
J. Fluid Mech. (2021), vol. 917, A37, doi:10.1017/jfm.2021.314

On the compound sessile drops: configuration
boundaries and transitions

Chun-Yu Zhang1, Peng Gao1, Er-Qiang Li1 and Hang Ding1,†
1Department of Modern Mechanics, University of Science and Technology of China,
Hefei 230027, PR China

(Received 1 November 2020; revised 23 March 2021; accepted 2 April 2021)

The geometry of compound sessile drops at equilibrium on a flat substrate can exhibit
a variety of complicated morphological configurations. In this paper, we first investigate
the configuration boundaries of the compound sessile drops in a wide parameter space,
where a specific configuration is not stable outside its boundaries. Then, we focus on the
transitions among the axisymmetric configurations, i.e. encapsulation, lens and collars.
The configuration transitions result from the variation of the wettability of the substrate
and the volume ratio of the two component droplets. With the help of theoretical analysis
and numerical simulations, we obtain previously unidentified criteria for the onset of
configuration transition, identify the irreversible and reversible configuration transitions,
reveal the dynamic behaviours of configuration transitions that are not accessible to
theoretical analysis, and provide a further step towards the ultimate purpose of such work,
which is the controllable reconfiguration of the compound sessile drops.

Key words: drops, capillary flows

1. Introduction

Compound sessile drops have gained considerable attention due to their potential uses in
pharmaceutical formulations (Zarzar et al. 2015), drug delivery (Sundararajan et al. 2017)
and inkjet printing (Keller et al. 2018). Here, the compound sessile drops refer to the drops
comprised of two or more immiscible fluids and sticking to a plate substrate. The geometry
of compound sessile drops at equilibrium is of great importance in industrial applications,
and can exhibit a variety of complicated morphological configurations. The multiphase
system involving ternary fluids in contact with a solid in figure 1 shows a good example,
and it is also the focus of present paper. In this system, a compound sessile drop consisting
of two fluids is immersed in a third, mutually immiscible liquid, and the morphological
configurations include encapsulation, lens, collars and Janus, to name but a few. They are
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Figure 1. Morphological configurations of compound sessile drops resting on a flat substrate: (a)
encapsulation, (b) lens, (c) collars and (d) Janus, which are also referred thereafter to as configurations E,
L, C and J, respectively. Solid lines represent the surface of the component droplet 1 (made up of fluid 1),
while dashed lines represent the surface of the component droplet 2 (made up of fluid 2).

distinguishable by the relative position of the component droplets of the compound drop
and whether the component droplets are in contact with the substrate.

For each configuration, the geometry of the compound sessile drop at the equilibrium
state is generally dictated by the minimization of the system energy, or more precisely,
is related to the physical parameters including interfacial tensions, wettability of the
substrate, volume of the compound drop, volume ratio of the two component droplets and
gravity. Based on the Young–Laplace equation, Mahadevan, Assa-bedia & Pomeau (2002)
provided the analytical expression of geometrical relations in the absence of gravity for two
configurations of compound sessile drops, i.e. encapsulation and lens. Neeson et al. (2012)
presented a theoretical description of the drop geometry in the collars configuration, for
compound sessile drops with negligible gravitational effect. Furthermore, their theoretical
prediction of the drop shape at equilibrium in the collars configuration was found to
agree well with that in experiments, in particular when the compound sessile drops are
significantly below the capillary length. Li et al. (2020a) theoretically investigated the
equilibrium shape of a pendent compound droplet in the lens configuration, on which the
gravitational force plays an important role. On the other hand, it is noteworthy that given
the physical parameters for a compound sessile drop, its geometry at equilibrium cannot
be uniquely determined. This is mainly due to the fact that multiple configurations could
be stable for the same fluid parameters. Therefore, the configuration of a compound sessile
drop depends on the way of generating it.

It has been reported in experiments that the transition between the morphological
configurations might occur when the fluid parameters were changed. Neeson et al. (2012)
found that if one component of a compound sessile drop can evaporate, the resulting
change of the volume ratio can lead to the configuration transition, e.g. from Janus to
collars or from lens to collars. Iqbal et al. (2017) further studied the suspension of small
oil droplets at the top of the water droplets for a variety of volume ratios between the oil
and water droplets, and observed that there exists a critical volume ratio, above which the
lens configuration would transit to Janus. Bansal & Sen (2017) actuated the oscillations
of concentric compound drops of water surrounded by an oil shell using electrowetting,
which promotes the configuration transition from encapsulation to collars. To assess the
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Compound sessile drops: configuration transitions

onset of configuration transition from the theoretical point of view, Mahadevan et al.
(2002) presented a geometrical criterion, i.e. the merging of four phases along a single
contact line in the encapsulation configuration, which would lead to the configuration
transition from encapsulation to lens. These findings suggest the potential of controlling
the configuration transition and reconfiguring the compound sessile drops in industrial
applications. However, it needs systematic studies to identify all the critical conditions for
the configuration transition to occur, and to determine the configuration and geometry of
the compound sessile drops at equilibrium after the configuration transition takes place.

