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A new method is introduced for estimating the convection velocity of individual modes
in turbulent shear flows that, in contrast to most previous ones, only requires spectral
information in the temporal or spatial direction over which a modal decomposition
is desired, while only using local derivatives in other directions. If no spectral
information is desired, the method provides a natural definition for the average
convection velocity, as well as a way to estimate the accuracy of the frozen-turbulence
approximation. Existing data from numerical turbulent channels at friction Reynolds
numbers Reτ � 1900 are used to validate the new method against classical ones, and
to characterize the dependence of the convection velocity on the eddy wavelength and
wall distance. The results indicate that the small scales in turbulent channels travel
at the local mean velocity, while large ‘global’ modes travel at a more uniform speed
proportional to the bulk velocity. To estimate the systematic deviations introduced
in experimental spectra by the use of Taylor’s approximation with a wavelength-
independent convection velocity, a semi-empirical fit to the computed convection
velocities is provided. It represents well the data throughout the Reynolds number
range of the simulations. It is shown that Taylor’s approximation not only displaces
the large scales near the wall to shorter apparent wavelengths but also modifies the
shape of the spectrum, giving rise to spurious peaks similar to those observed in
some experiments. To a lesser extent the opposite is true above the logarithmic layer.
The effect increases with the Reynolds number, suggesting that some of the recent
challenges to the k−1

x energy spectrum may have to be reconsidered.

1. Introduction
Turbulent flows with a dominant velocity component, such as jets or boundary

layers, arise in many practical applications. In them, the eddies propagate downstream
at a speed that is usually assumed to be close to the local average flow velocity,
and which is referred to as the convection velocity (Townsend 1976, ch. 1.7). Its
knowledge is often used in laboratory experiments to describe the spatial structure
of the flow by applying Taylor’s frozen turbulence approximation (Taylor 1938),
and is also important in the analysis of turbulence dynamics (Choi & Moin 1990;
Kim & Hussain 1993; Krogstad, Kaspersen & Rimestad 1998). Despite its relevance,
a complete characterization of the turbulent convection velocity is still lacking for
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6 J. C. del Álamo and J. Jiménez

many flows, because its measurement is arduous both in the laboratory and in
simulations. The lack of empirical data is especially serious for the dependence of
the convection velocity on eddy size, even if it was shown by Zaman & Hussain
(1981) that neglecting that dependence leads to large errors in the interpretation of
the large-scale structures in jets. The same is presumably true for other flows, and
warnings against the uncritical use of Taylor’s approximation (Taylor 1938) appear
regularly in the literature. They usually go unheeded, in part for lack of a better
alternative. For an excellent introduction to the history of the subject see Zaman &
Hussain (1981).

The convection velocity of a generic variable q is usually derived from the
frequency–wavenumber spectrum, or from the space–time correlation function,
which is its Fourier transform (Willmarth & Wooldridge 1962; Fisher & Davies
1963; Wills 1964). Assume x to be the streamwise direction, the flow to be
inhomogeneous along y and homogeneous along x and z. Consider the ω−kx

spectrum Φq = 〈q̃(kx, kz, y, ω)q̃∗(kx, kz, y, ω)〉, where 〈〉 denotes ensemble averaging,
ω is the frequency and kx and kz are wavenumbers. We use the tilde (∼) to denote the
Fourier transform with respect to the two homogeneous directions and time, and the
carat (ˆ) for spatial Fourier coefficients that have only been transformed with respect
to x and z, but that retain an explicit temporal dependence. Wills (1964) defined
the convection velocity of each Fourier mode, cq,1(kx, kz, y), as the one maximizing
Φq(kx, kz, y, −cq,1kx), which is expressed as

∂cΦq(kx, kz, y, −ckx)|c=cq,1
= 0. (1.1)

Alternate definitions in terms of the ω−kx spectrum are surveyed by Hussain & Clark
(1981) and Goldschmidt, Young & Ott (1981). A relatively popular one searches for
a maximum along kx for fixed ω, so that cq,2(kx, kz, y) = ω(kx, kz, y)/k2, and

∂kxΦq(kx, kz, y, ω)|
kx= k2

= 0. (1.2)

Comte-Bellot & Corrsin (1971) showed that most definitions are roughly equivalent
for low turbulence levels.

The ω−kx spectrum is conventionally estimated from a space–time series of
measurements, q(x, z, y, t), acquired by an array of sensors as described by Capon
(1969). The time series from each sensor is divided into segments of N samples that,
since they are generally not periodic, are windowed at the edges before performing
the Fourier transform. Some segment overlap can be used to recover part of the
information lost in this way. The use of the Fourier transform requires the data to
be uniformly sampled. If �t is the sampling rate, the highest (Nyquist) available
frequency is π/�t , while the lowest one, 2π/(N�t), is determined by the length of
the data segments. Turbulent flows are characterized by a wide range of relevant
frequencies, so the measurement series used in the computation of the spectrum must
be long and finely resolved. The same is true of the sensor arrays used to estimate
the spatial spectrum. For these reasons, classical methods for determining convection
velocities are very expensive.

The goal of this paper is not to use the results obtained for convection velocity to
study the structure of turbulence. Some of the references given above are better sources
for that purpose, and our group has already used the new method discussed here to
study some aspects of wall-bounded turbulence (Jiménez, del Álamo & Flores 2004;
Flores & Jiménez 2006). But the method itself had never been described in detail.
In this paper we discuss it, apply it to existing simulation data and use the results
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Turbulent convection velocities 7

to estimate the errors introduced by neglecting the wavelength dependence of the
convection velocity when applying Taylor’s approximation (Taylor 1938) to turbulent
channels. The new method is almost local in either space and time, requiring only,
for example, information about the temporal derivative of the spatial spectrum, or
about the streamwise derivative of the temporal spectrum. The information needed is
purely statistical, and can use data from flow realizations arbitrarily spaced along the
direction being differentiated. When applied to simulations, which usually compute
the spatial spectra by default, the temporal derivatives can be derived directly from
the equations of motion, and provide additional knowledge on how the different terms
in the equations contribute to the advection velocities. In experiments, the derivatives
can be estimated from two neighbouring spatial or temporal points.

The new method is described in § 2, and related in § 2.1 to earlier methods based
on the ω−kx spectrum. Section 3 validates the new method against older ones, using
data from a turbulent channel for which the space–time spectrum was available,
and § 4 uses it to study the dependence of the turbulent convection velocities on
eddy size, wall-distance and Reynolds number. It is found that the small scales of
the flow follow the local mean stream, while the large scales travel at speeds that
depend much less on the wall distance, and are roughly proportional to the bulk
velocity. Section 5 presents a semi-empirical approximation to the velocities thus
found, which is used in § 6 to estimate the effects of Taylor’s approximation (Taylor
1938) in channels, and to compute the equivalent uncorrected Taylor one-dimensional
(frequency) spectra of the existing simulation data. Interestingly, the resulting spectra
contain peaks similar to those that have been observed in some experiments, but
which are absent from the wavenumber spectra from which they are derived. Based
on the known behaviour of the difference between the bulk and local velocities, the
magnitude of the spurious peaks should increase with the Reynolds number. The
paper concludes by summarizing the results, including some considerations about the
possible implications for some of the recent challenges to the k−1 spectral scaling of
wall turbulence.

