
TLP 12 (4–5): 737–753, 2012. C© Cambridge University Press 2012

doi:10.1017/S1471068412000270

737

Diagrammatic confluence for
Constraint Handling Rules�
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Abstract

Confluence is a fundamental property of Constraint Handling Rules (CHR) since, as in

other rewriting formalisms, it guarantees that the computations are not dependent on

rule application order, and also because it implies the logical consistency of the program

declarative view. In this paper we are concerned with proving the confluence of non-

terminating CHR programs. For this purpose, we derive from van Oostrom’s decreasing

diagrams method a novel criterion on CHR critical pairs that generalizes all preexisting

criteria.We subsequently improve on a result on the modularity of CHR confluence, which

permits modular combinations of possibly non-terminating confluent programs, without loss

of confluence.
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1 Introduction

Constraint Handling Rules (CHR) is a committed-choice constraint logic pro-

gramming language, introduced by Frühwirth (1998) for the easy development of

constraint solvers. It has matured into a general-purpose concurrent programming

language. Operationally, a CHR program consists of a set of guarded rules that

rewrite multisets of constrained atoms. Declaratively, a CHR program can be viewed

as a set of logical implications executed on a deduction principle.

Confluence is a basic property of rewriting systems. It refers to the fact that any

two finite computations starting from a common state can be prolonged so as to

eventually meet in a common state again. Confluence is an important property for

any rule-based language, because it is desirable for computations to not be dependent

on a particular rule application order. In the particular case of CHR, this property

is even more desirable, as it guarantees the correctness of a program (Abdennadher

et al. 1999; Haemmerlé et al. 2011): any program confluent has a consistent logical

� The research leading to these results has received funding from the Programme for Attracting Talent
(PICD) / young PHD of the MONTEGANCEDO Campus of International Excellence, the Madrid
Regional Government under the CM project P2009/TIC/1465 (PROMETIDOS), and the Spanish
Ministry of Science under the MEC project TIN-2008-05624 DOVES.
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reading. Confluence of a CHR program is also a fundamental prerequisite for logical

completeness results (Abdennadher et al. 1999; Haemmerlé 2011a), makes possible

program parallelization (Frühwirth 2005; Meister 2006), and may simplify program

equivalence analyses (Abdennadher and Frühwirth 1999; Haemmerlé 2011b).

Following the pioneering research of Abdennadher et al. (1996), most existing

work dealing with the confluence of CHR limits itself to terminating programs (see

for instance the works by Abdennadher (1997) and Duck et al. (2007)). Nonetheless,

proving confluence without global termination assumptions is still a worthwhile

objective.

From a theoretical point of view, this is an interesting topic, because, as illustrated

by the following example typical CHR programs fail to terminate on the level of

abstract semantics, even if they do terminate on more concrete levels. Indeed, number

of analytical results for the language rest on the notion of confluence, but only when

programs are considered with respect to abstract semantics. For instance, in the

current state of knowledge, even a result as important as the guarantee of correction

by confluence only holds when programs are considered with respect to the most

general operation semantics for CHR, namely the very abstract semantics.

Example 1 (Partial order constraint)

Let P1 be the classic CHR introductory example, namely the constraint solver for

partial order. This consists of the following four rules, which define the meaning of

the user-defined symbol � using the built-in equality constraint = :

duplicate @ x � y \ x � y ⇐⇒ �
reflexivity @ x � x ⇐⇒ �
antisymmetry @ x � y, y � x ⇐⇒ x = y

transitivity @ x � y, y � z =⇒ x � z

The duplicate rule implements so-called duplicate removal. In other words, it states

that if two copies of the same user-defined atom are present, then one of them can

be removed. The reflexivity and transitivity rules respectively state that any atom

of the form x � x can be removed, and that two atoms x � y and x � y can

be substituted with the built-in constraint x = y. Finally, the transitivity rule is a

propagation rule. It states that if x � y and y � z are present, then the atom x � z

may be added.

It is well know that this program, like any other program using propagation rules,

faces the so-called trivial non-termination problem when considered with respect to

the very abstract semantics. Indeed, for these semantics, a propagation rule applies

to any state it produces, leading to trivial loops. In order to solve this problem,

Abdennadher (1997) proposed a token-based semantics in which propagation rules

may be applied only once to the same combination of atoms. Nonetheless, such a

proposal does not solve all the problems of termination. Indeed the transitivity rule

may loop on queries containing a cycle in a chain of inequalities when considered

against Abdennadher’s semantics. Consider, for instance, the query x � y, y � x.

In fact, in order for P1 to be terminating, the rules of reflexivity, antisymmetry,

and transitivity must have priority over the transitivity rule. This behaviour can be

achieved by considering concrete semantics, such as the refined semantics of Duck
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et al. (2005). These semantics reduce the non-determinism of the CHR execution

model by applying the rules in textual order.

In exchange for gaining termination, the most concrete semantics lose a number

of analytical results. For instance, as explained by Frühwirth (2009), although any

CHR program can be run in parallel in abstract semantics, one can obtain incorrect

results for programs written with the refined semantics in mind. Indeed, if the

result of a program relies on a particular rule application order, parallel execution

will garble this order, leading to unexpected results. Interestingly, confluence on

an abstract (but possibly non-terminating) level may come to the rescue of the

most concrete semantics: If a program is confluent on a semantic level where the

rule application order is not specified, then the result will not be dependent on

the particular application order. Similar considerations have been discussed for

equivalences of CHR programs (Haemmerlé 2011b).

