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Abstract A monoid S is said to be right coherent if every finitely generated subact of every finitely
presented right S-act is finitely presented. Left coherency is defined dually and S is coherent if it is both
right and left coherent. These notions are analogous to those for a ring R (where, of course, S-acts are
replaced by R-modules). Choo et al . have shown that free rings are coherent. In this paper we prove
that, correspondingly, any free monoid is coherent, thus answering a question posed by Gould in 1992.
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1. Introduction and preliminaries

The notion of right coherency for a monoid S is defined in terms of finitary properties
of right S-acts, which corresponds to the way in which right coherency is defined for a
ring R via properties of right R-modules. Namely, S is said to be right (left) coherent
if every finitely generated subact of every finitely presented right (left) S-act is finitely
presented [3]. If S is both right and left coherent, then we say that S is coherent. Chase [1]
gave equivalent internal conditions for right coherency of a ring R. The analogous result
for monoids states that a monoid S is right coherent if and only if for any finitely
generated right congruence ρ on S, and for any a, b ∈ S, the right annihilator congruence

r(aρ) = {(u, v) ∈ S × S : au ρ av}

is finitely generated, and the subact (aρ)S ∩ (bρ)S of the right S-act S/ρ is finitely
generated (if non-empty) [4]. Left coherency is defined for monoids and rings in a dual
manner; a monoid or ring is coherent if it is both right and left coherent. Coherency is a
rather weak finitary condition on rings and monoids and, as demonstrated by Wheeler [7],
it is intimately related to the model theory of R-modules and S-acts.
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A natural question arises as to which of the important classes of infinite monoids
are (right) coherent. This study was initiated in [4], where it was shown that the free
commutative monoid on any set Ω is coherent. For a (right) Noetherian ring R, the free
monoid ring R[Ω∗] over R is (right) coherent [2, Corollary 2.2]. Since the free ring on
Ω is the monoid ring Z[Ω∗] [6], it follows immediately that free rings are coherent. The
question of whether the free monoid Ω∗ itself is coherent was left open in [4]. The purpose
of this paper is to provide a positive answer to that question.

Theorem 1.1. For any set Ω the free monoid Ω∗ is coherent.

Our proof of Theorem 1.1, given in § 2, provides a blueprint for the proof in [5] that
free left ample monoids are right coherent. Further comments are provided in § 3.

A few words on notation and technicalities follow. If H is a set of pairs of elements
of a monoid S, then we denote by 〈H〉 the right congruence on S generated by H. It is
easy to see that if a, b ∈ S, then a 〈H〉 b if and only if a = b or there is an n � 1 and a
sequence

(c1, d1, t1; c2, d2, t2; · · · ; cn, dn, tn)

of elements of S, with (ci, di) ∈ H or (di, ci) ∈ H, such that the following equalities hold:

a = c1t1, d1t1 = c2t2, . . . , dntn = b.

Such a sequence will be referred to as an H-sequence (of length n) connecting a and b. It
is convenient to allow n = 0 in the above sequence; the empty sequence is interpreted as
asserting the equality a = b. Where convenient we will use the fact that Ω∗ is a submonoid
of the free group FG(Ω) on Ω in order to give the natural meaning to expressions such
as yx−1, where x, y ∈ Ω∗ and x is a suffix of y.

2. Proof of Theorem 1.1

Let Ω be a set; it is clearly enough to show that Ω∗ is right coherent. To this end let ρ

be the right congruence on Ω∗ generated by a finite subset H of Ω∗ ×Ω∗, which without
loss of generality we assume to be symmetric.

Definition 2.1. A quadruple (a, u; b, v) of elements of S is said to be irreducible
if (au, bv) ∈ ρ and for any common non-empty suffix x of u and v we have that
(aux−1, bvx−1) �∈ ρ.

Definition 2.2. An H-sequence (c1, d1, t1; · · · ; cn, dn, tn) with

au = c1t1, d1t1 = c2t2, . . . , dntn = bv

is irreducible with respect to (a, u; b, v) if u, t1, . . . , tn, v ∈ Ω∗ do not have a common
non-empty suffix. Clearly, this is equivalent to one of u, t1, . . . , tn, v being ε.

