
TLP 8 (4): 491–526, 2008. C© 2008 Cambridge University Press

doi:10.1017/S147106840800327X First published online 26 February 2008 Printed in the United Kingdom

491

TCHR: a framework for tabled CLP

TOM SCHRIJVERS� and BART DEMOEN

Dept. of Computer Science, K.U.Leuven, Belgium

(e-mail: toms,bmd@cs.kuleuven.ac.be)

DAVID S. WARREN

Dept. of Computer Science, State University of New York at Stony Brook, USA

(e-mail: warren@cs.sunysb.edu)

submitted 25 September 2006; revised 19 July 2007; accepted 19 Dec 2007

Abstract

Tabled Constraint Logic Programming is a powerful execution mechanism for dealing

with Constraint Logic Programming without worrying about fixpoint computation. Var-

ious applications, e.g. in the fields of program analysis and model checking, have been

proposed. Unfortunately, a high-level system for developing new applications is lacking, and

programmers are forced to resort to complicated ad hoc solutions.

This papers presents TCHR, a high-level framework for tabled Constraint Logic Program-

ming. It integrates in a light-weight manner Constraint Handling Rules (CHR), a high-level

language for constraint solvers, with tabled Logic Programming. The framework is easily

instantiated with new application-specific constraint domains. Various high-level operations

can be instantiated to control performance. In particular, we propose a novel, generalized

technique for compacting answer sets.

KEYWORDS: Constraint logic programming, Constraint handling rules, Tabled execution

1 Introduction

The notion of tabled Constraint Logic Programming (CLP) originates from the

constraint databases community Kanellakis et al. (1995). In an ordinary database,

data is stored in relations of atomic values. Constraint databases generalize atomic

values to constraint variables: a field is restricted to a range of values rather

than a single value. This allows for more compact representations than explicitly

enumerating the atomic values. DATALOG, a formalism for reasoning about

ordinary databases and queries in particular, is generalized to DATALOGD for

this purpose. Just as DATALOG is a restricted form of Logic Programming,

DATALOGD is a restricted form of Constraint Logic Programming. The restrictions

enforce programs to have finite interpretations.

� Research Assistant of the fund for Scientific Research – Flanders (Belgium)(F.W.O. – Vlaanderen).

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

492 T. Schrijvers et al.

Due to the finiteness properties, queries on DATALOGD programs can be resolved

by bottom-up computation rather than the usual top-down goal-directed compu-

tation of CLP. The former has the advantage that it terminates for DATALOGD

programs, whereas the latter may get stuck in infinite loops. However, a goal-

directed approach usually obtains the desired result much faster and uses less space.

For this reason, Toman (Toman 1997b) proposed a compromise: tabling. Tabling

is an LP technique for improving the termination properties of the goal-directed

approach through the memoization of intermediate results. By generalizing tabled

DATALOGD to Tabled CLP, we benefit from both the generalized expressivity of

CLP and the improved termination properties of tabling.

A number of different applications have been proposed for tabled DATALOGD

and Tabled CLP. Toman himself considers it an alternative approach to implement-

ing abstract interpretation (Toman 1997a): constraints abstract concrete values and

tabling takes care of fixpoints. Various applications in the context of model checking

have been developed (Mukund et al. 2000; Du et al. 2000; Pemmasani et al. 2002):

constraints impose restrictions on parameters in parametrized models while tabling

takes care of cycles in the model graphs.

The above establishes a clear need for Tabled CLP, but let us consider the avail-

ability of Tabled CLP systems. It turns out that a user-friendly and comprehensive

system for developing new Tabled CLP applications is missing completely. The

above-mentioned model checking applications (e.g. (Mukund et al. 2000; Du et al.

2000; Pemmasani et al. 2002)) have adapted an existing tabled logic programming

system, XSB (Warren et al. 2005), with constraint programming facilities in various

ad hoc and laborious ways.

At first, XSB developers resorted to interfacing with foreign language libraries

or implementing constraint solvers in XSB itself with a close coupling of constraint

solver and application as a consequence. For instance, the initial feasibility study

of a real-time model checking system used a meta interpreter written in XSB to

deal with constraints (see Mukund et al. 2000). The subsequent full system im-

plements an interface between XSB and the POLINE polyhedra-based constraint

solver library, and passes around handles to the constraint store in the XSB program

(see Du et al. 2000). At a later stage this real time model checking application

used distance bound matrices implemented in XSB itself (see Pemmasani et al.

2002).

In an attempt to facilitate the use of constraints, XSB was extended with attributed

variables (Cui and Warren 2000a). Attributed variables (Holzbaur 1992) are Prolog

language feature widely used for implementing constraint solvers. It allows to

associate data with unbound variables, manipulate it at will and also to interrupt

the unification of these variables. Unfortunately, constraint solvers are complex

programs and even with attributed variables it can be a daunting task to implement

them.

In order to substantially lower the threshold for tabled CLP, a high-level formalism

is needed for writing new constraint solvers and integrating them in a tabled logic

programming system. In this work we present such a formalism: Tabled Constraint

Handling Rules, or TCHR for short.

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

TCHR: a framework for tabled CLP 493

TCHR is a high-level framework for developing new constraint solvers in a tabled

logic programming environment. It integrates Constraint Handling Rules (CHR)

Frühwirth (1998), an established high-level formalism for writing new constraint

solvers, and tabled logic programming. The framework offers a number of default

operations that can be specialized by instantiations to control both semantics and

performance.

A practical implementation of the framework is presented: the integration of

K.U.Leuven CHR in XSB. The integration shows how a tabled constraint logic

programming system can be obtained from a Constraint Logic Programming and

a tabled logic programming system with little impact on either. Although we have

chosen XSB as our particular tabled logic programming system, we believe that our

ideas readily apply to other table-based LP systems.

In summary, the major contributions of this work are:

• a high-level framework for developing new constraint solvers in a tabled logic

programming system,

• a practical implementation of the framework in terms of K.U.Leuven CHR

and XSB, and

• a novel, generalized approach for answer set reduction.

The CHR-XSB integration, we believe, combines both the bottom-up and top-

down fixpoint computations, the superior termination properties of XSB and

the constraint programming capabilities of CHR. This combined power enables

programmers to easily write highly declarative programs that are easy to maintain

and extend.

Overview The rest of this text is structured as follows. First, in Sections 2 and 3

we provide basic technical background knowledge on tabled execution of Constraint

Logic Programs and Constraint Handling Rules, respectively.

Section 4 outlines our contribution: a framework for tabled CLP system in-

tegrated in terms of SLG and Constraint Handling Rules. Subsequent sections

discuss in more detail the different options and operations of the framework: call

abstraction (Section 6), answer projection (Section 7) and answer set optimization

(Section 8).

Finally, Section 9 discusses related and possible future work, and Section 10

concludes.

But first we end this introduction with a small motivating example from the

domain of model checking:

Example 1

Data-independent systems (Wolper 1986) manipulate data variables over unbounded

domains but have a finite number of control locations. Such systems can be

modeled as extended finite automata (Sarna-Starosta and Ramakrishnan 2003): finite

automata with guards on the transitions and variable mapping relations between

source and destination locations. They are useful for modelling and subsequently

checking e.g. buffers and protocols.

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

494 T. Schrijvers et al.

A simple example of such a data-independent system, modeled in CLP(FD), is:

edge(a,b,Xa,Xb) :- Xa < 10, Xb = Xa.

edge(b,a,Xb,Xa) :- Xb > 0, Xa = Xb + 1.

edge(b,c,Xb,Xc) :- Xb > 3, Xc = Xb.

This system has three control locations a,b,c each with one variable, respectively

Xa,Xb,Xc. Each edge/4 clause represents an edge in the system: a possible transition

from one control location (the source) to another (the destination). The inequality

constraint in each clause guards the transition, and the equality constraint relates

the source variable to the destination variable (the variable mapping).

Suppose that we are interested in whether location c is reachable from location

a, and for which values of the parameter Xa. Let us define a reachability predicate:

reach(A,A,X).

reach(A,C,X) :-

edge(A,B,X,NX),

reach(B,C,NX).

Then our reachability question is captured by the query ?- reach(a,c,X). In order

to answer this query, tabling is required to avoid the non-termination trap of the

a-b cycle in the graph. At the same time, constraints allow a compact symbolic

representation of the infinite search space for X. Without a good interaction between

both tabling and constraints, we would not be able to obtain as concise a solution

as 0 < X < 10 with so little effort.

2 Tabled constraint logic programs

In this section we cover the basics of tabled Constraint Logic Programming. First,

the syntax of Constraint Logic Programs is presented in Section 2.1. Next, Sec-

tion 2.2 explains about the constraints part of CLP: the constraint domain. Finally,

Section 2.3 presents the (operational) semantics SLGD of Tabled Constraint Logic

Programs.

2.1 Syntax of constraint logic programs

A Constraint Logic Program consists of a number of rules, called clauses, of the

form:

H:-C,L1, . . . ,Ln.

where n � 0 and H is an atom, C is a constraint and L1, . . . , Ln are literals. A literal

is either an atom A or a negated atom ¬A.

H is called the head of the clause and C,L1, . . . , Ln is called the body. The comma

“,” is called conjunction as it corresponds with logical conjunction in the semantics

of Constraint Logic Programs.

The atoms are constructed from predicate symbols p/n and variables. Their

meaning is defined by the Constraint Logic Programming itself. The syntax and

semantics of constraints is defined by the constraint domain D (see Section 2.2).

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

TCHR: a framework for tabled CLP 495

If all the literals in the body are positive, the clause is a definite clause. A normal

clause is a clause that may also contain negative literals. A definite Constraint Logic

Program consists of definite clauses only, while a normal Constraint Logic Program

has normal clauses. From now on we will only consider definite programs and

address them as programs for short.

2.2 Constraint domains

A constraint solver is a (partial) executable implementation of a constraint domain.

A constraint domain D consists of a set Π of constraint symbols, a logical theory

T and for every constraint symbol c/n ∈ Π a tuple of value sets 〈V1, . . . , Vn〉.
A primitive constraint is constructed from a constraint symbol c/n and for every

argument position i (1 � i � n) either a variable or a value from the corresponding

value set Vi, similar to the way an atom is constructed in a logic program.

