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In this article we consider a stochastic game in which each player draws one or two
random numbers between 0 and 1. Players can decide to stop after the first draw or to
continue for a second draw. The decision is made without knowing the other players’
numbers or whether the other players continue for a second draw. The object of the
game is to have the highest total score without going over 1. In the article, we will
characterize the optimal stopping rule for each player.

1. INTRODUCTION

In the popular TV game show “The Price is Right,” the Showcase Showdown game
of chance is played on every show. In the game each of three players in turn spins the
wheel once or twice attaining some total score and then waits for the results of the
succeeding players’ spins. The object of the game is to have the highest score, from
one or two spins, without going over a given upper limit. This game of chance has
been analyzed in Coe and Butterworth [1] and Tijms [2].

This article considers a variant of this stochastic game, in which each player has
no information about the results and actions of the other players. Each player chooses
one or two random numbers between 0 and 1. The player can decide to stop after
the first draw or to continue for a second draw. The decision must be made without
knowing what the other players have done. The object of the game is to have the highest
total score without going over 1. In case the total scores of all players exceed 1, the
winner is the player whose score is closest to 1. What stopping rule should a player
use in order to maximize its probability of winning?

It is obvious that each player uses a rule characterized by a single threshold value
v: continue for a second draw if the first draw gives a number less than v, otherwise
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stop after the first draw. In Section 2, we first consider the case of two players and
we give the optimal stopping level that ensures a player winning at least 50% of the
time whatever the other player is doing. The solution for the case of three players
will be derived in Section 3. Finally, we discuss the general case of many players
in Section 4.

2. TWO-PERSON GAME

For the case of two players, let P(a, b) denote the winning probability of Player A
when Player A uses a threshold a and Player B uses a threshold b. Player A wants
to use the threshold a = a0, where a0 attains the maximum in maxa minb P(a, b). It
suffices to determine P(a, b) for a ≥ b. By a symmetry argument, we have

P(a, b) = 1 − P(b, a) for b ≥ a.

For fixed values of the thresholds a and b of the two players, define the random variable
XA as the total score of Player A. Also let FA(x) = P(XA ≤ x) for 0 < x < 1 + a,
and let fA(x) be the probability density of FA(x). Similarly, XB, FB(x), and fB(x) are
defined. By a simple conditioning argument,

P(XA ≤ x) =
∫ x

0
(x − y) dy = 1

2
x2 for 0 < x ≤ a.

In addition, it is readily seen by conditioning that

P(XA > x) =

⎧⎪⎪⎨
⎪⎪⎩

1 − x +
∫ a

0
(1 − (x − y)) dy for a < x ≤ 1

∫ a

x−1
(1 − (x − y)) dy for 1 < x < 1 + a.

This leads to

FA(x) = P(XA ≤ x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2
x2 for 0 < x ≤ a

(1 + a)x − a − 1

2
a2 for a < x ≤ 1

1

2
− 1

2
(x − a)2 + x − a for 1 < x < 1 + a.

(2.1)

By differentiating, we get

fA(x) −
⎧⎨
⎩

x for 0 < x ≤ a
1 + a for a < x ≤ 1
1 + a − x for 1 < x < 1 + a.

(2.2)
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The formulas for FB(x) = P(XB ≤ x) and fB(x) follow by replacing a by b in (2.1)
and (2.2). By conditioning on the value of XA, for a ≥ b,

P(a, b) =
∫ a

0
P(A beats B | XA = x)x dx

+
∫ 1

a
P(A beats B | XA = x) (1 + a) dx

+
∫ 1+a

1
P(A beats B | XA = x) (1 + a − x) dx.

This can be weighted out as

P(a, b) =
∫ b

0
[P(XB ≤ x) + P(XB > 1)] x dx

+
∫ a

b
[P(XB ≤ x) + P(XB > 1)] x dx

+
∫ 1

a
[P(XB ≤ x) + P(XB > 1)] (1 + a) dx

+
∫ 1+b

1
P(1 < x ≤ XB)(1 + a − x) dx

+
∫ 1+a

1+b
P(1 < x ≤ XB)(1 + a − x) dx.

