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Stacks which allow elements to be pushed into any of the top r positions and popped

from any of the top s positions are studied. An asymptotic formula for the number un of

permutations of length n sortable by such a stack is found in the cases r = 1 or s = 1.

This formula is found from the generating function of un. The sortable permutations are

characterized if r = 1 or s = 1 or r = s = 2 by a forbidden subsequence condition.

1. Introduction

Let σ = [σ1, σ2, . . . , σn] be a permutation of 1, 2 . . . , n appearing as the input stream to

a stack. If, through an appropriate series of push and pop operations, the stack can

discharge the input elements in the order 1, 2 . . . , n then σ is said to be a stack-sortable

permutation. Stack-sortable permutations were first investigated by Knuth in [4, Section

2.2.1], and it was proved that there are
(

2n
n

)
/(n+1) (the nth Catalan number) stack-sortable

permutations of length n. It was also proved that σ is stack-sortable if and only if there

are no indices i < j < k with σk < σi < σj . The latter fact is nowadays described in the

terminology of ‘permutation avoidance’.

Two numerical sequences π = [π1, π2, . . .] and ρ = [ρ1, ρ2, . . .] of the same length are

said to be order-isomorphic if, for all i, j, πi < πj if and only if ρi < ρj . If π and σ are

permutations, then π is said to be involved in σ if π is order-isomorphic to a subsequence

ρ of σ. If π is not involved in σ, then we say that σ avoids π. In these terms, a permutation

is stack-sortable if and only if it avoids the permutation [2, 3, 1]. Many other results about

permutation avoidance have been obtained recently (see [6], [10], [8], [3], [2]).

In this paper we use avoidance arguments to generalize Knuth’s original results to

stacks where the push and pop operations are not confined to a single ‘top’ position.

Definition. An (r, s)-stack is a container for a sequence admitting an extended push

operation and an extended pop operation. The push operation can insert a new element
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anywhere among the first r places of the current sequence. The pop operation can remove

any of the first s elements of the sequence.

Lemma 1.1. There is a one-to-one correspondence between (r, s)-stack-sortable permutations

and (s, r)-stack-sortable permutations.

Proof. We shall show that, if the permutation γ can be sorted by an (r, s)-stack, then

ργ−1ρ can be sorted by an (s, r)-stack, where ρ is the reversal permutation [n, n− 1, . . . , 1].

Let A = a1, . . . , a2n be a sequence of (r, s)-stack operations that sorts γ. Then A will

also transform the identity permutation into γ−1. Consider the sequence A′ = a′2n, . . . , a′1
of operations of an (s, r)-stack where a′i is defined as follows.

(1) If ai inserts an input symbol into the kth location of the (r, s)-stack then a′i produces

an output symbol by removing the kth element of the (s, r)-stack.

(2) If ai produces an output symbol by removing the kth element of the (r, s)-stack then

a′i inserts an input symbol into the kth location of the (s, r)-stack.

It is helpful to think of a movie in which A transforms the identity permutation into γ−1

step by step. If this movie were to be run in reverse one would see A′ transform ργ−1 (the

reverse of γ−1) into ρ (the reverse of the identity). In other words, A′ sorts ργ−1ρ.

Of course, a (1, 1)-stack is just an ordinary stack, the top element being the first element

of the sequence. Modern computers often have a system stack that permits direct access

to a small number of elements near the top of the stack. We shall consider the case s = 1,

use an avoidance criterion to characterize the (r, 1)-stack-sortable permutations, and give

some enumeration results. These results give an indication of the extra power possessed

by stacks with r or s greater than 1. Finally we make a few remarks about the case

r = s = 2 and indicate that it appears to be significantly harder.

2. Avoidance

Theorem 2.1. A permutation is (r, 1)-stack-sortable if and only if it avoids all r! permuta-

tions of the form [a1, a2, . . . , ar, r + 2, 1].

