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Abstract

For the classic diffusion description of radiative transfer, the specific intensity can be represented by a small angular
deviation of the local Planckian equilibrium. In a transparent media, the angular anisotropy becomes strong and one has
to solve the general transfer equation. We propose a hierarchy of models that can describe the regime that lies between
those two limits. Every member of this family is hyperbolic, flux-limited, and possesses a locally dissipated entropy.
This hierarchy also formally recovers the diffusion limit. This study demonstrates that the two-polynomial model is
already capable of capturing strong anisotropies.
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1. INTRODUCTION

A numerical approximation of the radiative transfer equa-
tion usually involves macroscopic methods in regions where
the medium is opaque, coupled with methods for solving the
photon transport kinetic equation in a transparent medium.
In an opaque medium, the radiative intensity is close to the
radiative equilibrium. The diffusion approximation or theP1

method, based on the hypothesis of a directional quasi-
isotropy of photon emission distribution provides a rather
accurate approximation~Mihalas & Mihalas, 1984; Pomran-
ing, 1992!. For the outside diffusion regime, in the case of
transparent media, the macroscopic methods are no longer
valid. The microscopic description of the transfer equation
is then preferred even if it is complicated and time consum-
ing. Also, coupling between diffusion and kinetic solutions
in intermediate regions is very complicated.

The author purposed in previous works a new macro-
scopic hierarchy of models that are capable of restituting
high radiative nonequilibria~Dubroca & Feugeas, 1999!.
The method is based on the entropy minimization principle
applied to the radiative transfer equation. This idea comes
from the approximation of transitional flows at high altitude
introduced by Levermore~1996! for the Maxwell–Boltzmann

theory. The first step of this idea, introduced by Grad~1949!,
lies on the building of new, continuous equations taking
account additional unknowns. These additional equations
are obtained by considering an adequate closure. However
this approach does not assure the hyperbolic properties of
the system.

Levermore~1996! purposed another closure that ensures
the hyperbolicity of the moment equations systems and
dissipate the entropy locally. This approach appears as a
general method to close an infinite hierarchy of macro-
scopic equations constructed by taking the moments of a
microscopic equation~Feugeas, 1997; Charrieret al., 1998!.

In previous work~Dubroca & Feugeas, 1999!, we applied
the idea of the entropy minimization principle to the Bose–
Einstein theory to build a hierarchy of models for the radi-
ative transfer, the M-hierarchy. Each member of this hierarchy
is a hyperbolic system that has a flux limited by the speed of
light and which dissipates entropy locally. The limiting
property ensures that any signal is propagated at a velocity
below the speed of light, contrary to diffusion models that
allowed arbitrary and non physical high velocities. The first
member of this hierarchy, theM1 model, is very attractive
because of its analytic formulation. A first version of this
model has been analyzed by Fort~1997! in the simple case
where the radiative flux is always parallel to a given axis. It
has been verified that theM1 model describes a rather wide
class of situations where anisotropy can be characterized by
only one direction. This model has been used in several
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physics domains~Audit et al., 2002!. In order to enlarge the
capabilities of theM1 model to describe more complicated
anisotropies, several modifications are purposed~Dubroca
& Klar, 2002; Klar & Dubroca, 2002; Klaret al., 2003!.
However those are not satisfactory because of losing inter-
esting properties of the hierarchy. At first, one of the very
attractive characteristics of theM1 model is the analytic
formulation. Besides, every member of the M-hierarchy is
built in the respect of the Galilean invariance of the under-
lying distribution. The other members of this hierarchy have
no known simple explicit formulation. However, they con-
serve other properties of the M-models: Their flux is lim-
ited, they are hyperbolic, and they locally dissipate the
entropy. In the present article we explore the anisotropy
potentialities of theM2 model.

Having recalled the main properties of radiative equilib-
rium and entropy in Section 2, we obtain a hierarchy of
moment systems as presented in Section 3. In Section 4, we
analyze in detail the first member of the M-hierarchy, theM1

model. Section 5 addresses the properties of theM2 model.
Section 6 is devoted to this anisotropy analysis of the two
first members of the hierarchy. Section 7 concludes the
article and proposes some perspectives.