In this paper, we investigate the configuration transitions of compound sessile drops
by theoretical analysis and numerical simulations, in particular among the axisymmetric
configurations, i.e. encapsulation, lens and collars. In the present study, we do not
consider the effect of gravity, as the size of the drops considered is much smaller
than the capillary length. Here, the capillary length for the ternary fluids is defined as
lc = min{√σij/|ρi − ρj|g}, where ρi and ρj are the density of the fluid i and fluid j,
respectively, g the gravity, σij the interface tension coefficient between the fluid i and fluid
j, the subscripts {i, j} = {1, 2, 3} and i /= j. The substrate is assumed to be very smooth and
chemically homogeneous, and thus the effect of contact angle hysteresis is also neglected.
The configuration transitions are caused by varying the wettability of the substrate
(specifically θ23, which exists in all the configurations, see figure 1d) and the volume ratio
of the two component droplets (λ), in the range of λ ∈ [0, 1] and θ23 ∈ [55◦, 125◦]. The
geometry of the compound sessile drop at equilibrium in the respective configurations
is obtained by solving the related interface equations derived from the Young–Laplace
equation. Here, the initial state is very important in solving the interface equations,
since different final states could be reached from different initial states. A ternary-fluid
diffuse-interface method is used to simulate the dynamics of configuration transition, and
to examine the eventual configuration and geometry of the drop. The theoretical analysis
allows us to evaluate the criteria for the onset of configuration transition, establish the
boundaries in the parameter space within which the respective configuration can hold, and
identify the irreversible and reversible configuration transitions. In particular, we find that
the geometrical criteria are not sufficient to describe the configuration transitions. With
the help of numerical simulations, we reveal the dynamic behaviours of configuration
transitions that are not accessible to theoretical analysis, and assess the theoretical
prediction of the drop geometry at equilibrium after the occurrence of configuration
transition. Furthermore, we discuss the feasibility in the controllable reconfiguration of
the compound sessile drops, and also provide a theoretical way of how to achieve this
ultimate purpose.

2. Problem statement and methodology

2.1. Problem statement
We investigate here the configuration transition of compound sessile drops on a flat
substrate, in which the compound sessile drop consists of two immiscible fluids, immersed
in a third one. We mainly concentrate on the axisymmetric configurations of the compound
sessile drop, including encapsulation, lens and collars, namely configurations E, L and
C, respectively; a sketch of these configurations can be seen in figure 1(a–c). These
configurations of compound sessile drops are primarily defined according to the relative
position of its component droplets and whether the component droplets are in contact with
the substrate. In the encapsulation configuration, the droplet of fluid 1 (namely droplet 1)
is wrapped by the droplet of fluid 2 (namely droplet 2) in an axisymmetric manner, and
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both droplets are in contact with the substrate (figure 1a). In the lens configuration, droplet
1 floats on the top of droplet 2 that is in contact with the solid substrate (figure 1b). In the
collars configuration, droplet 1 is partially immersed in droplet 2, and both droplets are
in contact with the substrate (figure 1c). In each configuration, the relative significance of
droplet volume can be measured by the volume ratio of droplet 1 to the compound drop, λ,
and thus the volume ratio of droplet 2 is 1 − λ. It is noteworthy that the positions of fluid
1 and fluid 2 can be swapped in the configurations listed in figure 1(a–c).

The compound sessile drops considered are supposed to be sufficiently small so
that the gravitational force can be neglected. Therefore, the force balance between the
interface tensions among the fluids and the substrate dictates the shape of the compound
drop at equilibrium. The interface tension coefficients between the fluids are assumed
to satisfy the triangular inequality, σij < σjk + σki, for all cyclic permutations of the
indices {i, j, k} = {1, 2, 3}. In such a case, the relative significance of the interface
tensions between the fluids can be represented by the interfacial angles (ϕ1, ϕ2 and ϕ3
in figure 1(d), and ϕ1 + ϕ2 + ϕ3 = 360◦) at the triple-phase line where the ternary fluids
meet. Specifically, they are associated with the interface tensions by Neumann’s triangle
(Mahadevan et al. 2002),

sin ϕ1

σ23
= sin ϕ2

σ31
= sin ϕ3

σ12
. (2.1)

For a compound sessile drop at equilibrium, Young’s equation suggests σij cos θij =
σjs − σis, where σjs (σis) denotes the interface tension between the fluid j (i) and the
substrate. The static contact angle θij corresponds to the angle that the interface between
fluids i and j intersects with the substrate, particularly measured from the side of fluid
i – geometrically, θij + θji = 180◦ (see figure 1d). Combining Young’s equation with
Neumann’s triangle, we can get that the interfacial angles and the contact angles should
yield the following constraint (Zhang et al. 2016):

sin ϕ2 cos θ13 − sin ϕ3 cos θ12 − sin ϕ1 cos θ23 = 0. (2.2)

From the analysis above, we can see that the geometry of the compound sessile drop
with specific configuration can be uniquely determined, given the volume ratio λ, the
interfacial angles (ϕ1, ϕ2 and ϕ3) and any two contact angles in (2.2). The interface
tension coefficients are fixed for the convenience of analysis, more specifically, σ12 : σ23 :
σ31 = 1 :

√
3 : 2, which corresponds to the interfacial angles of ϕ1 = 120◦, ϕ2 = 90◦ and

ϕ3 = 150◦. Similarly, we set σ1s = σ3s, leading to θ13 = 90◦. Thus, it is easy to obtain
from (2.2) that

cos θ12 = −σ23

σ12
cos θ23 = −

√
3 cos θ23. (2.3)

Note that the contact angle θ12 is allowed to vary from 0◦ to 180◦. Consequently, the
range of θ23 is restricted to [55◦, 125◦]. Consequently, for a specific compound drop, the
configuration of the compound sessile drop at equilibrium depends only on λ and θ23.

2.2. Theoretical prediction of drop geometry
In this section, we present the governing equations and boundary conditions for the
theoretical prediction of the geometry of the compound sessile drop. For a compound
sessile drop at equilibrium, there is a force balance between Laplace excess pressure and
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surface tension across any of its interface, which yields

pi − pj = σij

(
1

R1
+ 1

R2

)
, (2.4)

where pi and pj denote the constant pressure of the fluids i and j, respectively, and R1 and
R2 represent the two principal radii of interface curvature.

