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Surface bubble coalescence
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We present an experimental study of bubble coalescence at an air–water interface and
characterize the evolution of both the underwater neck and the surface bridge. We
explore a wide range of Bond number, Bo, which compares gravity and capillary forces
and is a dimensionless measure of the free surface’s effect on bubble geometry. The
nearly spherical Bo � 1 bubbles exhibit the same inertial–capillary growth of the classic
underwater dynamics, with limited upper surface displacement. For Bo > 1, the bubbles
are non-spherical – residing predominantly above the free surface – and, while an
inertial–capillary scaling for the underwater neck growth is still observed, the controlling
length scale is defined by the curvature of the bubbles near their contact region. With
it, an inertial–capillary scaling collapses the neck contours across all Bond numbers to
a universal shape. Finally, we characterize the upper surface with a simple oscillatory
model which balances capillary forces and the inertia of liquid trapped at the centre of the
liquid-film surface.
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1. Introduction

At the ocean’s surface, bursting bubbles produce sea spray aerosols (SSA) which transport
water, particulates and organic biofilm matter into the air (Veron 2015). The SSA are
an important factor in global climate dynamics (Cochran et al. 2017) as they can serve
as cloud condensation nuclei, spread across land or fall back into the ocean (de Leeuw
et al. 2011). Several studies at the bubble scale have shown that bubble size is a primary
controller of the properties – size, velocity and number – of ejected droplets (Lhuissier
& Villermaux 2012; Wang et al. 2017; Brasz et al. 2018; Deike et al. 2018; Lai, Eggers
& Deike 2018; Berny et al. 2020), which makes bubble size distributions at the ocean’s
surface important in characterizing spray production (Veron 2015; Deike & Melville
2018; Néel & Deike 2021). As coalescence changes the surface bubble size distribution
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(Sadhal, Ayyaswamy & Chung 1977; Clift, Grace & Weber 1978; Néel & Deike 2021) and
has been hypothesized to ‘reset’ the bubbles’ lifetimes on the surface by injecting liquid
from the foot of the bubble into its cap (Lhuissier & Villermaux 2012), it is an important
aspect to the life of interacting bubbles at a liquid surface.

Bubble coalescence occurs in a wide variety of contexts and can introduce collective
effects. Examples include electrolysis, where bubble coalescence affects mass transfer
by agitating the surrounding solution (Stover, Tobias & Denn 1997), and bubble column
reactors, where it can slow reaction rates by reducing the available surface area (Miller
1983). The properties of foams can be altered by bubble coalescence (Taki et al. 2006).
Varying interface chemistry, typically via surfactant (Yang & Maa 1984), has been shown
to dramatically change the rate of coalescence in foams (Samanta & Ghosh 2011) and
surface coalescence (Néel & Deike 2021). Bubble coalescence is not always guaranteed
and the drainage of the liquid between neighbouring bubbles has been studied by various
authors (Chesters 1991; Craig, Ninham & Pashley 1993; Langevin 2015; Zhang et al.
2015; Berry & Dagastine 2017). Bubbles on the free surface typically coalesce after being
naturally brought together by the ‘cheerios effect’ (Nicolson 1948; Vella & Mahadevan
2005; Dalbe et al. 2011) where a bubble’s meniscus creates a force on a neighbouring
bubble, which has industrial applications, such as drying paint.

These applications have motivated studies on the small-scale physics governing
coalescence. Much of the initial coalescence work focused on liquid drops and describing
the expansion of the neck radius, r, which can be controlled by viscous, capillary and
inertial effects. These define two time scales: a viscous time scale τν,l = μlR/σ (μl is
the liquid viscosity, σ the surface tension and R the drop radius) and an inertial–capillary
time scale τi = (ρlR3/σ)1/2 where ρl is the liquid drop density (Eggers, Lister & Stone
1999; Aarts et al. 2005). The ratio of these two time scales defines the Ohnesorge number,
Oh = μl/

√
ρlRσ . In the Stokes flow limit (with Oh � 1) for spherical drops, the neck

growth is logarithmic for r/R < 0.03 with r/R ∼ −t/τν,l ln(t/τν,l) (Eggers et al. 1999).
This purely viscous regime is preceded by an ‘inertially limited viscous regime’, where the
capillary driving force is balanced by both inertia and viscosity: r/R ∼ t/τν,l. If Oh � 1,
further neck growth is inertial: r/R ∼ (t/τi)

1/2 (Paulsen et al. 2012), and a unified theory
for this transition was identified by Xia, He & Zhang (2019).