2. RADIATIVE TRANSFER: EQUILIBRIUM
AND ENTROPY

2.1. Radiative transfer equations

The radiative transfer equation governs the radiative field
and its interaction with matter. It describes the evolution of
the radiative intensity Icoupled to the matter energy equa-
tion. For purposes of simplification, we shall take the hypoth-
esis of the local thermodynamic equilibrium~LTE! and
assume that the medium is at rest. In order to simplify the
description, we shall subsequently assume that the absorp-
tion coefficient is independent of the frequency. This hypoth-
esis is not essential, but it lightens the reasoning pursued in
this article. For the same reason, the scattering effects will
also be neglected. The radiative transfer equations are then
written as follows:

1

c
]t I 1 V{¹I 5 s~B~Tm! 2 I !, ~1!

]t ~rCvTm! 5E
0

`E
S2

s~I 2 B~Tm!! dn dV. ~2!

Here, I 5 I ~r ,n,V, t ! is a function of theposition r , the
frequencyn, theunitary propagation directionV, and of the
time t, c is the speed of light in a vacuum;Tm is the matter
temperature,r is the matter specific density,s is the absorp-
tion coefficient, andCv is the specific heat at a constant
volume. The radiative collision operators~B~Tm! 2 I !
establishes a balance between the emission and absorption
of the photons and couples the two equations;S2 is the unit

sphere. The functionB5 B~n,Tm! is the Planck distribution
defined by

B~n,Tm! 5
2hn3

c2 SexpS hn

kTm
D2 1D21

, ~3!

where k is the Boltzmann constant andh is the Planck
constant.j 5 sB~Tm! represents the matter emission isotro-
pic source at the temperature ofTm. The moment of a scalar
or vector-valued functiong 5 g~n,V! in the space of the
frequencies and directions is written

^g& 5
1

c
E

0

`E
S2

g~n,V! dn dV. ~4!

The radiative energyis defined byER 5 ^I &, the radiative
flux vectorby FR5 ^cVI &, and theradiative pressure tensor
by

a

PR 5 ^V J VI &. The normalized flux is written asf 5
FR0cER. In the particular case of a Planck radiative intensity,
we haveER~Tm! 5 aTm

4, FR~Tm! 5 0, and the pressure tensor
reduces to the scalarPR~Tm! 5 aTm

403 with a 5 8p5k40
15h3c3. In the case of a given radiative intensity, the radia-
tive temperatureTR is defined as from the radiative energy:
ER 5 aTR

4. In the case of a Planck radiative intensity, natu-
rally we haveTR 5 Tm.

2.2. Radiative entropy and equilibrium

If the matter is supposed to behave as a perfect gas, the total
entropy of the system~1! and ~2! is the sum of the matter
entropy and of the purely radiative entropy,HR

*~I !5 ^hR
* ~I !&,

wherehR
* ~I ! is a strictly convex function~Fort, 1997!:

hR
* ~I ! 5 @n log n 2 ~n 1 1! log~n 1 1!#

2kn2

c3 , ~5!

wheren is the occupation number density defined asI 5
~2hn30c2!n . The total entropy of the system is then
~HR
*~I ! 1 S!0c where S 5 2r Cv log~Tm! is the matter

entropy. We have the following properties on the entropy
of the system. The total entropy of model~1! and ~2! is
locally dissipated~decreases in time!:

1

c
]t ~^hR

* & 1 S! 1 ¹{^VhR
* & # 0.

Moreover, at the thermodynamic equilibrium,T5 TR5 Tm,
the Planck distribution~3! or the so-called equilibrium
distribution, produces the minimum radiative entropy under
the constraint of a good reconstruction of the energy:

HR
*~B0! 5 min

I
$HR
*~I ! : ^I & 5 ER%. ~6!
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This problem of minimization is equivalent to solve the
Lagrangian equation:

L~I,a! 5 HR
*~I ! 2 a~ER 2 ^I &!,

wherea is the Lagrange multiplier vector.
The constraint̂I & 5 ER being achieved by definition, the

solutionBm to this minimization problem must satisfy, for
all I, the following condition:

]I L~Bm,a!~I ! 5 KS2
k

hcn
lnS11

1

n
D1 aD IL 5 0.

The unique solution to this equation is solution of

a 5
k

hcn
lnS11

1

n
D. ~7!

in other words

B0 5
2hn3

c2 SexpShcan

k
D2 1D21

. ~8!

The value ofa is determined by the constraint^I & 5 aTm
4.