Proof. For convenience we refer, temporarily, to the permutations defined in the statement

of the theorem as impeding permutations. Let α = [a1, a2, . . . , ar, r + 2, 1] be any impeding

permutation. If it can be sorted then all its elements must be pushed onto the stack before

any are popped. The result of pushing a1, a2, . . . , ar results in a stack content that can be

any reordering of these elements. Let x = ai be the bottom element. When the element r+2

is pushed onto the stack, x remains the bottom element. At this point the final element

1 can be pushed and then popped, but it is then impossible to pop the element x at its

appropriate point because r+2 lies above x in the stack. Thus α is not (r, 1)-stack-sortable,

and therefore no permutation involving α can be (r, 1)-stack-sortable either.

To prove the converse – that a permutation α which is not (r, 1)-stack-sortable must

involve one of the impeding permutations – we consider how α can fail to be (r, 1)-

stack-sortable. Obviously, if α can be sorted at all, the stack elements must remain sorted
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decreasingly from top to bottom. Thus, when a push operation is carried out there will

be at most one stack position into which the new element can be inserted. It is evident

that, if α can be sorted, it can be sorted by a sequence of pushes and pops in which, if

1, 2, . . . , i − 1 have been output already and i is at the top of the stack, then i should be

popped before any further pushes. Such a sequence of pushes and pops is called canonical.

If the canonical sequence of pushes and pops is incapable of sorting α it must first fail

on a push operation. Specifically, the next element z to output is not in the stack and

the element y being pushed (which precedes z in the input stream) must be greater than

the top r elements x1, x2, . . . , xr of the stack. Therefore the input stream must originally

have had a subsequence Xyz, where X is some arrangement of x1, x2, . . . , xr , and this is

order-isomorphic to an impeding permutation.

Remark.

(1) By using a similar argument, or the correspondence of Lemma 1.1, one can show that

a permutation is (1, s)-stack-sortable if and only if it avoids all permutations of length

s+ 2 of the form [2, a1, . . . , as, 1].

(2) The class of (r, 1)-stack-sortable permutations is an example of a class of permutations

X with a closure property: x ∈ X and y involved in x implies y ∈ X. Every such

class is characterized by a set of avoided permutations (the minimal permutations not

belonging to X). In general this set may not be finite: as shown in [5], deque-sortable

permutations cannot be characterized by any finite avoided set.

3. Enumeration

The main aim of this section is to give enumeration results for the number un of (r, 1)-stack-

sortable permutations. Of course, un depends on r but, since r will be fixed throughout

the section, we suppress a notational reference to it.

Lemma 3.1. un is the number of permutations of length n that avoid all r! permutations of

the form [r + 2, a1, . . . , ar, r + 1].

Proof. It is easy to see that if α avoids β then α−1 avoids β−1. Consequently, a permutation

avoids all the permutations in the set R = {[a1, a2, . . . , ar, r+ 2, 1]} if and only if its inverse

avoids every permutation in the set R−1 = {[r + 2, a1, . . . , ar, r + 1]}. The lemma now

follows from Theorem 2.1.

We define a permutation to be r-maximal if it avoids all r! permutations of length

r+ 1 of the form [a1, . . . , ar, r+ 1]. We also define tail(σ) for any permutation σ to be the

longest r-maximal suffix of σ. From the definition of r-maximal, Lemma 3.2 follows.

Lemma 3.2. A permutation σ of length m is r-maximal if and only if the following conditions

hold.

(1) The largest element m occurs among positions 1, 2, . . . , r of σ.
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(2) If m is deleted from σ the resulting sequence is an r-maximal permutation of length

m− 1.

Let Un be the set of permutations of length n that avoid all the permutations of

the form [r + 2, a1, . . . , ar, r + 1] (i.e., those given in Lemma 3.1). Let Uni be the set of

permutations σ in Un with |tail(σ)| = i, and let uni = |Uni|.

Lemma 3.3. The numbers uni satisfy the following conditions.

D1. If n 6 r, then uni = 0 if n 6= i and un = unn = n!

D2. If n > r, then uni = 0 if i < r.

D3. If n > r, then uni = run−1,i−1 +
∑

j>i un−1,j if i > r.

These conditions determine the numbers uni uniquely.

