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Abstract

For the classic diffusion description of radiative transfer, the specific intensity can be represented by a small angular
deviation of the local Planckian equilibrium. In a transparent media, the angular anisotropy becomes strong and one has
to solve the general transfer equation. We propose a hierarchy of models that can describe the regime that lies between
those two limits. Every member of this family is hyperbolic, flux-limited, and possesses a locally dissipated entropy.
This hierarchy also formally recovers the diffusion limit. This study demonstrates that the two-polynomial model is
already capable of capturing strong anisotropies.

Keywords: Angular anisotropy; Bose-Einstein theory; Photon emission; Planckian equilibrium;
Radiative transfer equation

1. INTRODUCTION theory. The first step of this idea, introduced by G{a8i49),

lies on the building of new, continuous equations taking
A numerical approximation of the radiative transfer equa-account additional unknowns. These additional equations
tion usually involves macroscopic methods in regions whergy e gptained by considering an adequate closure. However
the mediumis opaque, coupled with methods for solving thepis approach does not assure the hyperbolic properties of
photon transport kinetic equation in a transparent mediumy,e system.
In an opaque medium, the radiative intensity is close to the Levermore(1996) purposed another closure that ensures
radiative equilibrium. The diffusion approximationorthg  pe hyperbolicity of the moment equations systems and
method, based on the hypothesis of a directional quaSidissipate the entropy locally. This approach appears as a
isotropy of photon emission distribution provides a rathergenera| method to close an infinite hierarchy of macro-
accurate approximatiaiMihalas & Mihalas, 1984; Pomran-  scopic equations constructed by taking the moments of a
ing, 1992. For the outside diffusion regime, in the case Ofmicroscopic equatiotFeugeas, 1997; Charrietal.,, 1998.
transparent media, the macroscopic methods are no longer |, previous work Dubroca & Feugeas, 1999ve applied
valid. The microscopic description of the transfer equationhe idea of the entropy minimization principle to the Bose—
is then preferred even if it is complicated and time consumginstein theory to build a hierarchy of models for the radi-
ing. Also, coupling between diffusion and kinetic solutions atjve transfer, the M-hierarchy. Each member of this hierarchy
in intermediate regions is very complicated. is a hyperbolic system that has a flux limited by the speed of

The author purposed in previous works a new macrofight and which dissipates entropy locally. The limiting
scopic hierarchy of models that are capable of restituting,operty ensures that any signal is propagated at a velocity
high radiative nonequilibridDubroca & Feugeas, 1999 pelow the speed of light, contrary to diffusion models that
The method is based on the entropy minimization principleyjowed arbitrary and non physical high velocities. The first
applied to the radiative transfer equation. This idea comeg,ember of this hierarchy, th; model, is very attractive
from the approximation of transitional flows at high altitude pecause of its analytic formulation. A first version of this
introduced by Levermor@ 996 for the Maxwell-Boltzmann  ,odel has been analyzed by F6t897) in the simple case
where the radiative flux is always parallel to a given axis. It
Address correspondenge qnd reprint requests to: J.-L. Feugeas, C?f]ﬁ%s been verified that ﬂ‘Ml model describes a rather wide
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physics domaingAudit et al,, 2002. In order to enlarge the sphere. The functioB = B(», T,) is the Planck distribution

capabilities of theVl; model to describe more complicated defined by

anisotropies, several modifications are purpodedbroca

& Klar, 2002; Klar & Dubroca, 2002; Klaet al., 2003. 2hy3 hy 1

However those are not satisfactory because of losing inter- B(v,Tn) = e (eXp<g> - l) ,

esting properties of the hierarchy. At first, one of the very "

attractive characteristics of thé; model is the analytic . )

formulation. Besides, every member of the M-hierarchy iswherek is the Boltzmann constant artdis the Planck

built in the respect of the Galilean invariance of the under-constantj = oB(Ty) represents the matter emission isotro-

lying distribution. The other members of this hierarchy havePiC Source at the temperaturef. The moment of a scalar

no known simple explicit formulation. However, they con- O vector-valued functio = g(», Q) in the space of the

serve other properties of the M-models: Their flux is lim- frequencies and directions is written

ited, they are hyperbolic, and they locally dissipate the

entropy. In the present article we explore the anisotropy 1 (=

potentialities of theM, model. (@ = EJO Lg(v,ﬂ) dv da. )
Having recalled the main properties of radiative equilib-

rium and entropy in Section 2, we obtain a hierarchy of

;nnoar};ir:izyjéfgaiha:fﬁ;ﬁ:grtﬁ S el:] osffr::g?\)/ln-r?i'elrn arsci(;tﬁ;‘l’ Fux vectorby Fr = (cQl ), and theradiative pressure tensor
’ by ﬁR =(Q Q) Ql). The normalized flux is written ak=

model. Section 5 addresses the properties oMbenodel. ; S .
Section 6 is devoted to this anisotropy analysis of the twoFR/CER‘ Inthe partlcglar case ofa Planck radiative intensity,
first members of the hierarchy. Section 7 concludes the'® haveEr(Tm) = T, Fr(Tm) = 0, and the pressure tensor