The interfaces of the compound drop are described in a curvilinear coordinate (x, φ),
where x is the distance from any point on the interface to the symmetry axis, and φ is the
angle between the interface tangent and the horizontal direction (figure 1b). As a result,
the principal radii of curvature can be represented in terms of x and φ,

R1 = 1
cos φ

dx
dφ

and R2 = x
sin φ

. (2.5a,b)

Substituting (2.5a,b) into (2.4) and defining the interface curvature as M = ( pi − pj)/σij,
we can obtain M = cos φ · dφ/dx + sin φ/x. Integration of this equation over any interface
that separates two fluids gives (Carroll 1976)

x sin φ = 1
2 Mx2 + N, (2.6)

where N is an integration constant associated with M and the boundaries of the interface.
Equation (2.6) provides a description of interface shapes in the coordinate (x, φ). To

determine the shape of the compound sessile drop at equilibrium, the boundary conditions
of the interfaces, i.e. the starting point (xs, φs) and the end point (xe, φe), and the interface
parameters M and N should be explicitly obtained for every interface of compound
sessile drops. In principle, these parameters are a function of λ, interface angles and
contact angles, and can be determined by taking account of the geometrical and physical
constraints, such as the drop volume and the force balance. Once these parameters are
obtained, the rescaled surface energy of the compound sessile drop, ES, can be calculated
– see more details in the Appendix A.

The solutions of the interfaces for compound sessile drops are obtained by using
a shooting method and a binary searching method. Because of the presence of the
triple-phase line in the latter, the governing equations of the three interfaces are strongly
coupled, and are thus solved simultaneously. For the spherical interfaces, the analytical
solution of the interface can be obtained and explicitly expressed in terms of x and
φ. However, for the non-spherical interfaces, one additional constraint is required to
determine the interface shape. In this case, the interface geometry can only be obtained
numerically.

2.3. Ternary-fluid diffuse-interface model
A ternary-fluid diffuse-interface model is coupled with Navier–Stokes equations (Zhang
et al. 2016), to simulate the dynamic process of configuration transition of a compound
sessile drop on a flat substrate. The total volume of the compound drop is denoted
by V0, which also gives rise to a characteristic length R = 3

√
0.75V0/π. The ternary

fluids are assumed to have the same viscosity μ and density ρ. To compare with the
theoretical prediction, the transition is ideally quasi-static in the numerical simulation.
That is, viscosity is dominant over the inertia and surface tension of the compound sessile
drop, so as to suppress the capillary waves induced by configuration transition. Therefore,
it is appropriate to use a large Ohnesorge number (Oh = μ/

√
ρRσ13), and Oh = 0.1 is

considered to be sufficiently large for this purpose. Numerical results can be very helpful
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(b)(a)

(c) (d )

Figure 2. Verification of theoretical predictions of compound sessile drops at equilibrium. (a) Configuration
E with λ = 0.100 and θ23 = 70◦. (b) Configuration L with λ = 0.250 and θ23 = 80◦. (c) Configuration C with
λ = 0.400 and θ23 = 70◦. (d) Configuration C with λ = 0.400 and θ23 = 100◦. Solid lines are the numerical
results and dashed lines are the theoretical prediction.

in determining whether the theoretical analysis produces physically meaningful solutions.
Unless otherwise stated, all the times of numerical results have been rescaled by the
capillary time

√
ρR3/σ13.

In the ternary-fluid diffuse-interface model, the interfaces are represented by the
contours of the volume fractions of the fluids 1 and 2, i.e. C1 and C2, respectively. The
interface evolution can be tracked by

∂C
∂t

+ ∇ · (uC) = 1
Pe

∇2Ψ , (2.7)

where C = (C1, C2) and u is the flow velocity. The chemical potential Ψ = (Ψ1, Ψ2) is
defined as

Ψi = C3
i − 1.5C2

i + 0.5Ci − C1C2(1 − C1 − C2) − Cn2∇2Ci, i = 1 or 2, (2.8)

where the Cahn number is set to Cn = 0.7h/R, the Péclet number is set to Pe = 1/Cn (Liu
& Ding 2015) and h is the mesh size. More details in the numerical implementation can
be found in Zhang et al. (2016).

Axisymmetric simulations are performed in a domain of 3R × 2R on a uniform
Cartesian grid of 600 × 400, i.e. h = 0.005R. The boundary conditions are: symmetry
condition at the left boundary; solid wall condition at the bottom boundary; and
extrapolation condition at the upper and right boundaries. The same code was used
to obtain the equilibrium states of two-dimensional Janus drops on a flat substrate
and a compound droplet inside a capillary (Zhang et al. 2016), and good agreement
with the theoretical prediction of drop geometries has been achieved. In the present
study, numerical simulations are also used to verify the theoretical prediction of the
configurations E, L and C, since the theoretical prediction could lead to non-physical
solutions (see more details in § 3.1). For the physical solutions, the theoretical prediction
is expected to be virtually overlapped with the numerical results, with respect to the shape
of compound sessile drops at equilibrium. Examples are shown in figure 2, with different
volume ratio λ and contact angles θ23.
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3. Phase diagram of compound sessile drops

We present here the phase diagram of the compound drop configurations in the parameter
space of λ ∈ [0, 1] and θ23 ∈ [55◦, 125◦]. The solutions are obtained by theoretical
analysis, consisting of encapsulation (§ 3.2), lens (§ 3.3) and collars (§ 3.1). For simplicity,
the interface between the fluids j and k is referred to as Ijk, and accordingly, the geometry
parameters for Ijk in (2.6) are denoted by (Mi, Ni), with cyclic permutations of the indices
{i, j, k} = {1, 2, 3}.

3.1. Collars
A compound sessile drop with configuration C consists of three interfaces as shown
in figure 3(a), among which the boundary conditions of I23 and I13 are: φ|x=r1 = θ23
and φ|x=r2 = ϕ3 + α − 180◦ for I23; and φ|x=r2 = α and φ|x=0 = 0 for I13. For I12, the
boundary conditions are φ|x=r3 = θ12 and φ|x=r2 = 180◦ − ϕ1 + α, where r3 is the radius
of contact line of droplet 1. With these boundary conditions, we can get the interface
parameters

M1 = 2(r1 sin θ23 + r2 sin(ϕ3 + α))

r2
1 − r2

2
,

N1 = −r1r2(r1 sin(ϕ3 + α) + r2 sin θ23)

r2
1 − r2

2
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

M2 = 2 sin α

r2
,

N2 = 0

⎫⎬
⎭ (3.2)

and

M3 = 2(r3 sin θ12 − r2 sin(ϕ1 − α))

r2
3 − r2

2
,

N3 = r2r3(r3 sin(ϕ1 − α) + r2 sin θ12)

r2
3 − r2

2
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.3)