2. Computing convection velocities from local derivatives
This section presents a new method that uses only local time derivatives to calculate

turbulent convection velocities from flow realizations arbitrarily spaced in time. We
illustrate the method by computing the turbulent convection velocity of the streamwise
velocity component (u) in a simulation of an incompressible turbulent shear flow,
directly from the Navier–Stokes equations. The spatial Fourier coefficients of u can
be written as

û(kx, kz, y, t) = |û(kx, kz, y, t)| exp[iψu(kx, kz, y, t)], (2.1)

where ψu is the phase of the complex û. We define the average phase velocity of each
mode as

cu(kx, kz, y) = −〈ûû∗∂tψu〉
kx〈ûû∗〉 = −Im〈û∗∂t û〉

kx〈|û|2〉 , (2.2)

which is exact for a monochromatic frozen wave proportional to exp[ik(x − ct)].
An alternative way of deriving this expression, which is valid for more general

situations, is to find the value of c which minimizes the difference between the real
time evolution of u(x, t), and a frozen wave u(x − ct). If we express this problem as
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8 J. C. del Álamo and J. Jiménez

the minimization of the square of the total derivative,

1 − γ 2 ≡ 〈(∂tu + c∂xu)2〉
〈(∂tu)2〉 , (2.3)

we obtain

Cu = −〈∂tu ∂xu〉
〈(∂xu)2〉 (2.4)

and an optimal value for γ ,

γu =
|〈∂tu ∂xu〉|

[〈(∂tu)2〉〈(∂xu)2〉]1/2 . (2.5)

The coefficient γu is a figure of merit for the frozen-turbulence approximation, which
is nothing but the correlation coefficient between the spatial and temporal derivatives.
It equals unity for a perfect frozen wave, and zero for eddies that decay or deform
too fast to travel coherently across a wavelength. When u contains a single Fourier
mode, (2.4) is equivalent to (2.2), and

γu(kx, kz, y) =
|Im〈û∗∂t û〉|

[〈|∂t û|2〉〈|û|2〉]1/2 . (2.6)

For more general cases in which the velocity is expressed as a Fourier expansion
over a range Ω of wavenumbers, (2.4) provides a natural definition for the overall
convection velocity associated with Ω , which can be expressed as

Cu(y) =

∫
Ω

cu(kx, kz, y)|û(kx, kz, y)|2 k2
x dkx dkz∫

Ω

|û(kx, kz, y)|2 k2
x dkx dkz

, (2.7)

and, likewise,

γu(y) = Cu(y)

⎡⎢⎢⎣
∫

Ω

|û(kx, kz, y)|2 k2
x dkx dkz∫

Ω

|∂t û(kx, kz, y)|2 dkx dkz

⎤⎥⎥⎦
1/2

. (2.8)

Note that (2.2) and (2.7) weight the instantaneous phase velocity with the energy, so
that stronger events contribute more than weaker ones. Mean convection velocities
Cu,1(y) and Cu,2(y) can be similarly generated from the two spectral definitions (1.1)
and (1.2).

The numerator in the rightmost member of (2.2) can be obtained in any suitable
way, but in simulations it is easier to obtain it directly from the equations of motion.
Write the u-momentum equation as

∂t û + ikxUû + F̂u + v̂∂yU = −ikxp̂ + ν
(
∂2

yy − k2
x − k2

z

)
û, (2.9)

where U (y) is the mean velocity profile, p is the kinematic pressure, ν is the kinematic

viscosity and F̂u is the Fourier transform of the nonlinear terms. It follows that

Im[û∗∂t û + F̂uû
∗ + v̂û∗∂yU ] + kxUûû∗ = −kxRe(p̂û∗) + ν Im

[
û∗∂2

yyû
]
. (2.10)

Combining (2.2) and (2.10), we obtain

cu(kx, kz, y) = U (y) +
kxRe〈p̂û∗〉 + Im

[
〈F̂uû

∗〉 + 〈v̂û∗〉∂yU − ν〈û∗∂2
yyû〉

]
kx〈ûû∗〉 , (2.11)
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Turbulent convection velocities 9

where it is straightforward to identify the contribution from each term in the
equations of motion. Note that the viscous terms in the homogeneous directions
do not contribute to the convection velocity, and that (2.11) only contains averaged
quantities, which can be determined without the need of sampling data with a uniform
time resolution. The convection velocities of v and w are given by similar expressions,

cv(kx, kz, y) = U (y) +
Im

[
〈v̂∗∂yp̂〉 + 〈F̂vv̂

∗〉 − ν〈v̂∗∂2
yy v̂〉

]
kx〈v̂v̂∗〉 , (2.12)

cw(kx, kz, y) = U (y) +
kzRe〈p̂ŵ∗〉 + Im

[
〈F̂wŵ∗〉 − ν〈ŵ∗∂2

yyŵ〉
]

kx〈ŵŵ∗〉 , (2.13)

which lack explicit contributions from the mean shear ∂yU . Convection velocities for
the vorticity fluctuations can be determined using the same procedure.

2.1. The relation to spectral methods

Equation (2.2) is closely related to the methods based on the full ω−kx spectrum.
Consider the temporal Fourier transform ũ(kx, kz, y, ω) of the spatial coefficient
û(kx, kz, y, t). The Fourier transform of ∂t û is iωũ, and it follows from Parseval’s
theorem that

〈û∗∂t û〉 = i

∫ ∞

−∞
ωΦu(kx, kz, y, ω) dω, (2.14)

and

〈û∗û〉 =

∫ ∞

−∞
Φu(kx, kz, y, ω) dω, (2.15)

so that (2.2) becomes

cu = − 1

kx

∫ ∞

−∞
ωΦu(kx, kz, y, ω) dω∫ ∞

−∞
Φu(kx, kz, y, ω) dω

. (2.16)

The new phase velocity is then defined by the position of the centre of gravity of the
ω-spectrum at a given wavenumber, instead of by its maximum.

A similar definition, useful for laboratory experiments, can be derived for temporal
data series. For example, 〈u∗∂xu〉, where u(x, kz, y, ω) is a Fourier coefficient
transformed with respect to time but not to x, is the transform of the correlation
〈u(t ′)∂xu(t ′ + t)〉, which can be determined experimentally by estimating ∂xu from two
neighbouring probes.