From a more practical point of view, proving confluence without the assumption

of termination is important, because it may be desirable to prove the confluence

of a program for which termination cannot be inferred. Indeed, there exist very

simple programs, such as the Collatz function, for which termination is only a

conjecture (Guy 2004). Furthermore, since CHR is now a general-purpose language,

analytical tools for the language must handle programs that do not terminate on any

semantic level—for instance, interpreters for a Turing-complete language (Sneyers

et al. 2009), or typical concurrent programs (see the numerous examples of concurrent

systems given by Milner (1999)). We have also recently demonstrated that non-

terminating execution models for CHR yield elegant frameworks for programming

with coinductive reasoning (Haemmerlé 2011a). As a motivating example for the

class of intrinsically non-terminating programs, we will use the following solution

for the seminal dining philosophers problem.

Example 2 (Dining philosophers)

Consider the following CHR program P2 that implements a solution to the dining

philosophers problem extended to count the number of times a philosopher eats:

eat @ t(x, y, i), f(x), f(y) ⇐⇒ e(x, y, i+ 1)

thk @ e(x, y, i) ⇐⇒ f(x), f(y), t(x, y, i)

The atom f(x) represents the fork x, the atom e(x, y, i) (resp. t(x, y, i)) represents an

eating (thinking) philosopher seated between forks x and y, who has already eaten

i times. On the one hand, the rule eat, states that if a thinking philosopher is seated

between two forks lying on the table, then he may start eating once he has picked

up both forks. On the other hand, the rule thk states that a philosopher may stop

eating if he puts down the forks he has been using. The initial state corresponding

to n dining philosophers seated around a table can be encoded by the set of atoms

f(1), t(1, 2, 0), f(2), t(2, 3, 0), · · · f(n), t(n, 1, 0).

Despite the fact that this program is intrinsically non-terminating, we may

be interested in its confluence, for example, so that we may make use of one

of the previously mentioned applications (e.g. confluence simplifies observational

equivalence (Haemmerlé 2011b)). Confluence of P2 may also simplify the proofs of
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fundamental properties of concurrent systems, such as, for instance, the absence of

deadlock: Starting from the initial state, one can easily construct a derivation where

the ith philosopher (i ∈ 1, . . . , n) has eaten an arbitrary number of times. Hence if P2

is confluent, we can then infer that it is possible to extend any finite derivation such

that the ith philosopher eats strictly more, i.e. no derivation leads to a deadlock.

To the best of our knowledge, the only existing principle for proving confluence

of non-terminating programs is the so-called strong confluence criterion (Haemmerlé

and Fages 2007; Raiser and Tacchella 2007). However this criterion appears to be

too weak to apply to common CHR programs, such as Examples 1 and 2. In this

paper, we are concerned with extending CHR confluence theory to be able to capture

a large class of possibly non-terminating programs. For this purpose we derive

from the so-called decreasing diagrams technique a novel criterion that generalizes

all existing confluence criteria for CHR. The decreasing diagrams technique is a

method developed by van Oostrom (1994) which subsumes all sufficient conditions

for confluence. Applying this method requires that all local rewrite peaks (i.e. points

where the rewriting relation diverges because of non-determinism) can be completed

into so-called decreasing diagrams.

The present paper presents two main contributions. In Section 4 , we present a

particular instantiation of the decreasing diagrams technique to CHR, and show

that in the context of this particular instantiation, the verification of decreasingness

can be restricted to the standard notion of critical pairs. Then in Section 5, we

extend the so-called modularity of confluence (Frühwirth 2009) so as to be able to

combine programs which have independently been proven confluent, without losing

confluence.

2 Preliminaries on abstract confluence

In this section, we gather some required notations, definitions, and results on the

confluence of abstract rewriting systems. Terese’s compendium (2003) can be referred

to for a more detailed presentation.

A rewrite relation (or rewrite for short) is a binary relation on a set of objects E.

For any rewrite →, the symbol ← will denote its converse, →≡ its reflexive closure,

→+ its transitive closure, and � its transitive-reflexive closure. We will use →α ·→β

to denote the left-composition of all rewrites →α and →β . A family of rewrites is a

set (→α)α∈I of rewrites indexed by a set I of labels. For such a family and any set

K , →K will denote the union
⋃
α∈(K∩I) (→α).

A reduction is a finite sequence of rewriting steps of the form (e0
P−→α1

e1
P−→α2

· · · P−→αn en). Such a reduction would be abreviated as e0
P−→ᾱ en with ᾱ = α1, α2, . . . , αn

when the intermediary states e1, . . . , en−1 are not relevant. A peak is a pair of

reductions el
P←−ᾱ e

P−→β̄ er from a common element e. A local peak is a peak

formed by two one-step reductions. A valley is a pair of reductions el
P−→ᾱ e

′ P←−β̄ er
ending in a common element e′. A peak el

P←−ᾱ e
P−→ᾱ′ er is joinable by

P−→β ·
P←−β′

if it is true that el
P−→β ·

P←−β′ er .
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Fig. 1. Confluence. Fig. 2. Local Confluence.