It is noteworthy that an interface with N = 0 assumes a shape of spherical cap, and
consequently, the radius of the spherical cap is 2/M. Thus, among the interfaces in
configuration C, either I12 or I23 does not assume a spherical shape, but I13 does. To
simplify the computation of M and N, we consider the balance between the Laplace
pressures

M1σ23 − M2σ13 + M3σ12 = p2 − p3 − ( p1 − p3) + ( p1 − p2) = 0. (3.4)

In the expressions (3.1)–(3.3), there are four unknowns: α; r1; r2; and r3. In addition to
the three constraints, i.e. the volumes of droplets 1 and 2, and the force balance (3.4), it is
necessary to have one more constraint to uniquely determine the four unknowns. Here, the
additional constraint is a geometrical one, i.e. I12 and I23 have the same height, which can
be expressed as ∣∣∣∣

∫ r2

r1

tan φ1 dx1

∣∣∣∣ =
∣∣∣∣
∫ r2

r3

tan φ3 dx3

∣∣∣∣ . (3.5)

To get α, r1, r2 and r3, a shooting method is used to find the solutions that satisfy the
constraints, along with a fourth-order Runge–Kutta scheme to approximate the integration.

917 A37-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

31
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.314


C.-Y. Zhang, P. Gao, E.-Q. Li and H. Ding

1.0
(a) (d)

(b)

(c)

0.8

0.6

a

b
c

1

2

3

r1r3

r2

0.4

0.2

60 70 80 90 100

θ23

ϕ3

θ12θ23
ϕ2

ϕ1

110 120
0

α

λ

λc,1
λc,2
λc,3

Figure 3. Geometry and configuration boundaries of configuration C. Panel (a) shows the general drop shape
of configuration C with θ23 = 80◦ and λ = 0.500. The drop shapes at the critical conditions are shown in panel
(b) θ23 = 70◦ and λ = 0.341 and panel (c) θ23 = 100◦ and λ = 0.267). Panel (d) shows the regime diagram
with respect to λ and θ23, in which the grey indicates the region where the configuration C is stable. The
boundaries are represented by three critical volume ratios: λc,1 (at which r3 reaches a minimum value below
which there is no solution for configuration C), λc,2 (at which r2 reaches a minimum value) and λc,3 (at which
r1 = r3).

The phase boundaries of configuration C heavily relies on the value of θ23. We note
that θ23 and θ21 (= 180◦ − θ12) are similar, in the sense that they both are acute angles
(see e.g. figure 3b) or obtuse angles (see e.g. figure 3c) at the same time according to
(2.3). It is natural to expect from a geometrical point of view that configuration transition
would not occur unless the contact line of I12 moves inwards and meets at the z-axis for
θ23 < 90◦, i.e. r3 = 0; similarly, it is expected for θ23 > 90◦ that either the vanishing of I13
(i.e. r2 = 0) or the merging of the contact lines of I23 and I12 on the substrate (i.e. r1 = r3)
could lead to the occurrence of configuration transition. However, our theoretical solutions
suggest that these geometrical conditions do not correspond to the transition boundaries
of configuration C.

Figure 4(a) shows the solution at θ23 = 70◦ in terms of r3 versus λ. Firstly, we can see
that there exists a minimum value of r3, i.e. r3,min = 0.233 at λc,1 = 0.345, below which
there is no solution for configuration C. In other words, configuration transition for θ23 <

90◦ occurs much earlier than the prediction of geometrical condition, i.e. r3 = 0. Secondly,
we observe that configuration C might have multiple solutions with the same parameters.
For example, there are two solutions of compound sessile drops in the configuration C at
λ = 0.6: r3 = 0.601 and r3 = 0.030, of which the drop shapes are shown in figures 4(b)
and 4(d), respectively. Our numerical simulation indicates that an initial set-up of a drop
with r3 = 0.030 is unstable and gradually transits to the equilibrium state with r3 = 0.601
(figure 4e). The variation of the rescaled surface energy ES with θ23 = 70◦ is also shown
in figure 4(a). We can see that the surface energy of the drop shape in figure 4(d) is
higher than that of figure 4(b), and the lowest surface energy occurs at r3 = r3,min. In fact,
the theoretical prediction of configuration C at θ23 = 70◦ is a saddle-point bifurcation,
and has two branches of solutions – see figures 4(a). The turning point (r3 = r3,min and
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1.2(a) (b) (c)

(d) (e)

0.9

0.6r3 Es

0.3

λ

0

1.20

1.15

1.10

1.05

t

1.00
0.2 0.4 0.6 0.8 1.0

Figure 4. Saddle-point bifurcation in the solution of configuration C. (a) Contact line position r3 (solid lines)
and the rescaled system energy ES (dashed lines) at θ23 = 70◦ as a function of volume ratio λ. (b) One
theoretical prediction of the drop geometry with λ = 0.600 and r3 = 0.601 (denoted by � in panel (a)). (c)
The drop geometry at the onset of configuration transition at λ = 0.345 and r3 = 0.233 (denoted by • in panel
(a)). (d) The non-physical theoretical prediction of the drop geometry with λ = 0.600 and r3 = 0.601 (denoted
by � in panel (a)). (e) Temporal evolution of the drop geometry from panel (d) to panel (b) obtained by
numerical simulations. The arrow indicates the sequence of the times.

λc,1 = 0.345) separating the unstable solutions (the lower branch) from the stable ones
(the upper branch) also represents the phase boundary at θ23 = 70◦. In other words, the
saddle-point bifurcation represents another type of criteria for the onset of configuration
transition, in addition to the geometrical criteria. In such a way, we can theoretically predict
the phase boundary of configuration C at θ23 < 90◦, which is included in figure 3(d).

