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The hydrothermal-vent barnacle Vulcanolepas osheai of the subfamily Neolepadinae is one of the most conspicuous organ-
isms at the Brothers Caldera, south Kermadec Arc, New Zealand. Like a neolepad species found in the Lau Basin, V. osheai
harbours filamentous bacteria on its elongated cirral setae. To define the phylogenetic affiliation of the epibiotic bacteria and
the nutrition of the barnacle host, we conducted molecular phylogenetic and isotopic analyses. Analysis of 16S rRNA gene
sequences of microbial communities on the cirral setae showed that among 91 bacterial sequences investigated, 28 sequences
were related to the 1-proteobacterial endosymbiont of Alviniconcha aff. hessleri; 11 sequences were related to the epibiont of
the bresiliid shrimp Rimicaris exoculata. Fluorescence in situ hybridization showed that in contrary to results from the 16S
rRNA gene-sequence library, approximately 80% of the filamentous bacteria hybridized with a probe targeting the sequences
related to the epibiont of the bresiliid shrimp R. exoculata. The fatty-acid profiles of the filamentous bacteria and the host
barnacle both contained high levels of monounsaturated C16 and C18 fatty acids, and the carbon isotopic compositions of
the biomass and monounsaturated C16 and C18 fatty acids of both the bacteria and barnacle were nearly identical. This
would suggest that the nutrition of the barnacle is highly dependent on bacteria thriving around the barnacle, including
the epibiotic bacteria.

Keywords: molecular investigations, Vulcanolepas osheai, epibiotic bacteria, Brothers Caldera, south Kermadec Arc, New Zealand

Submitted 27 April 2006; accepted 13 January 2009; first published online 15 May 2009

I N T R O D U C T I O N

External associations between metazoans and filamentous
bacteria are widespread in aquatic habitats (Polz &
Cavanaugh, 1995). In the deep-sea, such associations have
been long known for vent-obligate invertebrates, such as the
polychaetous annelid Alvinella pompejana (Gail et al., 1987)
and the bresiliid shrimp Rimicaris exoculata (Van Dover
et al., 1988; Gebruk et al., 1993; Segonzac et al., 1993). More
recently, filamentous bacteria have been found on the cirral
setae of a neolepadine barnacle from the Lau Basin
(Southward & Newman, 1998), and filamentous bacteria
have been observed on the dermal iron sulphide sclerites of
a newly discovered gastropod from the Central Indian Ridge
(Goffredi et al., 2004).

Phylogenetic analyses based on 16S rRNA gene sequences
reveal that the filamentous epibionts of Rimicaris exoculata

consist of a single bacterial species belonging to the epsilon
subdivision of the Proteobacteria (1-Proteobacteria) (Polz &
Cavanaugh, 1995), while Alvinella pompejana harbours fila-
mentous epibionts of several lineages of the 1-Protoebacteria
(Haddad et al., 1995). These epibionts can fix CO2

(Desbruyères et al., 1998; Polz et al., 1998), and genomic
analysis has suggested that the epibionts of Alvinella pompe-
jana use the reductive tricarboxylic acid (rTCA) cycle for con-
version of CO2 into organic molecules (Campbell et al., 2003).
Similarly to marine invertebrates harbouring sulphur-
oxidizing chemoautotrophic bacterial endosymbionts (Distel,
1998; Suzuki et al., 2005a, 2005b, 2005c, 2006), it has been
hypothesized that Rimicaris exoculata and Alvinella pompe-
jana have established nutritionally mutualisitc symbioses
with the 1-proteobacterial epibionts, and that the host
animals have adapted to the ectosymbiosis by specializing
the symbiont-housing body part (e.g. the modified setae of
an expanded branchial chamber of Rimicaris exoculata and
the expansions of the epidermis of Alvinella pompejana).
However, these hypotheses remain speculative.