After some algebra, we were able to represent P(a, b) in the following form:

P(a, b) = 1

2
− 1

6
(a − b)

(
a2b + a2 + ab2 + b2 + ab + 3a − 3

)
for a ≥ b.

By symmetry argument, we have P(a, b) = 1 − P(b, a) for a ≤ b, which gives

P(a, b) = 1

2
− 1

6
(a − b)

(
a2b + a2 + ab2 + b2 + ab + 3b − 3

)
for a ≤ b.

This representation is crucial for our analysis. To find a0, we reason as follows. For
the threshold a0 we should have P(a0, b) ≥ 1

2 for all b. This gives

a0
2b + a0

2 + a0b2 + b2 + a0b + 3a0 − 3 ≤ 0 for a0 ≥ b,
a0

2b + a0
2 + a0b2 + b2 + a0b + 3b − 3 ≥ 0 for a0 ≤ b.

(2.3)

If Player B chooses b = a0 as the threshold value, we obtain from (2.3) that

2a3
0 + 3a2

0 + 3a3
0 − 3 = 0. (2.4)
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FIGURE 1. P(a0, b).

By solving this equality, we get the optimal threshold value as

a0 = 1

2

{
−1 − 1

3
√

8 + √
65

+ 3

√
8 + √

65

}
= 0.563385.

It can be observed from Figure 1 that P(a0, b) is always greater than .5 for all values
of b with b �= a0.

3. EXTENSIONTOTHREE PLAYERS

Let us try to extend the game to three people and see how the strategy changes as
the number of players increases. Of course, the question should be updated to what
threshold value should Player A choose to win with probability more than 1/3 all the
time. The random variables XA, XB, and XC denote the total scores of the players.
Also, let P(a, b, c) denote the winning probability of Player A when the players have
threshold values a, b, and c, respectively. With the same type of approach as used
in the previous section, we calculate the winning probability of A, by conditioning on
the value of XA:

P(a, b, c) = P(A wins)

=
∫ 1+a

0
P(A wins | XA = x)fA(x) dx.
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Let us first consider the case a ≥ b ≥ c:

P(a, b, c) =
∫ a

0
P(A wins | XA = x)x dx

+
∫ 1

a
P(A wins | XA = x)(1 + a) dx

+
∫ 1+a

1
P(A wins | XA = x)(1 + a − x) dx.

In order for Player A to win the game with a total score x with x ≤ 1, the total score
of Player B should be either less than or equal to x or greater than 1. This should also
hold for Player C. Hence, for 0 < x ≤ 1,

P(A wins | XA = x) = P(XB ≤ x)P(XC ≤ x) + P(XB ≤ x)P(XC > 1)

+ P(XB > 1)P(XC ≤ x) + P(XB > 1)P(XC > 1)

using the independency of XB and XC . Also, for 1 < x < 1 + a,

P(Awins | XA = x) = P(XB ≥ x)P(XC ≥ x).

For the case a ≥ b ≥ c, the winning probability of A can be obtained as

P(a, b, c) =
∫ c

0
P(A wins | XA = x)x dx

+
∫ b

c
P(A wins | XA = x)x dx

+
∫ a

b
P(A wins | XA = x)x dx

+
∫ 1

a
P(A wins | XA = x)(1 + a) dx

+
∫ 1+a

1
P(A wins | XA = x) (1 + a) dx.

After tedious algebra, we find for P(a, b, c) with a ≥ b ≥ c the expression

P(a, b, c) = 1

3
+ 1

120
(a − b)f1(a, b, c) + 1

120
(b − c)g1(a, b, c)
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for some functions f1 and g1. Working out the other cases in the same way, we obtain

