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THE FUNDAMENTAL THEOREM OF CENTRAL ELEMENT THEORY

MARIANA VANESA BADANO AND DIEGO JOSE VAGGIONE

Abstract. We give a short proof of the fundamental theorem of central element theory (see: Sanchez

Terraf and Vaggione, Varieties with definable factor congruences, T.A.M.S. 361). The original proof is

constructive and very involved and relies strongly on the fact that the class be a variety. Here we give a

more direct nonconstructive proof which applies for the more general case of a first-order class which is

both closed under the formation of direct products and direct factors.

§1. Introduction. In this note we give a short proof of the fundamental theoremof
central element theory [7, Theorem 1]. The proof given in [7] is constructive and very
involved and relies strongly on the fact that the class be a variety (i.e. equationally
definable class of algebras). Here we shall give a more direct nonconstructive proof
which applies for the more general case of a first-order class which is both closed
under the formation of direct products and direct factors.
The theorem links several natural concepts of very different natures which we

shall describe in the following lines. Let L be a first-order language and let A be an
L-structure. Let ∆A = {(a,a) : a ∈A} and∇A =A×A. By a pair of complementary
factor relations of A we understand a pair (è1,è2) of equivalence relations on A
satisfying:

- è1∩è2 = ∆
A and è1 ◦è2 =∇A.

- For every n-ary function symbol f ∈ L and i = 1,2 we have that

(a1,b1), ...,(an,bn) ∈ è i implies (f
A(a1, ...,an),f

A(b1, ...,bn)) ∈ è i .

- For every n-ary relation symbol R ∈ L, if (a1, ...,an),(b1, ...,bn) ∈ R
A and

(z1, ...,zn) is such that

(z1,a1), ...,(zn,an) ∈ è1 (z1,b1), ...,(zn,bn) ∈ è2

then (z1, ...,zn) ∈R
A.

There is a well known correspondence between pairs of complementary factor
relations and direct product representations. More concretely, if ó : A→ A1×A2 is
an isomorphism, then (ker(ð1 ◦ó), ker(ð2 ◦ó)) is a pair of complementary factor
relations ofA, where ði :A1×A2→Ai is the canonical projection, and, reciprocally,
if (è1,è2) is a pair of complementary factor relations of A, we can define A/è i to be
the structure with universe A/è i and the interpretations given by:
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- fA/èi (a1/è i, ...,an/è i) =f
A(a1, ...,an)/è i , for every n-ary function symbol f of

L
- RA/èi = {(a1/è i, ...,an/è i) : (a1, ...,an) ∈ R

A}, for every n-ary relation symbol
R of L,

obtaining that the canonical map A → A/è1 ×A/è2 is an isomorphism. These
constructions are mutually inverse.
For an L-structure A define

FRp(A) = {(è,ä) : (è,ä) is a pair of complementary factor relations of A}.

In virtue of the importance of the direct product construction, the above described
correspondence between direct product decompositions of A and elements of
FRp(A) indicates about the importance of studying the set FRp(A).
There is a wide extent of classes K in which the structure of FRp(A), for A ∈ K,

can be studied via central elements. A class with E0 and E1 is a first-order class K of
L-structures for which there are 0-ary terms 01, ...,0N , 11, ...,1N such that

K |= E0 = E1→ x = y

where E0 = (01, ...,0N ) and E1 = (11, ...,1N ). Classical examples of this type of classes
are:

- The class of bounded lattices (L= {∨, ∧ ,0,1}).
- The class of rings with identity (L= {+,.,0,1}).
- The class of bounded posets (L= {≤ ,0,1}).

(N =1, in the three cases.)Wenote that the existence of the terms 01, ...,0N , 11, ...,1N
is a natural condition, since a simple compactness argument shows that a first-order
classK is a class with E0 and E1 iff the language has at least a constant symbol and the
members of K with at least two elements have no one-element substructure.
Let K be a class with E0 and E1. If Ea ∈AN and Eb ∈ BN , then we use [Ea,Eb] to denote

theN-tuple ((a1,b1), ...,(aN ,bN )) ∈ (A×B)
N . LetA ∈K. We say that (Ee, Ef) is a pair

of complementary central elements of A if there exists an isomorphismA→A1×A2,
such that Ee→ [E0,E1] and Ef→ [E1,E0]. Let

CEp(A) = {(Ee, Ef) : (Ee, Ef) is a pair of complementary central elements of A}.