A constraint is of the form c1 ∧ . . . ∧ cn where n � 0 and c1, . . . , cn are primitive

constraints. Two distinct constraints are true and false. The former always holds

and the latter never holds. The empty conjunction of constraints is written as true.

The logical theory T determines what constraints hold and what constraints do

not hold. Typically, we use D to also refer specifically to T. For example D |= c

means that under the logical theory T of constraint domain D the constraint c

holds.

A valuation θ for a constraint C is a variable substitution that maps the variables

in vars(C) onto values of the constraint domain D. If θ is a valuation for C , then it

is a solution for C if Cθ holds in the constraint domain D, i.e. D |= Cθ. A constraint

C is satisfiable if it has a solution; otherwise it is unsatisfiable. Two constraints C1

and C2 are equivalent, denoted D |= C1 ↔ C2, if and only if they have the same

solutions.

A constraint domain of particular interest is the Herbrand domain H. Its

only constraint symbol is term equality = /2, which ranges over Herbrand terms.

Plain Logic Programming can be seen as a specialized form of Constraint Logic

Programming over the Herbrand domain.

Two problems associated with a constraint C are the solution problem, i.e.

determining a particular solution, and the satisfaction problem, i.e. determining

whether there exists at least one solution. An algorithm for determining the

satisfiability of a constraint is called a constraint solver. Often a solution is produced

as a by-product. A general technique used by many constraint solvers is to repeatedly

rewrite a constraint into an equivalent constraint until a solved form is obtained. A

constraint in solved form has the property that it is clear whether it is satisfiable or

not. See Marriott and Stuckey (1998) for a more extensive introduction to constraint

solvers.

2.3 Semantics of constraint logic programs

In a survey of Constraint Logic Programming (CLP) (Jaffar and Maher 1994)

various forms of semantics are listed for Constraint Logic Programs: logic semantics

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

496 T. Schrijvers et al.

based on Clark completion (Clark 1987), fixpoint semantics (Jaffar and Lassez 1987)

as well as a new framework for top-down and bottom-up operational semantics.

The CLP fixpoint semantics are defined, in the usual way, as the fixpoint of an

extended immediate consequence operator.

Definition 1 (CLP Immediate Consequence Operator)

The one-step consequence function TDP for a CLP program P with constraint domain

D is defined as:

TDP (I) = {p(d̄)| p(x̄)← c, b1, . . . , bn ∈ P ,

∃v.v is a valuation on D :

D |= v(c),

v(x̄) = d̄,

∀i : 1 � i � n⇒ v(bi) ∈ I}

A goal-directed execution strategy, SLGD, using tabling for the above CLP fixpoint

semantics has been developed by Toman in (Toman 1997b). This SLGD semantics

encompasses the best of both top-down and bottom-up operational semantics: it is

goal-directed like top-down evaluation and has the favorable termination properties

like bottom-up evaluation.

2.3.1 Basic SLGD semantics

The SLGD semantics makes two assumptions about the constraint domain D.

Firstly, D includes a projection operation that returns a disjunction of constraints:

∃̄TC =
∨

i Ci. The notation Cj ∈ ∃̄TC is used to state that Cj is one of the disjuncts

in this disjunction. Secondly, it is assumed that a relation �D is provided. This

relation should be at least as strong as implication, i.e.

∀C1, C2 : C1 �D C2 ⇒ D |= C1 → C2

SLGD is formulated in terms of four resolution (or rewriting) rules, listed in

Table 1. These rules either expand existing tree nodes or create new root nodes.

There are four different kinds of tree nodes: root(G;C), body(G;B1, . . . , Bk;C),

goal(G;B,C ′;B2 . . . , Bk;C) and ans(G;A) where G is an atom, B1, . . . , Bk are literals,

and C,C ′, A are constraints1 in D.

An SLGD tree is built from a root(G;C) node using the resolution rules. An

SLGD forest is a set of SLGD trees. The meaning of the different resolution rules is

the following:

• The Clause Resolution rule expands a root node: for every matching clause

head a body node is created containing the clause’s body literals.

• If there is at least one literal in a body node, it is expanded by the Query

Projection rule into goal nodes. This rule selects a literal to be resolved. The

given Query Projection rule implements a left-to-right selection strategy, which

is common to most LP systems, including XSB. However, any other strategy

1 Also known as constraint stores.

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

TCHR: a framework for tabled CLP 497

Table 1. SLGD resolution rules.

Parent Children Conditions

Clause Resolution

root(G;C)

⎧⎪⎨
⎪⎩

body(G;B1
1 , . . . , B

1
k1

;C ∧ θ ∧ D1)
...

body(G;Bl
1, . . . , B

l
kl
;C ∧ θ ∧ Dl)

for all 0 < i � l such that

G′ → Di, Bi
1, . . . , B

i
ki

and θ ≡ (G = G′)

and C ∧ θ ∧ Di is satisfiable

Query Projection

body(G;B1, . . . , Bk;C)

⎧⎪⎨
⎪⎩

goal(G;B1, C1;B2 . . . , Bk;C)
...

goal(G;B1, Cl;B2 . . . , Bk;C)

for all Ci ∈ ∃̄B1
C

Answer Propagation

goal(G;B1, C1;B2 . . . , Bk;C)

⎧⎪⎨
⎪⎩

body(G;B2, . . . , Bk;C ∧ θ ∧ A1)
...

body(G;B2, . . . , Bk;C ∧ θ ∧ Al)

for all Ai ∈ ans(B′, C ′)

where θ ≡ (B′ = B1)

and C1 ∧ θ �D C ′

and C ∧ θ ∧ Ai is satisfiable

Answer Projection

body(G; �;C)

⎧⎪⎨
⎪⎩

ans(G;A1)
...

ans(G;Al)

for all Ai ∈ ∃̄GC

is valid as well. The current constraint store C is projected onto the selected

literal’s variables, yielding only the constraints relevant for that literal. As the

projection yields a disjunction of constraints, one goal node is created for

every disjunct.

• If there is no literal in a body node, it is expanded by the Answer Projection

rule into a number of answer nodes. For this purpose the current constraint

store C is projected onto the goal’s variables, retaining only those constraints

relevant to the goal. In this way variables local to the chosen clause’s body

are eliminated.

• A goal node is expanded into new body nodes by the Answer Propagation rule.

This rule substitutes the selected literal by its answers: the selected literal’s

answer constraint stores are incorporated in the current store.

Note that the Answer Propagation and Answer Projection rules cooperate: when-

ever a new answer is produced, it is propagated to all the nodes that have already

been resolved using answers from this tree. Also the Answer Propagation rule is

responsible for creating new SLGD trees: when no tree with a root node that

subsumes the goal (B,C ′) to be resolved can be found, a node root(B,C ′) is created

to start a separate tree.

Finally, a query in the SLGD formalism is a tuple (G,C, P) where vars(C) ⊆
vars(G) and all arguments of G are variables. The SLGD resolution rules are used

for query evaluation as follows:

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

498 T. Schrijvers et al.

1. create an SLGD forest containing a single tree {root(G,C)},
2. expand the leftmost node using the resolution rules as long as they can be

applied, and

3. return the set ans(G,C) as the answers for the query.

Definition 2

(Answer Set) The answer set ans(G,C) is the set of all A such that ans(G;A) ∈
slg(G,C), where slg(G,C) is the SLGD tree rooted at root(G,C).

2.3.2 An example

Let us consider the following very simple CLP program P :

p(X) :- X = 1-Y, q(Y).

p(X) :- X = 0.

q(X) :- true, p(X).

The constraint domain is that of domain integers. The supported basic constraint

=/2 is equality of arithmetic expressions.

Figure 1 depicts the SLGD forest for the query (p(U); true;P). The full arrows

represent the SLGD tree branches, whereas the dashed arrow indicates the start of

a new tree and the dotted arrows indicate the propagation of new answers. Each

arrow is labeled with its step number.

The answer set ans(p(U), true) consists of two answers: U = 0 and U = 1.

2.3.3 SLGD optimizations

Several optimizations to the rewriting formulas have been proposed by Toman, of

which one, Query Projection, is of particular interest to us. The optimization allows

for more general goals than strictly necessary to be resolved. In this way fewer goals

have to be resolved, as distinct specific queries can be covered by the same general

goal.

Table 2 lists the modified Query Projection rule, called Optimized Query Projection.

A second important optimization is a modified version of the answer set definition:

Definition 3

(Optimized Answer Set) The optimized answer set of the query (G,C, P), denoted

ans(G,C), is the set of all A such that ans(G;A) ∈ slg(G,C) and no A′ is already in

ans(G,C) for which A �D A′.

This alternative definition allows for answers to be omitted if they are already

entailed by earlier more general answers. While logically the same answers are

entailed, the set of answers is smaller with the new definition.

Note that SLG, the operational semantics of tabled Logic Programming, is in

fact a specialized form of the SLGD semantics for the Herbrand domain. Several

implementations of SLG exist, including XSB. The topic of this paper, the integration

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

TCHR: a framework for tabled CLP 499

Fig. 1. Example SLGD forest.

Table 2. Optimized query projection for SLGD resolution.

Parent Children Conditions

Optimized Query Projection

body(G;B1, . . . , Bk;C)

⎧⎪⎪⎨
⎪⎪⎩

goal(G;B1, C1;B2 . . . , Bk;C)

...

goal(G;B1, Cl;B2 . . . , Bk;C)

D |= ∃̄B1
C → C1 ∨ . . . ∨ Cl

for some C1, . . . , Cl

of CHR with tabled execution, is in effect an implementation of SLGD for arbitrary

D defined by a CHR program.

In Toman (1996), Toman has also extended his work to a goal-directed execution

strategy for CLP programs with negation. This extension realizes the well-founded

semantics. An implementation of this extension is not covered by our work. It

imposes additional requirements on the constraint solver: a finite representation of

the negation of any constraint should exist. Moreover, the detection of loops through

negation requires a more complicated tabling mechanism.