Thus,a 5 10Tmc andTm 5 TR at the Planckian equilibrium.
It is important to remark that relation~7! allows us to

show, before any analytic computation, thata . 0 ~because
n is always positive!. This result is very important because it
insures thatB is strictly positive. We will see further that this
property is true for every member of the M-hierarchy.

3. HIERARCHY OF MOMENT MODELS

Moment models were introduced by Grad~1949! and devel-
oped by Levermore~1996; see also Feugeas, 1997; Charrier
et al., 1998!. Their construction starts by the choice of a
vector-valued subspace,M, of a finite dimension m of
functions ofV with real values.M is usually chosen as being
a space of Legendre polynomials or of the spheric functions.
For a givenm, the vectorm is composed of the basic
functions ofM. For example, form 5 1, the vectorm 5
~1,V!. This is a combination of a scalar and a vector.
Similarly, for m5 2, m 5 @V,V J V# T.

3.1. Closure of moment equations

Considering the moments of the radiative transfer equation
multiplied by the vectorm leads to the construction of
radiative moment equations:

]t ^mI & 1 c¹{^VmI & 5 c^ms~B~Tm! 2 I !&. ~9!

The moment vector is written asER 5 ^mI &. An additional
relation is now needed to close the chosen moment model.
The choice of closure relation is not unique, and is subject to
only one constraint: The radiative intensity of the model

should be nonnegative. As was shown by Levermore~1996!
for the Maxwell–Boltzmann theory, the closure of the radi-
ative moment model~9! can be obtained by finding the
distribution that minimizes the entropy under the constraint
of a good construction of the moments generated in the
vectorial spaceM ~Muller & Ruggeri, 1993; Fort, 1997;
Dubroca & Feugeas, 1999!:

HR
*~Bm! 5 min

I
$HR
*~I ! : ^mI & 5 ER %. ~10!

This minimization problem is equivalent to solve the fol-
lowing Lagrangian equation:

L~I,a! 5 HR
*~I ! 2 a{~ER 2 ^mI &!,

where a is the vector of the Lagrange multipliers. This
vector is defined such thata{m . 0, which insures the
positiveness of the solution~Bm . 0!. The solutionBm to
this minimization problem must satisfy, for allI, the follow-
ing condition:

]Bm
L~Bm,a!~I ! 5 KS2

k

hcn
lnS11

1

n
D1 a{mD IL ,

5 0.

The solution to this equation is

a{m 5
k

hcn
lnS11

1

n
D, ~11!

which leads to

Bm~a! [
2hn3

c2 FexpS hn

kTm

a{m~V!D2 1G21

. ~12!

Here,a is determined by the constraint^mI & 5 ER.
Besides, the previous relation~11! insures thata{m . 0,

becausen . 0. This result is very important because it
guarantees that, for every member of the hierarchy,B . 0.

The moment models are therefore written in the follow-
ing form, if B0 5 B0~Tm! is given by~8!:

1

c
]t ^mBm& 1 ¹{^VmBm& 5 ^ms~B0 2 Bm!&, ~13!

whereBm is given by~12!.

3.2. Radiative moment models

The hierarchy of the moment models~13! thus generated,
offers interesting structural properties: The normalized flux
f is limited ~7f7# 1!; the system~13! is hyperbolic; and the
system~13! locally dissipates the entropy.

The first property is extremely important as it guarantees
that the propagation of a perturbation in the radiative medium
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is limited by the speed of light. This property is not satisfied
in the classical diffusion, or Eddington, description~P1

model; Castor, 1981; Pomraning, 1992!. It lies on the basic
assumption that the angular dependence of the specific
intensity is represented by the first two terms in the spheri-
cal harmonic expansion~I 5 I0 1 V{I !. This specific inten-
sity I is then almost isotropic as the angular term is supposed
to be a small perturbation7I 7 ,, I0. If this condition is not
respected, it leads to nonphysical negative emission in the
flux direction. More generally, thePn models fail to respect
the property of limitation of the normalized flux, and require
the introduction of a procedure for the limitation of the
radiative flow in the nonopaque zones.

In turn for the M-models, the second and third properties
guarantee that the system~13! has been properly set math-
ematically. Limitation properties on the radiative pressure
a

PR tensor can therefore be established. If the normalized flux
f and the Eddington tensor

a

DR 5
a

PR0ER are moments of the
radiative intensityBm defined by ~12!, they satisfy the
following constraints:

tr ~
a

DR! 5 1,
a

DR 2 f J f $ 0.