Throughout this paper, for an H-sequence as above we define a = d0, u = t0, cn+1 =
b and tn+1 = v. It is clear that if the quadruple (a, u; b, v) is irreducible, then any
H-sequence connecting au and bv must be irreducible with respect to (a, u; b, v).

We define
K = max{|p| : (p, q) ∈ H}.
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Lemma 2.3. Let the H-sequence (c1, d1, t1; · · · ; cn, dn, tn) with

au = c1t1, d1t1 = c2t2, . . . , dntn = bv

be irreducible with respect to (a, u; b, v). Then either the empty H-sequence is irreducible
with respect to (a, u; c1, t1) (in which case |u| � max(|b|, K) and u = ε or t1 = ε) or
there exist an index 1 � i � n such that ti+1 = ε (so that auρci+1) and x ∈ Ω+ such
that |x| � max(|b|, K), and the sequence

(c1, d1, t1x
−1; · · · ; ci−1, di−1, ti−1x

−1)

satisfies

aux−1 = c1t1x
−1, d1t1x

−1 = c2t2x
−1, . . . , di−1ti−1x

−1 = citix
−1

and is an irreducible H-sequence with respect to (a, ux−1; ci, tix
−1).

Proof. If the empty sequence is irreducible with respect to (a, u; c1, t1), then either
u = ε or t1 = ε. In both cases we have that |u| � max(|b|, K). Suppose therefore that the
empty sequence is not irreducible with respect to (a, u; c1, t1). Let i ∈ {1, . . . , n} be the
smallest index such that ti+1 = ε (such an index exists, because our original sequence is
irreducible) and let x be the longest common non-empty suffix of u = t0, t1, . . . , ti. Then
the sequence

(c1, d1, t1x
−1; · · · ; ci−1, di−1, ti−1x

−1)

clearly satisfies

aux−1 = c1t1x
−1, d1t1x

−1 = c2t2x
−1, . . . , di−1ti−1x

−1 = citix
−1

and is irreducible with respect to (a, ux−1; ci, tix
−1). Furthermore, since ti+1 = ε, we

have that diti = ci+1, so x is a suffix of ci+1. If i < n, then (ci+1, di+1) ∈ H, while if
i = n, we have ci+1 = b. In either case |x| � |ci+1| � max(|b|, K). �

We deduce immediately that one condition for coherency of Ω∗ is fulfilled.

Corollary 2.4. Let a, b ∈ S. Then (aρ)S ∩ (bρ)S is empty or finitely generated.

Proof. Let us suppose that (aρ)S ∩ (bρ)S �= ∅ and let

X = {aρ, bρ, cρ : (c, d) ∈ H} ∩ (aρ)S ∩ (bρ)S.

We claim that X generates (aρ)S ∩ (bρ)S. It is enough to show that for every irreducible
quadruple (a, u; b, v) we have that (au)ρ ∈ X. For this, let (c1, d1, t1; · · · ; cn, dn, tn) be
an H-sequence with

au = c1t1, . . . , dntn = bv.

Note that this sequence is necessarily irreducible with respect to (a, u; b, v). Then, by
Lemma 2.3, either u = ε, or ti = ε for some i ∈ {1, . . . , n}, or v = tn+1 = ε. In each of
these cases we see that (au)ρ ∈ X. �
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It remains to show that for any a ∈ Ω∗ the right congruence r(aρ) is finitely generated.
To this end we first present a technical result.

Lemma 2.5. Let (c1, d1, t1; · · · ; cn, dn, tn) with

au = c1t1, . . . , dntn = bv

be an irreducible H-sequence with respect to (a, u; b, v). Then either u = ε or there exist
a factorization u = xk · · ·x1 and indices n + 1 � �1 > �2 > · · · > �k � 1 such that, for all
1 � j � k,

(i) 0 < |xj | � max(|b|, K) and

(ii) aux−1
1 · · ·x−1

j−1 ρ c�j (note that for j = 1 we have auρc�1).