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

500 T. Schrijvers et al.

Fig. 2. The transition rules of the operational semantics of CHR.

3 Constraint handling rules

In this section we give a brief overview of Constraint Handling Rules (CHR)

(Frühwirth 1998; Frühwirth and Abdennadher 2003).

3.1 Syntax of CHR

We use two disjoint sets of predicate symbols for two different kinds of constraints:

built-in (pre-defined) constraint symbols which are solved by a given constraint

solver, and CHR (user-defined) constraint symbols which are defined by the rules

in a CHR program. There are three kinds of rules:

Simplification rule:Name @ H <=> C | B,

Propagation rule: Name @ H ==> C | B,

Simpagation rule: Name @ H \ H ′ <=> C | B,

where Name is an optional, unique identifier of a rule, the head H , H ′ is a non-empty

comma-separated conjunction of CHR constraints, the guard C is a conjunction of

built-in constraints, and the body B is a goal. A query is a conjunction of built-in

and CHR constraints. A trivial guard expression “true |” can be omitted from a

rule. The head of a simplification rule is called a removed head, as the rule replaces

its head by its body. Similarly, the head of a propagation rule is called a kept head,

as the rule adds its body in the presence of its head. Simpagation rules abbreviate

simplification rules of the form Name @ H,H ′ <=> C | H,B, i.e. H is a kept head

and H ′ a removed head. A CHR program P consists of an ordered set of CHR rules.

3.2 Operational semantics of CHR

The formal operational semantics of CHR is given in terms of a state transition

system in Figure 2. The program state is an indexed 4-tuple 〈G, S, B, T 〉n. The first

part of tuple, the goal G is the multiset of constraints to be rewritten to solved

form. The CHR constraint store S is the multiset of identified CHR constraints

that can be matched with rules in the program P . An identified CHR constraint

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

TCHR: a framework for tabled CLP 501

c#i is a CHR constraint c associated with some unique integer i, the constraint

identifier. This number serves to differentiate among copies of the same constraint.

We introduce the functions chr(c#i) = c and id (c#i) = i, and extend them to

sequences, sets and multisets of identified CHR constraints in the obvious manner,

e.g. chr(S) = {c | c#i ∈ S}.
The built-in constraint store B is the conjunction of all built-in constraints that

have been passed to the underlying solver. Since we will usually have no information

about the internal representation of B, we will model it as an abstract logical

conjunction of constraints. The propagation history T is a set of sequences, each

recording the identities of the CHR constraints that fired a rule, and the name of the

rule itself. This is necessary to prevent trivial non-termination for propagation rules:

a propagation rule is allowed to fire on a set of constraints only if the constraints

have not been used to fire the same rule before. Finally, the counter n represents the

next free integer that can be used to number a CHR constraint.

Given an initial query G, the initial program state is: 〈G, ∅, true, ∅〉1.
The rules of a program P are applied to exhaustion on this initial program state.

A rule is applicable, if its head constraints are matched by constraints in the current

CHR store one-by-one and if, under this matching, the guard of the rule is implied

by the built-in constraints in the goal. Any of the applicable rules can be applied,

and the application cannot be undone, it is committed-choice (in contrast to Prolog).

When a simplification rule is applied, the matched constraints in the current CHR

store are replaced by the body of the rule; when a propagation rule is applied, the

body of the rule is added to the goal without removing any constraints.

3.3 Implementation of CHR

This high-level description of the operational semantics of CHR leaves two main

sources of non-determinism: the order in which constraints of a query are processed

and the order in which rules are applied.2 As in Prolog, almost all CHR implemen-

tations execute queries from left to right and apply rules top-down in the textual

order of the program. This behavior has been formalized in the so-called refined

semantics that was also proven to be a concretization of the standard operational

semantics (Duck et al. 2004).

In this refined semantics of actual implementations, a CHR constraint in a query

can be understood as a procedure that goes efficiently through the rules of the

program in the order they are written, and when it matches a head constraint of a

rule, it will look for the other, partner constraints of the head in the constraint store

and check the guard until an applicable rule is found. We consider such a constraint

to be active. If the active constraint has not been removed after trying all rules, it

will be put into the constraint store. Constraints from the store will be reconsidered

(woken) if newly added built-in constraints constrain variables of the constraint,

because then rules may become applicable if their guards are now implied.

2 The nondeterminism due to the wake-up order of delayed constraints and multiple matches for the
same rule are of no relevance for the programs discussed here.

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

502 T. Schrijvers et al.

The refined operational semantics is implemented by all major CHR systems,

among which the K.U.Leuven CHR system (Schrijvers and Demoen 2004). This

system is currently available in three different Prolog systems (hProlog (Demoen

2004), SWI-Prolog (Wielemaker 2004) and XSB) and it serves as the basis of our

integration with tabled execution in this paper.

The K.U.Leuven CHR system (Schrijvers and Demoen 2004) is based on the

general compilation schema of CHR by Holzbaur (Holzbaur and Frühwirth 2000).

For this paper (Section 5), it is relevant to know that the CHR constraint store

is implemented as a global updatable term, containing identified constraints, in

this context also called suspended constraints, grouped by their functor. Each

suspended constraint c#i is represented as a suspension term, including the following

information:

• The constraint c itself.

• The constraint identifier i.

• The continuation goal, executed on reactivation. This goal contains the

suspension itself as an argument and it is in fact a cyclic term.

• The part of the propagation history T containing for each propagation rule

the tuple of identifiers of other constraints that this constraint has interacted

with.

Variables involved in the suspended constraints behave as indexes into the global

store: they have the suspensions attached to them as attributes. Because we aim

towards a light-weight integration of CHR with tabled Logic Programming, we

do not question these established representation properties, but consider them as

something to cope with.

We refer the interest reader to (Schrijvers 2005) for more details on CHR

implementation.

3.4 CHR for constraint solving

The CHR language is intended as a language for implementing constraint solvers.

A CHR program P is a constraint solver for the constraint domain DP whose

constraint symbols ΠP are the CHR and built-in constraint symbols. The constraint

theoryTP of the program consists of the built-in constraint theory together with the

declarative meaning of the CHR rules. The declarative meaning of a simplification

rule of the form Hr <=> G | B is:

∀x̄.∃ȳ.G→ (H ↔ ∃z̄.B)

where x̄ = vars(H)∪, ȳ = vars(G) \ vars(H) and z̄ = vars(B) \ (vars(H) ∪ vars(G)).

Similarly, the declarative meaning of a propagation rule of the form H ==> G | B

is:

∀x̄.∃y.G→ (H → ∃z̄B)).

Value sets are not explicitly defined by the CHR program, but they exist implicitly

in the intention of the programmer.

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

TCHR: a framework for tabled CLP 503

See (Frühwirth and Abdennadher 2003) for an extensive treatment of CHR for

writing constraint solvers.

4 The TCHR framework

The main challenge of introducing CHR in XSB is the integration of CHR con-

straint solvers with the backward chaining fixpoint computation of SLG resolution

according to the SLGD semantics of the previous section.

A similar integration problem has been solved in (Cui and Warren 2000a), which

describes a framework for constraint solvers written with attributed variables for

XSB. The name Tabled Constraint Logic Programming (TCLP) is coined in that

publication, though it is not formulated in terms of SLGD resolution. Porting CHR

to XSB was already there recognized as important future work.

CHR is much more convenient for developing constraint solvers than attributed

variables, because of its high-level nature. This advantage should be carried over to

the tabled context, making tabled CHR a more convenient paradigm than TCLP

with attributed variables. Indeed, we will show how the internal details presented in

the current section can be hidden from the user.

In Cui and Warren (2000a) the general TCLP framework specifies three operations

to control the tabling of constraints: call abstraction, entailment checking of answers

and answer projection. These operations correspond with the optimization to Query

Projection, the projection in Answer Projection and the compaction of the ans(G;C)

set. It is left to the constraint solver programmer to implement these operations for

his particular solver.

In the following we formulate these operations in terms of CHR. The operations

are covered in significant detail as the actual CHR implementation and the encoding

of the global CHR constraint store are taken into account.

4.1 General scheme of the TCHR implementation

The objective of TCHR is to implement SLGD semantics for an arbitrary constraint

domain D which is implemented as a CHR constraint solver. For this purpose we

have both an SLGH implementation3, i.e. the SLG implementation of XSB, and an

SLDD implementation, i.e. the CHR implementation of XSB, at our disposal.

Hence, we aim for the simplest and least intrusive solution. That is:

1. We use the unmodified CHR implementation for constraint solving.

2. We use the unmodified SLG implementation for tabled execution.

3. At the intersection of point 1 and point 2 we transform back and forth between

the CHR D constraints and an encoding of these as H constraints.

The advantages to this lightweight approach are twofold. Firstly, it is straightfor-

ward to realize the full expressivity of SLGD within an existing system. Secondly, it

3 SLG is a special case of SLGD where D is the Herbrand constraint domain H.

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

504 T. Schrijvers et al.

does not affect existing programs or their performance. On the downside we note that

TCHR performance and, in particular, constant factors involved are not optimal.

However, CHR on its own does not aim towards performance in the first place,

but rather towards being a highly expressive formalism for experimenting with new

constraint solvers. Similarly, we see the TCHR framework as a highly expressive

prototyping system for exploring new applications. It does offer some high-level

means to affect performance, and when the resulting performance is simply not

good enough, one may decide to reimplement the established high-level approach in

a lower-level language.

Now we look at our solution in more detail. As points 1 and 2 leave the system

untouched, we only have to consider implementing point 3, translating between

constraint encodings.

First let us consider the different kinds of nodes used in SLGD. Of the tree

nodes, only the root and answer nodes are manifestly represented by SLGH

implementations like XSB, in respectively call and answer tables. Hence these two

nodes require the constraint store to be in H encoding form. The other two nodes,

the goal and body nodes, are implicit in the execution mechanism. So here we are

free to use the form that suits us best.