The dual of (2.2) is

c′
u(kz, y, ω) = − ω〈u∗u〉

Im[〈u∗∂xu〉] , (2.17)

which is equivalent to

c′
u = −ω

∫ ∞

−∞
Φu(kx, kz, y, ω) dkx∫ ∞

−∞
kxΦu(kx, kz, y, ω) dkx

. (2.18)

The two phase velocities, cu and c′
u, are not strictly equivalent to each other, and

neither of them are equivalent to the velocities cu,1 and cu,2 defined in the introduction,
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10 J. C. del Álamo and J. Jiménez

Case Reτ Lx/h Lz/h �x+ �z+ Ny T uτ /h NF

L180 185 12π 4π 14 6.8 97 50 106
L550 547 8π 4π 13 6.7 257 20 142
L950 934 8π 3π 11 5.7 385 12 74
S1900 1901 π π/2 12 5.8 769 7.4 94

Table 1. Parameters of the simulations. Lx and Lz are the streamwise and spanwise dimensions
of the computational box, and h is the channel half-width. �x and �z are resolutions in terms
of Fourier modes. Ny is the number of Chebychev polynomials. T is the time during which
the statistics were collected after discarding initial transients, uτ is the friction velocity and NF

is the number of instantaneous flow realizations used to compute convection velocities.

but cu is related to cu,1, while c′
u is closer to cu,2. All the definitions are equivalent

for a frozen monochromatic wave whose spectrum is proportional to a Dirac’s delta
Φu(kx, ω) ∼ δ(kx − k0)δ(ω − ck0), with arbitrary k0.

3. Validation of the new scheme
We next apply the procedure in § 2 to compute convection velocities from

ensembles of instantaneous flow realizations of direct numerical simulations of
plane turbulent channels with 180 � Reτ = huτ/ν � 1900, where h is the channel
half-width and uτ is the friction velocity. Their parameters are summarized in
table 1, and they were documented in del Álamo & Jiménez (2003) and del Álamo
et al. (2004, 2006). Variables in wall units, normalized with uτ and ν, are denoted by
superscript +.

To validate the new procedure, we also calculate convection velocities for the L550
channel using the two conventional definitions based on the spectral maxima, (1.1)
and (1.2). The ω−kx spectra for L550 were obtained as described in the introduction,
using 18 temporal data segments with N = 1024 samples, and a Hanning window
with 50 % overlap, yielding a frequency range 0.14 � h|ω|/Ub � 71. To save storage,
we only recorded time series for Fourier modes satisfying λx, λz � 0.25h = 137ν/uτ ,
which however represent more than 75 % of the turbulent kinetic energy above
y+ = 100, and 55 % at y+ =15 (del Álamo & Jiménez 2002). Wavelengths are defined
as λ= 2π/k.

The results from the three definitions, integrated over the wavenumber range just
mentioned, are compared in figures 1(a) and 1(b) for the streamwise and wall-normal
velocities. They collapse almost perfectly in the outer region. The agreement is worse
near the wall, which is not unexpected, since there is where the turbulence intensity
and the mean shear are largest, and the turbulent structures are expected to deviate
more from frozen waves.

A more sensitive indicator is the spectral distribution of the convection velocities
obtained with the different methods. These are compared in figures 2(a) and 2(b),
which display deviations from the local mean velocity, �c(λx, y) = c(λx, y) − U (y), at
three different wall distances. As in figures 1(a) and 1(b), the averaging at each λx

is restricted to spanwise wavelengths λz � 0.25h, to match the range in which ω−kx

spectra were available.
Again the agreement is good, in particular away from the wall, and for the shorter

wavelengths. The largest deviations from the mean profile are found near the wall,
as well as the largest discrepancies between the two spectral definitions, but even
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Turbulent convection velocities 11
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Figure 1. Mean turbulent convection velocity profiles of the streamwise and wall-normal
velocity, averaged using (2.7), and plotted as a function of the wall distance y. Case L550. Only
those Fourier modes with λx, λz � 0.25h are considered: , mean velocity profile U (y);

� , present method, (2.11) and (2.12). Open symbols come from conventional definitions
based on the ω−kx spectrum, � , C1 (1.1); � , C2 (1.2). The insets are enlargements of
the framed regions of each panel, in wall units: (a) Cu(y). (b) Cv(y).

10–1 100 101

0

2

0

1

0

1
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–1

–2

λx/h
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λx/h

Δ
c+ u

0

2

0

1

0

1

–1

–1
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Δ
c+

(a) (b)

v

Figure 2. Spectral distribution of the difference �c between the convection velocity and
the mean profile, represented as a function of the streamwise wavelength, λx . Case L550 at
(from bottom to top) y/h = 0.02, 0.2, 0.75 (y+ =10, 100, 410). Only those Fourier modes with
λz � 0.25h are considered. Open symbols come from conventional definitions based on the
ω−kx spectrum: � , �c1 (1.1); � , �c2 (1.2). The shaded patches show the wavelength
interval around the peak of the spectral energy density of u and v that contains 3/4 of the
total energy at each wall distance: (a) �cu, (b) �cv .

there the three definitions agree within the apparent experimental scatter. Note that
the results of the two spectral definitions are quite scattered for long wavelengths,
probably due to the difficulty of identifying maxima in that noisier part of the
ω−kx spectrum. The new definition, which is based on a statistical average, provides
smoother data everywhere. For the rest of this paper we will use cu as our only
definition of the convection velocity.
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12 J. C. del Álamo and J. Jiménez

λx/h

λ
z/

h

10–2

10–1

100

10–1 100 101

λx/h

10–1 100 101

101

10–2

10–1

100

101(a) (b)

Figure 3. Contour plot of the two-dimensional spectral distribution of (a) the convection
velocity of u, and (b) its coherence coefficient γu, as functions of the streamwise and spanwise
wavelengths. Case L950 at y+ = 15 (y = 0.016h, U+ =10.7). The contour lines in (a) are,
�, c+

u = 11; �, 13; �, 15; �, 17. In (b), they are �, γ +
u = 0.3; �, 0.4; �, 0.5; �, 0.6. The

shaded contours are linearly equispaced isolines of the two-dimensional energy density of
the streamwise velocity at the same wall distance. The horizontal and vertical dashed lines
correspond respectively to λz = 0.4h and λx = 2h, and are included for reference.

4. Spectral and spatial dependence of the convection velocity
Besides validating the present method, figure 2 reveals that the convection velocity

at each wall distance depends on the wavelength. Although this dependence is not
monotonic, it seems clear that longer wavelengths propagate faster than shorter ones
near the wall, where �c > 0, and that this trend is inverted far from the wall, where
�c < 0.