To expand our understanding of the nature and evolution-
ary aspects of the intimate relationships between marine
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invertebrates and filamentous bacteria, we conducted molecu-
lar phylogenetic analyses of epibotic bacteria associated with
the deep-sea hydrothermal vent barnacle Vulcanolepas
osheai of the subfamily Neolepadinae from the south
Kermadec Arc off New Zealand. The fatty acid profiles and
carbon isotopic compositions of the host tissue and the
epibiont cells were also analysed to better understand the
barnacle nutrition.

M A T E R I A L S A N D M E T H O D S

Barnacle specimens and sampling site
Barnacles were collected in November 2004 from the north
slope of Brothers Caldera, south Kermadec Arc, New
Zealand, at a depth of 1313 m (34852.70 S 17984.30 E;
Figure 1A), by means of the manned submersible ‘Shinkai
6500’. The site has moderately high temperature venting
(678C), rich in hydrogen sulphide (�4 mM). A dense colony
of Vulcanolepas osheai was observed (Figure 1B) with
co-occurrence of the hydrothermal-vent shrimps Alvinocaris
spp. and Lebbeus sp. (Figure 1B). A typical Vulcanolepas
osheai specimen from the site is shown in Figure 1C.

Light microscopy
Specimens were dissected and the cirri mounted on slides in
corn syrup for examination under transmitted light and by
phase contrast.

DNA analysis
Genomic DNA was extracted from the cirral setae clothed with
filamentous bacteria using a DNEasy kit (QIAGEN, Valencia,
CA) and magnetically purified using a MagExtractor Kit
(TOYOBO, Osaka, Japan), in accordance with the manufac-
turers’ instructions. The 16S rRNA gene sequences were ampli-
fied through the polymerase chain reaction (PCR) using LA Taq
polymerase (TaKaRa, Tokyo, Japan) with the oligonucleotide
primers Bac349F and Bac806R (Takai & Horikoshi, 2000).
Thermal cycling was performed using a GeneAmp 9700
Thermal Cycler, with 27 cycles of denaturation at 968C for 20
seconds, annealing at 558C for 45 seconds, and extension at
728C for 120 seconds. The amplified 16S rRNA gene-sequence
products were cloned using the Original TA Cloning Kit
(Invitrogen, Carlsbad, CA). Cloned 16S rRNA gene sequences
were partially sequenced with an ABI 3100 Capillary
Sequencer and a dRhodamine Sequencing Kit according to the
manufacturer’s recommendations (Perkin Elmer/Applied
Biosystems, Foster City, CA). The sequence similarity among
all of the partial sequences, which were 500 nucleotides long,
was analysed using the FASTA program equipped with the
DNASIS software (Hitachi Software, Tokyo, Japan). Partial
16S rRNA gene sequences with more than 97% similarity were
grouped and represented by one 16S rRNA gene sequence
type (phylotype). In order to validate that the partial 16S
rRNA gene sequences obtained in this study covered the diver-
sity of the epibiotic bacteria, a rarefaction analysis was conducted
using the analytical approximation algorithm of Hurlbelt
(Hurlbelt, 1971) available on the website http://www2.biology.
ualberta.ca/jbrzusto/rarefact.php.

In order to obtain sequences from the nearly full region of
the 16S rRNA gene, a clone library was constructed using the

Fig. 1. (A) Bathymetric map of the Brothers Caldera, southern Kermadec Arc, New Zealand; (B) dense colony of Vulcanolepas osheai at the sampling site shown in
Figure 1A; (C) a typical i specimen of Vulcanolepas osheai from the Brothers Caldera. Scale, 1 cm per bold unit.
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same method described above, except for the oligonucleotide
primers Bac27F and Uni1492R (Lane, 1991). The representa-
tive sequences were extended and manually aligned according
to the secondary structures using ARB (a software environ-
ment for sequence data (Ludwig et al., 2004)). Evolutionary
analysis was performed by the neighbour-joining method
using PAUP (Swofford, 1999) based on 1393 nucleotide
positions (56–1447, Escherichia coli numbering).