≡ ≡

Fig. 3. Strong confluence.

A rewrite → is terminating if there is no infinite sequence of the form e0 → e1 →
e2 . . . Furthermore, we will say that → is confluent if (� ·�) ⊆ (� ·�) holds,

locally confluent if (← · →) ⊆ (� ·�) holds, and strongly confluent1 if (← · →) ⊆
(→≡ · ←≡) holds. Figures 1–3 graphically represent these definitions. Following

standard diagrammatic notation, solid edges stand for universally quantified rewrites,

while dashed edges represent existentially quantified rewrites.

By the seminal lemma of Newman (1942), we know that a terminating and locally

confluent rewrite is confluent. Another famous result due to Huet (1980) ensures

that strong confluence implies confluence.

We now present a slight variation due to Hirokawa and Middeldorp (2010) of the

so-called decreasing diagrams technique, which is more suitable for our purposes.

The interest of the decreasing diagrams method (van Oostrom 1994) is that it reduces

problems of general confluence to problems of local confluence. In exchange, the

method requires the confluence diagrams (i.e. the way peaks close) to be decreasing

with respect to a labeling provided with a wellfounded preorder. The method is

complete in the sense that any countable confluence rewrite can be equipped with

such a labeling. But because confluence is an undecidable property, finding such

labeling may be difficult.

In the rest of this paper, we will say that a preorder � is wellfounded, if the strict

preorder � associated with � (i.e. α � β iff α � β but not β � α) is a terminating

relation. Let (→α)α∈I be a family of rewrites and � be a wellfounded preorder on I .

A local peak el ←α e→β er (α, β ∈ I) is decreasing with respect to � if the following

holds:

el � � {α} · →≡� {β} ·� � {α,β} e
′ � � {α,β} · ←≡� {α} ·� � {β} er (�)

where for any set K of labels,

�

K stands for {γ ∈ I | ∃δ ∈ K.δ � γ} and

�

K for

{γ ∈ I | ∃δ ∈ K.δ � γ}. A family (→α)α∈I of rewrites is (locally) decreasing if all

local peaks of the form u ←α · →β v (α, β ∈ I) are decreasing with respect to a

common wellfounded preorder on I . A rewrite is (locally) decreasing if it is the

union of some decreasing families of rewrites. Property (�) is graphically represented

in Figure 4.

Theorem 3 (Decreasing Diagram (van Oostrom 1994))

A countable rewrite is confluent if and only if it is locally decreasing.

1 For the sake of simplicity, we use a definition weaker than the one of Huet (1980). It is worth noting,
that the counterexamples given in introduction stay relevant for the general definition.
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α β

�

{α} ≡�

{β} �

{α
,β}

� {β
}

≡

� {α
}

� {α
,β
}

Fig. 4. Local decreasingness.

We recall now some other state-of-the-art results which will be used later.

Lemma 4 (Terese 2003 )

(i) For all rewrites→1,→2 if (←1 ·�2) ⊆ (�2 ·�1), then (�1 ·�2) ⊆ (�2 ·�1).

(ii) For all rewrites→1,→2 s.t.→1 ⊆ →2 ⊆�1,→2 is confluent iff→1 is confluent.

3 Preliminaries on constraint handling rules

In this section, we recall the syntax and the semantics of CHR. Frühwirth’s book

(2009) can be referred to for a more general overview of the language.

3.1 Syntax

The formalization of CHR assumes a language of (built-in) constraints containing

equality over some theory C, and defines (user-defined) atoms using a different set of

predicate symbols. In the following, R will denote an arbitrary set of identifiers. By

a slight abuse of notation, we allow confusion of conjunctions and multiset unions,

omit braces around multisets, and use the comma for multiset union. We use fv(φ)

to denote the set of free variables of a formula φ. The notation ∃ -ψφ denotes the

existential closure of φ with the exception of free variables of ψ.

A (CHR) program is a finite set of eponymous rules of the form:

(r @ �\� ⇐⇒ � | �; �)

where � (the kept head), � (the removed head), and � (the user body) are multisets

of atoms, � (the guard) and � (the built-in body) are conjunctions of constraints

and, r ∈ R (the rule name) is an identifier assumed unique in the program. Rules

in which both heads are empty are prohibited. An empty guard � (resp. an empty

kept head) can be omitted with the symbol | (resp. with the symbol \). Rules are

divided into two classes: simplification rules2 if the removed head is non-empty and

2 Unlike standard presentations, our definition does not distinguish between simplification rules form
the so-called simpagation rules.
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propagation rules otherwise. Propagation rules can be written using the alternative

syntax:

(r @ � =⇒ � | �; �)

3.2 Operational semantics

In this section, we recall the equivalence-based operational semantics ωe of Raiser

et al. (2009). It is equivalent to the very abstract semantics ωva of Frühwirth

(1998), which is the most general operational semantics of CHR. We prefer the

former because it includes an rigorous notion of equivalence, which is an essential

component of confluence analysis.