The general behaviour of the convection velocity near the wall is shown in figure 3(a)
as a function of both wavelengths. Since these two-dimensional data are noisy, they
have been smoothed before plotting by averaging them over logarithmic bands of
width � log λ≈ 1.47 for both wavelengths (using a Fibonacci-like sequence to avoid
interpolation over non-integer indices). The largest deviations of cu from the local
mean velocity are restricted to the spectral region λx/h � 2 and λz/h � 0.4, which
is marked in the figure. These wavelengths coincide with the ‘global modes’ first
identified by Bullock, Cooper & Abernathy (1978), and more recently by del Álamo
& Jiménez (2003) and del Álamo et al. (2004), as outer layer structures penetrating
into the near-wall region. For example, del Álamo & Jiménez (2003) reported that the
Fourier modes of u associated to those wavelengths are strongly correlated between
y+ = 15 and y = 0.5h, and Hoyas & Jiménez (2006) showed that the long-wavelength
tail of the spectral energy density of u in the near-wall region, also seen in the figure,
is a reflection of spectral structures coming far from the wall.

Figure 3(b) displays the coherence coefficient γu for the same data, which is only
high in the region of the global modes. Its general behaviour outside this ‘global’
peak is that γu ≈ 1 only for λz > λx in the sublayer (y+ � 5). This geometry makes
sense, because the propagation velocity has been defined with respect to x, and only
those eddies that remain coherent long enough for them to move across several
streamwise wavelengths appear coherent from our point of view. Eddies with λz < λx

have lifetimes proportional to their widths, which are shorter than their streamwise
transit times. As we leave the sublayer, the coherence of these eddies drops, but the
global peak remains, with maxima of the order of γu ≈ 0.25 from the top of the
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Figure 4. Mean turbulent convection velocity profiles of the streamwise velocity Cu(y),
averaged using (2.7), and plotted as a function of the wall distance. case L950. � ,
all Fourier modes included in the average; � , only those Fourier modes with λx � 2h
and λz � 0.4h are included in the average (‘large’ wavelengths); � , only those Fourier
modes with λx < 2h and λz < 0.4h are included in the average (‘small’ wavelengths); ,
mean velocity profile U (y). (a) Full profile in outer units, (b) enlargement of the framed region
in (a); wall units.

buffer layer to the centre of the channel. The behaviour of γw is roughly similar to
that of γu, but the wall-normal velocity v is only coherent very near the wall and,
interestingly, for wide global modes at the centre of the channel, where γv ≈ 1. The
convection velocities themselves are also roughly similar for the three components,
but the global modes of u and w tend to move with the local mean velocity above the
logarithmic layer, while the very coherent modes of v in that region retain convection
velocities that correspond to layers much closer to the wall.

Figures 4(a) and 4(b) display wall-normal profiles of the convection velocity of u

from case L950. These plots include velocities averaged over the whole Fourier plane,
as well as those averaged over the ‘large-scale’ and ‘small-scale’ ranges defined by the
two diagonal rectangles in figure 3, (λx/h, λz/h) � (2, 0.4), and (λx/h, λz/h) � (2, 0.4).
The data show that the convection velocity of the large global modes varies relatively
little with y, while the small scales follow closely the mean velocity profile, except
very near the wall. The overall convection velocity is intermediate between the two,
but much closer to the small-scale one, because (2.7) weights the average towards
high wavenumbers. This result is consistent with the λx dependence of the convection
velocity found in figure 2, namely that cu increases with λx near the wall and decreases
with λx away from it.

Figures 5(a) and 5(b) display profiles of Cu coming from different Reynolds numbers
and averaged over the ‘small’ and ‘large’ wavelength rectangles. These data confirm
the wavelength and wall-distance dependence of cu described above, and further
suggest that the convection velocity of the global modes scales roughly with the bulk
mean velocity, Ub.

The constant velocity of the global modes could have been anticipated from the
strong correlation observed by del Álamo & Jiménez (2003) between their near-wall
and the outer layers. It is indeed easy to see that only eddies moving at similar
velocities remain coherent which each other. For example, if we consider a wave,
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Figure 5. Mean convection velocity profiles of the streamwise velocity velocity Cu(y) for the
‘small’ wavelengths and different Reynolds numbers: , case L180; , case L550;

, case L950; , case S1900. The thick solid line is the mean velocity profile from
case L950. (a) ‘large’ wavelengths; (b) ‘small’ wavelengths.

u = exp{ik[x − c(y)t]}, the correlation coefficient between u(y) and u(y ′) is

R(y, y ′) =
〈u(y)u∗(y ′)〉

[〈u(y)u∗(y)〉〈u(y ′)u∗(y ′)〉]1/2 = 〈exp{ik[c(y) − c(y ′)]t}〉, (4.1)

which is unity if c(y) = c(y ′), but zero otherwise. The roughly 10 %–20 % velocity
difference seen in figure 4 for the largest scales suggests that these ‘global’ structures
should remain coherent across the logarithmic layer while being advected over 5–10
wavelengths.

The same argument implies that the convection velocity of any eddy should be
constant over the range of y over which it remains coherent, and suggests that its
convection velocity should be roughly the average of the mean velocity profile over
some window of the order of its correlation height. The linear equivalent of this
rule would be Howard’s semicircle theorem in hydrodynamic stability, which states,
among other things, that the propagation velocity of an eigenfunction in an inviscid
parallel flow is a local average of the mean velocity profile, weighted with a particular
expression of the eigenfunction norm (Drazin & Reid 1981).

Jiménez et al. (2004) showed that the correlation height of eddies in a channel is
roughly proportional to the magnitude of their wall-parallel wavelength, and that it
reaches the half-width of the channel for the global modes. This is consistent with
both observations that small eddies move with the local mean velocity and that the
convection velocity of the global modes is roughly proportional to the bulk velocity Ub.

Figure 6 considers the scaling of the convection velocity of u in more detail by
looking at the spanwise spectral distribution of cu at y+ =15 for different Reynolds
numbers. The data have been averaged over two bands of streamwise wavelengths,
separated in figure 3 by the dashed vertical line λx = 2h. Figures 6(a) and 6(c) show
that the convection velocity of the shorter u-structures scales in wall units for all
spanwise wavelengths, but not with the bulk velocity. On the other hand, figures 6(b)
and 6(d) show that the convection velocity of long, wide structures scales better
with Ub, consistent with figure 5(a). Note also that the spanwise dependence of the
velocities of the longer structures collapses much better with the channel width than
in wall units, confirming that, even so close to the wall, they reflect outer modes. It is
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Figure 6. Spectral distributions of the convection velocity Cu at y+ = 15, averaged for different
bands of streamwise wavelength, and represented as functions of the spanwise wavelength:

� , L180; � , L550; � , L950; � , S1900. (a) and (c) are averaged over λx < 2h
and (b) and (d) are averaged over λx � 2h. (a) and (b) in wall units; (c) and (d) normalized
with Ub and h.

interesting that the convection velocities reach their maxima near λz ≈ h, and decrease
again for wider structures. The same is observed at other wall distances, although it
was shown by del Álamo et al. (2004) that u has very little energy beyond λz ≈ 2h, and
the significance of the convection velocities of such weak wide structures is unclear.