Bubble coalescence similarly starts with an inertially limited viscous regime defined
by the parameters of the gas inside the bubbles (Paulsen et al. 2014): r/R ∼ t/τν,g where
τν,g = μgR/σ , with μg being the inside gas viscosity. Note that, for millimetric air bubbles
in water, this regime lasts approximately 10−11 s. Subsequent neck growth is resisted by
either the inertia or viscosity of the exterior liquid. Thoroddsen et al. (2005) analysed air
bubbles in ethyl alcohol (Oh � 1) and found that for r/R < 0.45, the inertial–capillary
scaling from drops accurately described the neck growth: r/R ∼ (t/τi)

1/2. The time scale
is still defined by the density of the liquid, which is the exterior fluid for bubbles. To
eliminate any possible disturbances, the coalescence of diffusively grown air bubbles
in water has been studied by Moreno Soto et al. (2018), and they suggested a more
accurate scaling of the Laplace pressure driving coalescence to better capture the late-time
behaviour. In the limit of Oh � 1, r/R ∼ (t/τν,l)

1/2, where the time scale is defined with
the viscosity of the exterior liquid (Paulsen et al. 2014).

Non-spherical drop coalescence has been studied by placing drops in contact with a solid
boundary. The neck expansion can be governed by the lubrication regime if the drop’s
height is much smaller than its width (Ristenpart et al. 2006). When suspended drops are
placed in contact with a substrate to create ‘wedges’ of varying angles, the exponent of the
neck growth changed for different contact angles (Eddi, Winkels & Snoeijer 2013).
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Figure 1. (a) Sketch of the geometry of air bubbles coalescing at a liquid–gas interface and the quantities
measured in this study. Here, r is the distance that the centre point of the underwater contour travels and h
is the vertical distance travelled upwards by the centre of the top surface. They are both measured relative to
their position at the start of coalescence, t = t∗. In blue is a circle of radius R0, which is the size of a sphere
containing the same volume of air. (b,c) The shape of a single static air bubble at a water–air interface as
determined by a numerical solution of the Young–Laplace equation. Bubbles with Bo � 1 are nearly spherical
and almost completely surrounded by the liquid phase with a very small thin-film cap. For larger Bo, the bubble
resides higher relative to the undisturbed free surface and the shape is less spherical. The solid black line is the
interface between the air inside the bubble and the surrounding liquid. The solid red line is the thin-film cap
between the air inside the bubble and exterior air at atmospheric conditions. The dashed line is the free surface
between the exterior air and water.

To the best of our knowledge, the coalescence of bubbles on the free surface has not
yet been studied. The shape of surface bubbles is characterized by the Bond number,
which is the ratio of buoyancy and surface tension: Bo = R2

0/l2c = R2
0�ρg/σ , where R0

is the volume effective radius (defined as the radius of a spherical bubble with the same
volume), lc = √

σ/�ρg is the capillary length, �ρ is the density difference between the
gas inside the bubble and exterior liquid and g is the gravitational acceleration. As shown
in figure 1(a), surface bubbles have a gas–liquid cavity interface and a thin-film cap. We
determine the shape of surface bubbles by solving the Young–Laplace equation (Toba
1959; Princen 1963; Berny et al. 2020). For Bo � 1, bubbles are almost spherical and
reside predominantly below the surface of the water (figure 1b), and Bo = 1 bubbles
are approximately half above and half below the free surface. As Bo increases further
(figure 1c), the gas is higher above the free surface and in the limit of Bo � 1 the cap
forms a half-sphere.

The paper is organized as follows: § 2 describes the experimental set-up and § 3 presents
an analysis of the coalescence dynamics, for both the underwater neck growth and top
surface evolution. The bubble shape as a function of the Bond number is discussed and we
propose scalings describing the surface evolution. Conclusions are given in § 4.

2. Experimental set-up

We create bubbles, as illustrated in figure 2(a,b), by blowing air through two identical
needles passing through opposing sides of a small rectangular dish (10 cm square by
3 cm tall) of de-ionized water with 0.001 mMol of sodium dodecyl sulphate (SDS). At
this concentration, the surfactant is not expected to have a large impact on the coalescence
dynamics (Yang & Maa 1984), and is approximately the lowest concentration which
enables the bubbles to last on the surface long enough for coalescence to occur, O(1 s),
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Figure 2. (a) Two high-speed cameras record time-synced side views: one below the surface of the water and
one above. (b) Example of measurements of bubble coalescence for Bo = 1.2. (c) The associated time evolution
of the neck r(t) (blue) and bridge centre h(t) (red). Time is measured relative to the start of coalescence, t∗.

as bubble lifetime in pure water can be quite short O(0.01–1 s) (Zheng, Klemas &
Hsu 1983; Lhuissier & Villermaux 2012; Poulain, Villermaux & Bourouiba 2018).
A syringe pump (SyringePump NE-1000) is used to steadily push air at a slow
enough rate that subsequent bubbles do not interfere. We use needles (inner radii
0.17–5.1 mm) to produce a range of bubble sizes (R0 ≈ 1–3.5 mm), which corresponds
to Oh ≈ 0.004–0.002 respectively. Experiments are performed at room temperature under
atmospheric conditions.