A (CHR) state is a tuple 〈�; �; x̄〉, where � (the user store) is a multiset of atoms,

� (the built-in store) is a conjunction of constraints, and x̄ (the global variables)

is a finite set of variables. Unsurprisingly, the local variables of a state are those

variables of the state which are not global. When no confusion can occur, we will

syntactically merge user and built-in stores. We may futhermore omit the global

variables component when states have no local variables. In the following, we use Σ

to denote the set of states. Following Raiser et al., we will always implicitly consider

states modulo a structural equivalence. Formally, this state equivalence is the least

equivalence relation ≡ over states satisfying the following rules:

• 〈�; �; x̄〉 ≡ 〈�; �; x̄〉 if C � ∃ -(�,x̄)�↔ ∃ -(�,x̄)�
• 〈�;⊥; x̄〉 ≡ 〈�;⊥; ȳ〉
• 〈	, c; �, c=d; x̄〉 ≡ 〈	, d; �, c=d; x̄〉
• 〈	; �; x̄〉 ≡ 〈	; �; {y} ∪ x̄〉 if y /∈ fv(	,�).

Once states are considered modulo equivalence, the operation semantics of CHR

can be expressed by a single rule. Formally the operational semantcs of a program

P is given by the least relation
P−→ on states satisfying the rule:(

r @ �\� ⇐⇒ �|�; �
)
∈ Pρ lv(r) ∩ fv(�,�, x̄) = ∅

〈�,�,�; �,�; x̄〉 P−→ 〈�,�,�; �,�,�; x̄〉

where ρ is a renaming. A program P is confluent (resp. terminating) if
P−→ is confluent

(resp. terminating).

Before going further, we recall an important property of CHR semantics. This

property, monotonicity, means that if a transition is possible in a state, then the same

transition is possible in any larger state. To help reduce the level of verbosity we

introduce the notion of the quantified conjunction of states (Haemmerlé and Fages

2007). This operator allows the composition of states with disjoint local variables

while quantifying some of their global variables (i.e. changing global variables into

local ones). Formally, the quantified conjunction is a binary operator on states

parametrized by a set of variables z̄ satisfying:

〈�; �; x̄〉 ⊕z̄ 〈�; �; ȳ〉 = 〈�,�; �,�; (x̄ȳ) \ z̄〉 if (fv(�,�) ∩ fv(�,�)) ⊆ (x̄ ∩ ȳ)

Note the side condition is not restrictive, as local variables can always be renamed

using the implicit state equivalence.
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Proposition 5 (Monotonicity of CHR)

Let P be a CHR program, S , S1, S2 be CHR states, and x̄ be a set of variables.

If S1
P−→ S2, then S1 ⊕x̄ S

P−→ S2 ⊕x̄ S

3.3 Declarative semantics

Owing to its origins in the tradition of CLP, the CHR language features declarative

semantics through direct interprestation in first-order logic. Formally, the logical

reading of a rule of the form:

�\� ⇐⇒ � | �; �

is the guarded equivalence:

∀
(
(� ∧�)→

(
�↔ ∃ -(�,�)(� ∧� ∧�)

))
The logical reading of a program P within a theory C is the conjunction of the

logical readings of its rules with the constraint theory C. It is denoted by CP.

Operational semantics is sound and complete with respect to this declarative

semantics (Frühwirth 1998; Abdennadher et al. 1999). Furthermore, any program

confluent with respect to ωe has a consistent logical reading (Abdennadher et al.

1999; Haemmerlé et al. 2011).

4 Diagrammatic confluence for Constraint Handling Rules

In this section, we are concerned with proving confluence of a large class of

CHR programs. Indeed, as explained in the introduction, existing criteria are not

sufficiently powerful to infer confluence of common non-terminating programs. (See

Examples 13 and 14 for concrete examples). To avoid this limitation, we will derive

from the decreasing diagrams technique a novel csriterion on CHR critical pairs that

generalizes both local and strong confluence criteria. An analogue criterion has been

developed for linear Term Rewriting Systems (TRS) (Jouannaud and van Oostrom

2009).

4.1 Labels for Constraint Handling Rules

In order to apply the decreasing diagram technique to CHR, we will need first to

label CHR transitions. In this work, we will use two labelings proposed by van

Oostrom (2008) for TRS. The first one is the so-called rule-labeling. It consists of

labeling each transition a
P−→ b with the name of the applied rule. This labeling

is ideal for capturing strong confluence-like properties for linear TRS. Within the

proof of our main result, we will also use the so-called self-labeling which consists

of labeling each transition a
P−→ b with its source a. This second labeling captures

the confluence of terminating rewrites.

In practice, we will assume that the set R of rule identifiers is defined as a disjoint

union Ri � Rc. For a given program P, we denote by Pi (resp. Pc) the set of rules
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form P built with Ri (resp. Rc). We call Pi the inductive part of P, because we will

subsequently assume that Pi is terminating, while Pc will be called coinductive, as it

will be typically non-terminating.

Definition 6 (Rule-labeling)

The rule-labeling of a CHR program P is the family of rewrites (
P−→r)r∈R indexed

by rule identifiers, where
P−→r =

{r}−→. A preorder � on rule identifiers is admissible, if

any inductive rule identifier is strictly smaller than any coinductive one (i.e. for any

ri ∈ Ri and any rc ∈ Rc, rc � ri holds).