As a consequence of the observed double scaling, the separation between the
convection velocity of the near-wall streaks, cu ≈ 11uτ , and that of the global modes,
cu ≈ 0.7Ub in the neighbourhood of the wall, increases with the Reynolds number as
U+

b ∼ log(Reτ ). This result is clearly supported by comparing figures 6(a) and 6(b), and
implies that the error committed by applying Taylor’s (Taylor 1938) approximation
with a wavelength-independent convection velocity can be large near the wall, and
should increase with the Reynolds number. This will be discussed in detail in § 6.

Our results confirm the previous observation by Kim & Hussain (1993) that the
dependence on the eddy size of the convection velocities in turbulent channels is
strongest near the wall, where U (y) and Ub differ most. On the other hand, we have
shown that the convection velocity not only depends on λz, as originally reported
by those authors, but also varies strongly with λx . Kim & Hussain (1993) computed
convection velocities from x−t correlations in a channel at Reτ = 180, for wavelengths
shorter than λx/h= π and narrower than λz/h= π/3. According to figure 3, these
wavelengths are appropriate to capture the spanwise dependence of the convection
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16 J. C. del Álamo and J. Jiménez

velocity, but may be marginal to capture the streamwise one. Figure 6 also indicates
that this dependence is still weak for Reynolds number considered by Kim & Hussain
(1993), while it is easier to observe in the present cases L550 and L950.

In boundary layers, Krogstad et al. (1998) had already reported a dependence of
the convection velocity on the streamwise length scale. These authors measured the
convection velocity of u from two-point correlations in the laboratory at Reθ = 1409,
where θ is the momentum thickness. They observed that cu increases for streamwise
separations �x � 1.5h in the near-wall region, while a similar increase was found for
�x � 0.4h in the outer region. Direct comparison between the results of Krogstad et
al. (1998) and our own is prevented by the differences in flow nature, in Reynolds
numbers and between spatial separations and wavelengths. However, the same trends
are observed in both sets of data except for small-scale structures near the wall, where
the laboratory data might be affected by insufficient resolution.

5. A semi-empirical law for turbulent convection velocities in channels
In situations where the turbulent convection velocity has not been measured directly,

such as in many experiments, or when experiments may be missing, or are still in
the planning stage, it is useful to have a reasonable approximation to estimate it.
Additionally, we will see below that, even when the true convection velocities are
available, their use to correct the effects of Taylor’s approximation (Taylor 1938)
involves differentiation with respect to the wavenumber, and it is more convenient to
use a smoother model than the noisier raw data.

A useful model can be derived from the previously mentioned approximation that
the convection velocity is a weighted average of the mean velocity profile. This can
be expressed as

c(λx, λz, y) ≈
∫ 2h

0

U (η)W (y, η, λx, λz) dη, (5.1)

where W (y, η, λx, λz) is a convolution window that represents statistically the wall-
normal structure of eddies of wavelengths (λx, λz).

In order for (5.1) to be useful, we need an expression for the convolution window
W (y, η, λx, λz), ideally valid over a wide range of Reynolds numbers. In this section,
we use a simple Gaussian model for W ,

W (y, η, λx, λz, Re) = exp

{
−

[
y − η

H (λx, λz, Re)

]2
}

, (5.2)

suitably normalized to unit mass, and give an approximate expression for the window
height H . We estimate H by fitting the wall-normal profile of the convection velocity
of each Fourier mode of u in our channels using the Levenberg–Marquardt damped
least squares iterative algorithm (Press et al. 2007, such as in the Matlab function
lsqnonlin).

The results of the fit are presented in figure 7(a–d ), showing a fair collapse in
viscous units for the small scales, and an equally reasonable one in outer units for
the larger ones. Note that case L180, which is consistently found to agree poorly with
the higher Reynolds number cases, has not been included in the figure to simplify
the graphics. The window height reaches its maximum, H ≈ 0.5h, within the spectral
region associated with the global modes, λx > 2h and λz ≈ 2h, which is consistent with
the evidence in figure 6(d) that the convection velocity of the global modes scales
with the bulk velocity.
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Figure 7. Height H of the Gaussian convolution window that transforms the mean velocity
profile into convection velocities, as in (5.1)–(5.2). Symbols are the simulation data. In each
panel, the open symbols and dotted line are the shorter wavelength, and solid symbols and
dashed lines, the longer one. �, L550; �, L950; �, S1900. The lines are defined in (5.3) for
L950, with the consensus constants in table 2. (a) λ+

z = 150 and 750; (b) λ+
x = 400 and 2000;

(c) λz/h = 0.5 and 2; (d) λx/h = 2 and 8.

The wavelength and Reynolds number dependence of H can be approximated by,

H (λx, λz, Re)/h =
1

Reτ

(A + Bs4)+C

{
27D

4(1 + D)3
s(2 − s)[1 + D(1 − s)2]2

}3

t2, (5.3)

where the independent variables

s = tanh

{
[1 + λx/(Λxh)] λz

λx

}
,

t = tanh [λx/(Λxh)] ,

⎫⎬⎭ (5.4)

represent respectively the isotropy and magnitude of the wavelength vector. By
expressing H in terms of these variables instead of as a function of λx and λz, we
were able to fit the simulation data using fewer adjustable constants. The hyperbolic
tangents were introduced so that both s and t vary smoothly between 0 and 1. The
length scale Λxh is such that s and t become independent of λx when either λx � Λxh

or λx � Λxh. A similar length scale was initially considered for λz, but found to be
unnecessary thereby reducing the number of adjustable parameters. The first term in
the right-hand side of (5.3) scales in viscous units, and is bounded between A/Reτ
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case A B C D Λx EH1 EH2

L180 27 9 0.29 2.3 11 0.039 0.166
L550 25 13 0.57 1.3 8.4 0.030 0.041
L950 22 16 0.56 1.0 6.1 0.039 0.050
S1900 20 19 1.2 0.8 5.4 0.029 0.064
consensus 24 15 0.56 1.2 7.2 – –

Table 2. Values of the dimensionless constants in expressions (5.3)–(5.4) for the height
H (λx, λz, Re) of the Gaussian filter used to convert U (y) into cu(y). The first four rows
show the optimal set of parameters to fit the empirical values of H for each numerical channel.
The last one presents a ‘consensus’ set of constants that is recommended to estimate H at
other Reynolds numbers. EH1 is the relative error (defined in (5.5)) of the model using the
optimal set of constants for each case. EH2 is the relative error using the consensus constants.

and (A + B)/Reτ . The second one scales in outer units and is bounded by zero and
C. The parameter D determines the value of s at which the second term of (5.3) is
maximum.

