwellian distribution of particles widely uses in
some laser–plasma experiments, we are impelled to investi-
gate the effect of super-thermal particles on the MI. The pre-
sent work is devoted to the study of MI for the right- and
left-hand circularly polarized laser beam propagating along
the external magnetic field in the hot plasma with non-
Maxwellian distribution. From elementary plasma physics
we know that in the parallel propagation of EM waves in
the magnetized plasma, fundamental modes are circularly
polarized left- and right-hand waves. Furthermore, combina-
tion of two circularly polarized waves with different ampli-
tudes and the same rotation sense can lead to the creation
of elliptically polarized beam. Here, we considered the MI
of circularly polarized laser beam. We expect the same re-
sults for the elliptically polarized wave. However, in the
case of incidence of linearly polarized laser on the magne-
tized plasma, it can experience the well-known phenomenon
of Faraday rotation effect. The paper is structured as follows.
First, in Section 2, the basic assumptions are presented and
the nonlinear wave equation is derived. Then, in Section 3,
the nonlinear dispersion relation of the circularly polarized
EM wave propagating in a hot magnetized non-Maxwellian
plasma in the weakly relativistic regime is considered and
the MI is discussed. Next, in Section 4, the MI in magnetized
non-Maxwellian plasma is numerically studied. Finally, in
Section 5, the results are summarized.

2. NONLINEAR WAVE EQUATION

Consider a non-Maxwellian two-component electron–ion
plasma is immersed in the static magnetic field. The magnet-
ic field is a constant and here we assume B0 = B0êz. We
assume that in the equilibrium state the distribution function
of plasma particles is determined by Kappa distribution as
following (Vasyliunas, 1968):

fs(v) = 1

(πκsθ2s )3/2
Γ(κs + 1)

Γ(κs − (1/2)) 1+ v2

κsθ
2
s

( )−(κs+1)
,

s = i, e,

(1)

where for κs> 3/2, v is the velocity, indices i and e denote
ion and electron, respectively, θs = [(κs − (3/2))/κs]1/2vTs,
vTs=(kBTs/ms)

1/2 is the thermal velocity of s sort of
plasma particles, kB, Ts, and ms are Boltzmann constant, tem-
perature, and mass of s sort of plasma particles, respectively.
For describing nonlinear dynamics of an EM wave interac-

tion with plasma, we define electric and magnetic fields of
EM wave E, B through the vector and scalar potentials A,

R. Etemadpour and N. Sepehri Javan266

https://doi.org/10.1017/S0263034615000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034615000117


f as below:

E = − 1
c

∂A
∂t

−∇f, B = ∇ × A, (2)

where c is the speed of light. In the Coulomb gauge (viz.,
▽.A= 0), using Eq. (2) in the Maxwell equations, we can
write

1
c2

∂2A
∂t2

−∇2A = 4π
c
J, (3)

where J=−neeve is the current density of electrons of
plasma, and e, ne, ve are the electron charge, density, and
fluid velocity, respectively.
To clarify this situation let us return to the similar condi-

tion in a Maxwellian plasma. In the non-equilibrium state
of the Maxwellian magnetized plasma, which is irradiated
by a weakly relativistic laser pulse, momentum of electron
can be obtained as (Rao et al., 1984; Sepehri Javan, 2012;
2013)

�pe =
�A

(1− σα/γe)
. (4)

Here �pe = pe/mec is the normalized electron momentum,
�A = (e/mec2)A is the normalized vector potential, γe =��������������
1+ p2e/m

2
ec

2
√

is the relativistic Lorentz factor of electron,
me is the electron rest mass, α= ωc/ω0, ω0 is the laser
frequency, ωc= eB0/mec is the electron cyclotron frequen-
cy and βe = c2/v2Te. σ=+1, −1 denote the right- and
left-hand circularly polarized waves, respectively. The
form of the vector potential of circularly polarized radia-
tion field, which propagates parallel to the direction of ex-
ternal magnetic field is assumed

A = 1
2
Ã(êx + iσ êy) exp(−iω0t + ik0z) + c.c., (5)

where k0 is the frequency and wave number and Ã(z, t) is
the slowly varying amplitude that satisfies the following
condition:

1
ω0

∂Ã
∂t

∣∣∣∣
∣∣∣∣ ≪ Ã

∣∣ ∣∣. (6)

In this case, the density of electron is obtained (Sepehri
Javan, 2012; 2013)

ne = n0e exp Φ− βe γe − 1− σα |�pe|2
2γ2e

[ ]{ }
, (7)

where Φ=ef/kBTe is the normalized scalar potential. To
obtain Eq. (7), it is assumed that the plasma is unper-
turbed at infinity and therefore we have the boundary

conditions ne= n0e, Φ→0, �pe � 0 at |z|→∞. It is
clear from comparing Eqs. (7) and (1) that for the non-
Maxwellian magnetized plasma irradiated by the circularly
polarized laser pulse, the distribution function should be
modified as

fe(v) = n0e
(πκeθ2e)3/2

Γ(κe+1)
Γ(κe−(1/2))

× 1+ v2−2ef/me+2c2 γe−1−(σα/2γ2e )|�pe|2
( )
κeθ

2
e

[ ]−(κe+1) .

