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Using high-resolution particle image velocimetry, we measure velocity profiles, the
wind Reynolds number and characteristics of turbulent plumes in Taylor–Couette flow
for a radius ratio of 0.5 and Taylor number of up to 6.2× 109. The extracted angular
velocity profiles follow a log law more closely than the azimuthal velocity profiles
due to the strong curvature of this η= 0.5 set-up. The scaling of the wind Reynolds
number with the Taylor number agrees with the theoretically predicted 3/7 scaling
for the classical turbulent regime, which is much more pronounced than for the well-
explored η = 0.71 case, for which the ultimate regime sets in at much lower Taylor
number. By measuring at varying axial positions, roll structures are found for counter-
rotation while no clear coherent structures are seen for pure inner cylinder rotation. In
addition, turbulent plumes coming from the inner and outer cylinders are investigated.
For pure inner cylinder rotation, the plumes in the radial velocity move away from the
inner cylinder, while the plumes in the azimuthal velocity mainly move away from
the outer cylinder. For counter-rotation, the mean radial flow in the roll structures
strongly affects the direction and intensity of the turbulent plumes. Furthermore, it is
experimentally confirmed that, in regions where plumes are emitted, boundary layer
profiles with a logarithmic signature are created.

Key words: Taylor–Couette flow, turbulent boundary layers, turbulent flows

1. Introduction

The paradigmatic Taylor–Couette (TC) flow has long been a flow configuration of
great interest to fluid dynamicists. It consists of flow between two coaxial cylinders
that can rotate independently (see figure 1). This system has been used extensively
as a model in fluid physics because it is a closed system, has a relatively simple
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(a) (b)

FIGURE 1. (Colour online) (a) Schematic of the vertical cross-section of the TC set-up,
showing the horizontal laser sheet, which is imaged from above through the transparent
top plate. The laser can be traversed vertically. (b) Horizontal cross-section of the set-up.
The shaded red rectangle represents the typical field of view.

geometry and therefore has multiple symmetries. After early investigations (Couette
1890; Mallock 1896; Taylor 1923), Wendt (1933) started studying turbulence in this
system. For a further historical overview, the reader is referred to Donnelly (1991).
For a review on TC flow at the onset of instabilities and slightly above, see Fardin,
Perge & Taberlet (2014). The state of the art of high-Reynolds-number TC turbulence
is treated by Grossmann, Lohse & Sun (2016).

The two geometrical control parameters of TC flow are the ratio η of the inner
and outer cylinder radii and the aspect ratio Γ = L/d, where d is the gap width
and L is the height of the cylinders. In this work we use a small radius ratio
of η = 0.5, corresponding to a relatively wide gap. The vast majority of existing
work (see overview by Dubrulle et al. (2005) and review by Grossmann et al.
(2016)) focuses on a radius ratio of 0.71 or higher. Lower-η experiments concern
the Rayleigh-stable regime (Ji et al. 2006), mean flow and turbulence characteristics
(van Hout & Katz 2011) and global torque measurements (Merbold, Brauckmann
& Egbers 2013). In addition, numerical work has been done for η = 0.5 (Dong
2007; Chouippe et al. 2014; Ostilla-Mónico et al. 2014c). The radius ratio is a key
control parameter (Eckhardt, Grossmann & Lohse 2007) in TC flow, and it has been
found that a low-radius-ratio TC system behaves differently compared to higher-η
set-ups in several aspects, which will be outlined below. The underlying reason for
the different behaviour is the strong boundary layer asymmetry. Because the ratio
of inner and outer boundary layer thicknesses scales as η3 (Eckhardt et al. 2007),
a strong asymmetry between the inner and outer boundary layers exists for small
radius ratio.

As dimensionless control parameters of the system, we use the (negative) rotation
ratio a=−ωo/ωi and the Taylor number (Eckhardt et al. 2007):

Ta= (1+ η)
4

64η2

(ro − ri)
2(ri + ro)

2(ωi −ωo)
2

ν2
, (1.1)
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where ωi,o are the angular velocities of the inner and outer cylinders, ri,o are the
inner and outer cylinder radii, η = ri/ro is the radius ratio, and ν is the kinematic
viscosity. The driving of the system can also be described by the shear Reynolds
number (Dubrulle et al. 2005):

ReS = 2riro(ro − ri)