4.2 Critical peaks

In TRS, the basic techniques used to prove confluence consist of showing various

confluence criteria on a finite set of special cases, called critical pairs. Critical pairs

are generated by a superposition algorithm, in which one attempts to capture the

most general way the left-hand sides of the two rules of the system may overlap.

The notion of critical pairs has been successfully adapted to CHR by Abdennadher

et al. (1996). Here, we introduce a slight extension of the notion that takes into

account the rule-labeling we have just defined.

Definition 7 (Critical peak )

Let us assume that r1 and r2 are CHR rules renamed apart:(
r1 @ �1\�1 ⇐⇒ �1 | �1; �1

)
∈ P1

(
r2 @ �2\�2 ⇐⇒ �2 | �2; �2

)
∈ P2

A critical ancestor (state) Sc for the rules r1 and r2 is a state of the form:

Sc = 〈�∆
1 ,�

∩
1 ,�

∆
2 ; �; x̄〉

satisfying the following properties:

• (�1,�1)=̇(�∆
1 ,�

∩
1 ), (�2,�2)=̇(�∆

2 ,�
∩
2 ), �∩1 �= ∅, and �∩2 �= ∅;

• x̄1 = fv(�1,�1), x̄2 = fv(�2,�2) and x̄ = x̄1 ∪ x̄2;

• � = (�∩1 =̇�∩2 ,�1,�2) and ∃� is C-satisfiable;

• �∩1 �⊆ �1 or �∩2 �⊆ �2.

Then the following tuple is called a critical peak between r1 and r2 at Sc:

〈�1,�1,�
∆
2 ; �,�1; x̄〉

P←−r1 Sc
P−→r2 〈�2,�2,�

∆
1 ; �,�2; x̄〉

A critical peak between a program P and a program Q is a critical peak between a

rule of P and a rule of Q. A critical peak of a program P is a critical peak between

P and itself. A critical peak is inductive if it involves only inductive rules (i.e. a

critical peak of Pi), or coinductive if it involves at least one coinductive rule (i.e. a

critical peak between Pc and P).

Example 8

Consider the solver partial order P1, given in Example 1. The following ciritial

peak stems from overlapping the heads of the rules antisymmetry and transitivity:

〈x = y〉
P1←−anti. 〈x � y, y � x〉

P1−→trans. 〈x � y, y � x, x � x〉
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4.3 Rule-decreasingness

We now come to our main result, showing that the study of decreasingness with

respect to the rule-labeling can be restricted to critical peaks without loss of

generality.

Definition 9 (Critical rule-decreasingness)

A program P is (critically) rule-decreasing w.r.t. an admissible preorder � if:

• the inductive part of P is terminating,

• all inductive critical peaks of P are joinable by
Pi−� · P

i

�−, and

• all coinducitve critical peaks of P are decreasing w.r.t. �.

A program is rule-decreasing if it is rule-decreasing with respect to some admis-

sible preorder. A rule-decreasing program is strongly rule-decreasing if it is purely

coinductive (i.e. without inductive rules).

Theorem 10

Rule-decreasing programs are confluent.

Proof

Let us assume that P is a rule-decreasing program w.r.t. a given preorder �R. Now

let (
P−→α)α∈(Σ∪Rc), the family of rewrites indexed by rule or state, be defined as

P−→α =

{
Pi−→ ∩

(
{α} × Σ

)
if α ∈ Σ (self-labeling on inductive part)

{α}−→ if α ∈ Rc (rule-labeling on coinductive part)

Let � be the union of �R,
Pi−→+ , and {(r, α) | r ∈ R & α ∈ I}. By assuming without

loss of generality that R is finite (i.e. �R is trivially wellfounded), we obtain that

� is wellfounded. With the help of Theorem 3, it suffices to prove that each peak

Sα
P←−α S

P−→β Sβ (α, β ∈ (Rc ∪ Σ)) is decreasing w.r.t. �. We distinguish two cases:

1 The rules rα and rβ used to respectively produce Sα and Sβ apply to different parts

of S . By monotonicity of CHR transitions, we infer Sα
{rβ }−−→ S ′

{rα}←− Sβ . We have

to show this valley respects property (�) within the definition of the decreasing

diagrams. We proceed by cases on the types of the rules rα and rβ:

1.1 rα is inductive. We have α = S , α
Pi−→+ Sα, and Sβ

P−→Sβ S
′.

1.1.1 rβ is inductive. We have β = S , β
Pi−→ Sβ , and Sα

P−→Sα S
′. Since Pi is

terminating, we infer α � Sα and β � Sβ . We conclude Sα
P−→Sα S

′ P←−Sβ Sβ ,
i.e. the peak is decreasing w.r.t. �.

1.1.2 rβ is coinductive. We have β ∈ Rc, Sα
P−→β S

′, and β � Sα. We conclude

Sα
P−→Sα S

′ P←−β Sβ , i.e. the peak is decreasing w.r.t. �.

1.2 rα is coinductive. We have α ∈ Rc and Sβ
P−→α S

′.

1.2.1 rβ is inductive. The case is symmetric with case 1.1.2.