Of course, if for (è,ä) ∈ FRp(A) we define
1

Ee(è,ä) = unique Eu ∈ AN such that Eu ≡ E0(è)and Eu ≡ E1(ä),

Ef(è,ä) = unique Eu ∈ AN such that Eu ≡ E1(è)and Eu ≡ E0(ä)

then (Ee(è,ä), Ef(è,ä)) ∈ CEp(A) and also we note that for every (Ee, Ef) ∈ CEp(A), there

is (è,ä) ∈ FRp(A) such that (Ee, Ef) = (Ee(è,ä), Ef(è,ä)). This relation between CEp(A)

and FRp(A) is very well behaved in the classical examples of classes with E0 and E1.
For example if K is the class of bounded distributive lattices and L ∈ K, then

CEp(L) = {(e,f) : e∨f = 1 and e∧f = 0}

1We write Ea ≡ Eb(è) to express that (ai ,bi ) ∈ è, i = 1, ...,N .
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and the maps

(e,f)→ (èL(0,e),èL(0,f)),

(è,ä)→ (e(è,ä),f(è,ä))

are a pair of mutually inverse bijections betweenCEp(L) and FRp(L) (here è
L(a,b)

denotes the least congruence collapsing a and b). The same occurs with the other
classical examples, that is, always we obtain a natural bijection betweenCEp(A) and
FRp(A) and hence we can replace factor relations by central elements. Of course this
is an advantage since factor relations are second-order objects and central elements
are first-order ones.
The above situation naturally leads us to the following philosophical question:

- For which classes K with E0 and E1 we have a satisfactory central element theory
in the sense that for every A ∈ K, we can codify the elements of FRp(A) with
elements of CEp(A)?

Suppose that for some A ∈K there exist distinct (è1,ä1),(è2,ä2) ∈ FRp(A) such that

(Ee(è1,ä1),
Ef(è1,ä1)) = (Ee(è2,ä2),

Ef(è2,ä2)). In other words, there are two essentially distinct
representations ó : A→ A1×A2 and ç : A→ B1×B2, which have associated the
same pair (Ee, Ef) of complementary central elements. Of course in this case it seems
somewhat unprovable that we can replace pairs of FRp(A) by central elements since,
in some sense, we have less pairs of complementary central elements than pairs of
complementary factor relations.
The prohibition of the above situation is called the determining property. That is

to say:

DP For everyA∈K, if (Ee, Ef)∈CEp(A), then there exists only one (è,ä)∈FRp(A)

such that (Ee, Ef) = (Ee(è,ä), Ef(è,ä)).

Note that DP is equivalent to the fact that for every A ∈ K, the map (è,ä)→
(Ee(è,ä), Ef(è,ä)) is a bijection between FRp(A) and CEp(A). So, a reasonable answer
to the above question is that the class K satisfies DP. This property guarantees that,
just as it is done in the classical cases, we can replace factor relations by central
elements and the gain is obvious.
In the theorem which is the object of this paper we shall prove that if K is a class

with E0 and E1 satisfying

(1) If A,B ∈ K, then A×B ∈ K;
(2) If A×B ∈ K, then A,B ∈ K

then DP is equivalent to several natural conditions which we shall describe next.
Our first one deserves the name of definable factor relations (DFR, for short).

DFR There is a first-order formula ù(Ez, Ew,x,y) such that for every A ∈ K and
(è,ä) ∈ FRp(A) we have that

è = {(a,b) : A � ù(Ee(è,ä), Ef(è,ä),a,b)}.

Since Ee(ä,è) = Ef(è,ä) and Ef(ä,è) = Ee(è,ä), when DFR holds we have that ä = {(a,b) :

A � ù( Ef(è,ä), Ee(è,ä),a,b)}. Hence DFR implies DP, since (è,ä) is determined by

(Ee(è,ä), Ef(è,ä)) via ù. An extrinsic version of DFR can be written as follows.
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(W) There is a first-order formula ù(Ez, Ew,x,y) such that for every A,B ∈ K,

A×B � ù([E0,E1],[E1,E0],(a,b),(a′,b′)) iff a = a′.

Note that, sinceK satisfies (1) and (2) above, DFR and (W) are trivially equivalent.
However, the classical examples satisfy the following strengthening of (W):

(L) There is a first-order formula ë(Ez,x,y) such that for every A,B ∈ K,

A×B � ë([E0,E1],(a,b),(a′,b′)) iff a = a′.

For example, if K is the class of bounded lattices, we can take ë(z1,x,y) := x ∨
z1 = y ∨ z1 and if K is the class of bounded posets (here L= {≤ ,0,1}), we can take
ë(z1,x,y) to be the conjunction of the two following formulas

∀u ((z1 ≤ u & x ≤ u)→ y ≤ u) ∀u ((z1 ≤ u & y ≤ u)→ x ≤ u).