We have estimated the five dimensionless parameters in (5.3)–(5.4) to fit our
empirical results for log(H ), using again the Levenberg–Marquardt method. Table 2
presents their estimated values for each of our channels, together with the error of
the fit, defined as

EH =

⎡⎢⎢⎣
∫ ∫

log2(Hmod/Hexp) d log λx d log λz∫ ∫
log2(Hexp) d log λx d log λz

⎤⎥⎥⎦
1/2

, (5.5)

where Hexp is the window height obtained from the numerical experiments and Hmod is
the one predicted by the model. Except for the case L180, the results of the fit depend
little on the Reynolds number, indicating that (5.3) is uniformly valid in the range of
Reynolds numbers covered by our experiments. Note that the approximation error
for case S1900 is not strictly comparable to the other three, because it has a much
smaller computational box. In particular, the parameters C and D, which we have
seen to be related to the magnitude and spanwise wavelength of the large-scale peak,
cannot be trusted in S1900, where that wavelength λz ≈ h is comparable to the width
of the box. The consensus parameters have been derived mostly from the two cases
L550 and L950.

Figures 7(a–d) show that the model reproduces well the wavelength dependence of
H for case L950 using the consensus set of constants. The same is true for the rest
of our channels (not shown), consistent with the low values of EH2 given in table 2.
We therefore expect that (5.3)–(5.4) could be used to estimate convection velocities at
Reynolds numbers higher than those considered in our numerical experiments.

Beyond matching the convolution height, figures 8(a) and 8(b) show that the
model (5.1)–(5.4), with the consensus constants in table 2, reproduces well the wall
normal profiles of Cu. The plot shows profiles from two wavevectors, representative
of the global modes (λx = 5.6h, λz = 1.5h, H =0.32h) and of the structures of the
buffer layer (λ+

x = 620, λ+
z = 160, H+ = 34). In both cases, the convolution model

yields an accurate estimation of Cu(y), especially near the wall where the convection
velocity differs substantially from U (y). Away from the wall, the convection velocities
obtained from (5.1)–(5.4) are systematically closer to the mean profile than the actual
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Figure 8. Profiles of the turbulent convection velocity Cu(y) of the streamwise velocity
component, as a function of the wall distance. Data from two wavelength pairs of L950; �,
(λx, λz) = (5.6, 1.5)h; �, (λx, λz) = (0.66, 0.18)h, (λ+

x , λ+
z ) = (620, 160). Grey symbols are (2.7);

� and � , convolution (5.1)–(5.4) of the measured velocity profile, using the consensus
constants in table 2. � and � , using Cess approximation for the mean velocity
profile. , mean velocity profile. (a) Full profiles in outer units, (b) enlargements of the
framed region in (a); wall units.

ones, but they still reproduce correctly the trend of the wavelength dependence. The
approximation error could be decreased by considering asymmetric windows with
longer tails towards the wall, but we have preferred to keep the functional form of
the filter in (5.2) as simple as possible.

Note that all the advection velocities converge approximately to U (y) above
y/h ≈ 0.15, which agrees with the evidence in Dennis & Nickels (2008) that the
spatial velocity field at that height can be reconstructed from temporal hot wire data.
On the other hand, the present data suggest that the same might not be true closer
to the wall.

Figures 8(a) and 8(b) also include estimations of Cu(y) obtained by applying (5.1)
to the mean profile from the Cess approximation (Cess 1958), instead of the measured
one. For reference, that approximation is based on the total (molecular plus eddy)
viscosity,

νtot

ν
=

1

2

{
1 +

K2Re2
τ

9
[2Y − Y 2]2[3 − 4Y + 2Y 2]2

[
1 − exp

(
−YReτ

A

)]2
}1/2

+
1

2
,

(5.6)

where Y = y/h, with constants A= 25.4 and K = 0.426 for turbulent channels over a

wide range of Reynolds numbers (del Álamo & Jiménez 2006). The mean velocity
is obtained by integrating the mean momentum equation ∂yU =(1 − Y )u2

τ /νtot (Y ). As
expected, the profiles of Cu obtained from this profile are nearly identical to those
obtained by filtering the true U (y).

6. The effect of Taylor’s approximation
We now examine the errors introduced in the energy spectra by applying Taylor’s

approximation (Taylor 1938) with a wavelength-independent advection velocity. It is
clear from figure 3 that this analysis requires two-dimensional spectral information,
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20 J. C. del Álamo and J. Jiménez

because the convection velocity depends on both the streamwise and spanwise
wavelengths.

The one-dimensional wavenumber spectrum is derived from the two-dimensional
one by integration with respect to kz,

E(kx) =

∫
E(kx, kz) dkz, (6.1)

and the same is true for the one-dimensional frequency spectrum

E(ω) =

∫
E(ω, kz) dkz (6.2)

in terms of the two-dimensional ω − kz spectrum. Neglecting errors unrelated to
the variable convection velocity, we can define a ‘corrected’ Taylor wavenumber for
a given passing frequency, kx = ω/cu, and an ‘uncorrected’ one, kx,T = ω/U (y), with
corresponding definitions for the wavelengths. Expressed as a function of kx,T , (6.2)
becomes the ‘uncorrected’ Taylor spectrum,

ET (kx) = U (y)E(ω). (6.3)

The direct ‘Taylor correction’ problem would be to estimate a ‘corrected’
approximation to E(kx) starting from E(ω, kz),

E(kx) =

∫
E[ω(kx, kz), kz] |dω/dkx | dkz, (6.4)

where the integral is taken along paths of constant streamwise wavenumber in the
mixed Fourier plane. The factor |dω/dkx | is the Jacobian of the transformation
between ω and kx , and ensures that the energy of an eddy is the same in both
representations, E(ω)|dω| = E(kx)|dkx |.

Because two-dimensional ω − kz spectra are seldom compiled in laboratory
experiments, it is difficult to directly estimate ‘Taylor corrections’ to laboratory spectra
even if (5.1)–(5.4) provide an approximation for |dω/dkx |. Therefore, we will focus
on the ‘inverse’ problem of estimating the uncorrected spectrum (6.2)–(6.3), which
is the output of most experiments, from the two-dimensional wavenumber spectrum
E(kx, kz), which is available from simulations. The result will then be compared with
one-dimensional experimental frequency spectra, to try to separate which of their
features correspond to properties of the underlying spatial spectra, and which ones
are artifacts of the transformation.