(8)

By integrating Eq. (8) over all the velocity space, we can
find the electron density distribution as following:

ne = n0e 1−Φ− βe(γe − 1− (σα/2γ2e)|�pe|2)
(κe − 3/2)

[ ]−(κe−1/2)
. (9)

In this case for Maxwellian plasma, by considering non-
relativistic behavior for the slow motion of ions, the ion
density can be described by the relation

ni = n0i exp(−δΦ), (10)

where δ=Te/Ti is the ratio of the electron temperature to
the ion temperature. Then, in similar way, for the ion den-
sity of non-Maxwellian plasma, one can achieve

ni = n0i 1+ δΦ

(κi − 3/2)
[ ]−(κi−1/2)

. (11)

In the weakly relativistic regime by considering the quasi-
neutrality condition ne= ni (and also ne0= ni0= n0), ex-
panding Eqs. (9) and (11) and using Eq. (4) we can
obtain

ne = ni = n0 1− 1
2
|�A|2Q

( )
, (12)

where

Q = (κi − (1/2))(κe − (1/2))
δ−1(κe − (1/2))(κi − (3/2)) + (κi − (1/2))(κe − (3/2))
×

βe
(1− σα) . (13)

In order to formulate nonlinear interaction of EM wave
propagating along external magnetic field in the non-
Maxwellian plasma let us obtain J. From Eq. (4) the elec-
tron velocity can be obtained

ve = e

mec

A
γe − σα

. (14)
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Also, for electron Lorentz factor we can approximately
write

γe ≈

���������������
1+ |�A|2

(1− σα)2

√
,

And in the weakly relativistic laser intensity, when |�A|2,
|�Pe|2 ≪ 1we can expand it as

γe ≈ 1+ 1
2
|�Pe|2. (15)

Using Eqs. (4), (12), (14), and (15) yields to the follow-
ing nonlinear current:

− 4π
c
J = ω2

p

c2
A

γe − σα
1− 1

2
|�A|2Q

( )
, (16)

where ωp =
������������
4πn0e2/me

√
is the plasma frequency.

Expanding the nonlinear current density of Eq. (16) with
respect to the normalized vector potential amplitude,
saving only the second orders and substituting it in the
wave equation of (3) yields

{∇2 − 1
c2

∂2

∂t2

( )
aei(k0z−ω0t) = k2p

1
1− σα

− |a|2
[

×
1
2

Q

(1− ασ) +
1
2

1

(1− ασ)4
( )]

aei(k0z−ω0t),

(17)

here a = e/moec2Ã is the normalized amplitude of vector po-
tential (also |a| = |�A|) and kp= ωp/c.

3. NONLINEAR DISPERSION RELATION AND
MODULATION INSTABILITY

After mathematical simplifications, Eq. (17) can be presented
in its new form

∂2a
∂t2

− c2
∂2a
∂z2

− 2iω0
∂a
∂t

− 2ik0c
2 ∂a
∂z

+
{
− ω2

0 + c2k20 + ω2
pe

×
[

1
1− σα

− |a|2 ×
(
1
2

Q

(1− σα) +
1
2

1

(1− σα)4
)]}

a

= 0. (18)

The coefficient of a in the last term of Eq. (18) is the nonlinear
dispersion relation. In the absence of interaction between EM
wave and plasma, when amplitude is a real constant (a= a0),
we can derive the nonlinear dispersion relation for non-
Maxwellian magnetoplasma as following:

c2k20 − ω2
0 + ω2

p
1

1− σα
− a20

1
2

Q

(1− σα) +
1
2

1

(1− σα)4
( )[ ]

= 0. (19)

In the linear limit (when a2→0) Eq. (19) can be reduced to the
well-known linear dispersion relation of circularly polarized
EM waves in magnetized plasma

k0 = ω0

c
1− ω2

p

ω0(ω0 − σωc)

( )1/2

. (20)

By considering the condition of slowly varying amplitude [Eq.
(6)] and assuming that ω0 and k0 satisfy the linear dispersion of
Eq. (20), Eq. (19) can be modified to the following equation

i

(
∂a
∂t

+ vg
∂a
∂z

)
+ c2

2ω0

∂2a
∂z2

+ ω2
pe

2ω0
|a|2

×
(
1
2

Q

(1− σα) +
1
2

1

(1− σα)4
)
a = 0, (21)

here vg= k0c
2/ω0 is the group velocity. Using the following

dimensionless variables:

τ = ω2
pe

ω0
t, Ug = ω0

ωpe

vg
c
, ζ = ωpe

c
z− Ugτ,

in Eq. (21), we can write

i
∂a
∂τ

+ 1
2
∂2a

∂ζ2
+ DNLa = 0, (22)

where

DNL = 1
2
|a|2 1

2
Q

(1− σα) +
1
2

1

(1− σα)4
( )

.