The accession numbers for the bacterial 16S rRNA gene
sequences from the cirral setae are available at DDBJ under
the accession numbers AB239758–AB239762.

Fluorescence in situ hybridization
(FISH) analysis
An rRNA-targeted oligonucleotide probe previously designed
for the 1-proteobacterial endosymbiont of Alvinoconcha aff. hes-
sleri from the Indian Ocean (Suzuki et al., 2005b) was used to
detect microbial cells with the most dominant 16S rRNA gene
sequence type. Previously designed rRNA-targeted oligonucleo-
tide probes for the epibiont of Rimicaris exoculata from a
Mid-Atlantic Ridge hydrothermal vent (Polz & Cavanaugh,
1995) and the dominant members of the 1-Proteobacteria
(Takai et al., 2004) were modified in the present study. In
addition, we used general probes such as EUB338, GAM42a
and CF319 (Table 1). These DNA probes were labelled at the
50 end with either Cy-3 or fluorescein.

For whole-cell hybridization, dissected cirral setae clothed
with filamentous bacteria from three individuals were fixed
in 4% paraformaldehyde in phosphate-buffered saline (PBS,
pH 7.4) for two hours and dehydrated in an ethanol series
(50, 75, and 100%, v/v). Hybridization was carried out at
468C in a solution containing 20 mM Tris–HCl (pH 7.4),
0.9 M NaCl, 0.1% sodium dodecyl sulphate, 30% formamide
and 50 ng/ml of two of the DNA probes described above.
After hybridization, the slide was washed at 488C in a solution
lacking the probe and formamide at the same stringency,
adjusted by NaCl concentration (Lathe, 1985), and sub-
sequently stained with 40,6-diamidino-2-phenylindole
(DAPI) at 0.4 mg/ml. The slides were examined using either
an Olympus BX51 microscope or an Olympus FV5000 confo-
cal laser-scanning microscope. A negative control probe for
Rim656, in which two-base mismatches were introduced in
the middle (50-CTTCCCCTAACAGACTC-30), and a negative
control probe for EP404 with one-base mismatch (50-AAAKG
YGTCTTCCTCCA-30) were used for testing unspecific labelling.

Bulk carbon isotopic analysis
Three barnacle individuals were dissected into the cirral setae
clothed with filamentous bacteria and the remaining soft-body

part, and the two sets of tissues were lyophilized. A small
portion of each lyophilized tissue was powdered and then
acid-fumed for 6 hours (53). The rest of the untreated lyophi-
lized tissue was stored at –808C for fatty-acid extraction. The
carbon isotopic compositions of the barnacle tissues were
analysed by a Thermo Electron DELTAplus Advantage mass
spectrometer connected to an elemental analyser (EA1112)
through a ConFlo III interface.

Analysis of the fatty-acid methyl-ester
(FAME) profiles
For the extraction of cellular fatty acids, a method described
by Komagata & Suzuki (1987) was used. Approximately
20 mg of the barnacle tissues were incubated in 1 ml of anhy-
drous methanolic hydrochloric acid at 1008C for 3 hours.
After the addition of 1 ml of deionized, distilled water
(DDW) to the cooled aliquots, the fatty-acid methyl-esters
(FAMEs) were extracted three times with 3 ml of n-hexane.
The n-hexane fractions were washed with an equal volume
of DDW and dehydrated with anhydrous Na2SO4. The con-
centrated FAMEs were stored at 2208C for subsequent
carbon isotopic analyses.

The identities of the FAMEs were determined by compari-
son of the retention times and spectra to those of known
FAME standards by gas chromatography–mass spectrometry
(GC-MS), using a Shimadzu GCQ GC-MS system. The oven
temperature was set to 1408C for 3 minutes and then
increased to 2508C at a rate of 48C/minute with He at a con-
stant flow of 1.1 ml/minute through a DB-5MS column
(30 m � 0.25 mm � 0.25 mm; J&W Scientific). The double-
bond positions of the monounsaturated FAME were deter-
mined by analysing their dimethyl disulphide adducts
(Nichols et al., 1986). The standard nomenclature for fatty
acids is used: fatty acids are designated X:YDZ, where X is
the number of carbon atoms, Y is the number of double
bonds, and Z is the position of the double bond from the
carboxyl end.