1.2.2 rβ is coinductive. We have β ∈ Rc and Sα
P−→β S

′. We conclude Sα
P−→α

S ′
P←−β Sβ , i.e. the peak is decreasing w.r.t. �.
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2 The applications of the rules rα and rβ used to respectively produce Sα and Sβ
overlap. There should exist a critical peak Rα

P←−rα Sc
P−→rβ Rβ , a state R, and a

set of variables ȳ, such that S ≡ Sc ⊕x̄ R, Sα ≡ Rα ⊕x̄ R, and Rβ ≡ Rβ ⊕x̄ R. We

proceed by cases on the types of rules rα and rβ:

2.1 Both rules are inductive: We have β = α = S , and by hypothesis we have

Rα ≡ R0
α
Pi−→ R1

α
Pi−→ · · · Smα ≡ S ′ ≡ Rnβ · · ·

Pi←− R1
β

Pi←− R0
β ≡ Rβ

By monotony of CHR we infer:

Sα ≡ S0
α
Pi−→ S1

α
Pi−→ · · · Smα ≡ S ≡ Snβ · · ·

Pi←− S1
β

Pi←− S0
β ≡ Sβ

where Siα = Riα ⊕x̄ R (for i ∈ 0, . . . m), Siβ = Riβ ⊕x̄ R (for i ∈ 0, . . . n), and

S = S ′ ⊕ R. By construction of (
P−→α)α∈Σ×Rc we get:

Sα
P−→S0

α
S1
α
P−→ S1

α · · · Smα ≡ S ≡ Snβ · · ·
P←−S1

β
S1
β

P←−S0
β
Sβ

To conclude about the discussion of the decreasingness of the peak, it is just

necessary to notice that for any i ∈ 0, . . . m and any j ∈ 0, . . . n, both S
P−→+ Siα

and S
P−→+ S

j
β hold, i.e. Siα, S

j
β ∈

� {α, β}.
2.2 One of the rules is coinductive. By hypothesis we have

Rα � � {r1} · →≡� {r2} ·� � {r1 ,r2} ·� � {r1 ,r2} · ←≡� {r1} ·� � {r2} Rβ

or equivalently by monotony of CHR:

Sα � � {r1} · →≡� {r2} ·� � {r1 ,r2} ·� � {r1 ,r2} · ←≡� {r1} ·� � {r2} Sβ �

Theorem 10 strictly subsumes all the criteria for proving confluence of CHR

programs we are aware of, namely the local confluence (Abdennadher et al. 1999)

and the strong confluence (Haemmerlé and Fages 2007) criteria.

Corollary 11 (Local confluence)

A terminating program P is confluent if its critical peaks are joinable by
P−� · P�−.

Corollary 12 (Strong confluence)

A program P is confluent if its critical peaks are joinable by
P−→≡· P←−≡ .

The following examples show that the rule-decreasingness criterion is more

powerful than both local and strong confluence criteria.

Example 13

Consider the solver P1. for partial order given in Example 1. Since P1. is trivially

non-terminating one cannot apply local confluence criterion. Strong confluence does

not apply either, because of some non-strongly joinable critical peaks. For instance,

considere the peak given at Example 8:

〈x = y〉
P1.←−anti. 〈x � y, y � x〉

P1.−→trans. 〈x � y, y � x, x � x〉

It can be seen that 〈x = y〉 may not be reduced, and that the right-hand side cannot

be rewritten into the left-hand side in less than two steps (e.g. by using reflexivity

and antisymmetry rules).
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〈x ≤ x, x ≤ y〉

〈x ≤ x〉 〈x ≤ x, x ≤ y, x ≤ x〉

〈x ≤ y, y ≤ x〉

anti. trans.

reflex.anti.

〈x ≤ y, y ≤ z, z ≤ y〉

〈x ≤ y, y = z〉 〈x ≤ y, y ≤ z, z ≤ y, x ≤ z〉

〈x ≤ y, x ≤ z, y = z〉

anti. trans.

anti.dupl.

Fig. 5. Some rule-decreasing critical peaks for P1.

Nonetheless, confluence of P1. can be deduced using the full generality of

Theorem 10. For this purpose, assume that all rules except transitivity are inductive

and take any admissible preorder. Clearly the inductive part of P1. is terminating.

Indeed the application of any one of the three first rules strictly reduces the number

of atoms in a state. Then by a systematic analysis of all critical peaks of P1.,

we prove that each peak can be closed while respecting the hypothesis of rule-

decreasingness. In fact all critical peaks can be closed without using transitivity.

Some rule-decreasing diagrams involving the transitivity rule are given as examples

in Figure 5.

Example 14

Consider the program P2. implementing the dining philosophers problem, as given

in Example 2. The confluence of P2. cannot be inferred by either local or strong

confluence. On the one hand, P2. is obviously non-terminating, and hence prevents

the application of the local confluence criterion. On the other hand, P2. has critical

peaks which are not in (
P2.−�·

P2.
�−). Consider as an example the peak given in Figure 6.

It is critical for the rule eating with itself, but it is not joinable by (
P2.−→≡·

P2.←−≡ ).