From the definition of passing frequency, the ‘corrected’ frequency spectrum can
be written as

E(ω) =

∫
E[kx(ω, kz), kz] |dkx/dω| dkz, (6.5)

where the integral is taken along paths of constant frequency in the wavenumber
plane.

For pre-multiplied spectra, (6.5) becomes

ωE(ω) = kxET (kx) =

∫
kxE[kx(ω, kz), kz] J (kx, kz) dkz, (6.6)

where

J = (ω/kx) |dkx/dω| (6.7)
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Figure 9. case L950. (a) y+ = 15. The shaded area is the pre-multiplied two-dimensional
spectrum of u, above 0.2 times its maximum in that plane. Solid lines are constant
frequency isocontours, corresponding to uncorrected Taylor wavelengths. Each contour is given
approximately by its intersection with the horizontal axis. Dashed lines are isocontours of the
mapping factor (6.7), J = 1(0.1)1.4. (b) The shaded area is the pre-multiplied one-dimensional
spectrum of u, above 0.2 times its maximum at any height. Isocontours are the relative
correction (6.8) to the one-dimensional pre-multiplied spectrum due to Taylor’s approximation.
Contours are −0.3(0.1)0.3; dashed lines are negative.

is a dimensionless version of the mapping factor, which can be recognized as the ratio
between the phase and the group velocities. It can be considerably different from
unity if the advection velocity changes rapidly with the wavenumber.

This behaviour is shown in figure 9(a), which displays the same buffer-layer plane
used for figure 3. The general location of the u-spectrum is shown shaded for reference,
and the solid lines are contours of constant kx,T . They spread out near the short-
wavelength edge of the global modes, because the global wavelengths to the right of
that limit are aliased to higher frequencies (or to shorter uncorrected wavelengths) by
their higher convection velocities. Where the isofrequency lines diverge, the mapping
factor increases because the energy is crowded into a narrower frequency interval.
The overall effect of J is to damp the frequency spectrum at intermediate and
long wavelengths, and to augment it near λx/h= O(1), where the advection velocity
changes from U (y) to Ub. The magnitude of this change depends on U (y)−Ub, and is
therefore expected to be strongest in the buffer and deep logarithmic layers, where it
may create artificial maxima or minima in ET (kx). The maximum of J in figure 9(a)
is 1.5, although its influence on the integral (6.6) is not as large because it is located
in a region of relatively low energy.

The effect on the one-dimensional spectrum is shown in figure 9(b), which contains
the difference between the pre-multiplied wavenumber spectrum and its uncorrected
Taylor counterpart

kx

ET (kx, y) − E(kx, y)

maxkx
[kxE(kx, y)]

, (6.8)

given as a function of the streamwise wavelength and of the wall distance. The
location of the spectrum is again shaded for reference, and the magnitude of the
correction is normalized at each y by the maximum of the pre-multiplied spectrum at
that height. It is seen that the relative errors are highest near the wall, but that they
remain of the order of 10 % at the lower edge of the logarithmic layer. As it moves
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Figure 10. One-dimensional pre-multiplied energy spectra, kxEuu(kx). �, Perry & Abell (1975),
Reτ = 2325. Lines are case (Hoyas & Jiménez 2006): , true wavelengths; ,
uncorrected Taylor wavelengths. (a) y+ = 100, (b) y+ = 200.

away from the wall, the maximum of the correction drifts from λx ≈ h to the longer
wavelengths characteristic of the global modes, and its effect could easily be mistaken
for energy from the outer modes penetrating into the buffer region. This spurious
accumulation of energy should disappear above the wall distance where U (y) ≈ Ub,
which in channels is located near the top of the logarithmic layer, y ≈ 0.3h. In our
simulations, the convection velocities become very similar to the local mean velocity
above y ≈ 0.15h, but, as we have already mentioned, the intensity of the corrections
should increase with the Reynolds number.

It should be noted that figure 9 has been computed using the approximate mapping
in § 5, rather than the measured convection velocities, which are too noisy for
differentiation.

Bimodal spectra have often been documented near the wall, perhaps first
emphasized by Hites (1997) in boundary layers. Using those data, Jiménez & Hoyas
(2008) noted that the outer energy peak in experimental boundary layers extends
closer to the wall than in numerical channels, although they cautioned that this could
be due in part to the difference between wavenumber and frequency spectra. A similar
peak near the wall was observed in experimental boundary layers by Kunkel (2003)
and by Kunkel & Marusic (2006) and Monty & Chong (2008) have noted recently
that a broad long-wavelength peak is present near the wall in experimental channels,
but not in numerical ones.

That outer structures extend into the buffer layer has been well documented in
simulations, independently of Taylor’s approximation (Hoyas & Jiménez 2006), and is
not in doubt, but the pre-multiplied long-wave spectra in those cases tend to be flat,
rather than bimodal, consistent with the theoretical arguments for a k−1

x spectrum
(Townsend 1976, pp. 150–158). In view of the previous arguments, it is fair to ask
whether the bimodal nature of the experimental spectra might be partly an artifact
of the Taylor approximation.

This hypothesis is tested in figure 10. We are not aware of any published
experimental spectra of channels at Reynolds numbers similar to our simulations,
and external and internal flows are different enough to make a direct comparison
difficult (Jiménez & Hoyas 2008). We have therefore used older spectra for pipes
(Perry & Abell 1975), which also display the peak in question. The figure contains
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the experimental data reduced to wavelengths using the local mean velocity, the
true wavelength spectrum for the channel, and the channel spectrum reduced to
uncorrected Taylor wavelengths using (6.6). The appearance of a long-wavelength
peak due to Taylor’s approximation is obvious, and matches quantitatively the
uncorrected experimental spectrum in the y+ = 100 case. The experimental spectrum
at y+ = 200 is generally higher than in the simulation, corresponding to the higher
turbulent intensity measured in that experiment at that point. The reason for that is
unknown, and could be a difference between pipes and channels. In addition, Perry &
Abell (1977) concluded that their original data had been measured too close to the
pipe entrance to be in equilibrium, which would probably be more noticeable far from
the wall. Even so, the Taylor correction to the channel spectrum, although smaller
than closer to the wall, is still clear.

7. Conclusions
Taylor’s (Taylor 1938) abstraction of turbulent flows as fields of frozen eddies

advected by the mean flow has played a major role in turbulence research. Numerous
methods have been developed to determine turbulent convection velocities, which are
often used in laboratory experiments to infer the spatial organization of turbulence
from temporal series of measurements. However, the vast majority of them are
of limited use, because they require the prior determination of the frequency–
wavenumber spectrum, which is rather laborious.