This results in the flux limitation. For an extreme non-
equilibrium, one finds7f75 1 and

a

DR 5 f J f.

4. THE FIRST MODEL OF THE HIERARCHY

TheM1 model is the first of the hierarchy, and it corresponds
to the vector-valued space,M, spanned by the vectors 1 and
V. This is the smallest vector-valued subspace to restitute an
angular anisotropy. The distribution function has the follow-
ing form:

B1 5
2hn3

c2 FexpS hn

kTm

B~12 A{V!D2 1G21

. ~14!

The vectorA and the constantB are defined by the condi-
tionsER 5 ^B1~A, B!& andFR 5 ^cVB1~A, B!&:

A 5
2 2M4 2 37f72

7f72
f,

B 5
Tm

TR
S 3 1 7A72

3~12 7A72!3D104

.

The details of this calculation are presented in Dubroca and
Feugeas~1999!. The radiativeM1 model can now be closed,
and the tensor

a

PR5
a

DRER can be expressed analytically as a
function of the momentsER andFR of the model:

]t ER 1 ¹{FR 5 cs@aTm
4 2 ER# , ~15!

1

c
]t FR 1 c¹~

a

DRER! 5 2sFR. ~16!

where 10
a

DR is the Eddington tensor, calculated as a function
of the Eddington factorx andn 5 f07f7:

a

DR 5

a

PR

ER

5
12 x

2

a

Id 1
3x 2 1

2
n J n. ~17!

The Eddington factor is a function of7f7:

x 5
3 1 47f72

5 1 2M4 2 37f72
. ~18!

It is an increasing function of7f7 for whichx #1 andx~0!5
1
3
_. The intrinsic values of the hyperbolicM1 model at equi-
librium ~whenf 5 0! are equal in absolute value toc0!3,
and have the opposite signs. This situation clearly illustrates
the emission isotropy of the photons that prevails at radia-
tive equilibrium. On the other hand, in the case of extreme
nonequilibrium~when7f7 tends toward 1!, the eigenvalues
of the Jacobian tend towards the speed of light in absolute
value and are of the same sign. In the case of extreme
nonequilibrium ~the angular distribution of the radiative
intensity moves towards ad-function!, it is clearly found
that the photons all move at the same speed and in the same
direction.

TheM1 model, like every member of the M-hierarchy, has
many desirable properties. It has been used in several domains
~Audit et al., 2002!. However, this first model of the
M-hierarchy is not able to describe more than one beam
anisotropy. To capture more anisotropic effects, various
modifications of theM1 model are purposed~Dubroca &
Klar, 2002; Klar & Dubroca, 2002; Klaret al., 2003!.
However they lose interesting properties of the hierarchy.
For example, the M-hierarchy models respect the Galilean
invariance property of the underlying distribution. Besides,
one of the very attractive characteristic of the first member
of the hierarchy is the explicit analytic formulation. The
other members of this M-hierarchy have no known simple
explicit formulation. However, they conserve all the inter-
esting properties of the M-models~hyperbolicity, flux is
limited, entropic, Galilean invariance!. For this reason, I
propose here to explore and describe the potentialities of the
second model of the M-hierarchy.

5. THE M2 MODEL

TheM2 model corresponds to the vector-valued space,Ms,
spanned by the vectorV and the tensorV J V. The
distribution function is then expressed as follows:

B2 [
2hn3

c2 FexpS hn

kTm

~
a

C: ~V 2 A! J ~V 2 A!!D2 1G21

,

where the vectorA and the tensor
a

C are defined by the
conditions :FR 5 ^cVB2& and

a

PR 5 ^V J VB2&. The distri-
butionB2 achieves the minimum radiative entropy under the
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constraint of a good reconstruction of the momentsER 5
@FR,

a

PR# T:

HR
*~B2! 5 min

I
$HR
*~I ! : ^mI & 5 ER %.

wherea 5 @A,
a

CC# T is the vector of the Lagrange multipli-
ers.m5 @V,V J V# T. As we have shown,a is defined such
that, for anyV:

a{m~V! . 0,

which insure thatB2 . 0. For anyV,

a

C : ~V 2 A! J ~V 2 A! . 0.