Since A×B is isomorphic to B×A via the map (a,b)→ (b,a), it is trivial that a
formula ë satisfying (L) also satisfies

A×B � ë([E1,E0],(a,b),(a′,b′)) iff b = b′,

for any A,B ∈ K. Observe that this condition not only states the equality of the
second coordinate but also E0 and E1 have been interchanged in the formula ë. Since
in general E0 and E1 are not interchangeable, it is not obvious that (L) be equivalent
to the following condition.

(R) There is a first-order formula ñ(Ez,x,y) such that for every A,B ∈ K,

A×B � ñ([E0,E1],(a,b),(a′,b′)) iff b = b′.

Condition (R) is present in a lot of cases, since when there is a binary term × such
that K |= x×01 = 01∧x×11 = x, the formula ñ := x×z1 = y×z1 trivially satisfies
(R).
Next we state the last two properties involved in the theorem. Define

FR(A) = {è : ∃ä (è,ä) ∈ FRp(A)}.

The elements of FR(A) are called factor relations. In general FR(A) is not closed
under intersection, nor relational product. Moreover, even in case that FR(A) is
closed under ◦ and ∩, the resulting bounded lattice (FR(A), ◦,∩,∆A,∇A) can be not
uniquely complemented. We say that the class K has Boolean factor relations (BFR,
for short) if the following property holds.

BFR If A ∈ K, then (FR(A), ◦ , ∩ ,∆A,∇A) is a bounded distributive lattice (and
hence a Boolean lattice).

The property BFR grew out of the work of A. Tarski and others on the existence
of unique direct product decompositions of groupoids with identity by directly
indecomposable groupoids [4, 5, 8] . They proved that BFR is equivalent to the strict
refinement property (a strengthening of the property stating that every two direct
product representations have a common refinement), which implies the existence
of at most one direct product decomposition with directly indecomposable factors.
Several years later C. C. Chang, B. Jónsson, and A. Tarski [2] generalized the
definitions of strict refinement property and BFR to the setting of arbitrary first-
order structures and prove that they are equivalent.
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It is also noteworthy that in several important works on sheaf representations
BFR has played a key role. For example, S. Comer published a seminal article [3]
showing that the Pierce sheaf construction for rings with identity [6] extends to any
algebra having BFR, and in Bigelow and Burris [1] it is shown that in a variety
with BFR the weak Boolean product representations with directly indecomposable
factors are unique and coincide with the Pierce sheaf.
To state the last property involved in the theorem we need the following notation.

If r1 is a binary relation on A1 and r2 is a binary relation on A2, then we use r1× r2
to denote the binary relation on A1×A2 given by

((a1,a2),(b1,b2)) ∈ r1× r2 iff (ai,bi) ∈ ri , for i = 1,2.

We say that the classK has factorable factor relations (FFR, for short) if the following
property holds.

FFR If A,B ∈ K, then for every è ∈ FR(A×B) there exist è1 ∈ FR(A) and
è2 ∈ FR(B) such that è = è1×è2.

Now we can state the theorem.

Theorem 1. Let K be a class with E0 and E1 and suppose that

(1) If A,B ∈ K, then A×B ∈ K.
(2) If A×B ∈ K, then A,B ∈ K.

Then DP, DFR, (L), (R), (W ), BFR, and FFR are equivalent.

Of course any variety (i.e. equationally definable class of algebras) satisfies (1)
and (2) and hence the above theorem applies to every variety with E0 and E1. In
this category are the classes of bounded semilattices, bounded lattices, rings with
identity, etc. Furthermore, if K is a class with E0 and E1, which can be axiomatized
by sentences of the form ∀ Ex(

∧n
i=1αi → α), where α1, ...,αn,α are atomic formulas

such that K |= ∃ Ex
∧n
i=1αi , then K satisfies (1) and (2) and hence the above theorem

applies. This is because the sentences of the form ∃ Ex
∧n
i=1αi ∧∀ Ex(

∧n
i=1αi → α),

where α1, ...,αn,α are atomic formulas, are preserved by direct products and direct
factors. The class of bounded posets falls in this category. The equivalence of BFR
and FFR is due to Chang, J ónsson and Tarski [2].

§2. Proof of Theorem 1. In order to prove the main theorem first we state the
following basic results.

Lemma 2. Suppose è is a binary relation on A×B . The following are equivalent

(i) è = è1×è2, for some binary relations è1 and è2
(ii) ((a,b),(a′,b′)), ((c,d ),(c′,d ′)) ∈ è implies ((a,d ),(a′,d ′)) ∈ è.