We have presented a new method to compute the turbulent convection velocities of
single Fourier modes, which is based on ensemble averages of their time derivatives,
and therefore does not require the knowledge of the frequency–wavenumber spectrum.
This convection velocity minimizes the variance of the total advective derivative of
each mode, suggesting a natural extension of its definition to groups of modes, or
even to complete flow fields. When used on numerical simulations, where the time
derivative can be computed directly from the Navier–Stokes equations, it provides
quantitative information on the influence of each term of the momentum equation
on the flow dynamics.

The new method has been related analytically to existing ones that search for
maxima in the frequency–wavenumber spectrum (surveyed by Hussain & Clark 1981;
Goldschmidt et al. 1981). It is found that the present convection velocity is equivalent
to c =ω0/kx , where ω0 is the location of the centre of gravity of the spectrum
for constant wavenumber. Based on these results, we have proposed variations of
the definition of the convection velocity in terms of the temporal spectrum of the
streamwise derivatives, which could be more practical for laboratory experiments.
The present method has also been shown empirically to agree well with older ones in
a numerical channel at Reτ = 550.

We have used the new scheme to determine convection velocities in computational
channels with Reynolds numbers 180 � Reτ � 1900, and to characterize their
dependence on the streamwise and spanwise wavelength, and on the wall distance.
The smallest eddies follow the local mean velocity everywhere except near the wall,
but the convection velocity becomes more uniform in y with increasing wavelength,
and eddies with λx � 2h and λz � 0.4h travel at almost uniform speeds, close to the
bulk velocity. These eddies correspond to the ‘global’ modes identified from cross-
stream correlations in previous investigations (Bullock et al. 1978; del Álamo &
Jiménez 2003; del Álamo et al. 2004). In fact, having a uniform convection velocity is
a necessary condition for a Fourier mode to be correlated across the channel height.
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Since the new method can be expressed as a minimization problem, it automatically
provides a measure of the goodness of the frozen-turbulence approximation as
a function of wavelength and position. Interestingly, the only eddies that can be
approximately described as frozen waves are short-wide ones in the viscous sublayer,
and the global modes.

The results of this study support the idea that the convection velocity of an
eddy is closely related to its height (Townsend 1976, pp. 26–27). Based on it, we
have constructed an empirical formula that approximates the convection velocity of
a Fourier mode as the convolution of the mean velocity profile with a Gaussian
window. Although no particular effort was made to tune the window, the resulting
approximation agrees well with the measured convection velocities over the whole
range of available two-dimensional wavelengths, wall distances and Reynolds
numbers. The agreement is particularly good near the wall, where the convection
velocity differs most from the mean profile, and persists even when the exact velocity
profile is substituted by a reasonably good approximation, such as in Cess (1958).

We propose that this model can be used to correct the errors introduced by applying
Taylor’s frozen-turbulence approximation (Taylor 1938) in experimental data with a
convection velocity that does not depend on eddy size. Estimating those errors re-
quires, however, previous knowledge of the (ω−kz) dependence of the spectrum, which
is limited in laboratory experiments. Therefore, we have estimated them using data
from numerical simulations. The thus estimated errors can be considerable. Not only
are the large scales aliased into shorter ones near the wall, but the shape of the spec-
trum changes, creating a spurious spectral peak near the short-wavelength limit of the
global modes, essentially because the energy is squeezed into a local maximum by the
differential deformation of the wavenumber range. The error is larger in the buffer and
inner logarithmic layers, and increases with the Reynolds number. Such maxima have
been reported in experiments, but a quantitative comparison of the Taylor-corrected
channel data with experimental data from pipes suggests that they may be, at least
in part, artifacts of the incorrect application of the frozen-turbulence approximation.

One of the consequences of these artefactual peaks is that the true wavenumber
spectrum of turbulence near walls may be closer to the k−1

x prediction of Townsend
(Townsend 1976, pp. 150–158) than concluded in recent experiments. A full discussion
of this point is beyond the scope of this paper, but some preliminary considerations
might be in order. The argument for the k−1

x spectrum appears robust, as it is simply
based on having a single scale for the velocity fluctuations (usually uτ ) and no scale
for the lengths (see Nickels et al. 2007, for a recent review). However, the experimental
observation of k−1

x spectra has been elusive (Hites 1997; Morrison et al. 2002; del

Álamo et al. 2004) mainly because its expected range is found to overlap the long-
wavelength maximum mentioned above. In view of the present results, some of those
data may have to be reconsidered.

Even more interesting are the theoretical implications of that reconsideration. To
explain the absence of the expected spectral behaviour, it has been suggested that
the largest scales may not scale with uτ , but with some outer velocity such as Ub

(Morrison et al. 2002; del Álamo et al. 2004; Jiménez & Hoyas 2008). This velocity
follows reasonably well the Reτ scaling of the large-scale spectral peak, but the
correction discussed above would yield a similar scaling at a given y+, because it is
proportional to the difference between Ub and the local mean velocity.

A related question is the observed scaling of the velocity fluctuation intensities in
the logarithmic layer at constant y/h, which grow logarithmically with the Reτ instead
of collapsing in wall units (Hoyas & Jiménez 2006; Jiménez & Hoyas 2008). This
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behaviour has been argued to result from the integrated energy of the long-wavelength
peak, because it is not observed when considering scales shorter than a few boundary-
layer thicknesses (del Álamo et al. 2004; Jiménez 2007). This explanation might also
have to be substituted by an alternative one. A possible argument to explain that
the large-scale end of the spectrum has increasing energy with Reτ while keeping a
constant intensity, may be that it gets longer even when expressed in terms of the
boundary-layer thickness. Although this idea might appear strange, it does not contra-
dict experimental evidence, since Jiménez & Hoyas (2008) showed that most published
high-Reynolds-number spectra are too short to have a definite long-wavelength limit.
In fact, it is even theoretically plausible, because the eddy-turnover time of a large
structure is of the order h/uτ , during which time it is advected, and sheared, over
distances of order Ubh/uτ ∼ hReτ . Again, this question cannot be analysed rigorously
in the present paper, but it emphasizes the importance of either higher Reynolds
number simulations, or of long experimental two-dimensional ω − kz spectra.

This work was supported in part by the CICYT grant TRA2006-08226. Juan C. del
Álamo was partially supported by consecutive FPU and Fulbright fellowships from
the Spanish Ministry of Education.
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Flores, O. & Jiménez, J. 2006 Effect of wall-boundary disturbances on turbulent channel flows.
J. Fluid Mech. 566, 357–376.

Goldschmidt, V. W., Young, M. F. & Ott, E. S. 1981 Turbulent convective velocities (broadband
and wavenumber dependent) in a plane jet. J. Fluid Mech. 105, 327–345.

Hites, M. 1997 Scaling of high-Reynolds number turbulent boundary layers in the national
diagnostic facility. PhD thesis, Illinois Institute of Technology, Chicago, IL.
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26 J. C. del Álamo and J. Jiménez
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