That means thatC is a symmetric positively defined matrix
for anyV.

One can readily see that the pressure relation recovers
also the energy relation becauseTr~V J V! 51. That is the
reason why theM2 model only uses those two relations:

1

c
]t FR 1 c¹

a

PR 5 2sFR,

]t

a

PR 1 ¹
a
a

QR 5 cs@aTm
4 Id 2

a

PR# ,

where the tensor
a
a

QR is defined aŝV J V J VB2&.
We can note thatM2 required the resolution of nine

equations in the three-dimensional case and five equations
in the two-dimensional case. Besides, theM2 model for-
mally recovers theM1 model. However, one cannot obtain
an analytic formulation of this closure. This is not a big
constraint to solving such models. Kinetic schemes offer
very elegant and effective solutions~Dubroca & Klar, 2002!.

6. ANALYSIS OF THE NONEQUILIBRIUM
SOLUTIONS

The specific intensityI is a function of the positionr , of the
frequencyn, and of the unitary propagation directionV. For
a given coordinate system, this vector can be written as a
function of the angleu: V 5T @cos~u!,sin~u!# . Then, for a
given temperature, for a given point of the space, the nor-
malized radiative intensity can be represented in cylindrical
coordinates~I, u, n!. Figure 1b,c presents two views of this
function. For a givenu, the distributionI ~n! is always a
Planck distribution~Fig. 1b! with a temperature depending
on u. Because the functional form ofI ~n! is given, it is
sufficient to plot an angular dependence for an arbitrary
givenn. Therefore, the polar representation provides a use-
ful tool to analyze the anisotropy of emission~Fig. 1a!.

6.1. Analysis of theM1 model

In an isotropic configuration, the underlying intensities, for
the diffusion approximationP1, and for M1 are identical
~Fig. 2a!. This rapidly ceases to be the case with a normal-
ized flux of the order of 0.3, and the difference increases for
7f75 0.5~Fig. 2b!. When the normalized flux is of the order
of 0.9 ~Fig. 2b!, that is, in the case of high anisotropies, a
non-physical behavior of theP1 model is evidenced. It
would appear that in this case the radiative intensity is
positive in the direction of the flux, that is, in the direction
of highest energy. But the specific intensity is negative in
the opposite direction of the flux. That indicates that over a
certain limit the underlying diffusion intensity becomes

Fig. 1. Specific intensityI ~u,n! for a given temperature:~a! two-dimensional
polar coordinatesI ~u! for a given frequency;~b! I ~u,n!; ~c! cylindrical
coordinates~I, u, n!.

Fig. 2. The M1 model: the underlying distributions of theM1 model
compared with theP1 one: The dashed line correspond to the diffusion
approximation~P1! and the full one corresponds to the first member of the
M-hierarchy ~M1!. a: Planckian equilibrium. b: Medium anisotropy.
c: Strong anisotropy; the diffusion approximation distribution can be
negative with nonphysical sense. d: Extreme equilibrium: In the case of the
light ray, the diffusion is no longer available.
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negative. On the contrary, the underlyingM1 intensity remains
physically admissible for any flux.

When the norm of the normalized flux tends toward 1
~Fig. 2d!, the maximum physically acceptable anisotropy,
the difference between the two models increases. TheM1

model tends toward a distribution carried solely by the
radiative flux ~a light ray!, whereas the modelP1 fails to
adopt any special direction. TheP1 model, contrary to the
M1 model, does not have any intrinsic flux limitation. For
example, for7f7$ 1, theP1 model is still defined and starts
to present a strong region of negative radiative intensity.
This analysis confirms the capacity of the underlying radi-
ative intensity of theM1 model to capture strong one-ray
radiative nonequilibrium. For a maximum physically accept-
able anisotropy, theM1 model tends toward a distribution
carried solely by the radiative flux~a light ray!, whereas the
P1 model does not opt for any direction in particular and
predicts a negative radiative intensity in the direction of the
flux. This model is not able to describe more than a one-ray
regime. The second model of the M-hierarchy offers more
anisotropic potentialities.