Lemma 3. Let è i,äi be binary relations on Ai , for i = 1,2. Then

- (è1×è2)∩ (ä1× ä2) = (è1∩ ä1)× (è2∩ ä2),
- (è1×è2)◦ (ä1× ä2) = (è1 ◦ ä1)× (è2 ◦ ä2).
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Lemma 4. LetA1,A2 beL-structures. Let è i,äi be binary relations onAi , for i =1,2.
Then ((è1×è2),(ä1× ä2)) ∈ FRp(A1×A2) iff (è i,äi) ∈ FRp(Ai), for i = 1,2.

Let K be a class with E0 and E1 and suppose that K satisfies DP. If (Ee, Ef) ∈
CEp(A), we denote by (è

A

(Ee, Ef)
,äA
(Ee, Ef)
) the only pair (è,ä) ∈ FRp(A) satisfying

(Ee, Ef) = (Ee(è,ä), Ef(è,ä)).

Lemma 5. Let K be a class with E0 and E1 satisfying DP. Let A,B ∈ K be such that
A×B∈K. If (Ee, Ef)∈CEp(A) and (Eg, Eh)∈CEp(B), then ([Ee, Eg],[ Ef, Eh])∈CEp(A×B)

and èA×B
([Ee, Eg],[ Ef, Eh])

= èA
(Ee, Ef)

×èB
(Eg, Eh)
.

Now we can give the proof.

Proof of Theorem 1. (L)⇒(W). Take ù(Ez, Ew,x,y) = ë(Ez,x,y).
(W)⇒DFR. It is trivial.
DFR⇒DP. Suppose K satisfies DFR. If (Ee, Ef) ∈ CEp(A) and (è,ä) ∈ FRp(A) is

such that (Ee, Ef) = (Ee(è,ä), Ef(è,ä)), then DFR says us that

è = {(a,b) : A � ù(Ee, Ef,a,b)},

ä = {(a,b) : A � ù( Ef, Ee,a,b)}

(note that Ee(ä,è) = Ef(è,ä) and Ef(ä,è) = Ee(è,ä)). Thus the pair (è,ä) is determined by

(Ee, Ef) and hence K satisfies DP.
DP⇒FFR. Let A,B ∈ K and suppose è ∈ FR(A×B). Let ä be such that (è,ä) ∈

FRp(A×B). Let Ee = Ee(è,ä) and Ef = Ef(è,ä). We observe that è
A×B

(Ee, Ef)
= è. Suppose

((a,b),(a′,b′)) ∈ è and ((c,d ),(c′,d ′)) ∈ è. In order to apply Lemma 2, we want to
prove that ((a,d ),(a′,d ′)) ∈ è. Since (Ee, Ef) ∈ CEp(A×B), Lemma 5 says that

([Ee, Ee],[ Ef, Ef]) ∈ CEp((A×B)× (A×B))

and

è(A×B)×(A×B)
([Ee, Ee],[ Ef, Ef])

= èA×B

(Ee, Ef)
×èA×B

(Ee, Ef)
.

Hence we obtain that

(a) è(A×B)×(A×B)
([Ee, Ee],[ Ef, Ef])

= è×è.

In particular this says that

(b) (((a,b),(c,d )),((a′,b′),(c′,d ′))) ∈ è(A×B)×(A×B)
([Ee, Ee],[ Ef, Ef])

.

Let α : (A×B)× (A×B)→ (A×B)× (A×B) be the natural automorphism
given by α((a,b),(c,d )) = ((a,d ),(c,b)). Of course (b) says that

(α((a,b),(c,d )),α(((a′,b′),(c′,d ′))) ∈ è(A×B)×(A×B)
(α([Ee, Ee]),α([ Ef, Ef]))

.

But α([Ee, Ee]) = [Ee, Ee] and α([ Ef, Ef]) = [ Ef, Ef], which implies that

(((a,d ),(c,b)),((a′,d ′),(c′,b′))) ∈ è(A×B)×(A×B)
([Ee, Ee],[ Ef, Ef])

.
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Thus (a) produces ((a,d ),(a′,d ′)) ∈ è. Hence Lemma 2 says that è = è1× è2, for
some relations è1,è2. Similarly we can prove that ä = ä1× ä2. By Lemma 4 we have
that è1 ∈ FR(A) and è2 ∈ FR(B).
FFR⇒BFR. See [2] and [1].
BFR⇒(L). First we will prove that the following strong form of DP holds.

SDP For every A ∈ K, if (è1,ä1),(è2,ä2) ∈ FRp(A) and Ee(è1,ä1) = Ee(è2,ä2), then
(è1,ä1) = (è2,ä2).