a ≥ b ≥ c: P(a, b, c) = 1

3
+ 1

120
(a − b)f1(a, b, c) + 1

120
(b − c)g1(a, b, c),

a ≥ c ≥ b: P(a, b, c) = 1

3
+ 1

120
(a − b)f2(a, b, c) + 1

120
(b − c)g2(a, b, c),

b ≥ a ≥ c: P(a, b, c) = 1

3
+ 1

120
(a − b)f3(a, b, c) + 1

120
(b − c)g3(a, b, c),

c ≥ a ≥ b: P(a, b, c) = 1

3
+ 1

120
(a − b)f4(a, b, c) + 1

120
(b − c)g4(a, b, c),

b ≥ c ≥ a: P(a, b, c) = 1

3
+ 1

120
(a − b)f5(a, b, c) + 1

120
(b − c)g5(a, b, c),

c ≥ b ≥ a: P(a, b, c) = 1

3
+ 1

120
(a − b)f6(a, b, c) + 1

120
(b − c)g6(a, b, c).

The explicit expressions for the functions f1, . . . , f6 and g1, . . . , g6 are given in the
Appendix. As an accuracy check, the complex formulas are confirmed by simulation
by taking several choices for a, b, and c. Using a similar approach as in the previous
section, we will find the reduced polynomial for a0. Player A wants to win the game
with a probability of at least 1/3 for all values of b and c. In other words, for the
optimal threshold a0, we have P(a0, b, c) ≥ 1

3 for all b and c. This gives

1

120
(a0 − b)fi(a0, b, c) + 1

120
(b − c)gi(a0, b, c) ≥ 0

for i = 1, 2, . . . , 6. If Players B and C play with the same threshold value b = c, the
first two and the last two cases for P(a, b, c) boil down to

1

120
(a0 − b)fi(a0, b, b) ≥ 0, i = 1, 2, 5, 6.

This implies

f1(a0, b, b) ≥ 0 and f2(a0, b, b) ≥ 0 for a0 ≥ b,
f5(a0, b, b) ≤ 0 and f6(a0, b, b) ≤ 0 for a0 ≤ b.

(3.1)

Taking b = a0 in (3.1) and using the explicit expressions for fi(a, b, c) in theAppendix,
we find

fi(a0, a0, a0) = 2(20 − 20a0 + 20a2
0 − 20a3

0 − 40a4
0 − 17a5

0) for i = 1, 2, 5, 6.

These expressions together with (3.1) give us

20 − 20a0 + 20a2
0 − 20a3

0 − 40a4
0 − 17a5

0 = 0. (3.2)

By solving (3.2), for the case of three players we obtain the optimal threshold value

a0 = 0.660527.
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It is interesting to note that we can also obtain (3.2) by using the third and the fourth
cases for P(a, b, c). If Player C selects c = a0 as the threshold value, we obtain

1

120
(a0 − b) ( f3(a0, b, a0) − g3(a0, b, a0))≥ 0 for b ≥ a0,

1

120
(a0 − b) ( f4(a0, b, a0) − g4(a0, b, a0))≥ 0 for b ≤ a0

or, equivalently,

f3(a0, b, a0) − g3(a0, b, a0) ≤ 0 for b ≥ a0,
f4(a0, b, a0) − g4(a0, b, a0) ≥ 0 for b ≤ a0.

When Player B also chooses b = a0, the two expressions lead to

fi(a0, a0, a0) − gi(a0, a0, a0) = 20 − 20a0 + 20a2
0 − 20a3

0 − 40a4
0 − 17a5

0

= 0 for i = 3, 4.