ν(ro + ri)
|ωo −ωi|, (1.2)

for which ReS ∝ Ta1/2.
When increasing the driving strength (i.e. the Taylor number), TC flow first

gradually undergoes a transition from a purely azimuthal, laminar state to a state
where the bulk becomes turbulent while the boundary layers still remain laminar.
The latter state is called the classical turbulent regime (Grossmann & Lohse 2000).
By further increasing Ta, the ultimate turbulent regime (Kraichnan 1962; Grossmann
& Lohse 2011; He et al. 2012) is reached, in which also the boundary layers are
turbulent. The signature of these turbulent boundary layers are logarithmic velocity
profiles, which have recently been found for a radius ratio of η = 0.716 (Huisman
et al. 2013) and for η = 0.909 (Ostilla-Mónico et al. 2016). Grossmann, Lohse &
Sun (2014) have derived theoretical velocity profiles, and found that the angular
velocity profile follows a log law more closely than the azimuthal velocity profile,
an effect that is more pronounced with the stronger asymmetry for smaller η. In
§ 3.1 we set out to investigate the correspondence of experimentally measured angular
and azimuthal velocity profiles to a log law for η = 0.5 and Taylor numbers up to
6.2 × 109 at the onset of the ultimate turbulent regime. Furthermore, the velocity
profiles are compared to existing experimental and numerical work.

In addition to affecting the velocity profiles, the radius ratio strongly influences
the transitional Taylor number for the ultimate regime (Ravelet, Delfos & Westerweel
2010; Merbold et al. 2013; Ostilla-Mónico et al. 2014a,c). For η = 0.5 the ultimate
regime does not start before Ta = 1010 (Merbold et al. 2013; Ostilla-Mónico et al.
2014c), whereas the transition for a higher radius ratio of η = 0.71 already occurs
at Ta = 5 × 108 (van Gils et al. 2012; Ostilla-Mónico et al. 2014c). Very different
scaling of the angular momentum transfer and the ‘wind’ in the gap with the driving
parameter Ta exist for the classical and ultimate regimes (Grossmann & Lohse 2000,
2011). The degree of turbulence of the wind in the gap of the cylinders, which
measures the strength of the secondary flows ur and uz, can be characterised by the
wind Reynolds number. We use the standard deviation of the radial velocity σ(ur) to
quantify the wind Reynolds number,

Rew = σ(ur)d/ν, (1.3)

with the gap width d = ro − ri. The late onset of the ultimate regime for η = 0.5
gives us the opportunity to analyse the scaling of the wind Reynolds number with
Taylor numbers in the classical TC regime, up to the onset of the ultimate regime,
and to compare it with theoretical predictions (§ 3.2). Furthermore, a similar analysis
is performed on the standard deviation of the azimuthal velocity, leading to a scaling
of the turbulence intensity, which is compared to that in Rayleigh–Bénard convection.

Another area where the influence of the radius ratio is apparent is the angular
momentum transport through the gap. This transport is a key response parameter
of the system and is directly connected to the torque required to maintain constant
cylinder velocities (Eckhardt et al. 2007). The radius ratio strongly influences the
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rotation ratio for which optimal momentum transport occurs (van Gils et al. 2012;
Brauckmann & Eckhardt 2013; Merbold et al. 2013; Ostilla-Mónico et al. 2014a;
Brauckmann, Salewski & Eckhardt 2016). For example, the optimal momentum
transport occurs at aopt ≈ 0.33 for η = 0.714 (van Gils et al. 2012) whereas it is
aopt ≈ 0.20 for η= 0.5 (Merbold et al. 2013).

Roll structures play an important role in the momentum transport in the TC system
(Fenstermacher, Swinney & Gollub 1979; Andereck, Liu & Swinney 1986; Lewis &
Swinney 1999; Huisman et al. 2014; Ostilla-Mónico et al. 2014b). With increasing
Taylor number, the system undergoes transitions from a purely laminar state to having
steady coherent Taylor vortices, to having modulated wavy Taylor vortices, which
eventually evolve into chaotic turbulent Taylor vortices (Lewis & Swinney 1999). But
even in the ultimate regime, for some a > 0, it was found that remnants of these
rolls are present in time-averaged quantities (Tokgoz et al. 2011; Huisman et al. 2014;
Ostilla-Mónico et al. 2014b), whereas for a = 0 (pure inner cylinder rotation) these
rolls vanish for large Taylor number (Lathrop, Fineberg & Swinney 1992). In § 3.3
we will characterise the roll structures for η= 0.5 at both pure inner cylinder rotation
a= 0 and slight counter-rotation a= 0.2, at which optimal transport occurs.