With these formats for the nodes in mind, we consider one by one the different

resolution rules:

Clause Resolution The rule is depicted again below with each constraint annotated

with its type of encoding: H for Herbrand encoding and CHR for natural CHR

encoding. The constraint store C is initially Herbrand encoded in the root node

and has to be decoded into its natural CHR form for solving C ∧ θ ∧Di with the

CHR solver. The CHR solver either fails, if the conjunction is not satisfiable, or

returns a simplified form of the conjunction.

root(G;CH)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

body(G;B1
1 , . . . , B

1
k1

;CCHR ∧ θ ∧ D1
CHR)

...

body(G;Bl
1, . . . , B

l
kl
;CCHR ∧ θ ∧ Dl

CHR)

∀i.0 < i � l such that

G′ → Di
CHR , B

i
1, . . . , B

i
ki

and θ ≡ (G = G′)

and CCHR ∧ θ ∧ Di
CHR is

satisfiable

Optimized Query Projection This rule directly starts with a constraint store in the

natural CHR constraint form, and projects it onto the first literal and subsequently

generalizes it. A CHR program does not normally come with such a combined

projection and generalization operation, so one will have to be supplied by the

TCHR framework: the call abstraction. Section 6 discusses what kind of generic

projection operation the TCHR framework implements.

body(G;B1, . . . , Bk;CCHR)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

goal(G;B1, C
1
CHR;B2 . . . , Bk;CCHR)

...

goal(G;B1, C
l
CHR;B2 . . . , B

k;CCHR)

D |= ∃̄B1
C → C1∨ . . .∨Cl

for some C1, . . . , Cl

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

TCHR: a framework for tabled CLP 505

Answer Propagation The answers consumed by this rule have to be decoded from

Herbrand form for the implication check and the satisfiability check. A CHR

program does not normally come with an implication check, so one will have

to be supplied here by the TCHR framework. This is covered together with call

abstraction in Section 6.

goal(G;B1, C
1
CHR;B2 . . . , Bk;CCHR)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

body(G;B2, . . . , Bk;CCHR ∧ θ ∧ A1
CHR)

...

body(G;B2, . . . , Bk;CCHR ∧ θ ∧ Al
CHR)

∀Ai
H ∈ ans(B′, C ′H)

where θ ≡ (B′ = B1)

and C1
CHR ∧ θ �D C ′CHR

and CCHR ∧ θ ∧ Ai
H is

satisfiable

Answer Projection Again a projection is performed on the CHR constraint repre-

sentation. This instance of of projection we call answer projection. Like answer

projection, it is to be supplied by the framework. In Section 7 the details of this

operation within the framework are elaborated.

body(G; �;CCHR)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ans(G;A1
H)

...

ans(G;Al
H)

for all Ai
CHR ∈ ∃̄GC

Having established what new operations and mappings to include in the frame-

work, we should consider how these are to be incorporated into the existing SLGH

system XSB. Recall that we did intend not to modify the system to incorporate our

encoding/decoding and projection operations in order to keep the integration light-

weight. Neither do we want to encumber the programmer with this tedious and rather

low-level task. Instead we propose an automatic source-to-source transformation

based on a simple declaration to introduce these operations.

The source-to-source transformation maps the SLGD program P onto the SLGH

program P ′. In the mapping every predicate p/n ∈ P is considered independently,

and mapped onto three predicates p/n, tabled p/(n + 2), original p/n ∈ P ′. T maps

the SLGD program P onto the SLGH program P ′ = T(P).

We outline the high-level transformation for a single predicate p/2:

:- table p/2.

p(X,Y) :- Body.

The three resulting predicates are:

p(X,Y) :-

encode_store(CurrentStoreEncoding),

call_abstraction([X,Y],CurrentStoreEncoding,

AbstractStoreEncoding),

empty_store,

tabled_p(X,Y,AbstractStoreEncoding,AnswerStoreEncoding),

decode_store(CurrentStoreEncoding),

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

506 T. Schrijvers et al.

decode_store(AnswerStoreEncoding).

:- table tabled_p/4.

tabled_p(X,Y,StoreEncoding,NStoreEncoding) :-

decode_store(StoreEncoding),

original_p(X,Y),

encode_store(StoreEncoding1),

empty_store,

project([X,Y],StoreEncoding1,NStoreEncoding).

original_p(X,Y) :- Body.

The new predicate p/2 is a front to the actual tabled predicate tabled p/4. This

front allows the predicate to be called with the old calling convention where the con-

straint store is implicit, i.e. in the natural CHR form. Thanks to this front the trans-

formation is modular: we do not have to modify any existing calls to the predicate,

either in other predicates’ bodies, its own body Body or in queries. The auxiliary

predicate encode store/1 returns a Herbrand encoding of the current (implicit)

constraint store and the call abstraction/3 predicate projects the Herbrand

encoded store onto the call arguments. Then the implicit constraint store is emptied

with empty store/0 so as not to interfere with the tabled call, which has the

Herbrand encoded stores as manifest answers. Finally, the predicate decode store/1

decodes the Herbrand encoding and adds the resulting CHR constraint store to the

implicit store. In p/2 this predicate is called twice: first to restore the current

constraint store and then to add to it the answer constraint store of the tabled

call.

The tabled p/4 predicate is the tabled predicate. In its body the encoded input

store is decoded again, then the original predicate code original p/2 is run, the

resulting store is encoded again and projected onto the call arguments. Again the

implicit store is emptied so as not to interfere with the caller.

Note that this is only a high-level outline of the mapping. In practice the scheme

is specialized for the concrete operations. This is discusses later as we discuss each

of the operations in detail.

The above transformation of both predicates and queries can be fully transparent.

All the user has to do is to indicate what predicates have to be tabled, i.e. add a

declaration of the form

:- table_chr p(_,chr) with Options.

p(X,Y) :- ...

meaning that the predicate p/2 should be tabled, its first argument is an ordinary

Prolog term and its second argument is a CHR constraint variable. An (optional)

list of additional options Options may be provided to control the transformation:

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

TCHR: a framework for tabled CLP 507

Fig. 3. Tabled call flowchart.

encoding(EncodingType)

Section 5 studies two alternative encodings of the Herbrand constraint store. This

option allows the user to choose between them.

projection(PredName)

The projection applied in the Answer Projection rule is addressed in Section 7.

This projection is realized as a call to a projection predicate that reduces the

constraint store to its projected form.

canonical form(PredName)
answer combination(PredName)

These two options relate to optimizations of the answer set, based on Definition 3

and a novel generalization of this principle. It is discussed in Section 8.

Figure 3 summarizes the different steps in handling a call to a tabled predicate.

5 Herbrand constraint store encodings

In this section we present two alternative Herbrand constraint store encodings. An

encoding must have the following properties:

• The encoding has to be suitable for passing it as an argument in a predicate

and for storing it in an answer table.

• It should be possible to convert from the natural CHR constraint form (see

Section 3.3) and back, for insertion into the call table and retrieval from the

answer table.

The essential aspects of the ordinary CHR constraint store implementation have

been covered in Section 3.3. Two different Herbrand constraint store encodings

that are based on this ordinary form have been explored: the suspension encoding

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

508 T. Schrijvers et al.

and the goal encoding. The former is based on state copying and the latter on

recomputation. A discussion of their respective merits and weaknesses as well as an

evaluation follow in Sections 5.1 and 5.2 respectively.

One implicit aspect of CHR execution under the refined operational semantics is

the order in which constraints are processed. Ordering information is not maintained

explicitly. Without any additional support, it is not straightforward to maintain

this ordering information for tabled constraints. However, in the spirit of tabling,

the declarative meaning of a program rather than its operational behavior is of

importance. For that reason we shall not attempt to realize the ordering of the

refined operational semantics. From the user’s point of view, the CHR constraints

behave according to the theoretical operational semantics and no assumptions

should be made about ordering.

5.1 Suspension encoding

This encoding aims at keeping the tabled encoding as close as possible to the ordinary

form. The essential issue is to retain the propagation history of the constraints. In

that way no unnecessary re-firing of propagation rules occurs after the constraints

have been retrieved from the table.

However, it is not possible to just store the ordinary constraint suspensions in

the table as they are. Fortunately, attributed variables themselves can be stored in

tables (see Cui and Warren 2000b), but two other aspects have to be taken into

account. Firstly, these suspensions are cyclic terms that the tables cannot handle.

This can be dealt with by breaking the cycles upon encoding and resetting them

during decoding. Secondly, the constraint identifiers have to be replaced by fresh

ones during decoding, as multiple calls would otherwise create multiple copies of the

same constraints all with identical identifiers. Finally, after decoding, the constraints

have to be activated again in order to solve them together with the already present

constraints. This is done by simply calling their continuation goals.

Example 2

Let us consider the following program:

:- constraint a/0, b/0.

r1 @ a ==> b.

:- chr_table p.

p :- a.

and the query ?- p. After having fired rule r1, the suspension of an a constraint

looks like:

Sa = suspension(42,reactivate a(Sa),[r1-[42]])

where 42 is the identifier, reactivate a(Sa) is the continuation goal and [r1-[42]]

is the propagation history, which has recorded that rule r1 has fired with only the

constraint itself. The other suspension in the store would be for a b constraint:

Sb = suspension(43,reactivate b(Sb),[])

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

TCHR: a framework for tabled CLP 509

The suspension encoding for this store of two constraints would look like:

[Sa / ID1 / suspension(ID1,reactivate_a(Sa),[[r1-[ID1]]])

, Sb / ID2 / suspension(ID2,reactivate_b(Sb),[])]

Upon decoding we simply unify ID1 and ID2 with fresh identifiers, and S1 and

S2 with their corresponding suspension terms. The resulting well-formed suspension

terms are placed in the implicit CHR constraint store and finally the continuation

goals of both suspensions are called.

5.2 Goal encoding

The goal encoding aims at keeping the information in the table in as simple a form

as possible: for each suspended constraint only the goal to impose this constraint

is retained in the table. It is easy to create this goal from a suspension and easy to

merge this goal back into another constraint store: it needs only to be called.

Whenever it is necessary the goal creates a suspension with a fresh unique identifier

and inserts it into the constraint store.

The only information that is lost in this encoding is the propagation history. This

may lead to multiple propagations for the same combination of head constraints.