Also due to the occurrence of the saddle-point bifurcation, the geometrical condition
r2 = 0 for θ23 > 90◦ underestimates the value of r2 at onset of configuration transition.
The solution of the phase boundary is plotted in terms of λc,2 versus θ23 in figure 3(d).
In addition, the third critical condition for configuration C, i.e. r1 = r3, has effects on the
configuration transition for θ23 > 90◦ too (denoted by λc,3 versus θ23 in figure 3d), thereby
leading to the phase boundary in this range of θ23 consisting of two curves.

The effect of changing interface tension coefficients on the phase boundaries can also be
qualitatively analysed here. The change of any interface tension coefficient among σ12, σ13
and σ23 would result in the variation of the interface angles and the interface curvatures M
(see also (3.4)), thereby causing the position change of the triple-phase line. Therefore, we
can expect that the phase boundaries would be changed accordingly, but the pattern should
be similar. For example, around θ23 = 90◦, the phase boundaries are represented by λc,1
(for θ23 < 90◦) and λc,2 (for θ23 > 90◦), respectively. The slope of I12 accounts for this
sharp change in the phase boundaries, in the sense that it determines which would firstly
intersect with the axis of symmetry: the moving contact line or the triple-phase point. As a
result, a sharp change in the phase boundaries always occurs at θ12 = 90◦ (or equivalently,
θ23 = 90◦ according to (2.3)), regardless of the variation of interface tension coefficients.

3.2. Encapsulation
A typical compound sessile drop with configuration E is showed in figure 5(a). The
compound sessile drop has two interfaces, i.e. I12 and I23, characterized by the radius
of the wetted area, i.e. r3 and r1, respectively. Therefore, the boundary conditions are:
φ|x=r3 = θ12 at the contact line and φ|x=0 = 0 at the symmetry axis for I12; and φ|x=r1 =
θ23 at the contact line and φ|x=0 = 0 at the symmetry axis for I23. The interface shapes at
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Figure 5. Geometry and configuration boundaries of configuration E. Panel (a) shows the drop geometry with
θ23 = 80◦ and λ = 0.100, panels (b,c) represent the geometrical criteria for the occurrence of configuration
transition, and panel (d) shows the regime diagram with respect to λ and θ23, in which the grey indicates the
region where the configuration E is stable. The boundaries correspond to the two critical volume ratios: λc,1
(solid line) and λc,2 (dashed line), respectively.

equilibrium can be solved by taking these boundary conditions into account. Specifically,
we can get (M3, N3) = (2 sin θ12/r3, 0) and (M1, N1) = (2 sin θ23/r1, 0). Thus, both I12
and I23 are spherical caps. From the calculation of drop volume, it is easy to associate r3
and r1 with λ and contact angles

r3

R
= 3

√
4λ

V(θ12)
and

r1

R
= 3

√
4

V(θ23)
, (3.6a,b)

where the function V is defined as V(ξ) = (1 − cos ξ)2(2 + cos ξ)/ sin3 ξ .
With the variation of λ and/or θ23, the two interfaces may come into contact – see

e.g. figures 5(b) and 5(c). Occurrence of configuration transition can be expected in
these cases, thereby defining the phase boundary of configuration E. The contact of the
interfaces would occur at the top of the drop when θ23 < θ12 (figure 5b), or at the contact
line when θ23 > θ12 (figure 5c). Mathematically, the phase boundaries can be expressed as
r3(1 − cos θ12)/ sin θ12 = r1(1 − cos θ23)/ sin θ23 in the former, and r1 = r3 in the latter,
which is consistent with the work of Mahadevan et al. (2002). Accordingly, the two phase
boundaries can be described with respect to the critical volume ratio, λc,1 and λc,2, as a
function of the contact angles, by substituting (3.6a,b) into these two conditions. That is,

λc,1 = (1 − cos θ23)(2 + cos θ12)

(1 − cos θ12)(2 + cos θ23)
and λc,2 = V(θ12)

V(θ23)
. (3.7a,b)

The two boundaries in (3.7a,b) are plotted in figure 5(d) to define the phase diagram
of configuration E with respect to λ versus θ23, of which the result is similar to that
of a hollow sessile drop (Gao & Feng 2011). Because of cos θ12 = −√

3 cos θ23 in the
present study, we can get λc,1 = λc,2 = 1 at θ23 = 90◦, which corresponds to θ23 = θ12.
This implies that the configuration E is always stable at θ23 = 90◦, since the two interfaces
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1.0(d )(a)

(b)

(c)
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Figure 6. Geometry and configuration boundaries of configuration L. Panel (a) shows the drop geometry
with θ23 = 70◦, λ = 0.300, panels (b,c) represent the geometrical criteria for the occurrence of configuration
transition at (θ23 = 70◦, λ = 0.747) and (θ23 = 110◦, λ = 0.982), respectively, and panel (d) shows the regime
diagram with respect to λ and θ23, in which the grey indicates the region where the configuration L is stable. The
boundaries correspond to the two critical volume ratios: λc,1 (solid line) and λc,2 (dashed line), respectively.

are concentrically spherical caps in this case. Furthermore, because the only two interfaces
(I12 and I23) do not come into contact until the occurrence of configuration transition,
the variation of interfacial tension coefficients has no effect on the phase boundaries of
configuration E (represented by λc,1 and λc,2) if the contact angles are fixed.