Let Ee = Ee(è1,ä1) = Ee(è2,ä2). We observe that
E0 ≡ Ee(è1 ∩ è2) and E1 ≡ Ee(ä1 ∩ ä2).

Thus we have that E0 ≡ E1((è1 ∩ è2) ◦ (ä1 ∩ ä2)). Let ã = (è1 ∩ è2) ◦ (ä1 ∩ ä2). Since
A has BFR we have that ã ∈ FR(A). Hence A/ã ∈ K, because K satisfies (2). Since
E0A/ã ≡ E1A/ã and K |= E0 = E1→ x = y, we have that

∣

∣A/ã
∣

∣ = 1. Hence ã =∇A. Thus
we have

∇A = ã

= (è1∩è2)◦ (ä1∩ ä2)

= (è1 ◦ ä1)∩ (è1 ◦ ä2)∩ (è2 ◦ ä1)∩ (è2 ◦ ä2).

Hence we obtain that è1 ◦ ä2 =∇A, which produces

è2 = è2∩∇A

= è2∩ (è1 ◦ ä2)

= (è2∩è1)◦ (è2∩ ä2)

= (è2∩è1)◦∆
A

= è2∩è1

that is, è2 ⊆ è1. In a similar manner it can be proved the other inclusions completing
that è1 = è2 and ä1 = ä2. This concludes the proof of SDP.
Let L be the language of K and let Le = L∪{c1, ...,cN}∪{R}, where c1, ...,cN

are new distinct constant symbols and R is a new 4-ary relation symbol. If A is an
Le-structure, we use AL to denote the reduct of A to L. Let Ke be the class of all
Le-structures A satisfying:

(I) AL ∈ K.
(II) If è = {(a,b) ∈A2 : (a,b,0A1 ,0

A
1 ) ∈R

A} and ä = {(a,b) ∈A2 : (0A1 ,0
A
1 ,a,b) ∈

RA}, then (è,ä) ∈ FRp(AL) and Ee(è,ä) = (c
A
1 , ...,c

A
N ).

(III) If (a,b,c,d ) ∈RA, then either c = d = 0A1 or a = b = 0
A
1 .

We observe that Ke is a first-order class. Let (A, Ee,R1),(A, Ee,R2) ∈ Ke . We will
prove that R1 =R2. By (I) we have that A ∈ K. Note that by (II) and SDP we have
that

{(a,b) ∈ A2 : (a,b,0A1 ,0
A
1 ) ∈R1}= {(a,b) ∈ A2 : (a,b,0A1 ,0

A
1 ) ∈R2},

{(a,b) ∈ A2 : (0A1 ,0
A
1 ,a,b) ∈R1}= {(a,b) ∈ A2 : (0A1 ,0

A
1 ,a,b) ∈R2}.

So (III) implies that R1 = R2. Thus the relation R is implicitly definable in
Ke and hence Beth’s definability theorem says that there is a first-order (L ∪
{c1, ...,cN})-formula ϕ(x,y,z,w) satisfying Ke � ϕ(x,y,z,w)↔ R(x,y,z,w). Let
ϕ̃(z1, ...,zN ,x,y,z,w) be an L-formula such that ϕ = ϕ̃(c1, ...,cN ,x,y,z,w). Thus we
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have that

Ke � ϕ̃(c1, ...,cN ,x,y,z,w)↔R(x,y,z,w)

Let ë(z1, ...,zN ,x,y) = ϕ̃(z1, ...,zN ,x,y,01,01). Note that

(*) Ke � ë(c1, ...,cN ,x,y)↔R(x,y,01,01).

We will prove that K satisfies (L) via ë. Let A,B ∈ K. Let R ⊆ (A×B)4 be the
union of the following two sets

{((a1,b1),(a2,b2),(a3,b3),(a4,b4)) : a1 = a2 and (a3,b3) = (a4,b4) = (0
A
1 ,0
B
1 )},

{((a1,b1),(a2,b2),(a3,b3),(a4,b4)) : b3 = b4 and (a1,b1) = (a2,b2) = (0
A
1 ,0
B
1 )}.

It is easy to check that (A×B,(0A1 ,1
B
1 ),(0

A
2 ,1
B
2 ), ...,(0

A
N ,1

B
N ),R) ∈Ke . So (*) says that

A×B � ë([E0A,E1B],(a1,b1),(a2,b2)) iff ((a1,b1),(a2,b2),(0
A
1 ,0
B
1 ),(0

A
1 ,0
B
1 )) ∈R

iff a1 = a2

which proves (L).
DP⇒(R). It is similar to the proof of DP⇒(L).
(R)⇒DP. Trivial.
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