For this to be sound, a further restriction on the CHR rules is required: they should

behave according to set semantics, i.e. the presence of multiple identical constraints

should not lead to different answers modulo identical constraints.

Example 3

The goal encoding of the above example is:

[a, b]

and the decoding procedure simply calls a and b.

5.3 Evaluation

To measure the relative performance of the two presented encodings, consider the

following two programs:

For both programs the predicate p(N) puts the constraints a(1)...a(N) in the

constraint store. The prop program uses a propagation rule to achieve this while

the simp program uses an auxiliary constraint b/1. The non-tabled version of the

query p(N) has time complexity O(N) for both the simp and the prop program.

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

510 T. Schrijvers et al.

Table 3. Evaluation of the two tabled store encodings

no tabling encoding(suspension) encoding(goal)

program runtime space runtime space runtime space

prop 10 0 150 2,153,100 1,739 270,700

simp 10 0 109 1,829,100 89 270,700

The two possible encodings for the answer constraint store can be specified in the

tabling declaration as follows:

:- table_chr p(_) with [encoding(suspension)].

and
:- table_chr p(_) with [encoding(goal)].

Table 3 gives the results for the query p(400), both untabled and tabled using

the two encodings: runtime in milliseconds and space usage of the tables in bytes.

For both programs the answer table contains the constraint store with the 400 a/1

constraints.

Most of the space overhead is due to the difference in encoding: a suspension

contains more information than a simple call. However, the difference is only a

constant factor. The only part of a suspension in general that can have a size greater

than O(1) is the propagation history. In the prop program every a/1 constraint’s

history is limited to remembering that the propagation rule has been used once. For

the simp program the propagation history is always empty.

The runtime of the prop version with the suspension encoding is considerably

better than that of the version with the goal encoding. In fact, there is a complexity

difference. When the answer is retrieved from the table for the suspension encoding,

the propagation history prevents re-propagation. Hence, answer retrieval takes O(N)

time. However, for the goal encoding every constraint a(I) from the answer will

start propagating and the complexity of answer retrieval becomes O(N2).

On the other hand, for simp the propagation history plays no role. The runtime

overhead is mostly due to the additional overhead of the pre- and post-processing

of the suspension encoding as opposed to the simpler form of the goal encoding. In

comparison, without tabling the query takes only 10 milliseconds for both programs.

6 Call abstraction

In the call abstraction operation we combine the projection and generalization

operations of the Optimized Query Projection rule in the SLGD semantics.

The idea of both steps is to reduce the number of distinct SLGD trees, and hence

the number of tables. When a predicate is called with many different call patterns, a

table is generated for each such call pattern. Thus it is possible that the information

for one strongly constrained call is present many times in tables for different less

constrained call patterns. This duplication in the tables can be avoided by using call

abstraction to obtain a smaller set of call patterns.

The projection reduces the context of the predicate call, i.e. the constraint store,

to the constraints relevant for the call. In this way, two calls to p(X), respectively

with constraint stores {X > 5, Y > 7} and {X > 5, Z < 3} both yield the same

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

TCHR: a framework for tabled CLP 511

projected call store { X > 5 }. The subsequent generalization step goes even further,

e.g. by relaxing bounds to the reference value 0 both constraint stores {X > 5} and

{X > 10} become {X > 0}. Hence, call abstraction effectively is a means to control

the number of tables. At the level of SLGH, call abstraction means not passing

certain bindings to the call. For example, p(q,A) can be abstracted to p(Q,A). This

goal has then to be followed by Q = q to ensure that only the appropriate bindings

for A are retained.

For SLGD, call abstraction can be generalized from bindings to constraints:

abstraction means removing some of the constraints on the arguments. Consider for

example the call p(Q,A) with constraint Q =< N on Q. This call can be abstracted

to p(Q’,A), followed by Q’=Q to reintroduce the constraint.

Abstraction is particularly useful for those constraint solvers for which the number

of constraints on a variable can be much larger than the number of different

bindings for that variable. Consider for example a finite domain constraint solver

with constraint domain/2, where the first argument is a variable and the second

argument the set of its possible values. If the variable has a domain of size n (i.e. it

contains n different values), the variable can take as many as 2n different domain/2

constraints, one for each subset of values. Thus many different tables would be

needed to cover every possible call pattern.

Varying degrees of abstraction are possible, depending on the particular constraint

system or application. Full constraint abstraction, i.e. the removal of all constraints

from the call, is generally the only option for CHR, for the following reasons:

• CHR rules do not require constraints to be on variables. They can be

exclusively on ground terms or atoms as well. This is useful for various

reasons. By encoding constraint variables as ground terms, particular solving

algorithms can be used more conveniently or efficiently, e.g. the equation

solving algorithm union-find has optimal time-complexity when using ground

elements Schrijvers and Frühwirth (2006).

It is not straightforward to automatically define abstraction for ground terms

as these are not necessarily passed in as arguments but can just as well be

created inside the call. Hence there is no explicit link with the call environment,

while such a link is needed for call abstraction. As such, only “no abstraction”

or full constraint abstraction seem suitable for CHR.

• Full constraint abstraction is preferable when the previously mentioned table

blow-up is likely.

• In order to reuse existing answers, existing calls are considered in the Answer

Propagation rule These previous calls are compared to the new call using

the implication check �D. Unfortunately, such an implication check does not

come with the CHR solver. A special case of this subsumption-based tabling

is where �D is taken to be ↔, i.e. equivalence-based, or variant-based in

SLGH terminology, tabling. Unfortunately, even establishing the equivalence

of constraint stores is not directly supported by CHR solvers.

However, if the call constraint store is empty, i.e. true, this problem disappears:

true implies true independent of the constraint domain.

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

512 T. Schrijvers et al.

Moreover, it may be costly to sort out what constraints should be passed

in to the call or abstracted away. Hence often full abstraction is cheaper than

partial abstraction. For instance, consider a typical propagation-based finite domain

constraint solver with binary constraints only. The constraint graph for a number of

such finite domain constraints has a node for every variable involved in a constraint

and an edge between variables involved in the same constraint. Any additional

constraint imposed on a variable in a component of the graph may affect the

domain of all other variables in the same component. Hence, call abstraction on

a subset of the variables involves a costly transitive closure of reachability in the

constraint graph.

Let us now revisit the transformation scheme of Section 4.1 for a predicate p/2,

and specialize it for full call abstraction:

p(X,Y) :-

encode_store(StoreEncoding),

empty_store,

tabled_p(X,Y1,NStoreEncoding),

decode_store(StoreEncoding),

decode_store(NStoreEncoding),

Y1 = Y.

:- table tabled_p/3.

tabled_p(X,Y,NStoreEncoding) :-

original_p(X,Y),

encode_store(StoreEncoding1),

empty_store,

project([X,Y],StoreEncoding1,NStoreEncoding).

original_p(X,Y) :- Body.

As we know that the call-abstracted constraint store is empty, we no longer need

to pass it as an argument to the tabled p predicate and decode it there. The only

effect of the call abstraction is then to replace the constraint variable Y with a

fresh variable Y1. This is necessary to prevent any constraints on Y from being

reachable through attributes on Y. The unification Y=Y1 at the end of p/2 is then

a specialization of the substitution θ ≡ (p(X,Y 1) = p(X,Y)) that appears in the

Answer Propagation rule.

7 Answer projection

In most constraint domains, the same logical answer can be represented in many

different ways. For example, consider the predicate p/1.

p(X) :- X > 5.

p(X) :- X > 5, Y > 0.

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

TCHR: a framework for tabled CLP 513

Both X > 5 and X > 5/ Y > 0 represent the same answer to the call p(X)

concerning X. Constraints that do not relate to the call arguments, like Y > 0, are

meaningless outside of the call. The local variable Y is existentially quantified, and

cannot be further constrained to introduce unsatisfiability at a later stage.

It is the purpose of projection to restrict constraints to a set of variables of interest,

and to eliminate other variables as much as possible. In our setting, the variables of

interest are the call arguments. For projection to be sound, already present but not

yet detected unsatisfiability should not be removed. A sufficient, but not necessary

condition is for the constraint system to be complete, i.e. unsatisfiability is detected

immediately.

Projection is important in the context of tabling, because it may give logically

equivalent answers the same syntactical form. When two answers have the same

syntactical form, they are recognized as duplicates and only one is retained in the

table. A vital application of projection is when a predicate with an infinite number

of different answers may be turned into one with just a finite number of answers by

discarding the constraints on local variables.

Example 4

Consider this program:

path(From,To,X) :-

edge(From,To,X).

path(From,To,X) :-

path(From,Between,X), path(Between,To,X).

edge(a,a,X) :-

leq(X,Y),

leq(Y,1).

leq(X,X) <=> true.

leq(X,Y) \ leq(Y,X) <=> X = Y.

leq(X,Y) \ leq(X,Y) <=> true.

leq(X,Y) , leq(Y,Z) ==> leq(X,Z).

It defines a path/3 predicate that expresses reachability in a graph represented by

edge/3 predicates. The first two arguments of both predicates are edges (origin

and destination) and the third is a constraint variable. Along every edge in the

graph some additional constraints may be imposed on this variable. In our example,

the graph consists of a single loop from edge a to itself. This loop imposes two

less-than-or-equal-to constraints: leq(X,Y), leq(Y,1). The variable Y is a local

variable and the fourth rule for leq/2 derives that leq(X,1) also holds.

The query ?- path(A,B,X) determines the different paths. There are an infinite

number of paths in our simple graph, one for each non-zero integer n. A path for

n takes the loop n times. For every time the loop is taken a new variable Yi is

created and two more constraints leq(X,Yi) and leq(Yi,1) are added. Through the

propagation rule also an leq(X,1) is added for each time the loop is taken. The

second simpagation rule however removes all but one copy of this last constraint.

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

514 T. Schrijvers et al.

Even though there are an infinite number of answers, the constraints involving

the local variables Yi are of no interest and only the single leq(X,1) is relevant.

In general constraint projection onto a set of variables transforms a constraint

store into another constraint store in which only variables of the given set are

involved. The form of the resulting constraint store strongly depends on the

particular constraint solver and its computation may involve arbitrary analysis

of the original constraint store.