To test the sensitivity of the dynamics to surfactant concentration, c, in this low
concentration regime, coalescence of both large and small Bond numbers at c =
0.002 mMol of SDS is also studied. We do not investigate a higher concentration of
surfactant as above a transition concentration, c ≈ 0.006 mMol, the presence of surfactant
starts to prevent coalescence (Oolman & Blanch 1986). In this sense, the results presented
in this paper concern clean water with very low surfactant contamination, before any
effects on coalescence efficiency are visible. The surface tension of the liquid–air interface
was measured with the static pendant drop method to be 0.072 N m−1 over the entire
range of SDS concentrations (c = 0.001 to c = 0.002 mMol). The difference in surface
tension between this measured value and that of pure distilled water is within the error
bounds of the measurement. Note, these concentrations are well below the critical micelle
concentration of 8.2 mMol.

Two high-speed cameras are used to capture concurrent side views: one recording a
top-surface perspective (Phantom V2012: 60 000–100 000 f.p.s.) and the other recording
below the surface (Phantom 4K: 6000–8000 f.p.s.) as shown in figure 2. The inclination
of each camera is 8◦ (±2◦), and the container’s sides are flat and clear for an unperturbed
underwater perspective. The cameras are synced such that the views can be compared
temporally and spatially (figure 2b,c). The V2012 was also used to provide higher temporal
resolution of the underwater dynamics for Bo � 0.76. Only events where the bubbles
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Figure 3. Time series of Bo = 0.13 coalescence (c = 0.001 mMol). Early times of coalescence are highlighted
by the axisymmetric neck expansion (a–c). The free surface does not appear to alter the growth of the lower
part of the neck (e–m). As time continues, the shape becomes more spherical and oscillates near its natural
mode frequency (q–x).

coalesce perpendicular to the cameras are reported. From these videos, contours of a
bubble’s top and bottom, as well as the vertical position of their centres (h(t) and r(t)
respectively, as shown in figure 2c) are extracted. These side views capture the contours in
a vertical plane that goes through the two parent bubble centres. The moment coalescence
is first observed defines t = t∗.

3. Surface coalescence dynamics

3.1. Small bubble coalescence (Bo � 1)
Coalescence between two small Bond number bubbles (Bo = 0.13) is shown in figure 3.
The neck expands axisymmetrically at early times (figure 3a–c) like bubbles coalescing
in the bulk. Even after the top of the neck encounters the free surface (figure 3d), the
bottom portion appears to continue unhindered – similar to the observation of Moreno Soto
et al. (2018) that the solid surface to which the bubbles were attached had no significant
impact on the expansion of the neck on the opposite side. As time continues, the shape
becomes more spherical and oscillates near its natural mode frequency (Lamb 1932) until
finally recovering a spherical shape (figure 3x). Because the bubbles reside completely
underwater, the contact area (of the order of 250 μm) is far from the surface (relative to
the radius R0). The free surface between the parent bubbles above the expanding neck is
not well approximated by a thin liquid film. The surface quickly becomes dominated by
interfering capillary waves and thus the dynamics for h cannot be well observed or defined.
As will be discussed in § 3.3, the downward growth of the underwater neck for Bo � 1
bubbles matches the results of underwater spherical coalescence.

3.2. Large bubble coalescence (Bo > 1)
Figure 4 shows the top and bottom perspectives of coalescence for Bo = 2.1 bubbles.
The differences between Bo > 1 and Bo � 1 coalescence are clear from the start with
a modified initial geometry. While Bo � 1 bubbles are spherical, the parent bubbles are
now highly non-spherical (although still roughly ellipsoidal underwater), and the contact

915 A105-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

17
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.173


D. Shaw and L. Deike

5 mm 0.9 ms

5.5 ms

1.8 ms 2.7 ms 3.6ms

7.3 ms 9.1 ms 10.9 ms 12.7 ms

15.5 ms 18.2 ms 20.9 ms 23.6 ms 26.4 ms

30.0 ms 33.6 ms 37.3 ms 40.9 ms 44.5 ms

(e)(b)(a) (c) (d )

( f )

(k)

(h)(g) (i) ( j)

(l)

(q)

(n)(m) (o)

( p) (r) (t)(s)

Figure 4. Bubble coalescence for Bo = 2.1 (c = 0.001 mMol). The free surface and the neighbouring parent
bubble change the initial geometry. Underwater, the parent bubbles are still roughly ellipsoidal and the neck
between them expands in a fashion similar to spherical bubbles coalescing for t/τi < 1 (a–f ). The top surface
shows distinctly different behaviour. While the bottom neck has started to grow in (b), the upper surface only
first shows signs of movement in (c) and the entire liquid film is moving only a short time after (�t � τi).
The upper surface reaches its maximum ( f ) very quickly – well before the bottom surface (p). Note that the
liquid from the meniscus between the parent bubble caps is trapped in the liquid film of the upper surface and
eventually spreads out over the newly formed bubble’s cap (h–r), as shown by the light-coloured region at the
centre of the newly formed cap.