However, the figure shows that it is joinable by

P2.−→≡ thk·
P2.−→≡ eat·

P2.−→≡ thk·
P2.←−≡ thk·

P2.←−≡ eat·
P2.←−≡ thk

i.e. the peak is decreasing. In fact, all the critical peaks of P2. involve only the rule

eat and may be closed in a similar manner. Thus, by assuming that the eat rule is

coinductive and strictly greater than thk, we can infer, using Theorem 10, that P2.

is confluent.

4.4 On program partitioning

The rule-decreasingness criterion is based on the division of the program into a

terminating part and a possibly non-terminating one. Since a program can be

partitioned in multiple ways, it may be the case that the rule-decreasingness of a

program depends on the splitting used (see Example 16). From a purely theoretical

point of view, this is not a particular drawback, since the property we aim at

proving (i.e. the confluence of program) is undecidable. From a more pragmatical

point of view, it appears that the classic examples of CHR programs can be proved

to be rule-decreasing without any assumption of termination. In particular, we were
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〈f(x), f(y), f(z), t(x, y, i), t(y, z, j)〉

〈f(z), e(x, y, i + 1), t(y, z, j)〉

〈f(x), f(y), f(z), t(x, y, i + 1), t(y, z, j)〉

〈f(x), t(x, y, i + 1), e(y, z, j + 1)〉

〈f(x), t(x, y, i), e(y, z, j + 1)〉

〈f(x), f(y), f(z), t(x, y, i), t(y, z, j + 1)〉

〈f(z), e(x, y, i + 1), t(y, z, j + 1)〉

〈f(x), f(y), f(z), t(x, y, i + 1), t(y, z, j + 1)〉

eat eat

thk

eat

thk

thk

eat

thk

Fig. 6. A rule-decreasing critical peak of P2.

unable to find a counterexample of a confluent but non-strongly rule-decreasing

program in Frühwirth’s book (2009).

Example 15

Consider the CHR solver for partial order given in Example 1. Assuming that any

rule is coinductive, P can be shown strongly rule-decreasing with respect the order

� satisfying:

transitivity � duplicate � antisymmetry � reflexivity

As illustrated by Figure 5, critical peaks involving transitivity rules may be closed

using only rules that are strictly smaller. Similarly, one can verify that any critical

peak between a given rule α and a smaller (or equal) one can be closed using only

rules strictly smaller than α (i.e. all the peaks are trivialy decreasing).

The choice of a good partition may simplify proofs of rule-decreasingness: by

maximizing the inductive part of a program, the number of peaks which must be

proved decreasing (i.e. the coinductive critical peaks) is reduced. Indeed, while the

joinability of a peak with respect to the inductive part of program – which must

be terminating – is a decidable problem and can be efficiently automatized,3 the

rule-decreasingness of a peak with respect to a possibly non-terminating program

is likely to be undecidable.4 Consequently, a good partition will limit the use of

heuristics or human interactions necessary to infer a rule-decreasing diagram for

each coinductive critical peak.

Since termination is also an undecidable property, we cannot expect to fully

automatize the search for the optimal partition, and we must content ourselves

3 See the works about CHR local confluence (Abdennadher et al. 1999; Abdennadher 1997).
4 Decreasingness of a peak for a given order seems a more difficult problem than joinability without

termination assumption—which is itself undecidable.
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〈p(s(x)),p(s(x))〉

〈p(s(x))〉 〈p(s(x)),p(x)〉

〈p(x),p(x)〉〈p(x)〉

p s−

s−s−

p

Fig. 7. Critical peak of P−16.

〈p(x),p(x)〉

〈p(x)〉 〈p(s(x)),p(x)〉

〈p(s(x)),p(s(x))〉〈p(s(x))〉

p s+

s+s+

p

Fig. 8. Critical peak of P−16.

with heuristic procedures. Despite the fact that the formal development of such

procedures is beyond the scope of this paper, our practical experience suggests that

a trivial partitioning may be interesting. This partition consists of considering as

inductive only those rules that strictly reduce the number of atoms in a state. Even

if this choice is not necessarily optimal and may even produce bad partitions, it

does seem to produce relevant partitions for typical CHR solvers, as illustrated by

Example 13.

We now give two counterexamples. The first shows that rule-decreasingness can

be dependent on particular splittings, while the second presents a confluent program

which is not rule-decreasing.

Example 16

Consider the following CHR rules:

duplicate @ p(x)\p(x)⇐⇒� s− @ p(s(x))⇐⇒ p(x) s+ @ p(x)⇐⇒ p(s(x))

We denote by P−16 the program built from the duplicate and s− rules, and by P+
16

the program built from the duplicate and s+ rules.

P−16 is clearly terminating: the duplicate rule strictly reduces the number of atoms

in a state, while s− leaves the number of atoms unchanged, but strictly reduces the

size of the argument of one of them. We can also verify that P−16 has a single critical

peak. Figure 7 shows the only way this peak may be closed. Thus, by assuming that

all rules are inductive, we can infer that the program is rule-decreasing. However if

s− is assumed to be coinductive, we can verify that the sole critical peak of P−16 is

decreasing with respect to no admissible order.

As in the case of P−16, P+
16 yields only one critical peak which is decreasing

with respect to no admissible order (see Figure 8). However, this time s+ is not

terminating, and so cannot been assumed inductive. Consequently P+
16 cannot be

inferred to be confluent using Theorem 10.