We propose what we believe is an elegant CHR-based approach to projection. It

consists of a compact and high level notation.

The user declares the use of the CHR-based approach to projection as follows:

:- table_chr p(_,chr) with [projection(PredName)].

and implements the projection as a number of CHR rules that involve the special

PredName/1 constraint. This constraint has as its argument the set of variables to

project on.

The source-to-source transformation generates the predicate tabled p based on

this declaration:

:- table tabled_p/3.

tabled_p(X,Y,NStoreEncoding) :-

original_p(X,Y),

PredName([X,Y]),

encode_store(NStoreEncoding),

empty_store.

When no projection operation is supplied, the default action is to return the

constraint store unmodified.

To implement the projection simpagation rules can be used to decide what

constraints to remove. A final simplification rule at the end can be used to remove

the projection constraint from the store.

The following example shows how to project away all leq/2 constraints that

involve arguments not contained in a given set Vars:

project(Vars) \ leq(X,Y) <=>

\+ (member(X,Vars),member(Y,Vars)) | true.

project(Vars) <=> true.

Besides removal of constraints more sophisticated operations such as weakening

are possible. E.g. consider a set solver with two constraints: in/2 that requires an

element to be in a set and nonempty/1 that requires a set to be non-empty. The

rules for projection could include the following weakening rule:

project(Vars) \ in(Elem,Set) <=>

member(Set,Vars),

\+ member(Elem,Vars) | nonempty(Set).

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

TCHR: a framework for tabled CLP 515

8 Answer set optimization

In this section we consider various ways for reducing the size of the answer set. First,

in Section 8.1 we consider the subsumption-based technique proposed by Toman.

This leads us to a sidetrack in Section 8.2 where we outline a technique for dynamic

programming through answer subsumption. Section 8.3 continues with the main

story: it is established that answer subsumption is suboptimal for general constraint

domains and a generalized approach is proposed instead. In Section 8.4 we relax the

soundness condition of answer reduction and speculate on applications to program

analysis. Finally, in Section 8.5, we evaluate the two main approaches.

8.1 Answer subsumption

Some of the answers computed for a tabled predicate may be redundant and so

need not be saved. The property is exploited by Definition 3, the Optimized Answer

Set definition. In terms of SLGH, consider for example that the answer p(a,X) is

already in the table of predicate p/2. Now a new answer, p(a,b) is found. This

new answer is redundant as it is covered by the more general p(a,X) that is already

in the table. Hence it is logically valid to not record this answer in the table, and

to simply discard it. This does not affect the soundness or completeness of the

procedure.

We can extend the idea of answer subsumption to CHR constraints. This path

length computation will serve as an illustration:

Example 5

dist(A,B,D) :- edge(A,B,D1), leq(D1,D).

dist(A,B,D) :- dist(A,C,D1), edge(C,B,D2), leq(D1 + D2, D).

Suppose appropriate rules for the leq/2 constraint are in the above program, where

leq means less-than-or-equal. The semantics are that dist(A,B,D) holds if there is

a path from A to B of length less than or equal to D. In other words, D is an upper

bound on the length of a path from A to B.

If the answer dist(n1,n2,D) :- leq(d1, D) is already in the table and a new

answer dist(n1,n2,D) :- leq(d2, D), where d1 =< d2, is found, then this new

answer is redundant. Hence it can be discarded. This does not affect the soundness,

since logically the same answers are covered.

A strategy for establishing implication is provided by the following property:

∀i ∈ {0, 1} : C1−i → Ci ⇐⇒ C0 ∧ C1 ↔ Ci, (8.1)

for any logical formulas C0 and C1. In particular, consider C0 and C1 to be a

previous answer constraint store and a newly computed one. The strategy then is

as follows. At the end of the tabled predicate’s execution a previous answer store

C0 is merged with a new answer store C1. After merging, the store is simplified and

propagated to C by the available rules of the CHR program P. This combines the

two answers into a new one. This mechanism can be used to check entailment of

one answer by the other: if the combined answer store S is equal to one of the two,

then that answer store entails the other.

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

516 T. Schrijvers et al.

A practical procedure is the following:

:- table tabled_p/3.

tabled_p(X,Y,NStoreEncoding) :-

original_p(X,Y),

project([X,Y]),

encode_store(StoreEncoding),

(previous_answer(p(X,Y,PrevStoreEncoding),AnswerID),

decode_store(PrevStoreEncoding),

encode_store(Conjunction),

(Conjunction == PrevStoreEncoding ->

del_answer(AnswerID),

fail

;

Conjunction \== StoreEncoding

) ->

fail

;

NStoreEncoding = StoreEncoding

),

empty_store.

After computing, projecting and Herbrand encoding a new answer store C1, we

look at previous answer stores C0. We assume that there is a built-in predicate

previous answer/3 for this purpose, that backtracks over previous answers and

also provides a handle AnswerID to the returned answer. As the previous answer

store is still in Herbrand encoding, we decode it. This has the simultaneous effect of

adding it to the new implicit CHR constraint store that is still in place, i.e. it computes

C0 ∧ C1. This resulting conjunction is Herbrand encoded for further comparison.

Syntactical equality (≡) is used as a sound approximation of the equivalence check

for the first equivalence sign (↔) in the Formula 8.1. If the conjunction equals

the previous answer PrevStoreEncoding, then that previous answer is implied by

the new answer and hence obsolete. We use the built-in predicate del answer to

erase it from the answer table and we backtrack over alternative previous answers.

Otherwise, if the conjunction does not equal the new answer, then neither implies

the other and we also backtrack over alternative previous answers. However, if the

conjunction equals the new answer StoreEncoding, that means it is implied by the

previous answer. Hence we fail, ignoring further alternative previous answers. If on

the other hand, the resulting answer is not implied by any previous answers, then it

is a genuinely new answer and is stored in the answer table.

Example 6

Consider again the dist/3 example, and assume that the answer stores {leq(7,D},
{leq(3,D))} and {leq(5,D))} are successively produced for the query ?- dist(a,

b,D). When the first answer, {leq(7,D} is produced, there are no previous answers,

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

TCHR: a framework for tabled CLP 517

so it makes its way into the answer table. For the second answer, {leq(3,D))} there

is already a previous answer {leq(7,D}, so both are conjoined. The following rule

leq/2 rule simplifies the conjunction to retain the more general answer:

leq(N1,D) \ leq(N2,D) <=> N1 >= N2 | true.

Hence, the resulting solved form of the conjunction is {leq(D,7)}, or in other

words the previous answer. In other words, this previous answer is implied by the

new answer. So it is deleted from the answer table and the new answer is recorded.

Finally, following the same procedure we discover that the third answer is already

implied by the second one. So the final answer set contains just the second answer.

Note that the dist/3 program would normally generate an infinite number of

answers for a cyclic graph, logically correct but not terminating. However, if it is

tabled with answer subsumption, it does terminate for non-negative weights. Not

only does it terminate, it only produces one answer, namely dist(n1,n2,D) :-

leq(d,D) with d the length of the shortest path. Indeed, the predicate only returns

the optimal answer.

The syntactical equality check on the Herbrand encoding is in general only an

approximation of a proper equivalence check. An option for the table chr declara-

tions allows to improve its effectiveness: canonical form(PredName) specifies the

name of the predicate that should compute the (approximate) canonical form of the

Herbrand encoded answer constraint store. This canonical form is used to check

equivalence of two constraint stores.

Example 7

Both [leq(1,X),leq(X,3)] and [leq(X,3),leq(1,X)] are permutations of the

same Herbrand constraint store encoding. Obviously, based on a simple syntactic

equality check, they are different. However, they can both be reduced to the same

canonical form, e.g. with the help of the Prolog built-in sort/2.

We refer to (Schrijvers et al. 2006) for a more elaborated discussion of the property

8.1 and an alternative, more elaborate implementation of the implication checking

strategy in CHR.

In contrast to our generic approach above, the traditional approach in CLP is

for the solver to provide a number of predefined ask constraints Saraswat and

Rinard (1990), i.e. subsumption checks for primitive constraints. These primitive ask

constraints can then be combined to form more complicated subsumption checks

Duck et al. (2004). We have avoided this approach because it puts a greater burden

on the constraint solver implementer, who has to provide the implementation of

the primitive ask constraints. In future work, we could incorporate user-defined

ask constraints in our generic approach for greater programmer control over

performance and accuracy of subsumption tests.

8.2 Dynamic programming through answer subsumption

The technique used in the dist/3 program is to replace the computation of the

exact distance of a path with the computation of an upper bound on the distance

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

518 T. Schrijvers et al.

via constraints. Then, by tabling the predicate and performing answer subsumption,

the defining predicate has effectively been turned into an optimizing one, computing

the length of the shortest path. It is a straightforward yet powerful optimization

technique that can be applied to other defining predicates as well, turning them into

optimizing (dynamic programming) predicates with a minimum of changes.

In comparison, the usual approach consists in explicitly computing the list of all

answers, e.g. using Prolog’s findall/3 meta-programming built-in, and in processing

this list of answers. Guo and Gupta Guo and Gupta (2004) have added a specific

feature to tabled execution to realize this dynamic programming functionality. In

adding support for CHR to tabling, we get this functionality for free.

8.3 General answer compaction

Definition 3 yields a sound approach for reducing the size of answer tables. However,

we have discovered that it is only a special case of what is really possible. Therefore,

we propose the following generalized definition of answer sets, compacted answer

set, which covers all sound approaches for reducing the answer set size.

Definition 1 (Compacted Answer Set)

A compacted answer set of the query (G,C, P), denoted ans(G,C), is a set such that:

• No new fully instantiated (i.e. ground) answers are introduced:

∀A, θ : (A ∈ ans(G,C)) ∧ (D � Aθ)

=⇒
∃A′, θ′ : (ans(G;A′) ∈ slg(G,C)) ∧ (A′θ′ ≡ Aθ)

(8.2)

• All fully instantiated answers are covered:

∀A′, θ′ : (ans(G;A′) ∈ slg(G,C)) ∧ (D � A′θ)

=⇒
∃A, θ : (A ∈ ans(G,C)) ∧ (Aθ ≡ A′θ′)

(8.3)

• The answer set is more compact than the individual answers:

#ans(G,C) � #{A′|ans(G;A′) ∈ slg(G,C)} (8.4)

where A and A′ are constraint stores and θ and θ′ are valuations.