Equation (22) is the well-known modified nonlinear Schrö-
dinger equation and describes the nonlinear dynamics of
slowly varying envelope of EM wave in the quasi-neutral
limit. In the case of cold plasma and large amplitude fields
this approximation is not valid (Shukla et al., 2004).
To obtain the dispersion relation for MI, we use the usual

method introduced by Shukla and Bharuthram (1987). In this
approach, we suppose

a = (a0 + a1) exp(iΛτ), (23)

where a0 is a real constant parameter, a0≫|a1|, and

Λ ≡ DNL(a = a0) = 1
2
a20

1
2

Q

(1− σα) +
1
2

1

(1− σα)4
( )

. (24)

By substituting Eq. (23) into (22) and linearizing this

R. Etemadpour and N. Sepehri Javan268

https://doi.org/10.1017/S0263034615000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034615000117


equation with respect to a1, we can achieve

i
∂a1
∂τ

+ 1
2
∂2a1
∂ζ2

+ 1
2
a20

1
2

Q

(1− σα) +
1
2

1

(1− σα)4
( )

(a1 + a∗1)

= 0. (25)

Introducing a1=X+iY, inserting it into Eq. (25) and separat-
ing the real and imaginary parts of this equation yields

∂X
∂τ

+ 1
2
∂2Y

∂ζ2
= 0,

− ∂Y
∂τ

+ 1
2
∂2X

∂ζ2
+ a20

1
2

Q

(1− σα) +
1
2

1

(1− σα)4
( )

= 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

.

(26 and 27)

We consider the following oscillational form for X and Y

X
Y

( )
= X̃

Ỹ

( )
exp(−iΩτ+ iKζ), (28)

where X̃, Ỹ are real amplitudes,Ω is the modulation frequen-
cy normalized by ω2

p, ω0 and K is the modulation wave
number normalized by ωp/c. Constituting Eq. (28) into the
set of Eqs. (26) and (27) we can obtain the nonlinear disper-
sion relation of MI

Ω2 = −K2

2
a20

1
2

Q

(1− σα) +
1
2

1

(1− σα)4
( )

− K2

2

[ ]
. (29)

The temporal growth rate Γ=−iΩ can be extracted from
Eq. (29) as below:

Γ = K��
2

√ a20
1
2

Q

(1− σα) +
1
2

1

(1− σα)4
( )

− K2

2

[ ]1/2
. (30)

The maximum growth rate of MI that occurs at K = Km =
a20

1
2

Q

(1− σα) +
1
2

1

(1− σα)4
( )[ ]1/2

, is

Γmax = a20
2

1
2

Q

(1− σα) +
1
2

1

(1− σα)4
( )

. (31)

We note that, for the Maxwellian plasma, when κe, κi→∞,
Eq. (12) reduces to

Q = βe
(1+ δ−1)(1− σα) , (32)

and by substituting this equation into Eq. (30) we can derive

the growth rate for the Maxwellian plasma

Γ = K��
2

√ a20
2(1− σα)2

βe
(1+ δ−1) +

1

(1− σα)2
( )

− K2

2

[ ]1/2
. (33)

4. RESULTS AND DISCUSSIONS

In this section, we could analyze the numerical results of Eqs
(30), (31) and discuss the variation of the growth rate as a
function of the physical parameters. The order of parameters
in the figures is in accordance with the usual ranges of param-
eters used in the laser–plasma interaction experiments (Jha
et al., 2005; Sepehri Javan, 2012). We suppose a Nd:YAG
laser with frequency ω0= 1.88 × 1015 s−1 (that corresponds
to the laser wave length λ≈ 1 μm) and intensity I≈ 1.4 ×
1016 W/cm2 (or a0= 0.1) for the all investigated cases. In
addition, for all the cases, Te= 10 keV, solid lines denote
the unmagnetized plasma and dotted (dashed) lines are
used to denote the propagation of the circularly polarized
right(left)-hand laser in the magnetized plasma with α=
0.1 or ωc= 1.88 × 1014 s−1.