. . reduces to the scald®x(T,,) = aT2/3 with a = 87°%k¥
article and proposes some perspectives. 15h3c3. In the case of a given radiative intensity, the radia-
tive temperaturdy is defined as from the radiative energy:
2. RADIATIVE TRANSFER: EQUILIBRIUM Er = aT4. In the case of a Planck radiative intensity, natu-

AND ENTROPY rally we havelg = T,,.

(€©)

he radiative energyis defined byEg = (1), theradiative

2.1. Radiative transfer equations o o
2.2. Radiative entropy and equilibrium

The radiative transfer equation governs the radiative field

and its interaction with matter. It describes the evolution oflf the matter is supposed to behave as a perfect gas, the total
theradiative intensity Icoupled to the matter energy equa- entropy of the systeril) and(2) is the sum of the matter
tion. For purposes of simplification, we shall take the hypoth-entropy and of the purely radiative entropl(1) = (hi(1)),

esis of the local thermodynamic equilibriuthTE) and  wherehi(l) is a strictly convex functioiFort, 1997:

assume that the medium is at rest. In order to simplify the

description, we shall subsequently assume that the absorp- k2

tion coefficientis independent of the frequency. This hypoth- hi(1) = [nlogn — (n+ 1log(n + 1] —=-, (5

esis is not essential, but it lightens the reasoning pursued in

this article. For the same reason, the scattering effects will

also be neglected. The radiative transfer equations are thé’Hherse n2|s the occupation number density defme(_jlas
written as follows: (2hv°/c?)n . The total entropy of the system is then

(Hi(l) + S)/c whereS = —p C,log(T,) is the matter
1 entropy. We have the following properties on the entropy
(_:all +Q-VI = (B(Ty) — 1), (1) of the system. The total entropy of modd) and (2) is
locally dissipateddecreases in time

0 (pC,Tm) = foof o(l — B(T,)) dv dQ. 2 )
n Eat(<hé}> +S) + V-(Qhg) = 0.

Here,| = I(r,»,Q,t) is a function of thepositionr, the

frequency, theunitary propagation directiof2, and ofthe  \1oreover, at the thermodynamic equilibriufi= Ty = Ty,
timet, cis the speed of light in a vacuuriiy, is the matter  he planck distribution3) or the so-called equilibrium
temperaturep is the matter specific density,is the absorp-  gjstribution, produces the minimum radiative entropy under

tion coefficient, andC, is the specific heat at a constant the constraint of a good reconstruction of the energy:
volume. The radiative collision operater(B(T,,) — I)

establishes a balance between the emission and absorption

of the photons and couples the two equatid®ss the unit HR(Bo) = muin{HS(l ):(1) = Bg} ©
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This problem of minimization is equivalent to solve the should be nonnegative. As was shown by Levernin896

Lagrangian equation:
L(1,a) = Hz(l) — a(Er = (1)),

wherea is the Lagrange multiplier vector.

The constraintl ) = Eg being achieved by definition, the
solution B, to this minimization problem must satisfy, for

all I, the following condition:

k 1
0, L(Bma) (1) = <<‘E In<1+ E) N a>|> _o.

The unique solution to this equation is solution of

a=—Inl1l+—-).
hcv n

for the Maxwell-Boltzmann theory, the closure of the radi-
ative moment mode(9) can be obtained by finding the
distribution that minimizes the entropy under the constraint
of a good construction of the moments generated in the
vectorial spacéM (Muller & Ruggeri, 1993; Fort, 1997;
Dubroca & Feugeas, 19%9

Hi(Bm) = mlin{H,;(I) (ml) = Egr}. (10

This minimization problem is equivalent to solve the fol-
lowing Lagrangian equation:

L(l,a) = Hg(l) — a-(Eg — (ml)),
where a is the vector of the Lagrange multipliers. This

vector is defined such that-m > 0, which insures the
positiveness of the solutioff3,, > 0). The solutionB,, to

in other words this minimization problem must satisfy, for &ithe follow-
ing condition:
2hy® hcav -1
Bo = 2 exp ) 1) . (8)

05, L(Bm,a)(1) = <<—% In <l+ %) + a-m) I>,
The value ofx is determined by the constraitit) = aT1.
Thus,a = 1/T,,c andT,, = Ti at the Planckian equilibrium. =0.