3.3. Lens
Figure 6(a) shows a typical compound sessile drop with configuration L, of which only
I23 is in contact with the substrate, with the radius of the wetted area denoted by r1.
The triple-phase line, where three interfaces of the compound drop meet, is also the
boundary point shared among the interfaces. Defining the position of the triple-phase
line as (r2, α) and taking φ|x=0 = 0 at the symmetry axis into account, we can get
(M2, N2) = (2 sin α/r2, 0). Similarly, the boundary conditions for I12 can be obtained:
φ|x=r2 = 180◦ − ϕ1 + α (from geometrical relation at the triple-phase line) and φ|x=0 =
180◦, leading to the solution of (M3, N3) = (2 sin(ϕ1 − α)/r2, 0). Therefore, the interfaces
I13 and I12 are both spherical caps as N2 = N3 = 0. This fact allows us to relate r2 with λ,
ϕ1 and α through the volume formula for a spherical cap

r2

R
= 3

√
4λ

V(α) + V(ϕ1 − α)
. (3.8)

For I23, the boundary conditions are φ|x=r1 = θ23 at the contact line and φ|x=r2 = ϕ3 +
α − 180◦ at the triple-phase point. Taking account of the balance between the Laplace
pressures (3.4), we can get (M1, N1) = (2 sin θ23/r1, 0) and the radius ratio of r1 to r2,

η = r1

r2
= − sin θ23

sin(α + ϕ3)
. (3.9)
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Thus, I23 is also a spherical cap. Accordingly, the relationship between α and λ can be
obtained from volume calculation

λ = V(α) + V(ϕ1 − α)

η3V(θ23) + V(α) − V(α + ϕ3 − 180◦)
= V(α) + V(120◦ − α)

η3V(θ23) + V(α) − V(α − 30◦)
. (3.10)

In such a way, all the geometry parameters of the compound sessile drop with configuration
L can be determined by λ, interfacial angles and contact angles. The critical volume ratio
λc is directly related to the critical α values, αc, at which configuration transition occurs.

Figures 6(b) and 6(c) indicate the geometrical criteria for the configuration transition
with configuration L, i.e. the occurrence of new contact lines. When θ23 < 90◦ and I12
is about to contact the substrate (see e.g. figure 6b), the geometrical criterion for the
occurrence of configuration transition is that I12 and I23 have the same height. This
criterion can be represented by αc,1,

cos θ23 = sin ϕ2 + sin(ϕ3 + αc,1)

sin(ϕ1 − αc,1)
= 1 + sin(150◦ + αc,1)

sin(120◦ − αc,1)
. (3.11)

In case of θ23 ≥ 90◦, the geometrical criterion of configuration transition becomes the
vanishing of I23 and subsequent merging of the four phases at the contact line – see e.g.
figure 6(c). Therefore, we can get r1 = r2, i.e. − sin θ23 = sin(ϕ3 + αc,2) when taking (3.9)
into account. This criterion can be represented by αc,2, which yields

αc,2 = θ23 + 180◦ − ϕ3 = θ23 + 30◦. (3.12)

Combining (3.11) and (3.10), in principle we can obtain the phase boundaries for
configuration L in terms of λc,1 versus θ23. Similarly, we can also get the phase boundaries
of λc,2. Please note that we cannot obtain the analytical expressions of λc,1, but the
numerical solutions. The results are plotted in figure 6(d); we can see that configuration L
is comparably more stable than the other two, with respect to the area of existence in the
parameter space of λ ∈ [0, 1] and θ23 ≥ 90◦. Clearly, both αc,1 and αc,2 are the function of
the interface angles, as seen in (3.11) and (3.10). This suggests that the phase boundaries
changes with the interface tension coefficients. In particular, the intersection between λc,1
and λc,2 corresponds to αc,1 = αc,2 = ϕ1. Thus, we can obtain from (3.12) that the change
in phase boundary happens at θ23 = 180◦ − ϕ2, which is also a function of the interface
angles.

4. Configuration transition of compound sessile drops

4.1. Regime diagram of compound sessile drops
In order to investigate the configuration transition, the phase diagrams of the three
configurations (figures 3, 5 and 6) are superimposed to present an overview of coexistence
of configurations in figure 7. Several observations can be made of figure 7. Firstly, the
phase diagram can be divided into nine zones, among which the zones I, III, VII and
VIII include one configuration, the zones II, IV and VI have two, the zone V consists of
all the three, and the zone IX has none. Secondly, if we change λ or θ23 so as to cross
the border between two neighbouring zones, the configuration transition might happen,
but it is path-dependent. More specifically, it only possibly happens if the border crossing
starts from the zone with more configurations to the zone with less. Thirdly, once the
configuration transition takes place, it is normally irreversible. It should be emphasized
that not all the stable cases in the three configurations have been taken into account in
the phase diagram in figure 7. In § 3 we only consider the cases consisting of fluids with
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Figure 7. Superimposed phase diagrams of configurations L, E and C with respect λ to θ23.

relative position illustrated in figure 1(a–c), and thus those cases in which fluid 1 switches
the position with fluid 2 are not included.

On the other hand, one may ask what configuration a compound sessile drop would
be for specific parameters. To answer this question, it is necessary to know the initial
configuration of the drop and the route of parameter change to the specific parameters,
which affect the evolution history of geometry and energy of the drop and consequently
determine its final state. In the following, we investigate the configuration transitions by a
combination of surface energy analysis and numerical simulations.

4.2. History dependence of configuration transition
To show the effect of initial configuration of the drop and the route of parameter change
on the configuration transition, we investigate the variation of ES as a function of λ, for
a fixed value of θ23 (= 80◦). The theoretical prediction of ES as a function of λ is shown
in figure 8(i). At low λ (= 0.1), two types of compound sessile drops can exist stably, in
the configurations E (figure 8a) and L (figure 8b), respectively. If a compound drop takes
the configuration in figure 8(a) as its initial configuration, ES increases monotonically
with λ until a configuration transition occurs (i.e. at λ = 0.497, which corresponds to
the boundary between the zones V and VI). More precisely, the inside droplet of fluid
1 becomes so big that it starts to touch the interface I23 (figure 8e), thereby leading
to the generation of a new interface, i.e. I13. We simulate the dynamic process of this
configuration transition at λ = 0.497, and show the results in figure 9(a), with respect to
the snapshots of the drop at different times. It can be seen that after the generation of I13,
the contact line of I12 moves inwards, and the compound sessile drop gradually evolves
into an equilibrium state in configuration C, of which the shape is well predicted by the
theoretical analysis (figure 8f ).