Proof. We proceed by induction on |u|: if |u| = 0, the result is clear. Suppose that
|u| > 0 and the result is true for all shorter words. If the empty sequence is irreducible
with respect to (a, u; c1, t1), then t1 = ε and the factorization u = x1 satisfies the
required conditions, with k = 1 and �1 = 1. Otherwise, by Lemma 2.3, there exist
an index 1 � i � n such that ti+1 = ε, so that au ρ ci+1, and x1 ∈ Ω+ such that
|x1| � max(|b|, K) and the sequence

(c1, d1, t1x
−1
1 ; · · · ; ci−1, di−1, ti−1x

−1
1 )

satisfies

aux−1
1 = c1t1x

−1
1 , d1t1x

−1
1 = c2t2x

−1
1 , . . . , di−1ti−1x

−1
1 = citix

−1
1

and is an irreducible H-sequence with respect to (a, ux−1
1 ; ci, tix

−1
1 ). Put �1 = i+1. Since

|ux−1
1 | < |u|, the result follows by induction. �

Lemma 2.6. Let a ∈ Ω∗. Then r(aρ) is finitely generated.

Proof. Let K ′ = max(K, |a|) + 1, L = 2|H| + 2, N = K ′L and define

X = {(u, v) : |u| + |v| � 3N} ∩ r(aρ).

We claim that X generates r(aρ). It is clear that 〈X〉 ⊆ r(aρ).
Let (u, v) ∈ r(aρ). We show by induction on |u| + |v| that (u, v) ∈ 〈X〉. Clearly, if

|u| + |v| � 3N , then (u, v) ∈ X. We suppose therefore that |u| + |v| > 3N and make the
inductive assumption that if (u′, v′) ∈ r(aρ) and |u′|+ |v′| < |u|+ |v|, then (u′, v′) ∈ 〈X〉.
If the quadruple (a, u; a, v) is not irreducible, it is immediate that (u, v) ∈ 〈X〉. Without
loss of generality we therefore suppose that the quadruple (a, u; a, v) is irreducible and
|v| � |u|, so that |u| > N . Let (c1, d1, t1; · · · ; cn, dn, tn) with

au = c1t1, . . . , dntn = av

be an irreducible H-sequence with respect to (a, u; a, v). We apply Lemma 2.5, noting here
that a = b. Clearly, u �= ε so, by Lemma 2.5, there exists a factorization u = xk · · ·x1
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such that for all 1 � j � k we have 0 < |xj | � K ′ and aux−1
1 · · ·x−1

j−1 ρ c�j
for some

1 � �j � n + 1. Since |u| > K ′L, we have that k > L. Note that the number of distinct
elements among c1, . . . , cn is less than L − 1. This in turn implies that there exist two
indices 1 � k − L < j < i � k such that c�i = c�j , so that

aux−1
1 · · ·x−1

i−1 ρ c�i = c�j ρ aux−1
1 · · ·x−1

j−1.

Since i, j > k − L, we have that k − i + 1 � L, so |ux−1
1 · · ·x−1

i−1| = |xk · · ·xi| � K ′L and
similarly |ux−1

1 · · ·x−1
j−1| � K ′L. As a consequence, (ux−1

1 · · ·x−1
i−1, ux−1

1 · · ·x−1
j−1) ∈ X,

and letting u′ = ux−1
1 · · ·x−1

i−1xj−1 · · ·xk we see that

(u′, u) = (ux−1
1 · · ·x−1

i−1, ux−1
1 · · ·x−1

j−1)xj−1 · · ·x1 ∈ 〈X〉.

In particular, au′ ρ au ρ av. Note that |u′| < |u|, because j < i and xj �= ε. Thus, by the
induction hypothesis we have that (v, u′) ∈ 〈X〉 and so the lemma is proved. �

In view of the characterization of coherency given in [4] and cited in the introduction,
Corollary 2.4 and Lemma 2.6 complete the proof of Theorem 1.1.

3. Comments

Given that the class of right coherent monoids is closed under retract [5], it follows from
the results of that paper that free monoids are coherent. However, as the arguments in [5]
for free left ample monoids are burdened with unavoidable technicalities, we prefer to
present here the more transparent proof that Ω∗ is coherent, by way of motivation for
the work of [5]. With free objects in mind, we remark that we also show in [5] that the
free inverse monoid on Ω is not coherent if |Ω| > 1.
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