It was recently proposed that the logarithmic velocity profiles in ultimate TC flow
are triggered by turbulent plume ejection (Ahlers, Bodenschatz & He 2014; Ostilla-
Mónico et al. 2014b; van der Poel et al. 2015), which in turn is regulated by the
relative strength of the axial and radial mean flows. Using time-resolved azimuthal and
radial velocity field measurements at several heights in the set-up, we will investigate
the connection between the roll structures that generate strong radial and axial flows,
and the turbulent plumes that emanate from either the inner or outer cylinder (§ 3.4).
Furthermore, in § 3.5 we will quantify how these plumes affect the logarithmic nature
of the velocity profiles.

2. Set-up and explored parameter space
2.1. Set-up

The experiments were carried out in the Cottbus Taylor–Couette Facility (Merbold,
Fischer & Egbers 2011; Merbold et al. 2013). The inner and outer cylinder radii
are ri = 35.0 ± 0.2 mm and ro = 70.0 ± 0.2 mm, respectively, and the height of the
set-up is L = 700 mm. This gives a radius ratio of η = 0.5 and an aspect ratio of
Γ = 20. This aspect ratio is sufficiently large so that we do not expect the endwalls to
significantly affect the velocity in the bulk (van Gils et al. 2012; Paoletti et al. 2012).
The cylindricities of the cylinders that were used are 0.4 mm and 0.3 mm for the
inner and outer cylinders, respectively. The maximum rotation rates are 5 Hz for both
the inner and outer cylinders.

The end plates rotate with the outer cylinder. The outer cylinder and the top
plate are transparent, making the set-up ideally suited to be used in combination
with particle image velocimetry (PIV). A high-resolution PIV camera (LaVision
Imager sCMOS) with a resolution of 2560× 2160 pixels and a frame rate of 50 Hz
is installed above the top end plate, pointing downwards. Water is used as the
working fluid (20 ◦C, ν = 1.0× 10−6 m2 s−1). The water contains fluorescent particles
(Dantec Dynamics, PMMA-RhB, 1–20 µm) with a maximum Stokes number of
St = τp/τη ≈ 10−4� 1, which means that they faithfully follow the flow and can be
considered as tracer particles. The flow is illuminated by a horizontal light sheet from
a high-powered pulsed Nd:YLF dual-cavity laser (Litron LDY303HE). Because of the
high-resolution PIV camera, very high-resolution measurements of the flow fields can
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FIGURE 2. (Colour online) The explored parameter space. The Taylor number (Ta) is
varied for inner cylinder rotation (a = 0), and axial scans have been performed for
(negative) rotation ratios a= 0 and a= 0.2.

be achieved. The imaging of the full width of the gap combined with a vector grid
of 16× 16 pixels with 50 % overlap results in a velocity vector spacing of 0.13 mm.
The PIV system is operated in dual frame mode, allowing for an inter-frame time
1t smaller than the inverse frame rate. The PIV image pairs are processed using
LaVision DaVis software, after which the flow fields are transformed to the radial
velocity ur(θ, r, z, t) and the azimuthal velocity uθ(θ, r, z, t).

2.2. Explored parameter space
The parameter space that was explored for this work is shown in figure 2. The
first set of measurements that is treated here consists of varying the Taylor number
between Ta = 5.8 × 107 and Ta = 6.2 × 109 (corresponding to a shear Reynolds
number of ReS = 6.0 × 103–6.2 × 104) for inner cylinder rotation only (a = 0) at
mid-height (h = 0.5L). These measurements were performed as a single continuous
experiment; the cylinder velocity was increased slowly between experiments, and
before each measurement approximately 10 min were taken to give the flow ample
time to stabilise. Each measurement in this set consists of 10 000 PIV image pairs,
which were recorded at 25 frames per second (f.p.s.). This corresponds to 235 and
2418 cylinder revolutions for Ta= 5.8× 107 and Ta= 6.2× 109, respectively.

In addition to investigating the Taylor-number dependence, the height of the laser
sheet was varied to characterise the axial dependence of the flow field. At 13 different
heights with 7.5 mm spacing, 5000 image pairs of the velocity field were recorded.
This was done at Ta = 4.2 × 109 for both pure inner cylinder rotation and optimal
(Merbold et al. 2013) counter-rotation a= 0.2.