The transition process from the state in figure 8(e) to that in figure 8( f ) is also
accompanied by the dissipation of surface energy (figure 8i). As a result, if we reverse
the manipulation of λ now, i.e. reducing it from 0.497 to 0.1, it is expected that the
compound sessile drop will not return to its initial state (figure 8a), but to the state in
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Figure 8. Geometry of compound sessile drops and transition among the three configurations at θ23 = 80◦.
(a,b) Configurations E and L at λ = 0.100, respectively; (c,d) configurations C and L at λ = 0.307, respectively;
(e, f ) configurations E and L at λ = 0.497, respectively; (g,h) configurations L and C at λ = 0.911, respectively;
(i) surface energy ES as a function of λ.

(a)

(b)

(c)

Figure 9. Snapshots of configuration transition at θ23 = 80◦: (a) from E to C at the boundary between zone V
and VI (λ = 0.497) at times t = 0, 1, 2, 10 (from left to right); (b) from L to C at the boundary between zone
VI and VII (λ = 0.911) at times t = 0, 1, 5, 20; and (c) from C to L at the boundary between zone V and II
(λ = 0.307) at times t = 0, 5, 12.8, 30.

configuration L shown in figure 8(b). It is also noteworthy that in this reverse manipulation
of λ, another configuration transition would occur at λ = 0.307, which corresponds to the
boundary between zones II and V . Accordingly, the compound sessile drop will change
from configuration C (figure 8c) to configuration L (figure 8d), which has also been
confirmed by numerical simulations – the transition dynamics can be seen in figure 9(b).

It is crucial in practice to know how to control the configuration transition. One
can get some clues from figure 8 to the route design of parameter variation. First, at
θ23 = 80◦, configuration E always has the highest surface energy level among the three
configurations, e.g. in the zones II and V where it exists. Therefore, it is reasonable to
expect that the transition from the other two configurations to configuration E cannot be
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achieved by simply varying λ. Second, we find that the surface energy of configuration L
catches up with that of configuration C in the zone V with increasing λ, resulting in the
intersection of their surface-energy curves (figure 8i). This suggests that we can control the
configuration of a compound sessile drop in the zones V and VI (to be either configuration
C or configuration L) by varying λ, regardless of its initial shape. For example, to make
a compound drop initially with configuration L transit to configuration C with the same
λ, one can increase λ to the critical value λ = 0.911 (at the boundary between the zones
VII and VI), at which configuration transition from L to C occurs (see figure 9c for the
dynamic process from numerical simulations), and then decrease λ to the initial value.
To reverse the configuration transition, one can decrease λ to 0.307, i.e. the boundary
between the zones II and V , so that the compound drop transits from configuration C to
L – after then, increasing λ to the initial value would complete the task. Such transitions
between configurations L and C can be continued, so that the graph of ES versus λ appears
to form a complete circle among the four states of d, g, h and c in figure 8(i), namely, a
butterfly loop. Obviously, the presence of the butterfly loop facilitates the control of the
configuration transition in practice.

4.3. Dynamics of configuration transition
We investigate the dynamics of configuration transition by numerical simulations, and
reveal some interesting phenomena that are not accessible to theoretical analysis. Figure 10
shows two cases of transition to configuration L. In the first case (θ23 = 70◦ and λ =
0.248), I12 contacts with I23 at the apex of the drop, thereby leading to the generation of a
new interface and an apparent configuration transition from E to C; however, the contact
line of I12 contracts inwards continuously, eventually resulting in the detachment of I12
from the wall and the configuration transition from C to L (figure 10a). In the second case
(θ23 = 110◦ and λ = 0.360), the dynamic process of the transition seems to proceed the
opposite way around compared with the first case, but also ends up with configuration
L. We can see in figure 10(b) that the shrinkage of I13 causes the encapsulation of an
inside droplet, i.e. the occurrence of transition from configuration C to E; after then,
continuous spreading of the contact line of I12 makes the interfaces I23 and I12 meet on
the wall, leading to the reappearance of I13 at the wall and the subsequent transition from
configuration E to L. Furthermore, during the shrinkage of I13, a small droplet is pinched
off from droplet 1 by the induced capillary waves and floats at the apex of the compound
drop. The drop pinch off is primarily due to the inertial effect of I12, which would be
suppressed if a larger Oh number is used (Oh = 0.1 in the present study). Despite the
difference in transition dynamics between the two cases, they have one thing in common,
i.e. the transition passes through an intermediate unstable state to reach the configuration
at equilibrium.

Numerical simulations also indicate that configuration transition might not proceed as
predicted by the phase diagram in figure 7, in particular when θ23 is an obtuse angle.
Figure 11 shows two such examples. Snapshots of configuration transition from E to L
with θ23 = 110◦ and λ = 0.229 are shown in figure 11(a). In this case, the volume ratio
of the internal droplet in configuration E reaches the boundary between the zones II
and III; according to the phase diagram in figure 7, the compound drop would transit to
configuration L, and end up with an equilibrium shape as shown in figure 11(c). Numerical
results indicate that the transition to configuration L has been achieved, but compared with
the theoretical prediction, the drop shape at equilibrium is upside down with respect to
the relative position of droplets 1 and 2. This is primarily due to the fact that we do not
consider the cases in which fluid 1 switches the position with fluid 2 in figure 7, and that
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(a)

(b)

Figure 10. Dynamic process of morphological transformation. (a) Snapshots of configuration transitions at
the boundary between the zones I and II (specifically, θ23 = 70◦ and λ = 0.248) at times t = 0, 4, 6.8, 20
(from left to right). (b) Snapshots of configuration transition from C to L with θ23 = 110◦ and λ = 0.360, at
times t = 0, 2.6, 5, 10. Note that in these cases the transition passes through an intermediate unstable state to
reach the configuration at equilibrium.