Note that an optimized answer set is a special instance of a compacted answer

set and certainly, for Herbrand constraints, it is an optimal strategy, because:

H |= ∀H0, H1, H : H ↔ H0 ∨H1 =⇒ ∃i ∈ {0, 1} : H ↔ Hi (8.5)

where H0, H1, H are conjunctions of Herbrand equality constraints. In other words,

for finding a single Herbrand constraint that covers two given ones, it is sufficient

to considering those two.

Unfortunately, a similar property does not hold for all constraint domains: a

single constraint store may be equivalent to the disjunction of two others, while it is

not equivalent to either of the two. For example, leq(X ,Y) ∨ leq(Y ,X)↔ true and

yet we have that neither leq(X ,Y)↔ true nor leq(Y ,X)↔ true.

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

TCHR: a framework for tabled CLP 519

Nevertheless, checking whether one answer subsumes the other is a rather

convenient strategy, since it does not require any knowledge on the particularities

of the used constraint solver. That makes it a good choice for the default strategy

for CHR answer subsumption. Better strategies may be supplied for particular

constraint solvers through the option answer combination(PredName). It specifies

the name of the predicate that returns the disjunction of two given answer stores,

or fails if it cannot find one.

Example 8

Consider a simple interval-based solver, featuring constraints of the form X ∈ [L,U],

where X is a constraint variable and L and U are integers, and the rules:

X ∈ [L,U] ==> L =< U.

X ∈ [L1,U1], X ∈ [L2,U2] <=> X ∈ ([L1,U1] ∩ [L2,U2]).

For this solver, the subsumption approach merges two constraints X ∈ [L1, U1]

and X ∈ [L2, U2] iff [L1, U1] ⊆ [L2, U2] or [L2, U2] ⊆ [L1, U1]. However, it fails to

work for e.g. X ∈ [1, 3] and X ∈ [2, 4]. Nevertheless there is a single constraint form

that covers both: X ∈ [1, 4]. An optimal answer combinator in this case is one that

returns the union of two overlapping intervals. This also captures the subsumption

approach. If the intervals do not overlap, there is no single constraint that covers

both without introducing new answers.

Note that the idea of general answer compaction is not specific implementation

of constraints, and, in particular, should apply to non-CHR constraint solvers too.

8.4 Relaxed answer compaction semantics

For some applications the soundness condition of answer generalization can be

relaxed. An example in regular Prolog would be to have two answers p(a,b) and

p(a,c) and to replace the two of them with one answer p(a,X). This guarantees (for

positive programs) that no answers are lost, but it may introduce extraneous answers.

In other words, property 8.3 is preserved while property 8.2 is not. A similar technique

is possible with constrained answers. While this approach is logically unsound, it

may be acceptable for some applications if only answer coverage is required.

An example is the use of the least upper bound (lub) operator to combine answers

in the tabled abstract interpretation setting of (Codish et al. 1998). There is often

a trade-off between accuracy and efficiency in space and time. By exploiting this

trade-off abstract interpretation can remain feasible in many circumstances.

Toman has explored in (Toman 1997a) the use of CLP for program analysis

and compared it to abstract interpretation. In his proposal constraints serve as the

abstractions of concrete values, and bottom-up computation or tabling is necessary

to reach a fixpoint over recursive program constructs. He notes that the CLP

approach is less flexible than actual abstract interpretation because it lacks flexible

control over the accuracy/efficiency trade-off. We believe that our proposal for

relaxed answer compaction could function as a lub or widening operator to remedy

this issue, making Toman’s program analysis technique more practical. This remains

to be explored in future work.

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

520 T. Schrijvers et al.

8.5 Evaluation: A shipment problem

We evaluate the usefulness of the two proposed answer set optimization approaches

based on a shipment problem.

Problem statement: There are N packages available for shipping using trucks. Each

package has a weight and some constraints on the time to be delivered. Each truck has

a maximum load and a destination. Determine whether there is a subset of the packages

that can fully load a truck destined for a certain place so that all the packages in this

subset are delivered on time. (from Cui 2000)

The problem is solved by the truckload program:

Packages are represented by a constraint database: clauses of pack/4, e.g.

pack(3,60,chicago,T) :- leq(4,T),leq(T,29),

means that the third package weights 60 pounds, is destined for Chicago and has

to be delivered between the 4th and the 29th day. The truckload/4 predicate

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

TCHR: a framework for tabled CLP 521

Table 4. Runtime results for the truckload program.

Tabling

Load No Tabling Plain Sorted Combinator

100 <1 100 100 100

200 160 461 461 451

300 2,461 1,039 1,041 971

400 12,400 1,500 1,510 1,351

500 > 5 min. 1,541 1,541 1,451

computes the answer to the problem, e.g. :- truckload(30,100,chicago,T) com-

putes whether a subset of the packages numbered 1 to 30 exists to fill up a truck

with a maximum load of 100 pounds destined for Chicago. The time constraints are

captured in the bound on the constraint variable T. There may be multiple answers

to this query, if multiple subsets exist that satisfy it.

We have run the program in four different modes:

• No Tabling: the program is run as is without tabling.

• Tabling – Plain: to avoid the recomputation of subproblems in recursive

calls the truckload/4 predicate is tabled with:

:- table_chr truckload(_,_,_,chr)

with [encoding(goal)].

• Tabling – Sorted: the answer store is canonicalized by simple sorting such

that permutations are detected to be identical answers:

:- table_chr truckload(_,_,_,chr)

with [encoding(goal),

canonical_form(sort)].

• Tabling – Combinator: we apply the custom answer combinator proposed in

Example 8: two answers with overlapping time intervals are merged into one

answer with the union of the time intervals. This variant is declared as:

:- table_chr truckload(_,_,_,chr)

with [encoding(goal),

answer_combination(interval_union)].

with interval union/3 the custom answer combinator.

Table 4 contains the runtime results of running the program in the four different

modes for different maximum loads. Runtime is in milliseconds and has been

obtained on an Intel Pentium 4 2.00 GHz with 512 MB of RAM, with XSB 6.1

running on Linux 2.6.18. For the modes with tabling the space usage, in kilobytes,

of the tables and number of unique answers have been recorded as well, in Table 5

and Table 6 respectively.

It is clear from the results that tabling has an overhead for small loads, but

that it scales much better. Both the modes with the canonical form and the answer

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

522 T. Schrijvers et al.

Table 5. Space usage for the truckload program.

Tabling

Load Plain Sorted Combinator

100 286 286 279

200 979 956 904

300 1,799 1,723 1,584

400 2,308 2,202 2,054

500 2,449 2,365 2,267

Table 6. Number of tabled answers for the truckload program.

tabling

load plain sorted combinator

100 324 324 283

200 2,082 2,069 1,686

300 4,721 4,665 3,543

400 5,801 5,751 4,449

500 4,972 4,935 4,017

combination have a slight space advantage over plain tabling which increases with

the total number of answers. There is hardly any runtime effect for the canonical

form, whereas the answer combination mode is faster with increasing load.

In summary, canonicalization of the answer store and answer combination can

have a favorable impact on both runtime and table space depending on the particular

problem.

9 Related and future work

The theoretical background for this paper, SLGD resolution, was realized by Toman

in (Toman 1997b). Toman establishes soundness, completeness and termination

properties for particular classes of constraint domains. While he has implemented

a prototype implementation of SLGD resolution for evaluation, no practical and

fully-fledged implementation in a Prolog system was done.

Various ad hoc approaches to using constraints in XSB were used in the past by

Ramakrishnan et al., such as a meta-interpreter (Mukund et al. 2000), interfacing

with a solver written in C (Du et al. 2000) and explicit constraint store management

in Prolog (Pemmasani et al. 2002). However, these approaches are quite cumbersome

and lack the ease of use and generality of CHR.

The most closely related implementation work that this paper builds on is (Cui

and Warren 2000a), which presents a framework for constraint solvers written

with attributed variables. Attributed variables are a much cruder tool for writing

constraint solvers though. Implementation issues such as constraint store encoding

and scheduling strategies that are hidden by CHR become the user’s responsibility

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

TCHR: a framework for tabled CLP 523

when she programs with attributed variables. Also in the tabled setting, the user

has to think through all the integration issues of the attributed variables solver. For

CHR we have provided generic solutions that work for all CHR constraint solvers

and more powerful features can be accessed through parametrized options.

Guo and Gupta propose a technique for dynamic programming with tabling

(Guo and Gupta 2004) that is somewhat similar to the one proposed here. During

entailment checking a particular argument in a new answer is compared with the

value in the previous answer. Either one is kept depending on the optimization

criterion. Their technique is specified for particular numeric arguments whereas

ours is for constraint stores and as such more general. Further investigation of our

technique is certainly necessary to establish the extent of its applicability.

Part of this work was previously published at the International Conference

of Logic Programming (Schrijvers and Warren 2004) and the Colloquium on

Implementation of Constraint and Logic Programming Systems (Schrijvers et al.

2003). In (Schrijvers et al. 2003) we briefly discuss two applications of CHR with

tabling in the field of model checking. The integration of CHR and XSB has

shown to make the implementation of model checking applications with constraints

significantly easier. The next step in the search for applications is to explore

more expressive models to be checked than are currently viable with traditional

approaches.

Further applications should also serve to improve the currently limited perfor-

mance assessment of CHR with tabling. The shipment problem has given us some

indication of improved performance behavior in practice, but theoretical reasoning

indicates that slow-downs are a possibility as well.

The global CHR store has proven to be one of the main complications in tabling

CHR constraints. For particular CHR programs it is possible to replace the global

data structure with localized, distributed ones. Assessment (Sarna-Starosta and

Ramakrishnan 2007) of this approach has shown to be very promising.