6.2. Analysis of theM2 model

At first, as was expected, the underlying distribution of the
M2 model, confirms its ability to recover formally theM1

description. That is the case for weakly anisotropic situa-
tions ~Fig. 3a! and also for extreme one-ray angular distri-
butions ~Fig. 3b!. However, this model has much greater
potentialities. Figure 4 presents the symmetric bipolar situ-
ation that theM2 model is able to represent. The matrix

a

Chas
a diagonal asymmetry in the first example~Fig. 4a!, and a
off-diagonal component for the other one~Fig. 4b!. Figure 5
introduces nonsymmetric bipolarity characteristics associ-
ated with the energy flux. Figure 6 shows various two-ray
emission configurations. Those kind of emissions could be
longitudinal~Fig. 6a!, oblique~Fig. 6b!, and nonsymmetric
~Fig. 6c!.

The analysis of the emission anisotropic potentiality of
the underlying radiative intensity of theM2 model confirms
its capacity to capture strong and various anisotropies. Those
strong potentialities show that this model could be used in
the inertial confinement fusion~ICF! domain.

Let us consider, for example, the case of an emissing
sphere~Fig. 7a!. Usually, this kind of configuration cannot
be represent by classical diffusive models or by theM1

model. A punctual source, very far from point M, could be
represent by this first model. However, when M get closer
from the spherical source, the emission becomes bipolar as
we can see in the Figure 7 in the Cartesian description~b! or
in the polar one~c!. This configuration can of course be
represented by the second model of the hierarchy~Fig. 7c!.
This ability to get such bipolar situations can be extended in
the multidimensional cases. Besides, if the source loses its
symmetry, the second member of the hierarchy is able to
take it into account. To illustrate the range of potentiality of
this model, we could also choose the case of a punctual
intense source in a gray middle, or the case of two far and
punctual sources. For those cases, theM2 model can get
good solutions.

More generally, this second member seems to be able to
get a solution for the treatment of boundary conditions
between gray and transparent middle.

Fig. 3. The M2 model: The one-ray configuration shows that the second
member. If this hierarchy formally recovers theM1 model for medium
dequilibrium~a! or for a stronger one~b!.

Fig. 4. TheM2 model: the symmetric bipolarity characteristic in the main
~a! and secondary~b! directions; this could be the case of the emission seen
by a point between two sources, ton their axe.

Fig. 5. The M2 model: symmetric bipolarity characteristic; this could be
the case of the emission of two sources seen from a point near~a! or far ~b!
from their axes or of two far sources~c!.
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7. CONCLUSIONS AND PERSPECTIVES

The models of this M-hierarchy offer very attractive prop-
erties. The hyperbolicity allowed us to use effective numer-
ical tools.The limitation of the flux, and the entropy dissipation
insure the physical credibility of the modelization. The
construction of those models respects particularly the Galilean
invariance of the underlying specific intensity. The first
model~M1! is very effective in the one-ray cases. One very
interesting and useful property of this first member is the
analytic formulation of its closure. However, it can be used
in its multigroup formulation~Turpault, 2002! that is not
analytic. Besides, various nonanalytic modifications also
have been proposed by different authors~Dubroca & Klar,
2002; Klar & Dubroca, 2002; Klaret al., 2003! since the
original one~Dubroca & Feugeas, 1999! to get more anisot-
ropy. The other members of this M-hierarchy have no known
simple analytic formulation of their closure. However, they
all respect the basic properties of the hierarchy and partic-
ularly the Galilean invariance property of the underlying
distribution. Besides, the second model provides enough
degrees of freedom to reach a large range of Des-equilibrium
regime. The resolution of this model requires solving only
nine moments equations~3D!.

The main difficulty of the moments method is therealiz-
ability of the distribution function: for any moments setEm,
one has to insure that it is always possible to find a distribu-
tion ~12!. We can show that all models of this hierarchy are
realizable.

We can also note here another very useful characteristic
of this family. All models have the same hyperbolic struc-
ture. This property allows us to use the same numerical tools
for each one. Beside, the boundary conditions treatment is

one point very important for those kinds of radiative regime.
For example, we could have to couple different kind of
methods~continuous, kinetic! between gray and transparent
middle. If we want to exchange kinetic informations such as
the specific intensity, we have to respect the kinetic properties.
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Fig. 6. The M2 model can represent various extreme two-ray emission
configurations;~a! symmetric and longitudinal;~b! symmetric;~c! non-
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Fig. 7. M2 model: Application of a spherical emissing source~a!; for a
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bipolar as we can see in the Cartesian description~b! or in the polar one~c!.
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