3. Results
3.1. Azimuthal and angular velocity profiles

In this part the properties of flow profiles for varying Taylor number will be
investigated. An example of an instantaneous flow field is shown in figure 3(a), while
the averaged field is shown in figure 3(c). In figure 3(b) the normalised radial velocity
ũr = ur/uθ(ri) versus the dimensionless gap position r̃ = (r − ri)/(ro − ri) is shown,
from which it is apparent that, at this specific axial position (mid-height), a significant
mean radial flow still exists for the lower Taylor numbers up to approximately 109.
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FIGURE 3. (Colour online) Overview of the flow profiles for varying Taylor number with
pure inner cylinder rotation a = 0 at mid-height h/L = 0.5. (a) Snapshot of the flow
field for Ta = 6.2 × 109. The colours and lengths of the arrows indicate the norm of
the velocity |ũ|. (c) Averaged flow field over 10 000 PIV image pairs at Ta= 6.2× 109.
(b) Radial velocity profiles across the gap of the TC apparatus, normalised by the inner
cylinder velocity. For lower Taylor numbers, there is still a strong radial flow, which can
be attributed to the presence of Taylor vortices. (d) Azimuthal velocity profiles normalised
by the inner cylinder velocity. For increasing Taylor number, the profiles become flatter
and the boundary layers steeper. (e, f ) Magnification of the azimuthal velocity profiles in
(d) close to the cylinders.

These are Taylor vortices, which at a = 0 disappear for higher Taylor numbers
(Lathrop et al. 1992). With increasing Taylor number, the azimuthal velocity profile
in the bulk becomes flatter (figure 3d–f ), but it is still apparent that the strong
curvature of a radius ratio of η = 0.5 creates a significant asymmetry between the
inner and outer boundary layers.

In figure 4, profiles up to the middle of the gap are shown, normalised to the
wall-normal distance y+ from both the inner and outer cylinders, and to the azimuthal
velocity u+ (figure 4a,b) and angular velocity ω+ (figure 4c,d). The wall-normal
distance, azimuthal velocity and angular velocity for the inner cylinder are defined as

y+ = r− ri

δν,i
, (3.1)

u+ = uθ(ri)− uθ(r)
uτ ,i

, (3.2)

ω+ = ω(ri)−ω(r)
uτ ,i/ri

. (3.3)
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FIGURE 4. (Colour online) Velocity profiles for inner cylinder rotation a= 0 and varying
Taylor number. See main text for the definitions of u+, ω+ and y+. (a) Azimuthal velocity
profiles near the inner cylinder (r̃∈ [0, 1/2]). (b) Azimuthal velocity profiles near the outer
cylinder (r̃ ∈ [1/2, 1]). (c) Angular velocity profiles near the inner cylinder (r̃ ∈ [0, 1/2]).
(d) Angular velocity profiles near the outer cylinder (r̃ ∈ [1/2, 1]). All panels include the
logarithmic law of the wall from Prandtl and von Kármán, u+ = 1/κ ln y+ + B, with
the typical values of κ = 0.40 and B = 5.2 (see Marusic et al. (2013) and references
therein), the viscous sublayer u+ = y+, direct numerical simulation data from Chouippe
et al. (2014), Ostilla-Mónico et al. (2014c) and Ostilla-Mónico et al. (2016) at η = 0.5,
and measurement data from Huisman et al. (2013) at η= 0.716.

The same parameters for the outer cylinder are defined as

y+ = ro − r
δν,o

, (3.4)
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u+ = uθ(r)− uθ(ro)

uτ ,o
, (3.5)

ω+ = ω(r)−ω(ro)

uτ ,o/ro
, (3.6)

with the viscous length scale δν,i = ν/uτ ,i and the friction velocity uτ ,i = √τw,i/ρ,
containing the wall shear stress τw,i = T/2πr2

i L, with the torque T , where the
subscript i may be replaced by o. As a consequence, δν,i/δν,o = η, uτ ,i/uτ ,o = 1/η
and τw,i/τw,o = 1/η2. The torque values are from Merbold et al. (2013), where
a (non-transparent) TC set-up with identical dimensions and boundary conditions
was used. The local torque can be different from the average torque, following
the large-scale roll structures. This causes the imperfect matching with the viscous
sublayer u+ = y+ and ω+ = y+, especially visible in figure 4(b,d).