area is a vertical liquid film on the scale of the bubble itself. Liquid from the meniscus
between the bubble caps becomes trapped in a ‘bulge’ on the upper surface film. While
eventually spreading out over the film, it remains concentrated in the centre throughout the
first surface expansion (figure 4a–f ). The neck expansion underwater appears qualitatively
similar in many regards to the smaller Bond number case; the neck is bounded by capillary
waves and follows the shape of the pre-coalescence parent bubbles. The top of the bubble
exhibits distinctly different behaviour by starting its motion later than the underwater
neck, peaking relatively quickly and finally relaxing to a semi-spherical cap. Unlike the
neck underwater, which expands within a clearly defined region, the entire top surface
quickly (�t � τi) starts moving (figure 4d). Full growth of the neck underwater takes
approximately 0.0125 s while the top surface reaches its peak after roughly 0.005 s.

3.3. Neck growth underwater: r(t)
The expansion of the underwater neck perpendicular to the free surface as a function of
time is measured for a wide range of Bond numbers and shown in figure 5(a) (each line
represents the average of 12–20 trials). The growth of the neck at c = 0.002 mMol of SDS
is shown by the dotted lines. The neck is measured relative to its position when coalescence
starts, t = t∗. Across all Bo, we observe that r(t) − r(t∗) ∝ (t − t∗)1/2, which is the same
functional relationship as the inertial–capillary scaling, r(t)/R0 ∝ (t/τi)

1/2, for spherical
bubbles. Rescaling using the effective bubble radius R0 collapses the data sufficiently
well for Bo � 0.5, but fails for larger Bond numbers. This can be related to the modified
geometry for Bo > 0.5, which changes the capillary pressure driving coalescence.

915 A105-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

17
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.173


Surface bubble coalescence

2.5

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8

Bo = 0.15, c = 1 µMol

Bo = 0.84, c = 1 µMol

Bo = 0.76, c = 1 µMol

Bo = 0.47, c = 1 µMol

Bo = 0.24, c = 1 µMol

Bo = 1.17, c = 1 µMol

Bo = 2.50, c = 2 µMol

Bo = 0.38, c = 2 µMol

Bo = 2.38, c = 1 µMol

Bo = 1.59, c = 1 µMol

1.0 1.2 1.4

2.0

1.5

1.0

0.5

0

0 2.0 4.0 6.0

1.00

0.75

0.50

0.25

0

0 0.25 0.50 0.75 1.00

8.0 10.0 12.0 14.0

[t – t∗]/τi(R0)

[r
 –

 r
(t ∗

)]
/R

0

r –
 r

(t ∗
)(

m
m

)

[r
 –

 r
(t ∗

)]
/R

c

t – t∗ (ms) R0(mm)

R0

Rc

Rc = R0
∗(1 + (ρg/σ)R2

0)–0.5

R c
(m

m
)

10–4

10–1

10–2 10–1 100

100 2

1

10–3

10–2

10–1

100

101

10–2 10–1 100 101

[r – r (t∗)]/Rc = 1.2 [(t – t∗)/τi(Rc)]
0.5

(b)(a)

(c)

[t – t∗]/τi(Rc)

Figure 5. Underwater neck growth (a) r(t) − r(t∗) as a function of t − t∗ for Bo = 0.15 to 2.38. The solid lines
are the smallest surfactant concentration, c = 0.001 mMol SDS, and the dotted lines are c = 0.002 mMol. The
inset shows the same data rescaled by the volumetric radius, R0, as is done for spherical bubble coalescence.
The large spread of the data illustrates that it is not the correct normalization. (b) The in-plane curvature at
the bubble’s ‘corner’ (its widest part), Rc, is found by inspection of numerical solutions of the Young–Laplace
equation for different sized bubbles, the result of which is shown by the open circles. The corner curvature
increases with Bo and can be described by Rc = R0(1 + Bo)−1/2, shown in dashed lines. The inset shows
where Rc (blue circle) is measured on the three-dimensional geometry of a Bo = 3 bubble. The black region
is the air–liquid interface and the red is the thin-film cap. (c) Re-scaling of the neck data with Rc as the
characteristic length scale and τi(Rc) = √

ρR3
c/σ as the characteristic time scale. The data collapse to a single

curve, [r − r(t∗)]/Rc = C[(t − t∗)/τi(Rc)]1/2 (indicated in black), with C = 1.2 by best fit to the data. There is
no visible difference between the two concentrations of surfactant tested, showing independence of the results
in this low concentration limit.