Partial abstraction and subsumption are closely related. The former transforms a

call into a more general call while the latter looks for answers to more general calls,

but if none are available still executes the actual call. We still have to look at how

to implement partial abstraction and the implications of variant and subsumption

based tabling (Rao et al. 1996).

Finally, better automatic techniques for entailment testing, such as those of

(Schrijvers et al. 2006), and for projection should be investigated in the context of

SLGD.

10 Conclusion

We have presented a high-level framework for tabled CLP, based on a light-weight

integration of CHR with a tabled LP system. Tabling-related problems that have

to be solved time and again for ad hoc constraint solver integrations are solved

once and for all for CHR constraint solvers. Solutions have been formulated for call

abstraction, tabling constraint stores, answer projection, answer combination (e.g.

for optimization), and answer set optimization. Hence integrating a particular CHR

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

524 T. Schrijvers et al.

constraint solver requires much less knowledge of implementation intricacies and

decisions can be made on a higher level.

If performance turns out to be a bottleneck, once the high-level integration is

stable and well-understood, then its implementation may be specialized in a lower-

level language using the TCHR implementation as its specification. Our novel

contribution, generalized answer set compaction, may certainly contribute towards

that end.

Finally, we would like to mention that an XSB release, number 2.7, with the

presented CHR system integrated with tabling is publicly available since December

30, 2004 (see http://xsb.sf.net).

Acknowledgements

We are grateful to Beata Sarna-Starosta, Giridhar Pemmasani and C.R. Ramakr-

ishnan for the interesting discussions and help on applications of tabled execution

and constraints in the field of model checking.

We thank the anonymous reviewers for their helpful comments.

References

Clark, K. L. 1987. Negation as failure. In Logic and Databases, H. Gallaire and J. Minker,

Eds. Plenum Press, New York, 293–322.

Codish, M., Demoen, B., and Sagonas, K. 1998. Semantic-based program analysis for

logic-based languages using XSB. International Journal of Software Tools for Technology

Transfer 2(1) (Jan.), 29–45.

Cui, B. 2000. A System for Tabled Constraint Logic Programming. Ph.D. thesis, State

University of New York at Stony Brook.

Cui, B. and Warren, D. S. 2000a. A system for tabled constraint logic programming. In CL

2000: Proceedings of the 1st International Conference on Computational Logic, J. W. Lloyd,

V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, and

P. J. Stuckey, Eds. Lecture Notes in Computer Science, vol. 1861. Springer Verlag, London,

UK, 478–492.

Cui, B. and Warren, D. S. 2000b. Attributed variables in XSB. In Electronic Notes in

Theoretical Computer Science, I. Dutra et al., Eds. vol. 30. Elsevier, 67–80.

Demoen, B. 2004. hProlog. http://www.cs.kuleuven.be/˜bmd/hProlog/.

Du, X., Ramakrishnan, C. R., and Smolka, S. A. 2000. Tabled resolution + constraints:

A recipe for model checking real-time systems. In IEEE Real Time Systems Symposium.

Orlando, Florida, 175–184.

Duck, G. J., Garcı́a de la Banda, M., and Stuckey, P. J. 2004. Compiling ask constraints. In

ICLP’04: Proceedings of the 20th International Conference on Logic Programming. Lecture

Notes in Computer Science, vol. 3132. Springer Verlag, St-Malo, France, 105–119.

Duck, G. J., Stuckey, P. J., Garcı́a de la Banda, M., and Holzbaur, C. 2004. The

refined operational semantics of constraint handling rules. In ICLP’04: Proceedings of the

20th International Conference on Logic Programming. Lecture Notes in Computer Science,

vol. 3132. Springer Verlag, St-Malo, France, 90–104.

Frühwirth, T. 1998. Theory and practice of constraint handling rules. Journal of Logic

Programming 37(1–3) (October), 95–138.

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

TCHR: a framework for tabled CLP 525

Frühwirth, T. and Abdennadher, S. 2003. Essentials of Constraint Programming. Cognitive

Technologies. Springer Verlag, New York (IX, 145p).

Guo, H.-F. and Gupta, G. 2004. Simplifying dynamic programming via tabling. In Proc. 6th

International Symposium on Practical Aspects of Declarative Languages, P. V. Hentenryck,

Ed. Lecture Notes in Computer Science, vol. 3819. Springer Verlag, 163–177.

Holzbaur, C. 1992. Metastructures vs. Attributed Variables in the Context of Extensible

Unification. Tech. Rep. TR-92-23, Austrian Research Institute for Artificial Intelligence,

Vienna, Austria.

Holzbaur, C. and Frühwirth, T. 2000. A prolog constraint handling rules compiler

and runtime system. Special Issue Journal of Applied Artificial Intelligence on Constraint

Handling Rules 14(4) (April), 369–388.

Jaffar, J. and Lassez, J.-L. 1987. Constraint logic programming. In POPL ’87: Proceedings

of the 14th ACM SIGACT-SIGPLAN symposium on Principles of programming languages.

ACM Press, New York, NY, USA, 111–119.

Jaffar, J. and Maher, M. J. 1994. Constraint logic programming: A survey. Journal of Logic

Programming 19/20, 503–581.

Kanellakis, P. C., Kuper, G. M., and Revesz, P. Z. 1995. Constraint query languages. In

Selected papers of the 9th annual ACM SIGACT-SIGMOD-SIGART symposium on Principles

of database systems. Academic Press, Inc., Orlando, FL, USA, 26–52.

Marriott, K. and Stuckey, P. J. 1998. Programming with Constraints: An Introduction. MIT

Press. Cambridge, MA, USA.

Mukund, M., Ramakrishnan, C. R., Ramakrishnan, I. V., and Verma, R. 2000. Symbolic

bisimulation using tabled constraint logic programming. In International Workshop on

Tabulation in Parsing and Deduction. Vigo, Spain, 1–9.

Pemmasani, G., Ramakrishnan, C. R., and Ramakrishnan, I. V. 2002. Efficient model

checking of real time systems using tabled logic programming and constraints. In

International Conference on Logic Programming. Lecture Notes in Computer Science.

Springer, Copenhagen, Denmark, 405–410.

Rao, P., Ramakrishnan, C. R., and Ramakrishnan, I. V. 1996. A thread in time saves tabling

time. In Joint International Conference and Symposium on Logic Programming, M. J. Meher

(Ed.). September 2–6, 1996, Bonn, Germany. MIT Press, Cambridge, MA, USA, 112–126.

Saraswat, V. A. and Rinard, M. 1990. Concurrent constraint programming. In POPL’90:

Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages. ACM Press, New York, NY, USA, 232–245.

Sarna-Starosta, B. and Ramakrishnan, C. R. 2003. Constraint-based model checking of

data-independent systems. In 5th International Conference on Formal Engineering Methods,

ICFEM 2003, J. S. Dong and J. Woodcock, Eds. Lecture Notes in Computer Science, vol.

2885. Springer-Verlag, 579–598.

Sarna-Starosta, B. and Ramakrishnan, C. R. 2007. Compiling constraint handling rules

for efficient tabled evaluation. In PADL’07: Ninth International Symposium on Practical

Aspects of Declarative Languages, M. Hanus, Ed. Lecture Notes in Computer Science.

Springer Verlag, 170–184.

Schrijvers, T. 2005. Analyses, Optimizations and Extensions of Constraint Handling Rules.

Ph.D. thesis, Department of Computer Science, K.U.Leuven, Leuven, Belgium.

Schrijvers, T. and Demoen, B. 2004. The K.U.Leuven CHR system: Implementation

and application. In First Workshop on Constraint Handling Rules: Selected Contributions,

T. Frühwirth and M. Meister, Eds. Ulm, Germany, 1–5.

Schrijvers, T., Demoen, B., Duck, G., Stuckey, P., and Frühwirth, T. 2006. Automatic

implication checking for CHR constraints. In Electronic Notes in Theoretical Computer

Science. vol. 147. 93–111.

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

526 T. Schrijvers et al.

Schrijvers, T. and Frühwirth, T. 2006. Optimal union-find in constraint handling rules.

Theory and Practice of Logic Programming 6(1&2), 213–224.

Schrijvers, T. and Warren, D. S. 2004. Constraint handling rules and tabled execution.

In ICLP’04: Proceedings of the 20th International Conference on Logic Programming,

B. Demoen and V. Lifschitz, Eds. Lecture Notes in Computer Science, vol. 3132. Springer

Verlag, St-Malo, France, 120–136.

Schrijvers, T., Warren, D. S., and Demoen, B. 2003. CHR for XSB. In CICLOPS 2003:

Proceedings of the Colloquium on Implementation of Constraint and LOgic Programming

Systems, R. Lopes and M. Ferreira, Eds. University of Porto, Mumbai, India, 7–20.

Toman, D. 1996. Computing the well-founded semantics for constraint extensions of Datalog.

In Proceedings of CP’96 Workshop on Constraint Databases. Number 1191 in Lecture Notes

in Computer Science. Cambridge, MA, USA, 64–79.

Toman, D. 1997a. Constraint databases and program analysis using abstract interpretation. In

Constraint Databases and Their Applications, Second International Workshop on Constraint

Database Systems (CDB ’97), V. Gaede, A. Brodsky, O. Günther, D. Srivastava, V. Vianu,

and M. Wallace, Eds. Lecture Notes in Computer Science, vol. 1191. Springer Verlag,

246–262.

Toman, D. 1997b. Memoing evaluation for constraint extensions of datalog. Constraints:

An International Journal, Special Issue on Constraints and Databases 2(3/4) (December),

337–359.

Warren, D. S. et al. 2005. The XSB Programmer’s Manual: version 2.7, vols. 1 and 2.

http://xsb.sf.net.

Wielemaker, J. 2004. SWI-Prolog release 5.4.0. http://www.swi-prolog.org/.

Wolper, P. 1986. Expressing interesting properties of programs in propositional temporal logic.

In POPL ’86: Proceedings of the 13th ACM SIGACT-SIGPLAN symposium on Principles

of programming languages. ACM Press, New York, NY, USA, 184–193.

https://doi.org/10.1017/S147106840800327X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840800327X