As the driving is increased, the profiles slowly approach the Prandtl–von Kármán
log law, although at these Taylor numbers the log layer is not yet fully developed.
For comparison, profiles at higher Taylor numbers and aspect ratio of η= 0.716 from
Huisman et al. (2013) are also plotted. The data show good agreement with direct
numerical simulations (DNS) at the same radius ratio η = 0.5 from Chouippe et al.
(2014) at Ta = 1.8 × 108, Ostilla-Mónico et al. (2014c) at Ta = 1.0 × 109 and Ta =
1.0× 1010, and Ostilla-Mónico et al. (2016) at Ta= 1.1× 1011.

When comparing the azimuthal velocity u+ to the angular velocity ω+, i.e.
figure 4(a) to 4(c) and figure 4(b) to 4(d), it can be seen that the angular velocity
profiles curve upwards more compared to the azimuthal ones. This is consistent with
the theoretical argument of Grossmann et al. (2014) that the angular velocity profile
ω+ is closer to a log law than the azimuthal velocity profile u+. The effect is much
more pronounced for the smaller η = 0.5 here as compared to the η = 0.716 from
Huisman et al. (2013). Note that, for example, the lower-Taylor-number u+ profiles at
η= 0.716 are above the profiles measured here, but that they cross when represented
as ω+. This clearly shows the influence of the large curvature for small-radius-ratio
TC set-ups.

3.2. Wind Reynolds number and turbulence intensity
In the analogy between TC and Rayleigh–Bénard flow, the unifying theory of
Grossmann & Lohse (2000) predicts that the wind Reynolds number in the classical
turbulent regime scales as

Rew ∝ Ta3/7. (3.7)

In contrast, in the ultimate turbulent regime, the scaling was predicted to be Rew ∝
Ta1/2 (Grossmann & Lohse 2011), which was confirmed experimentally by Huisman
et al. (2012) for TC flow with η= 0.716 for Ta up to 6.2× 1012.

The highest Taylor number we achieve in the present measurements is Ta =
6.2× 109, which for η= 0.5 with the higher transitional Taylor number of Ta= 1010

(Merbold et al. 2013; Ostilla-Mónico et al. 2014c) implies that we are in the classical
turbulent regime. Therefore we expect the theoretically predicted 3/7 scaling to hold.
This classical scaling was measured in Rayleigh–Bénard convection (He et al. 2012),
but to our knowledge has not yet been confirmed for TC flow.

The wind Reynolds number Rew is extracted from the velocity field ur(θ, r, z, t) by
calculating the standard deviation σ(ur(r, θ, t)) over time and the azimuthal direction,
which is then averaged over a certain range in the gap (see figure 5). When looking
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FIGURE 5. (Colour online) The scaling of the wind Reynolds number Rew and turbulence
intensity I with Taylor number for inner cylinder rotation a = 0. (a,b) The standard
deviation of the radial velocity (a) and azimuthal velocity (b) over 10 000 frames (400 s)
and the azimuthal direction, normalised by the inner cylinder velocity, as a function of
the normalised radial position. This corresponds to the turbulence intensity I in the case
of the azimuthal velocity. See the legend in figures 3 or 4 for the values of the Taylor
numbers. The three areas A (r̃ ∈ [1/8, 3/8]), B (r̃ ∈ [3/8, 5/8]) and C (r̃ ∈ [5/8, 7/8])
indicate regions over which σ is averaged for (c–e). The black dots represent the position
of the start of the outer layers at y+ = 50. (c) Plot showing Rew versus Ta averaged over
r̃ values corresponding to regions A, B, C and all three combined (r̃ ∈ [1/8, 7/8]). In
addition, data from Huisman et al. (2012) at η = 0.716 with their fit are shown, which
are fully in the ultimate turbulent regime. These data use the equivalent to area B for
averaging. (d) Turbulence intensity I versus Ta averaged over the same regions as before.
The fits are I=0.27Ta−0.066 for area A, I=0.33Ta−0.076 for area B, I=0.41Ta−0.098 for area
C and I= 0.32Ta−0.079 for the three areas combined. (e) Data in (c) compensated by Ta3/7.
The fits are Rew= 0.162Ta0.434 for area A, Rew= 0.193Ta0.424 for area B, Rew= 0.240Ta0.402

for area C and Rew= 0.192Ta0.421 for the three areas combined. The standard errors of the
fitted exponents are 0.007, 0.007, 0.005 and 0.005, respectively.