Compound-specific carbon isotopic analysis
The d13C values of the FAMEs were determined by the GC–
carbon-isotope ratio MS using a Thermo Electron DELTAplus

Advantage mass spectrometer connected to a GC (Agilent
6890) through a GC/C/C/III interface. The oven temperature
was set to 1208C for 3 minutes and then increased to 3008C at
a rate of 48C/minutes with He at a constant flow of 1.1 ml/
minute through a HP-5 column (30 m � 0.25 mm �
0.25 mm; Agilent). The isotopic compositions of the FAMEs
were measured with an internal isotopic standard (19:0,

Table 1. The oligonucleotide probes used in the present study.

Probe Sequence (50 –30) Target site (Escherichia
coli positions)

Target group Reference

EUB338 GCTGCCTCCCGTAGGAGT 16S (338–355) Bacteria (Giovannoni et al., 1988)
EP404 AAA(G/T)G(C/T)GTCATCCTCCA 16S (404–422) 1-Proteobacteria (Takai et al., 2004)
GAM42a GCCTTCCCACATCGTTT 23S (1027–1043) g-Proteobacteria (Manz et al., 1992)
CF319 TGGTCCGTGTCTCAGTAC 16S (319–336) Bacteroidetes (Manz et al., 1996)
EPF93 TCCGCCACTTAGCTGAC 16S (93–109) NZ-BA-2 (Suzuki et al., 2005b)
EPF656 CTTCCCCTCCCAGACTC 16S (656–674) NZ-BA-1 (Polz & Cavanaugh, 1995)
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d13C ¼ 229.80), and correction made for the additional
carbon atom from the methanol-derivatizing reagent
(d13C ¼ 239.04). The internal isotopic standard produced
measurement errors within 1 for all isotopic analyses.

R E S U L T S A N D D I S C U S S I O N

Phylogenetic affiliations of filamentous
bacterial epibionts of V. osheai
The phylogenetic affiliations of the filamentous epibionts on
the cirral setae of Vulcanolepas osheai were determined
from the 16S rRNA gene sequences. From the cirral setae of
a single barnacle, 91 sequences of the partial region of the
16S rRNA gene were obtained and grouped into 25 phylotypes
based on 97% similarity. Rarefaction analysis was conducted
to check whether the 25 phylotypes are representative of the
diversity of microorganisms associated with the cirral setae.
Ninety-one sequences were deemed adequate to cover the epi-
biont diversity once it was found that 10 more sequences
revealed but one additional phylotype. Among 91 sequences,
46 were clustered within the 1-Proteobacteria, of which 11
were related to the epibiont of Rimicaris exoculata (the
sequence type NZ-BA-1; Figure 2) and 28 sequences were
related to the endosymbiont of the hydrothermal-vent gastro-
pod Alviniconcha aff. hessleri from the Central Indian Ridge
(the sequence type NZ-BA-2; Figure 2). Five and 30 sequences
were placed within the a-Proteobacteria and the
g-Proteobacteria, respectively. All five a-proteobacterial
sequences were closely related to Loktanella koreensis (97%
similarity). Among the g-proteobacterial sequences, 18
sequences were related to Leucothrix mucor (91% similarity,
the sequence type NZ-BA-7). Five sequences were affiliated
to the phylum Bacteroides (the sequence types NZ-BA-3
and NZ-BA-8). Two sequences were related to
Actinobacteria, and one was related either to the
b-Proteobacteria, the d-Proteobacteria or Firmicutes.