Proof. An (r, 1)-stack is obviously capable of sorting every permutation of length r or

less. Moreover, for such permutations their longest r-maximal suffix is themselves. This

proves D1. For permutations of length r or more the longest r-maximal suffix is of length

at least r and so D2 holds.

For D3 we begin by noting that every permutation of Uni arises from inserting n into a

permutation of Un−1,j for some j. Consider any σ ∈ Un−1,j and write it as σ = αxβ where

β = tail(σ). If n were to be inserted in σ before the element x the result could not be in Un,

since xβ has a subsequence order-isomorphic to a permutation of the form [a1, . . . , ar, r+1]

and nxβ would have a subsequence order-isomorphic to [r + 2, a1, . . . , ar, r + 1]. On the

other hand, if n is inserted after element x the resulting permutation is certainly in Un.

If n were to be inserted in one of the r places after x and before the rth element of β

we would obtain a permutation of Un,j+1 by Lemma 3.2. On the other hand, if n were to

be inserted immediately after the (r + p)th element of β, for any p > 0, we would obtain

a permutation of Un,j−p (since, by Lemma 3.2, the longest r-maximal suffix would begin

r − 1 places before n).

Thus an element of Uni can arise in r different ways from inserting n into a permutation

of Un−1,i−1 and, for each j > i, can arise in one way only from inserting n into a

permutation of Un−1,j . This proves D3.

Lemma 3.4. The conditions of Lemma 3.3 are equivalent to these conditions.

E1. If n 6 r, then uni = 0 if n 6= i and un = unn = n!

E2. If n > r, then uni = 0 if i < r.

E3. uni = 0 for all n < i.

E4. If n > r, then un,i = un,i−1 + (r − 1)un−1,i−1 − run−1,i−2 if i > r.

Proof. E3 follows easily from D1, D2 and D3 by induction. E4 follows by differencing

the two equations (from D3)

uni = run−1,i−1 +
∑
j>i

un−1,j and un,i−1 = run−1,i−2 +
∑
j>i−1

un−1,j .
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Conversely, D3 follows from E3 and E4 by summing, from j = i+1 to n+1, the rewritten

equations unj − un,j−1 = run−1,j−1 − run−1,j−2 − un−1,j−1 of E4.

Lemma 3.5. ur−1,r , ur,r, ur+1,r , . . . are the coefficients v0, v1, v2, . . . in

(r − 1)!

2
(1 + (r − 1)x−√(r − 1)2x2 − 2(r + 1)x+ 1) =

∞∑
n=0

vnx
n.

Proof. We make the substitution tni = un+r−1,i+r−1 and translate the conditions of

Lemma 3.4 to give:

F1. t00 = (r − 1)! and tn0 = 0 if n > 0.

F2. t0i = 0 if i > 0.

F3. tni = 0 for all n < i.

F4. tni = tn,i−1 + (r − 1)tn−1,i−1 − rtn−1,i−2 for all i > 2 and n > 1.

If we put v(x) =
∑∞

n=0 vnx
n =

∑∞
n=0 tn1x

n and T (x, y) =
∑
tnix

nyi, conditions F1, F2, and

F4 give rise to an equation satisfied by v(x) and T (x, y) whose solution is

T (x, y) =
(r − 1)! + yv(x)− y(r − 1)!− xy(r − 1)!(r − 1)

1− (r − 1)xy − y + rxy2

= (r − 1)! +
y(v(x)− r!xy)

1− (r − 1)xy − y + rxy2
.

In order to satisfy condition F3 too, we must choose the power series v(x) appropriately.

We factor the denominator of T (x, y) as

1− (r − 1)xy − y + rxy2 = (1− ρ(x)y)(1− σ(x)y),

where ρ(x)σ(x) = rx and

ρ(x) =
1

2

(
1 + (r − 1)x+

√
(r − 1)2x2 − 2(r + 1)x+ 1

)
,

σ(x) =
1

2

(
1 + (r − 1)x−√(r − 1)2x2 − 2(r + 1)x+ 1

)
.