It is important to remark that relatio(v) allows us to
show, before any analytic computation, that 0 (because The solution to this equation is
nis always positive This resultis very important because it
insures thaB is strictly positive. We will see further that this
property is true for every member of the M-hierarchy.

k 1
a-m=—|n<1+—>, (17
hcv n

hich |
3. HIERARCHY OF MOMENT MODELS which leads to

Moment models were introduced by Grd®49 and devel- _ 2hy® hv -1

oped by Levermorél996; see also Feugeas, 1997; Charrier Bnla) = c? [eXp<ﬁ1 wm(ﬂ)) - 1} ' (12

et al, 1998. Their construction starts by the choice of a

vector-valued subspac@{, of a finite dimension m of Here,a is determined by the constraitml ) = Eg.

functions of@ with real valuesM is usually chosen asbeing  Besides, the previous relatighl) insures thate-m > 0,
aspace of Legendre polynomials or of the spheric functionsbecausen > 0. This result is very important because it
For a givenm, the vectorm is composed of the basic guarantees that, for every member of the hierarBny, 0.
functions ofM. For example, fom = 1, the vectorm = The moment models are therefore written in the follow-
(1,Q). This is a combination of a scalar and a vector.ing form, if B, = By(Ty,) is given by(8):

Similarly, form=2,m=[Q,Q ® Q] .

1
=0 (MBy) + V-{QMBy,) = (Mo (By — Bm)), (13
3.1. Closure of moment equations ¢

Considering the moments of the radiative transfer equatiowheref3,, is given by(12).
multiplied by the vectorm leads to the construction of
radiative moment equations: 3.2. Radiative moment models

d{ml) + cv-(aml) = c{mo (B(T,,) — 1)). 9 The hierarchy of the moment models3) thus generated,
offers interesting structural properties: The normalized flux
The moment vector is written & = (ml ). An additional  fis limited (|f| = 1); the systen{13) is hyperbolic; and the
relation is now needed to close the chosen moment modesystem(13) locally dissipates the entropy.

The choice of closure relation is not unique, and is subjectto The first property is extremely important as it guarantees

only one constraint: The radiative intensity of the modelthatthe propagation of a perturbation in the radiative medium
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is limited by the speed of light. This property is not satisfiedwhere 1@xis the Eddington tensor, calculated as a function

in the classical diffusion, or Eddington, descripti¢R;
model; Castor, 1981; Pomraning, 1992 lies on the basic

of the Eddington factoy andn = f/|f|:

assumption that the angular dependence of the specific ©

. o . . . o R 1-xy. 3xy-1

intensity is represented by the first two terms in the spheri- Dg = 5 Id + SN ®n. 7
R

cal harmonic expansiofi = I+ Q-1). This specific inten-

sity | is then almost isotropic as the angular term is supposed

to be a small perturbatiofi | < I,. If this condition is not

The Eddington factor is a function ¢f|:

respected, it leads to nonphysical negative emission in the

flux direction. More generally, thB, models fail to respect
the property of limitation of the normalized flux, and require
the introduction of a procedure for the limitation of the

radiative flow in the nonopaque zones.

3+ 4|f|?

X s oNa i

Itis an increasing function df | for which y =1 andy (0) =

(18)

In turn for the M-models, the second and third propertiess- The intrinsic values of the hyperboll,; model at equi-
guarantee that the syste(tB) has been properly set math- librium (whenf = 0) are equal in absolute value ¢g V3,
ematically. Limitation properties on the radiative pressureand have the opposite signs. This situation clearly illustrates
B, tensor can therefore be established. If the normalized flughe emission isotropy of the photons that prevails at radia-
f and the Eddington tensﬁ‘ = SR/ER are moments of the tive equilibrium. On the other hand, in the case of extreme

radiative intensityBB,,, defined by (12), they satisfy the

following constraints:

tr(Op) =1, Dr—-f®Ff=0.

nonequilibrium(when||f|| tends toward }, the eigenvalues

of the Jacobian tend towards the speed of light in absolute
value and are of the same sign. In the case of extreme
nonequilibrium (the angular distribution of the radiative
intensity moves towards &-function), it is clearly found

that the photons all move at the same speed and in the same

This results in the flux limitation. For an extreme non- direction.

equilibrium, one findgf| = 1 andBgr=f ® f.