By using the different primer set, one that amplifies the
nearly full region of 16S rRNA gene, a clone library was con-
structed as described above. Examination of 30 sequences
showed that among the 22 1-proteobacterial sequences, two
sequences were related to the epibiont of Rimicaris exoculata
(the sequence type NZ-BA-1), and 20 sequences were related
to the endosymbiont of Alviniconcha aff. hessleri (the
sequence type NZ-BA-2). Five and three sequences were
placed within the phylum Bacteroides (the sequence types

NZ-BA-3 and NZ-BA-8) and the g-Proteobacteria (the
sequence type NZ-BA-7), respectively.

To reveal the phylogenetic affiliations of the epibiont cells
on the cirral setae, we conducted FISH analysis. Based on
1393-nucleotide long sequences that nearly cover the 16S
rRNA gene, FISH probes were chosen from previous studies
and modified. Filamentous cells, which were stained with
DAPI, hybridized with the probe EUB338, indicated that the
filamentous cells are all bacteria (Figure 3A, B). Despite the
dominance of the 16S rRNA gene sequence type NZ-BA-2,
the filamentous bacterial epibionts did not hybridize with
the probe EPF93 targeting to the sequence type NZBA-2
related to the endosymbiont of A. aff. hessleri. Instead,
approximately 80% of the bacterial filaments hybridized
with the probe EPF656 targeting the minor 16S rRNA gene
sequence type NZ-BA-1 related the epibiont of R. exoculata
(Figure 3C). FISH analyses with the probe EPF656 and the
probe EP404 specific to the 1-Proteobacteria showed that
the filamentous 1-proteobacterial epibionts detected on the
cirral setae were all affiliated with the 16S rRNA gene
sequence type NZ-BA-1. The discrepancy in results obtained
from the 16S rRNA gene-sequence library and FISH analyses
might be explained by the difference in DNA copy number
between the filamentous 1-proteobacterial epibiont and the
1-proteobacterial species dominantly found in the library.
As neither the group-specific probes GAM42a nor CF319
hybridized with the filamentous epibionts (data not shown),
it is not clear that the rest of the filamentous bacterial epi-
bionts belong to either the g-Proteobacteria or the phylum
Bacteroides.

Light microscopy observations
Observations of the slide-mounted cirri show that the bac-
terial filaments on the setae of Vulcanolepas oshaei are slightly
less numerous than those on the cirral setae of the neolepad
species A from the Lau Basin, described by Southward &
Newman (1998). At least two morphological forms are
visible: some are long and very narrow; others are shorter
and wider, showing a ‘cellular’ structure. These morphs may
be related to the DNA differences.

Nutrition of V. osheai inferred from fatty-acid
profiles and carbon isotopic compositions
There appear to be four potential food sources for setose-feeding
barnacles in the deep-sea hydrothermal environment: (1)
organic matter of photosynthetic origin (Enright et al., 1981);

Fig. 2. Neighbour-joining tree of the members of the 1-Proteobacteria, including the Vulcanolepas epibiont based on near-complete 16S rRNA gene sequences
(1393 nucleotides). Bootstrap values (in per cent) are based on 1000 replicates, and are shown for branches with bootstrap support .50%.
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(2) detritus and free-living bacteria of vent origin (Newman,
1979); (3) eggs, larvae and debris of vent animals; and (4) bac-
terial epibionts (Southward & Newman, 1998).

Hydrothermal-vent barnacles are known to have cirri and
mouth parts specialized for feeding on finer particles than
non-vent barnacles (Newman, 1979; Jones, 1993; Newman
& Yamaguchi, 1995; Southward et al., 1997; Yamaguchi
& Newman, 1997; Southward & Newman, 1998). The
epibiont-harbouring neolepadine barnacle, Vulcanolepas
osheai from the Kermadec Arc, as well as that from the Lau
Basin, have considerably elongated cirri with exceptionally
long setae, relative to shallow-water as well as other deep-sea
barnacles, and their mouth parts appear to be further modified
to comb bacterial epibionts from the anterior cirri (Southward
& Newman, 1998).