Note that σ(x) is a power series with σ(0) = 0. In fact, (r−1)!σ(x) is the sought-for power

series for v(x) since, when (r − 1)!σ(x) is substituted for v(x), T (x, y) becomes

(r − 1)! +
y((r − 1)!σ(x)− r!xy)

(1− ρ(x)y)(1− σ(x)y)
= (r − 1)! +

y((r − 1)!σ(x)− (r − 1)!ρ(x)σ(x)y)

(1− ρ(x)y)(1− σ(x)y)

= (r − 1)! +
y(r − 1)!σ(x)

1− σ(x)y

= (r − 1)! + y(r − 1)!σ(x)

∞∑
m=0

σ(x)mym,

which does have a power series expansion satisfying condition F3. Since condition F3

uniquely determines v(x), the proof is complete.

Theorem 3.6.

(1) If n 6 r, un = n!.
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(2) If n > r, un is the coefficient of xn−r+2 in

q(x) = − (r − 1)!

2

√
(r − 1)2x2 − 2(r + 1)x+ 1.

Proof. Part (1) is clear. For part (2), note that q(x) and v(x) differ only in their linear

terms and so it is sufficient to prove that un+1,r = un if n > r (since, by Lemma 3.5, un+1,r

is the coefficient of xn−r+2 in q(x)). So let σ ∈ Un+1,r . Since tail(σ) has length r, the final

r+ 1 symbols of σ must be order-isomorphic to a permutation [a1, . . . , ar, r+ 1]. If the last

symbol of σ was not n+ 1 itself, then n+ 1 would occur before the last r+ 1 symbols of σ

and, with them, produce a subsequence that was order-isomorphic to [r+2, a1, . . . , ar, r+1],

a contradiction. Thus σ is the result of appending n + 1 to a permutation in Un and so

Un+1,r and Un are in one-to-one correspondence.

The asymptotic behaviour of un can be found from Theorem 3.6 using an observation

in [4], p. 534: the coefficient of wn in
√

1− w√1− αw (with 0 < α < 1) is asymptotic to

− 1
2

√
(1− α)/π n−3/2. We can write√

(r − 1)2x2 − 2(r + 1)x+ 1 =

√
(1− (

√
r + 1)2x)(1− (

√
r − 1)2x)

=

√
1− (

√
r + 1)2x

√
1− (

√
r − 1)2

(
√
r + 1)2

(
√
r + 1)2x.

Putting w = (
√
r + 1)2x and α = (

√
r − 1)2/(

√
r + 1)2, we can therefore deduce that the

coefficient of xn in
√

(r − 1)2x2 − 2(r + 1)x+ 1 is asymptotic to −√r1/2/(πn3)(1+
√
r)2n−1.

Theorem 3.6 now gives the following theorem.

Theorem 3.7. un is asymptotic to 1
2
(r − 1)!

√
r1/2/(πn3)(1 +

√
r)2n−2r+3.

Note that the coefficients of
√

(r − 1)2x2 − 2(r + 1)x+ 1 can be calculated rapidly by

the following method.

If p(x) = (r − 1)2x2 − 2(r + 1)x + 1 and
√
p(x) =

∑
gnx

n, then p′(x)
∑
gnx

n =

2p(x)
∑
gnnx

n−1.

By equating coefficients of x we find g0 = 1, g1 = −(r + 1), and

ngn = (r + 1)(2n− 3)gn−1 − (r − 1)2(n− 3)gn−2 for all n > 2.

It is interesting to compare the case r = 2 of our results with the analogous results for

restricted output deques in Knuth [4] (another structure that permits two possible input

operations and one output operation). The numbers of sortable permutations are the

same (the Schröder numbers; see West [10]), both sets of permutations are characterized

by avoiding a pair of permutations of length 4 ([2, 3, 4, 1] and [3, 2, 4, 1] for the (2, 1)-stack

and [2, 4, 3, 1], [4, 2, 3, 1] for the restricted deque; see Pratt [5]), yet there appears to be no

elementary connection between these two situations.
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4. (2,2)-stacks

In this section we give an avoidance criterion for (2, 2)-stack-sortable permutations. It is

somewhat more complicated than those for r = 1 or s = 1 and this, together with the

numerical evidence, indicates that generalizing the results of the previous sections will not

be straightforward.