The capillary pressure in the neck driving coalescence is a function of the parent
bubble’s shape, in particular the curvature at its ‘corner’ (the widest part of its cavity).
For t/τi < 0.2, the capillary pressure is defined well by the in-plane curvature alone
(Paulsen et al. 2014; Moreno Soto et al. 2018). The in-plane radius of curvature at the
‘corner’ of the parent bubble, Rc as defined in figure 5(b), is estimated by fitting a
half-parabola to solutions of the Young–Laplace equation (from the corner half-way to
the bottom) which is the shape of a unique static bubble. While differences exist between
the pre-coalescence parent bubbles and the analytic shapes – real parent bubbles for
Bo > 1 are not axisymmetric as shown in figure 4(a) – they match a proposed function:
Rc = R0(1 + Bo)−1/2, which is determined by the definition of Bo = R2

0/l2c . In the Bo � 1
limit, Rc = R0 as the bubbles are spherical. In the limit of Bo � 1, Rc = lc is the shape of
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the meniscus at the intersection of the flat film separating the gas volumes and the liquid
bath beneath them.

Employing Rc and the associated τi(Rc) = √
ρlR3

c/σ as characteristic length and time
scales, the inertial–capillary scaling law for spherical coalescence in the bulk is adapted to:
[r − r(t∗)]/Rc = C[(t − t∗)/τi(Rc)]1/2, where C is a non-dimensional constant found via
best fit to be C = 1.2. This scaling leads to a reasonable collapse of the data (figure 5c).
While there is a noticeable spread for t/τi � 0.2, this is consistent with the observation
that estimating the geometry from only the in-plane curvature only partially describes
the long-term neck growth of spherical bubbles (Moreno Soto et al. 2018). Increasing the
concentration of SDS to c = 0.002 mMol has no significant effect as illustrated in figure 5,
which shows the independence of the results with respect to surfactant concentration in
this low concentration limit.

3.4. Underwater neck contour evolution
We have shown that the downward expansion of the neck centre can be described by the
classic theory for spherical bubble coalescence modified to account for the shape of a
bubble at the free surface. We now extend our description to the entire underwater neck
contour, which is defined as the segment of the profile which rapidly expands while the
rest of the bubble remains relatively stationary (see figure 3a–g). The expansion of the
neck contour is considered while r � R0.

The characteristic vertical length scale has been found by our description of the neck
midpoint dynamics: ỹ = Rc[(t − t∗)/τi(Rc)]1/2. The horizontal extension is bounded by a
capillary wave (figure 3) which can be analysed similarly to Moreno Soto et al. (2018).
The arc length travelled, s, is observed to follow s/Rc ∝ (t/τi)

1/2, which Moreno Soto
et al. (2018) attributed to viscous damping of the higher-order frequencies in the wave
packet. As such, the horizontal position of the wave front bounding the neck contour is
estimated to the first order as x = Rc[1 − cos(s/Rc)] ≈ RC[t/(2τi(Rc)) + O((t/τi(Rc))

2)].
The horizontal length scale is thus x̃ = Rc[(t − t∗)/τi(Rc)]. Figure 6 shows the full
underwater contour evolution with dimensional measurements and rescaling by the
horizontal and vertical lengths x/x̃ and y/ỹ respectively. We observe an excellent collapse
of the data for both small and large Bond numbers to a universal shape.

3.5. Top surface bridge evolution
When surface bubble coalescence is viewed from above, the event is considerably different
from the underwater perspective. The motion of the upper surface is examined by
inspection of the interface in a vertical plane that goes through the parent bubble centres
(the meridian profile) and its midpoint is of primary focus. Figure 7(a,b) shows the
contours of the top surface for Bo = 0.67 and 2.0 from the initial shape to the first peak.
After this peak, the centre oscillates in a standing wave fashion about an equilibrium point,
as shown in figure 7(c), until interacting travelling capillary waves jumble the surface.
Eventually, the bubble settles to its new static shape and the trapped liquid spreads out
and drains over the bubble cap. The whole process is shown in figure 4. A cylindrical
coordinate system (figure 8a) is used to discuss the upper surface due to its symmetry.
The angular coordinate, φ, is measured from the vertical such that φ = 0 for the meridian
contours shown in figure 7(a,b). The radial coordinate is r, and the longitudinal coordinate
is z. The z axis is parallel to the line connecting the parent bubble centres, and the origin
lies at the centre of the radially expanding upper surface’s neck (not necessarily the same
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Figure 6. Underwater neck contour evolution for Bo = 0.25 (a–c) and Bo = 2.0 (d–f ), showing the images
(a,d) just prior to the start of coalescence, with the subsequent growth of the neck overlaid. In all other plots,
the black dot at (0, 0) represents the origin where the neck starts at t = t∗. (b,e) The physical scale of the
neck. (c, f ) The same contours rescaled by the appropriate vertical (ỹ = Rc[(t − t∗)/τi(Rc)]1/2) and horizontal
(x̃ = Rc[(t − t∗)/τi(Rc)]) length scales. (g) A comparison of the rescaled data for all times at each Bond number
(c, f ), with the shaded area indicating the standard deviation about the mean. For all Bo studied, the entire lower
neck contour collapses to a single curve. Results for Bo = 0.25 and Bo = 2.0 are highlighted as they show
collapse across roughly an order of magnitude in Bo.