The FISH analysis, reported above, excludes the possibility
that Vulcanolepas osheai derives its nutrition from endosym-
biotic bacteria. It is well established that fatty acids of marine
organisms are similar to those of the organisms they feed on
(Gardner & Riley, 1972; Ackman & Hooper, 1973; Pranal
et al., 1997). Analysis of the FAME profiles from the barnacle
tissues showed high levels of the saturated C16 and C18 fatty
acids and the monounsaturated fatty acids 16:1D9, 18:1D11
and 20:1D13, and polysaturated C18 fatty acids were also abun-
dant (Figure 4). As the symbiont-free tissue contains a high
level of the monounsaturated fatty acids 16:1D9 and 18:1D11
that are characteristic of those of sulphur-oxidizing bacteria
in H2S-rich marine habitats (Conway & Capuzzo, 1991;
Conway et al., 1992; Pranal et al., 1996, 1997; Suzuki et al.,
2005b; Zhang et al., 2005) and are depleted in polysaturated
C20 and C22 fatty acids that are enriched in marine organisms
deriving their nutrition from photosynthetic food sources
(Gardner & Riley, 1972; Ackman & Hooper, 1973; Pranal
et al., 1997), it appears that the barnacle is mainly feeding on
sulphur-oxidizing bacteria or possibly planktonic larvae that
feed on sulphur-oxidizing bacteria. However, some eukaryotes
have been shown to require photosynthetic input (Fullarton
et al., 1995; Pond et al., 1998, 2000), for essential nutrients
not supplied by deep-sea chemosynthetic systems. Thus, a
small but essential contribution of photosynthetically derived
food to the barnacle’s nutrition is quite likely.

In addition to fatty-acid profiles, the carbon isotopic com-
positions of the tissues and fatty acids of vent animals are

similar to those of their food sources (Conway & Capuzzo,
1991; Conway et al., 1992; Pond et al., 1998, 2000; Suzuki
et al., 2005a, 2005b). The barnacle tissues we studied had a
d13C range from –12.0 to –12.3‰ as shown in Table 1.
The carbon isotopic compositions of the symbiont-free
tissue are nearly identical to those of the cirral setae with bac-
terial filaments, indicating that the epibiont biomass is as
13C-depleted as the barnacle host tissue. The carbon isotopic
compositions of some FAMEs from the barnacle tissues
were measured; the d13C values of the FAMEs after correction
for the methanol-derivatizing reagent and the total FAMEs
calculated on the basis of the FAME compositions are
shown in Table 2. The FAMEs analysed in this study were
nearly identical in isotope composition to the total biomass,
except for the monounsaturated C20 fatty acid, which was
13C-depleted by .7.6‰ relative to the biomass (Table 2).
The similar carbon isotopic compositions of the biomass

Fig. 4. Fatty acid profiles of the cirral setae clothed with bacteria and the
remaining soft-body part from three individual barnacles. The values are
means. SDs are based on at least two parallel measurements of tissues of
each of the three individuals.

Fig. 3. Epifluorescence micrographs of the filamentous bacteria associated with the cirral setae of Vulcanolepas osheai from the Kermadec Arc. (A) DNA staining
of the cirri with 40 ,6-diamidino-2-phenylindole (DAPI); (B) fluorescence in situ hybridization (FISH) performed with the fluorescein-labelled EPF656 probe (same
microscopic field as that of Figure 3A); (C) FISH performed with the Cy-3-labelled EUB338 probe.
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and fatty acids of the bacterial epibionts and the barnacle host
leads us to suggest that the host barnacle derives most of its
nutrition from the bacterial epibionts. However, other nutri-
tional sources within the vent ecosystem cannot be completely
excluded. For example, free-living sulphur-oxidizing bacteria
and planktonic larvae of vent animals captured by the cirri
and digested by the barnacle might provide similar tissue
isotope ratios. If feeding on free-living bacteria or planktonic
larvae, one would expect a wider range of such organisms
to be utilized, and consequently there would be less exact
agreement in the FAME profiles. Such possibilities could be
investigated by long-term monitoring of free-living micro-
organisms and planktonic larvae in the barnacle habitat.
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