Theorem 4.1. A permutation is (2, 2)-stack-sortable if and only if it avoids all of the

following 8 permutations: [2, 3, 4, 5, 1], [2, 3, 5, 4, 1], [3, 2, 4, 5, 1], [3, 2, 5, 4, 1], [2, 4, 5, 1, 6, 3],

[2, 4, 6, 1, 5, 3], [4, 2, 5, 1, 6, 3], [4, 2, 6, 1, 5, 3].

Proof. It is easy to check that none of the permutations in the statement of the theorem

can be sorted by a (2, 2)-stack and so any (2, 2)-stack-sortable permutation must avoid

them. For the converse we need to extend the idea of a canonical sequence of pushes and

pops appearing in Theorem 2.1. In this case a canonical sequence of pushes and pops is

one that respects the following principles.

(1) If 1, 2, . . . , i−1 have been output already and i is at the top of the stack or immediately

below the top then i should be popped before any further pushes.

(2) If an element i has to be pushed into one of the top 2 positions of the stack, then it

should be pushed so that the top two elements of the stack are sorted in decreasing

order.

We argue that, if a permutation is (2, 2)-stack-sortable, then it can be sorted by a canonical

sequence of pushes and pops. It is immediately evident that the application of the first

principle can never be disadvantageous. To see that the second principle can always be

applied without loss, consider a permutation that is sortable by way of a sequence of

pushes and pops which, at some point, pushes an element onto the stack so that the top

element y and its neighbour x satisfy x < y (in violation of the second principle). After

this step there will be further pushes and pops and eventually x will be removed from

the stack. However, during this part of the algorithm, y must remain on the stack so no

element may be pushed below x; moreover, only elements less than x will be encountered

in the input permutation. It follows that we could have achieved the same result by

applying the second principle.

(Note: this argument is more subtle than it might at first sight appear. It is not valid

for (2, 3)-stacks, for example: [2, 4, 5, 1, 6, 7, 3] is sortable by a (2,3)-stack but the sorting

method must not begin by pushing the elements 2 and 4 with the top element being 2.)

We can now complete the proof of Theorem 4.1. Let σ be a permutation that cannot be

sorted by the canonical sequence of pushes and pops (i.e., any unsortable permutation).

Then the canonical sequence must reach a point where it needs to output an element

p but, although p is in the stack, there are two elements x, y above p in the stack (and

greater than p). When x was placed in the stack there must have been an element q

already on top of p (or x could have been placed below p). Moreover, neither p nor q

can be ready to be output and so there must be an element j, after x, less than both

of them. In other words the permutation σ must contain either a subsequence pqxj or a
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Table 1 Numbers of (2, 2)-stack-sortable permutations.

n 1 2 3 4 5 6 7 8 9 10

yn 1 2 6 24 116 628 3636 21956 136428 865700

subsequence qpxj order-isomorphic to one of [2, 3, 4, 1] or [3, 2, 4, 1]. In the same way σ

must contain a subsequence pq′yj ′ or q′pyj ′ order-isomorphic to [2, 3, 4, 1] or [3, 2, 4, 1].

Thus, because σ is unsortable, it must contain a subsequence on the symbols p, q, q′,
x, y, j, j ′ (not necessarily in this order, nor necessarily distinct) with the properties just

described. This already shows that σ must contain a subsequence on at most 7 elements

ordered in one of a certain number of ways. In fact, an exhaustive search of all the

possibilities shows that all of these subsequences involve at least one of the 8 permutations

listed in the lemma, thus completing the proof.

At this point one might hope that an enumeration result for (2, 2)-stack-sortable

permutations might be possible. In fact, all we have succeeded in doing is to compute a

table of values of yn (the number of (2, 2)-stack-sortable permutations of length n) for

n up to 10. We have no satisfactory explanation of these numbers but, tantalizingly, the

Sloane Superseeker program [7] guesses that the ordinary generating function y = y(x)

of the sequence satisfies the equation

x =
y(3y − 1)

(y + 1)(2y2 + 2y − 1)
.
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