point about which the underwater neck expands). The top surface is tracked by a height
function r = f (z, φ, t). The radial extent of the centre is defined relative to the point about
which it oscillates as h(t) = f (0, 0, t) − req is directly measured from the images. Due
to symmetry, there is assumed to be an angle φc for which f (z = 0, −φc < φ < +φc) is
constant at any particular time until the symmetry is disturbed by the travelling capillary
waves. This range of −φc < φ < +φc is the region of the upper surface which is assumed
to be unaffected by the meniscus or surrounding liquid and varies with Bond number:
φc = 0 in the limit of Bo � 1 and φc = π/2 in the limit of Bo � 1. This assumption has
been qualitatively verified, but the parent bubbles block a clear view of the expanding neck
to measure φc precisely.

The dynamics of the midpoint of the top surface, h(t), could depend on capillary
forces, gravity and the amount of liquid from the meniscus that is trapped in the film.
The ‘wavelength’ of the standing wave oscillations is observed to be set by the horizontal
spacing between bubble caps, L. The amount of liquid trapped in the meniscus between the
bubble caps has a characteristic length scale, D, as illustrated in figure 8(b,c). The trapped
liquid is the intersection of three thin films with a meniscus between them, as shown in
figure 8(c), and a three-dimensional perspective can be seen in figure 9(a). The bulge is
estimated as a section of a triangular toroid in the z = 0 plane, centred at φ = 0, and
subtending an angle of 2φc (with an arclength of W). The total mass of the liquid bulge
is thus mb ∼ ρlD2W . When the film separating the parent bubbles retracts, the liquid that
had been in the meniscus of the intersection of the three films becomes trapped in the
centre of the upper surface as shown in figure 9(a–c). The film thickness everywhere else
is O(10–100 μm) and its mass is thus assumed to be negligibly small in comparison.
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Figure 7. Evolution of the top surface and the relevant geometric parameters. The meridian contour sequence
for Bo = 0.67 (a) and 2.0 (b). The dark blue curve is the start of coalescence, and the light green is the first
peak height of the centre (elapsed time between each line is different for (a,b)). There are many similarities
in the contour evolution of each, including the trapped liquid mass and curvature reversal at the centre.
(c) Evolution of the top surface centre, h(t), during coalescence. The characteristic length and time scales
of the behaviour both increase with Bond number. The end of the recorded signal is when travelling capillary
waves start to dominate the dynamics of h, creating a disordered signal. As the scale of the bubble cap increases
with Bond number, the larger Bond number trials exhibit more oscillations while the midpoint barely reaches
its first peak before capillary waves arrive for the smallest Bond number trial (Bo = 0.38). The dotted lines are
at c = 0.002 mMol SDS with no visible changes compared to the cases with lower surfactant.

(b)(a)

(c)

r
z

D

D

L

t = t∗
D

φ

Figure 8. Top surface geometry. (a) The cylindrical coordinate system of the top surface; φ is the angular
coordinate measured from the vertical (the meridian contours lie on φ = 0), r is the polar coordinate, and z
is the longitudinal coordinate. (b) Measured features of the top-surface geometry which are relevant to the
dynamics. Here, L is the horizontal spacing between the cap peaks, and D is the width of the liquid trapped in
the meniscus between the bubble caps. (c) Cross-section of the trapped liquid mass in the plane containing the
z-axis and φ = 0. At the moment of coalescence, the bulge is estimated as a triangular toroid, which is what
would be obtained by rotating the section highlighted in red −φc < φ < +φ about the z-axis.

While the bulge eventually spreads out over the entire cap, the transport of the liquid
from the bulge in the film is neglected in this analysis as it is observed to stay in a
relatively concentrated region near the centre for the time period of interest, as shown
in figure 4(a–o). It is only when interacting capillary waves distort the shape of the film,
figure 4(p), that the light-coloured region of increased thickness is noticeably changed. The
concentration of liquid on an oscillating film into a visible bulge has also been observed on
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2 mm 0.15 ms

Retracting centre film

0.83 ms 1.93 ms

(b)(a)

(c) (d )

Figure 9. Retraction of the film separating Bo = 2.6 parent bubbles with c = 0.002 mMol of SDS. The
bubbles were angled roughly 30◦ away from the camera (the left bubble is further away) such that the liquid
bulge at very early times of coalescence can be seen. Prior to coalescence, it is the intersection of three thin
films, and after the centre film retracts the liquid is trapped. Tracking the exact shape of the trapped liquid is
complex, and an initially triangular cross-section is assumed to estimate the amount of liquid in the bulge.

large-amplitude oscillations of soap films (Drenckhan et al. 2008), and the rapid motion
of the film may slow down the transport of the liquid out of the film centre.