4. THE FIRST MODEL OF THE HIERARCHY

TheM; model, like every member of the M-hierarchy, has
many desirable properties. It has been used in several domains
(Audit et al., 2002. However, this first model of the
M-hierarchy is not able to describe more than one beam

TheM; model s the first of the hierarchy, and it correspondsanisotropy_ To capture more anisotropic effects, various
to the vector-valued spadel, spanned by the vectors 1 and modifications of theM; model are purposetDubroca &
Q. This is the smallest vector-valued subspace to restitute agjar, 2002; Klar & Dubroca, 2002; Klaet al, 2003.

angular anisotropy. The diStl’ibution fUnCtion haS thefO”OW'However they lose interesting properties of the hierarchy_

ing form:

B 20w° hw B(1-A-Q)| -1 B
= exp| — —-A. - .
TToe2 P KT,

The vectorA and the constarB are defined by the condi-

tionsEg = (B1(A, B)) andFg = (cQB;(A, B)):

2 - \a-3f|?
A="—T_""04,
If]
_ Tm< 3+ A7 )1/4
Te \ 31— |A[?)?

For example, the M-hierarchy models respect the Galilean
invariance property of the underlying distribution. Besides,
one of the very attractive characteristic of the first member
of the hierarchy is the explicit analytic formulation. The
other members of this M-hierarchy have no known simple
explicit formulation. However, they conserve all the inter-
esting properties of the M-modelfiyperbolicity, flux is
limited, entropic, Galilean invariangeFor this reason, |
propose here to explore and describe the potentialities of the
second model of the M-hierarchy.

5. THE M, MODEL

The M, model corresponds to the vector-valued spaés,

The details of this calculation are presented in Dubroca angPanned by the vectof? and the tensoll &) Q. The
Feugea$1999. The radiativeV; model can now be closed, distribution function is then expressed as follows:

and the tensoﬁR = SR Eg can be expressed analytically as a

function of the momentEg andF of the model:

0 Er+ V-Fgr = co[aT? — Er],

1 o
Eat FR+ CV(DRER) = _O'FR.
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constraint of a good reconstruction of the momehts= » )
[Fr, SR]T3
H&(B2) = min{Hg(1):(ml) = Er}. 2
F
\ A
wherea = [A,EC]7 is the vector of the Lagrange multipli- S ;
ersm=[Q,0® Q]". As we have shown is defined such

that, for anyQ:

=

(©)

(a)

a-m(Q) >0,
Fig. 1. Specificintensity (9, v) for a given temperaturéa) two-dimensional
polar coordinate$ () for a given frequency(b) 1(6,v); (c) cylindrical

which insure that3, > 0. For anyQ, coordinates!, 6, ).

C:(@-AR®@Q—-A >0.
6.1. Analysis of theM; model
That means that is a symmetric positively defined matrix ) ) ) ) o "
for any Q. In an isotropic configuration, the underlying intensities, for
One can readily see that the pressure relation recovelg® diffusion approximatiorP,, and forM, are identical

also the energy relation becalBgQ ® Q) = 1. That is the (Fig. 2. This rapidly ceases to be the case with a normal-
reason why thé/l, model only uses those two relations: ized flux of the order of 0.3, and the difference increases for

|| = 0.5(Fig. 2b. When the normalized flux is of the order
of 0.9 (Fig. 2b), that is, in the case of high anisotropies, a
}atFRJerSR: —oFg, non-physical behavior of th®; model is evidenced. It
¢ would appear that in this case the radiative intensity is
positive in the direction of the flux, that is, in the direction
o g o of highest energy. But the specific intensity is negative in
3 Pr+ VQr = cofaTnld — R, the opposite direction of the flux. That indicates that over a
o certain limit the underlying diffusion intensity becomes
where the tenscfﬁR is defined asQ X O K Q5,).
We can note thatM, required the resolution of nine
equations in the three-dimensional case and five equations
in the two-dimensional case. Besides, tfile model for- T ™
mally recovers thévl; model. However, one cannot obtain 4 i '
an analytic formulation of this closure. This is not a big
constraint to solving such models. Kinetic schemes offer __
very elegant and effective solutioflBubroca & Klar, 2002 S