Figure 1 shows the variation of growth rate Γ with respect
to K at four different values of κe and κi for magnetized (α=
0.1) and unmagnetized (α= 0) plasma, when δ= Te/Ti= 1.
In all the cases, it is shown that the growth rate increases by
exerting the external magnetic field for the right-hand laser
polarization. Inversely, the growth rate decreases by using
the magnetic field for the left-hand polarization. This result
can be explained as follows: By increasing the external mag-
netic field the transverse velocity of the electrons of plasma
that is driven by the right-hand polarization wave in the direc-
tion of cyclotron motion, increases and it leads to the increase
of the medium’s nonlinearity. Oppositely, for the case of left-
hand polarization, electrons are driven opposite to the cyclo-
tron motion and increase in the external magnetic field leads
to the decrease in the velocity of electrons and consequently
to the decrease in the nonlinearity of plasma medium. In
Figure 1 we set κe= κi= 100 and as we know for the
large values of κe and κi the state of plasma thermodynami-
cally tends to the Maxwellian. In Figure 1b electrons and ions
are super-thermal and κe= κi= 2. It is clear that the exis-
tence of super-thermal particles leads to an increase in the
nonlinearity and consequently to the substantial increase in
the growth rate of MI. In Figure 1c, we choose the super-
thermal electrons and Maxwellian ions (κe= 2 and κi=
100). Comparison of Figure 1b and 1c shows that the pres-
ence of Maxwellian ions causes the decrease in the growth
rate. In Figure 1d, we exchange the values of kappa between
electrons and ions and set κe= 100 and κi= 2. One can see
that in Figure 1c and 1d situation is the same and interchang-
ing of κe and κi does not affect on the growth rate. As a matter
of fact, when the ions and electrons are equi-temperature, in
Eq. (11) parameter Q is invariant with interchanging of
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indices i and e. To interpret these results, it is important to
remember that the hydrodynamic pressure force created by
the hot particles can extinguish the ponderomotive force in-
duced by the nonlinear laser–plasma interaction (Sepehri
Javan, 2012; 2013). Thermodynamic pressure force is pro-
portional to the density gradient and the decrease in the

slope of the density profile via presence of the super-thermal
particles leads to the decrease in the pressure and consequent-
ly to the increase in the effective ponderomotive force in the
medium. As a result, enhancement of the ponderomotive
force for non-Maxwellian plasma leads to the increase in
the growth rate.
In Figure 2, the effect of κe on the maximum growth rate is

studied, numerically for δ =1. For all the cases, the increase
of κe yields the decrease in the growth rate; however for large
values of κe the growth rate (decreases at an infinitesimal
constant rate) is saturated and tends to the value of growth
rate in the Maxwellian state. Figure 3 demonstrates the
effect of the decrease in the ion temperature on the growth

Fig. 1. Variation of normalized growth rate Γ as a function of normalized
wave number K for solid line unmagnetized plasma and dashed(dotted)
line right(left-)-hand polarized laser in magnetized plasma (α= 0.1), when
Te= 10 keV and δ =Te/Ti= 1, for four different values of κe and κi, (a)
κe=κi= 100, (b) κe=κi= 2, (c)κe= 2 and κi= 100, and (d) κe= 100 and
κi= 2.

Fig. 2. Variation of normalized maximum growth rate Γmax versus κe when
κi= 2, Te= 10 keV and δ =Te/Ti= 1, solid line for unmagnetized plasma
and dashed (dotted) line for right (left)-hand polarized laser in magnetized
plasma (α= 0.1).

Fig. 3. Variation of normalized maximum growth rate Γmax (a) versus κe
when κi= 2 and (b) versus κi when κe= 2, when Te= 10 keV and δ=
Te/Ti= 10, solid lines for unmagnetized plasma and dashed (dotted) lines
for right(left)-hand polarized laser in magnetized plasma (α= 0.1).
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rate. Here, we set δ = Te/Ti= 10. We can see that the de-
crease in the ions temperature causes a significant enhance-
ment of the growth rate for all the cases. Figure 3a reveals
that in the case of super-thermal ions growth rate is a sharp
decreasing function of κe and is very sensitive to the variation
of κe, especially in the range κe< 2. From Figure 3b it is ev-
ident that in the case of super-thermal electrons with a fixed
κe= 2, variation of growth rate respect to κi is very smooth.
After value κi= 5 the growth rate practically (stops) saturates
and becomes constant.

5. CONCLUSIONS

In this paper, the MI of a circularly polarized laser pulse in a
magnetized non-Maxwellian plasma with kappa distribution
is discussed. Modified nonlinear Shrödinger equation, de-
scribing the laser–plasma interaction for non-Maxwellian
medium is derived. From the discussions of this paper we
get the following conclusions: first, it is found that for the
non-Maxwellian plasma, application of external magnetic
field enhances the MI growth rate of right-hand polarization
but for the left-hand polarization it is reduced. Second, the
existence of super-thermal particles causes the improvement
of the nonlinearity of the plasma medium and consequently it
increases the MI growth rate of both the polarizations.
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