(a)

(b) (d)

(c)

Figure 11. Dynamic process of morphological transformation. (a) Snapshots of configuration transition from
E to L at the boundary between the zones II and III boundary (with θ23 = 110◦ and λ = 0.229) at the times
t = 0, 1, 10 (from left to right). (b) Snapshots of configuration transition from L to E at the boundary between
the zones IV and VIII (with θ23 = 110◦ and λ = 0.982) at times t = 0, 0.2, 10 (from left to right). Note that
the relative positions of fluid 1 and fluid 2 in the last panels of (a,b) are reversed as compared with the regular
configurations in figure 1. Panels (c,d) show the results of configuration transition as predicted by the phase
diagram in figure 7, with the same initial conditions as in panel (a) and panel (b), respectively.

the configuration L with the position of droplets 1 and 2 being switched is also stable
for this set of parameters. Figure 11(b) shows a similar case of configuration transition at
the boundary between the zones IV and VIII (with θ23 = 110◦ and λ = 0.982), in which
the droplet 1 engulfs the droplet 2 during the transition. Consequently, the compound
drop eventually falls into the configuration E, rather than the configuration C (as shown in
figure 11d) predicted by the phase diagram. These suggest that the reversal of fluid position
in a compound sessile drop can be manipulated through configuration transition.

We can take account of the configuration L in which fluid 1 is in contact with the
substrate and droplet 2 sits on droplet 1, simply by replacing θ23 with θ13 in the theoretical
analysis. In such a way, we can obtain the theoretical prediction of the phase boundary
for this particular configuration L. Note that θ13 is fixed to 90◦ in the present study, and
thus the phase boundary is only a function of λ. Specifically, the configuration L is stable
for λ > 0.0792 in this case, which is consistent with the observation in figure 11(a).
Furthermore, configuration transitions similar to figure 11(b) would be expected for
λ ≤ 0.0792.
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5. Conclusion

We have investigated the configuration boundaries and transitions of compound sessile
drops by theoretical analysis and numerical simulations, in particular for the configurations
encapsulation, lens and collars, respectively. The investigations were performed in the
parameter space of the wettability of the substrate θ23 and the volume ratio of the two
component droplets λ, and more specifically, λ ∈ [0, 1] and θ23 ∈ [55◦, 125◦]. We revealed
that there are two types of criteria for the onset of transition among the configurations. One
is related to the critical conditions of drop geometry, including the contact between the
interfaces and the merging of the contact lines; the other corresponds to the minimum
of the surface energy when the interface solution has a saddle-point bifurcation (e.g.
collars configuration). Based on these criteria, we established the boundaries for each
configuration in the parameter space. We found that the configuration transitions are
path dependent, and moreover, identified the irreversible and reversible configuration
transitions. In particular, the graph of ES versus λ for the reversible configuration
transitions appears to form a butterfly loop. This finding provides a way of designing the
variation of physical parameters, so as to facilitate the reconfiguration of the compound
sessile drops. The dynamic behaviours were studied by numerical simulations, and it was
found that the transition might pass through an intermediate, unstable configuration before
reaching the final stable one.

In the present study, we only consider the configuration transition due to the variation
of λ and θ23. In principle, the configuration transition can also result from the variation of
interface tensions, e.g. using surfactants as in the experiments (Li et al. 2020b) to control
the morphological configuration for sessile drops.
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Appendix A. Computation of surface energy for compound sessile
drops at equilibrium

The surface energy of a compound sessile drop is a function of its interface areas and
interface tension coefficients. For a single droplet on the substrate with the contact
angle ξ and the radius of wetting area r, the droplet volume can be simply calculated
by V(ξ) = (1 − cos ξ)2(2 + cos ξ)/ sin3 ξ , and the area of the droplet surface is Sc =
2πr2(1 − cos ξ)/ sin2 ξ .

A.1. Surface energy of configuration E
For configuration E, both I23 and I12 are spherical caps. Defining the surface area of I23
and I12 as S23 and S12, respectively, we can easily have S23 = 2πr2

1(1 − cos θ23)/ sin2 θ23

and S12 = 2πr2
3(1 − cos θ12)/ sin2 θ12. Therefore, the surface energy of system yields

E = S12σ12 + S23σ23 + πr2
3σ1s + π(r2

1 − r2
3)σ2s + (S0 − πr2

1)σ3s, (A1)
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where σis denotes the interface tension between the fluid i and the substrate, and S0 is the
total area of substrate. Taking account of σij cos θij = σjs − σis, for i, j = 1, 2, 3, (A1) can
be rewritten as

E = (S12 − πr2
3 cos θ12)σ12 + (S23 − πr2

1 cos θ23)σ23 + S0σ3s. (A2)

Because S0 and σ3s are constants, the surface energy of the system can be generally
rescaled as ES = (E − S0σ3s)/(4πR2σ13). Consequently, the rescaled surface energy or
configuration E gives

ES = 1
4πR2 sin ϕ2

((S12 − πr2
3 cos θ12) sin ϕ3 + (S23 − πr2

1 cos θ23) sin ϕ1). (A3)

A.2. Surface energy of configuration L
Similarly for configuration L, the area of three interfaces can be expressed
as: S12 = 2πr2

2(1 + cos(ϕ1 − α))/ sin2(ϕ1 − α); S23 = 2πr2
1/(1 − cos θ23)/ sin2 θ23 −

2πr2
2(1 − cos(π − ϕ2 − ϕ1 + α))/ sin(π − ϕ2 − ϕ1 + α); and S13 = 2πr2

2(1 − cos α)/

sin2 α. Therefore, the rescaled surface energy ES can be calculated by

ES = 1
4πR2 sin ϕ2

(S13 sin ϕ2 + S12 sin ϕ3 + (S23 − πr2
1 cos θ23) sin ϕ1). (A4)

A.3. Surface energy of configuration C
In configuration C, I13 is the only spherical cap. Its surface area and volume are calculated
by S13 = 2πr2

3(1 − cos α)/ sin2 α and V13 = πr3
3V(α)/3, respectively. Because I12 and I23

are not spherical caps, their surface areas (S12 and S23) and volumes (V12 and V23) need to
be calculated by numerical integration. Then, the rescaled surface energy ES is calculated
by

ES = 1
4πR2 sin ϕ2

(S13 sin ϕ2 + (S12 − πr2
3 cos θ12) sin ϕ3 + (S23 − πr2

1 cos θ23) sin ϕ1).

(A5)
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