6. ANALYSIS OF THE NONEQUILIBRIUM T @ e @
SOLUTIONS

The specific intensity is a function of the position, of the T T
frequencyy, and of the unitary propagation directi@n For yamvd T
a given coordinate system, this vector can be written as ¢ g i P
function of the angl®: @ =T [cog6),sin(8)]. Then, for a L Ll
given temperature, for a given point of the space, the nor-— =" 7 '
malized radiative intensity can be represented in cylindrical |
coordinategl, 6, v). Figure 1b,c presents two views of this
function. For a givery, the distributionl (v) is always a  Fig. 2. The M; model: the underlying distributions of thil; model
Planck distributior(Fig. 1b) with a temperature depending compared with the®, one: The dashed line correspond to the diffusion
on §. Because the functional form of») is given, it is approximation(P;) and the full one corresponds to the first member of the

fficient t lot lar d d f bit M-hierarchy (M;). a: Planckian equilibrium. b: Medium anisotropy.
suficient to plot an angular dependence lor an arbi raryc: Strong anisotropy; the diffusion approximation distribution can be

givenv. Therefore, the pqlar representa?tio.n prOVides a USEnegative with nonphysical sense. d: Extreme equilibrium: In the case of the
ful tool to analyze the anisotropy of emissigrig. 13. light ray, the diffusion is no longer available.
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negative. On the contrary, the underlyiMgintensity remains — ]

physically admissible for any flux. ] m
When the norm of the normalized flux tends toward 1

(Fig. 2d), the maximum physically acceptable anisotropy, N e

the difference between the two models increases. Mhe 1’

model tends toward a distribution carried solely by the 5
radiative flux (a light ray), whereas the modd®, fails to '
adopt any special direction. TH§ model, contrary to the
M, model, does not have any intrinsic flux limitation. For rig 4. Them, model: the symmetric bipolarity characteristic in the main
example, forff| = 1, theP; model is still defined and starts (a) and secondargb) directions; this could be the case of the emission seen
to present a strong region of negative radiative intensityby a point between two sources, ton their axe.
This analysis confirms the capacity of the underlying radi-
ative intensity of theM,; model to capture strong one-ray
radiative nonequilibrium. For a maximum physically accept-
able anisotropy, th1, model tends toward a distribution  Let us consider, for example, the case of an emissing
carried solely by the radiative fluta light ray), whereas the sphereFig. 7a. Usually, this kind of configuration cannot
P, model does not opt for any direction in particular andbe represent by classical diffusive models or by Me
predicts a negative radiative intensity in the direction of themodel. A punctual source, very far from point M, could be
flux. This model is not able to describe more than a one-rayepresent by this first model. However, when M get closer
regime. The second model of the M-hierarchy offers morefrom the spherical source, the emission becomes bipolar as
anisotropic potentialities. we can see in the Figure 7 in the Cartesian descrigbpar
in the polar one(c). This configuration can of course be
represented by the second model of the hieratéty. 70).
6.2. Analysis of theM, model This ability to get such bipolar situations can be extended in
the multidimensional cases. Besides, if the source loses its
At first, as was expected, the underlying distribution of thesymmetry, the second member of the hierarchy is able to
M, model, confirms its ability to recover formally tHd,;  take itinto account. To illustrate the range of potentiality of
description. That is the case for weakly anisotropic situathis model, we could also choose the case of a punctual
tions (Fig. 39 and also for extreme one-ray angular distri- intense source in a gray middle, or the case of two far and
butions (Fig. 3b. However, this model has much greater punctual sources. For those cases, Memodel can get
potentialities. Figure 4 presents the symmetric bipolar situgood solutions.
ation that thévl, model is able to represent. The matikas More generally, this second member seems to be able to
a diagonal asymmetry in the first examgleig. 49, and a get a solution for the treatment of boundary conditions
off-diagonal component for the other offéig. 4b). Figure5  between gray and transparent middle.
introduces nonsymmetric bipolarity characteristics associ-
ated with the energy flux. Figure 6 shows various two-ray
emission configurations. Those kind of emissions could be
longitudinal(Fig. 63, oblique(Fig. 6b), and nonsymmetric

~
S -
— e——

(Fig. 60.

The analysis of the emission anisotropic potentiality of s N T
the underlying radiative intensity of tid, model confirms i
its capacity to capture strong and various anisotropies. Those §
strong potentialities show that this model could be used in \\ﬁ_i/i‘\_i_,// @

the inertial confinement fusiolCF) domain.

(b}

1\_____ - L h - o '”'Wm

Fig. 3. The M, model: The one-ray configuration shows that the secondFig. 5. The M, model: symmetric bipolarity characteristic; this could be
member. If this hierarchy formally recovers tiiy model for medium the case of the emission of two sources seen from a pointaearfar (b)
dequilibrium(a) or for a stronger onéb). from their axes or of two far sourcés).
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S one pointvery important for those kinds of radiative regime.
For example, we could have to couple different kind of
; methodgcontinuous, kinetichetween gray and transparent
A ': S middle. If we want to exchange kinetic informations such as
© the specific intensity, we have to respect the kinetic properties.
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