5 Modularity of CHR confluence

In this section, we are concerned with proving the confluence of union of confluent

programs in a modular way (in particular of those programs proved confluent using

the rule-decreasing criterion). In practice, we improve on a result of Frühwirth (2009)
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which states that a terminating union of confluent programs which do not overlap

(i.e. which do not have a critical peak) is confluent. In particular, we allow some

overlapping and we drop the termination hypotheses.

Theorem 17 (Modularity of confluence)

Let P and Q be two confluent CHR programs. If any critical peak between P and

Q is joinable by
Q−� · P←−≡ , then PQ is confluent.

Before formally proving the theorem, it is worth noting that, despite the fact that

modularity of confluence and the rule-decreasing theorem have similar flavors, both

results have different scopes. Indeed, on the one hand modularity of confluence does

not assume anything about the way in which P and Q are confluent. For instance, if

P and Q are two rule-decreasing programs, Theorem 17 does not require the union

of the inductive parts of P and Q to be terminating, while Theorem 10 does. This

is important since, termination is not a modular property: even if two terminating

programs do not share any user-defined atoms, one cannot be sure that their union

is terminating. (See Section 5.4 of Frühwirth’s book (2009) for more details.) On the

other hand, the rule-decreasing criterion allows the critical peaks to be closed in a

more complex way than Theorem 17 permits.

The proof of the theorem rests on the following lemma, which states that under

the hypotheses of Theorem 17,
P−→ “strongly commutes” with

Q−→.

Lemma 18

If critical peaks between P and Q are in
Q−� · P←−≡ , then (

P←−· Q−�) ⊆ (
Q−� · P←−≡ ).

Proof

We prove by induction on the length of the derivation Sc
Q−� S ′ that for any peak

S
P←− Sc

Q−� S ′, the property S
Q−� · P←−≡ S ′ holds. The base case Sc ≡ S ′ is immediate.

For the inductive case S
P←− Sc

Q−� S ′′
Q−→ S ′, we know by the induction hypothesis

that there exists a state R, such that S
Q−� R

P←−≡ S ′′. From here, it is sufficient to

prove that R
Q−� · P←−≡ S ′ and to use the definition of relation composition in order

to conclude. We assume that S ′′
Q−→ R, otherwise R

Q−� · P←−≡ S ′ holds trivially. We

distinguish two cases: either the rules involved in the local peak R
P←− S ′′

Q−→ S ′

apply to different parts of S ′′, or else their applications overlap. In the first case,

we use CHR monotonicity to infer R
Q−→ · P←− S ′′. In the second case, there must

exist a critical peak R′′
P←− · Q−→ S ′′′, a state R′, and a set of variables x̄, such that

R′′ ⊕x̄ R′ ≡ R, S ′′′ ⊕x̄ R′ ≡ S ′. Then by the hypotheses and CHR monotonicity, we

obtain the results that R
Q−� · P←−≡ S ′. �

Proof of Theorem 17

Let →1 =
P−�, →2 =

Q−�. On one hand, by the confluence of P and Q, we have

(←1 · →1) ⊆ (→1 · ←1) and (←2 · →2) ⊆ (→2 · ←2). (Note that �1 = →1 and

�2 =→2.) On the other hand, by combining Lemma 18 and case (i) of Lemma 4,

we infer (←1 · →2) ⊆ (→2 · ←1). By a trivial application of Theorem 3, we find that

→{1,2} is confluent. We conclude by noting
PQ−→ ⊆ →{1,2} ⊆

PQ−�, and apply case (ii)

of Lemma 4. (It is worth noting that →{1,2} equals neither
PQ−→ nor

PQ−�.) �
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6 Conclusion

By employing the decreasing diagrams technique in CHR, we have established a new

criterion for CHR confluence that generalizes local and strong confluence criteria.

The crux of this novel criterion rests on the distinction between the terminating part

(the so-called inductive part) and non-terminating part (the so-called coinductive

part) of a program, together with the labeling of transitions by rules. Importantly, we

demonstrate that in the particular case of the proposed application of the decreasing

diagrams, the check on decreasingness can be restricted to the sole critical pairs,

hence making it possible to automatize the process. We also improve on a result

about the so-called modularity of confluence, which allows a modular combination

of rule-decreasing programs, without loss of confluence.

It is worth saying that all the diagrammatic proofs sketched in the paper have

been systematically verified by a prototype of a diagrammatic confluence checker.

In practice, this checker automatically generates all the critical pairs of a program

provided with an admissible order, then using user-defined tactics (finit sets of

reductions) tries to join these while respecting rule-decreasingness.

Current work involves investigating the development of heuristics to auto-

matically infer rule-decreasingness without human interaction. We also plan to

develop a new completion procedure based on the criterion presented here. Be-

cause duplicate removal is an important programming idiom of CHR, the de-

velopment of new confluence-proof techniques capable of dealing with confluent

but non-rule-decreasing programs, like those given in Example 16, is also worth

investigating.
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Abdennadher, S. and Frühwirth, T. 1999. Operational equivalence of CHR programs and

constraints. In Proceedings of the International Conference on Principles and Practice of

Constraint Programming (CP). LNCS, vol. 1713. Springer, Berlin, Germany, 43–57.
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