4. WHAT ABOUT MORETHANTHREE PLAYERS?

In order to obtain P(A wins) for the case of n players, we have to distinguish between
n! possible orderings of the threshold values d1, . . . , dn of the players. For the ith
possible ordering, the following general form of P(A wins ) holds

P(A wins) = 1

n
+ C1(d1 − d2)f

1
i (d1, . . . , dn)

+ · · · + Cn−1(dn−1 − dn)f
n−1

i (d1, . . . , dn), i = 1, . . . , n!.
Using Mathematica, we could obtain explicit expression for the functions
f j
i (d1, . . . , dn) up to n = 10. The next step is to compute the optimal threshold value

a0 from these expressions. To do this, we used a shortcut in our analysis. The fol-
lowing remarkable observation can be made for the case of three players. If we plug
a = b = c = a0 into the expressions for the functions fi(d1, . . . , dn) and gi(d1, . . . , dn)

in the Appendix, we get, for all i, the following reduced polynomial for a0:

fi(a0, a0, a0) = 1

120

(
40 − 40a0 + 40a2

0 − 40a3
0 − 80a4

0 − 34a5
0

)
,

gi(a0, a0, a0) = 1

120

(
20 − 20a0 + 20a2

0 − 20a3
0 − 40a4

0 − 17a5
0

)
.

The same observation applies to the case of n = 2 players. This observation was used
to get the polynomial for a0 in the general case of n > 3. The power of Mathematica
enabled us to obtain the reduced polynomial up to n = 10 players. The polynomial
for the case of n players is of degree 2n − 1. In Table 1 we only give the reduced
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TABLE 1. Reduced Polynomials for n Players

n Reduced polynomial

2 3 − 3a0 − 3a2
0 − 2a3

0

3 20 − 20a0 + 20a2
0 − 20a3

0 − 40a4
0 − 17a5

0

4 14 − 14a0 + 14a2
0 − 14a3

0 + 14a4
0 − 14a5

0 − 42a6
0 − 13a7

0

5 144 − 144a0 + 144a2
0 − 144a3

0 + 144a4
0 − 144a5

0 + 144a6
0 − 144a7

0 − 576a8
0 − 139a9

0

TABLE 2. Optimal Threshold Values for n
Players

n a0 a∗

2 0.563385 0.53209
3 0.660527 0.64865
4 0.717991 0.71145
5 0.756631 0.75225
6 0.784680 0.78141
7 0.806119 0.80353
8 0.823129 0.820995
9 0.837011 0.835209

10 0.848594 0.847044

polynomial for n = 2, 3, 4, 5, but we have computed the optimal threshold a0 for up
to n = 10 players. The shortcut we made to obtain a0 was empirically validated by
simulation experiments.

The optimal threshold value a0 is in Table 2 for n = 2, 3, . . . , 10. It is interesting
to compare the optimal threshold values with the optimal stopping level that is used
by the first player in the stochastic game in which each of the players in turn chooses
one or two random numbers between 0 and 1 and then waits for the results of the
succeeding players’ draws. In this continuous version of the Showcase Showdown
game, we have for the case of n players that the optimal stopping level, a∗, of the first
player is the solution of

a2n−2 = 1

2n − 1

(
1 − a2n−1

)
on (0, 1), see Tijms [2]. The numerical values of a∗ are given in the last column of
Table 2. In comparison, as the number of players increases, the optimal values get
closer to each other.
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APPENDIX

For the case of three players, the exact formulas for fi and gi as functions of threshold values
a, b, and c are as follows:

f1(a, b, c) = 1

120
(40 − 40a2 − 10a3 − 20b + 20ab − 30a2b − 10a3b + 20b2 − 30ab2

− 10a2b2 − 30b3 − 10ab3 − 10b4 − 20c + 60ac − 20a2c − 10a3c − 20bc

+ 40abc − 10a2bc − 10a3bc + 40b2c − 10ab2c − 10a2b2c − 10b3c − 10ab3c

− 10b4c + 10b2c3 − 5bc4 + c5),

g1(a, b, c) = 1

120
(20 − 20b + 20b2 − 20b3 − 8b4 − 13b3c − 8b4c − 13b2c2 − 8b3c2 − 3bc3

+ 2b2c3 − 3c4 − 3bc4),

f2(a, b, c) = 1

120
(40 − 40a2 − 10a3 − 20b + 20ab − 30a2b − 10a3b + 20b2 − 30ab2

− 10a2b2 − 30b3 − 10ab3 − 10b4 + b5 − 20c + 60ac − 20a2c − 10a3c

− 20bc + 40abc − 10a2bc − 10a3bc + 40b2c − 10ab2c − 10a2b2c

− 10b3c − 10ab3c − 15b4c + 10b3c2),

g2(a, b, c) = 1

120
(20 − 20b + 20b2 − 30b3 − 7b4 + b5 + 10b2c − 17b3c − 12b4c + 10bc2

− 7b2c2 − 2b3c2 − 10c3 − 7bc3 − 2b2c3 − 2c4 − 2bc4),

f3(a, b, c) = 1

120
(40 − 15a3 − 3a4 − 20b − 15a2b − 3a3b − 45ab2 − 13a2b2 − 25b3 − 13ab3

− 8b4 − 20c + 20a2c − 10a3c − 3a4c + 40bc + 20abc − 10a2bc − 3a3bc

+ 20b2c − 10ab2c − 13a2b2c − 10b3c − 13ab3c − 8b4c + 10b2c3 − 5bc4 + c5),

g3(a, b, c) = 1

120
(20 − 20b + 20b2 − 20b3 − 8b4 − 13b3c − 8b4c − 13b2c2 − 8b3c2 − 3bc3

+ 2b2c3 − 3c4 − 3bc4),

f4(a, b, c) = 1

120
(40 − 15a3 − 3a4 − 20b + 5a2b − 13a3b − 3a4b + 5ab2 − 13a2b2 − 3a3b2

+ 5b3 − 13ab3 − 3a2b3 − 13b4 − 3ab4 − 2b5 − 20c + 40bc − 5b4c − 30ac2

− 10a2c2 − 30bc2 − 10abc2 − 10a2bc2 − 10b2c2 − 10ab2c2 + 20c3

+ 5c4 + 5bc4),
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g4(a, b, c) = 1

120
(20 − 20b + 5b3 − 10b4 − 2b5 + 40bc + 5b2c − 10b3c − 5b4c − 20c2

− 25bc2 − 10b2c2 − 5b3c2 − 5c3 − 10bc3 − 5b2c3),

f5(a, b, c) = 1

120
(40 − 6a4 − 20b − 6a3b − 3a4b − 16a2b2 − 3a3b2 + 20b3 − 16ab3 − 3a2b3

− 11b4 − 3ab4 − 3b5 − 20c − 3a4c + 40bc + 7a3bc − 60b2c − 3a2b2c − 3ab3c

+ 2b4c − 10a2c2 − 10abc2 − 10a2bc2 − 10b2c2 − 10ab2c2 − 10b3c2

+ 10b2c3 + 5c4 + c5),

g5(a, b, c) = 1

120
(20 − 20b + 20b2 + 25b3 − 11b4 − 3b5 − 35b2c − 6b3c − b4c − 5bc2

− 16b2c2 − 11b3c2 − 5c3 − 6bc3 − b2c3 − c4 − bc4),

f6(a, b, c) = 1

120
(40 − 6a4 − 20b − 6a3b − 3a4b − 16a2b2 − 3a3b2 − 16ab3 − 3a2b3 − 11b4

− 3ab4 − 2b5 − 20c − 3a4c + 40bc + 7a3bc − 3a2b2c − 3ab3c − 3b4c − 10a2c2

− 60bc2 − 10abc2 − 10a2bc2 − 10b2c2 − 10ab2c2 + 20c3 + 5c4 + 5bc4),

g6(a, b, c) = 1

120
(20 − 20b + 5b3 − 10b4 − 2b5 + 40bc + 5b2c − 10b3c − 5b4c − 20c2

− 25bc2 − 10b2c2 − 5b3c2 − 5c3 − 10bc3 − 5b2c3).
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