In the classical treatment of small-amplitude oscillations of bubbles, the mass of the
film is neglected (Lamb 1932; Kornek et al. 2010). In the region of the bulge where the
thickness is O(1 mm), however, the inertial stress of the liquid in the bulge is dominant over
that of the surrounding gas: (ρlḣ2D2/R2

0) > (ρgḣ2). The viscosity in both the water and
air phases can both be neglected (Regas = ḣR0/νgas ≈ 102 and Reliq = ḣD/νliq ≈ 103). As
such, a model for the oscillations – after the first peak of expansion – of the film at z = 0
that balances the change in inertia of the bulge with surface tension and gravity forces is
proposed. Neglecting the effects of interior and exterior gas and assuming that the only
mass in the film is that of the trapped liquid localized to a very small region for the time
scales of interest reduces the problem to that of a point mass on an otherwise mass-less
thin film oscillating in a vacuum. Because of the neck’s symmetry (−φc < φ < +φc), a
one-dimensional model for the radial neck growth, h(t), is proposed.

As the centre of the top surface oscillates about its equilibrium, req, the capillary
force acting on the bulge is estimated as fcap ∼ −hσW/L. This choice of length scales
is motivated by observations that during the oscillations, the curvature (κ) change in
the plane containing the z-axis with φ = 0 is greater than that in the z = 0 plane. The
wavelength of the standing wave centred at z = 0 is observed to scale with the distance
between the cap peaks, L, and the change in curvature about h = 0 is thus κ ∼ h/L2.
The force of gravity acting on the bulge is estimated as fgrav ∼ gρlD2W , where g is
gravity. Balancing the change in inertia of the bulge with the sum of capillary and gravity
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forces yields

ḧ ∼ − σ

ρlLD2 h − g, (3.1)

which has oscillatory solutions with a characteristic time scale of τI,top ∼
√

ρlD2L/σ .
Under the assumptions of our model, which treats the bulge similar to a point mass, gravity
does not affect the frequency of oscillation as the only restoring force is surface tension.
The effect of gravity in this model is to change the point about which the oscillations
occur as the bulge ‘sags’ downward. By neglecting the interior and exterior gas phases,
this model is similar to that of an elastic membrane in which surface tension plays the role
of elasticity. Because all of the liquid mass is assumed to remain concentrated at z = 0 and
the film is symmetric about the z = 0 plane as well as the plane containing the z-axis and
φ = 0, the model for the motion of the bulge is reduced to that of a suspended mass of
liquid oscillating in a single dimension.

Equation (3.1) could have been also derived from the balance equations of fluid
membranes (Coutris 1993) by making the same assumptions and averaging over −L/2 <

z < +L/2. A complete model of the surface evolution would need to include the other
principal curvature and account for the drainage of the trapped liquid through the film
(and consequentially the variable thickness of the film) instead of considering it like a point
mass. If the effects of the gas inside and outside the bubble are no longer neglected, the
relevant system comprises three fluids with two interfaces. In this configuration, gravity
can act as a restoring force, so gravity waves could also be considered (Grinfeld 2012;
Patankar, Farsoiya & Dasgupta 2018). However, the ratio of the pressure due to gravity
acting on the gas inside the bubble (ρggh) to capillary pressure (2σh/L2) is O(0.001),
which indicates that capillarity would be the dominant restoring force in the model.

Measurements of L are shown in figure 10(a). The filled black circles are at c =
0.001 mMol of SDS while the empty stars are at c = 0.002 mMol. As the geometry for
diminishingly small Bond number (Bo � 1) is that of two spheres, L = 2R0 which is
displayed by the upper grey dashed line. In the limit of Bo � 1, the top surface centre
is the intersection of 3 thin films which each intersect at roughly 120◦: a Plateau border.
With this geometric intuition, the meridian centre is roughly where the cap of a single
bubble is 120◦ from vertical: L = 21/3R0, which is shown by the lower grey dashed line of
figure 10(a). Measurements of D are shown in figure 10(b) along with a proposed function
with a single fitting parameter. For Bo � 1, the meniscus joins the parent bubble caps
and the thin-film interface between the air pockets; the characteristic size of the triangular
cross-section is D ∼ lc because coalescence starts before significant drainage can occur.
For Bo � 1 bubbles, the trapped liquid is above the contact point of two spheres (figure 3a)
and D ∼ O(R0). As such, we introduce the empirical function: D/R0 = χ(1 + Bo)−0.5,
once again leveraging the definition of Bo = R2

0/l2c , where χ = 0.75 is a non-dimensional
constant fit to the data (figure 10b) since the prefactor is not determined by the simple
scaling model. Note, a two-parameter function could also have been considered to describe
the data.

The measured time and length scales which collapse the h(t) oscillations are the time
(τI,top/2) and height (�H) of the first expansion peak and are presented in figures 10(c)
and 10(d), respectively. When compared to the proposed time scaling of

√
ρlD2L/σ , the

estimated time scale matches the trend of the data quite well with a prefactor of 0.612. The
measured length scale, which collapses the data, �H is shown in figure 10(d).

The rescaled growth of the meridian centre, h(t), throughout coalescence is shown
in figure 11. The data are shown up to the point that travelling capillary waves reach
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Figure 10. Measured features and the proposed time and length scales of the problem. The black filled circles
correspond to experiments at c = 0.001 mMol and the unfilled stars are c = 0.002 mMol. (a) Measurements
of the cap peak spacing, L, as a function of Bo. The grey dashed lines are the theoretical geometric limits. At
Bo � 1, the caps are separated by L = 2R0 (the upper grey dashed line) since the geometry is nearly that of two
spheres in contact. The lower grey dashed line (L = 21/3R0) is the Bo � 1 limit in which a Plateau border-like
structure is observed with the caps intersecting close to where a single bubble cap is 120◦ from vertical.
(b) Measurements of the trapped liquid width, D, as a function of Bo and the proposed function (dashed line):
D/R0 = χ(1 + Bo)−0.5, with χ = 0.75 fit to the data. (c) Comparison of the measured time scale with that of
the model, τI,top = 0.612

√
ρlD2L/σ with 0.612 fit to the data. (d) Value of �H, which is the height of the first

peak, as a function of Bond number. Note that increasing surfactant over the range studied does not change the
dynamics.

the meridian centre; more oscillations are visible with increasing Bond number as the
waves must travel further with increasing bubble size. In fact, the smallest trial with
Bo = 0.39 barely reaches the first peak before the capillary waves start to dominate the
interface dynamics. The oscillations across all Bond number can be collapsed together by
rescaling length and time by �H and τI,top, respectively. As the shape of the new bubble
is established and the gas inside the parent bubbles come together, the point about which
the film oscillates moves upwards due to an effective change in boundary conditions of the
top surface film and the new static shape is reached.

The result of increasing surfactant to c = 0.002 mMol is shown in figure 11(a–d), and
there is no significant difference in the coalescence dynamics at both large and small Bond
numbers.

4. Conclusion

Bubble coalescence at the free surface is important for both its role in sea spray aerosol
production and its fundamental relevance as an interfacial process. The regime of very
low surfactant concentration (c = 0.001 mMol) is studied so that the bubbles last long
enough on the surface to coalesce. Increasing the SDS concentration to c = 0.002 mMol
has no effect on the dynamics, so that our results are general in the limit of very small
contamination. We have shown that in the limit of Bo � 1, coalescence is very similar to
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Figure 11. Collapse of h(t) across Bo made dimensionless by the height (�H) and time (τI,top/2) of the first
peak for each signal. As the proposed oscillator model is valid after the first peak ((t − t∗)/τItop > 0.5), this
part of the data is highlighted in the plot. The collapse of the data supports the proposed model which balances
the change in inertia of the trapped liquid mass with the restoring force of surface tension as the liquid mass
oscillates about its equilibrium point, which is determined by the balance of surface tension and gravity. The
symmetry of the film reduces the model to a one-dimensional oscillator.

that in the bulk. As the Bond number increases, the bubbles deform and new behaviour
appears. For the neck growth underwater, a new length scale is presented, Rc, which
captures the relevant bubble geometry. With it, the established inertial–capillary scaling
becomes r/Rc ∝ (t/τi(Rc))

1/2 and collapses the data for Bo = 0.15 to 2.38 as Rc → R0 in
the small Bo limit. Furthermore, we present the formal collapse of the entire underwater
neck contour to a single curve that is independent of the Bond number. The bubble’s
evolution above the free surface is distinctly different. Liquid from the meniscus between
the parent bubbles is trapped in the top surface film. A simple oscillatory model which is
valid for times at which the trapped liquid does not drain is presented; the change in inertia
of the trapped liquid is balanced by capillary and gravity forces. Gravity controls the shape
of the initial parent bubbles and the final bubble, but it does not affect the time scale of the
oscillation. The proposed model matches the collapsed data well for a range of different
Bond numbers. The characteristic time scale of the process is τI,top ∼

√
ρlD2L/σ , with L

and D determined by the geometry of the upper surface and the amount of liquid trapped
in the film.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.173.
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