at the shape of the r̃ dependence of σ(ur) in figure 5(a), it is apparent that an
asymmetry is present. The fluctuations exhibit a maximum around a quarter of the
gap width away from the inner cylinder. It is likely that the strong curvature of the
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η = 0.5 set-up causes this asymmetry. Calculating the wind Reynolds number thus
comes with an arbitrariness in the area to choose for averaging the profile of σ(r),
although excluding the boundary layers is reasonable because the interest lies in the
convective bulk transport, as opposed to the diffusive transport in the boundary layers.
The dependence of Rew(Ta) is shown in figure 5(c) for different regions of averaging.
Region B lies within the outer layer of both the inner and outer cylinders for all
Taylor numbers.

From figure 5(e) it can be seen that a clear power-law scaling is present, with an
exponent that ranges from 0.402 to 0.434, depending on the region of averaging. The
scaling in regions A, B and A + B + C is consistent with the theoretically predicted
classical regime scaling of 3/7 ≈ 0.429 (Grossmann & Lohse 2000) within the
experimental uncertainties.

A similar analysis is performed on the azimuthal velocity instead of the radial
velocity, as shown in figure 5(b,d). Again, the difference of the shearing velocity
(ui − uo), which in the case of a = 0 simplifies to ui, is used to normalise the
standard deviation. This results in a turbulence intensity I = σ(uθ)/ui, analogous
to the turbulence intensity defined in Rayleigh–Bénard convection. The difference
in rotation velocities of TC flow is analogous to the temperature difference in
Rayleigh–Bénard convection (Grossmann & Lohse 2000). We find that the turbulence
intensity has maxima in both the boundary layers, similar to the findings of Huisman
et al. (2013), and a relatively flat region in the bulk. The turbulence intensity I(r)
is averaged over the same regions as in figure 5(a) and shows negative scaling:
I ∝ Taγ with −0.1 < γ < −0.07, depending on the region of averaging. This result
is in rough agreement with the findings in Rayleigh–Bénard flow (Shang, Tong &
Xia 2008; Lakkaraju et al. 2012), where the authors found a scaling exponent of
−0.2 < γRB < −0.1 in the classical regime, depending on the Rayleigh number and
the location of the temperature measurements. It is expected that γ → 0 for Re→∞,
possibly explaining the higher exponent measured here because of a more turbulent
system. Additionally, TC flow, with its curved boundaries, might have a fundamentally
different scaling exponent.

3.3. Roll structures
The phenomena of roll structures, turbulent plumes and logarithmic velocity profiles in
TC flow are intimately connected (Ostilla-Mónico et al. 2014b,c). We will first show
an example of roll structures that are observed in TC flow. Flow profiles at several
heights for both a=0 and a=0.2 are measured, allowing us to visualise roll structures
as shown in figure 6. At this reasonably high Taylor number of Ta = 4.2 × 109, no
clear roll structures exist for inner cylinder rotation only. The radial velocity shows
some very faint indications of rolls, with a maximum value of ũr = 0.01 in the centre
of the gap. In contrast, in the case of counter-rotation (a = 0.2), very strong roll
structures can be seen. The fact that there are strong rolls at optimal counter-rotation
and no clear structures at inner cylinder rotation only is corroborated by recent work
for higher radius ratio (Tokgoz et al. 2011; Huisman et al. 2014; Ostilla-Mónico et al.
2014b).

In the radial flow between two rolls at approximately h/L = 0.50 to h/L = 0.52,
there is very strong outwards radial flow (see figure 6c). Specifically, the height 0.52L
corresponds to the bottom of a roll, while 0.50L corresponds to the top of the roll
below. Exactly in between the rolls at 0.51L, the radial flow surprisingly exhibits
a local minimum. One might a priori expect symmetry around mid-height (0.50L)
instead of at 0.51L as observed. However, symmetry breaking of large-scale turbulent
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FIGURE 6. (Colour online) Dependence of flow profiles on axial position for rotation
ratios a=0 (a,b,e, f ) and a=0.2 (c,d,g,h) for Ta=4.2×109. The normalised radial velocity
is ũr = ur(r)/(ui − uo) and the azimuthal velocity is ũθ = (uθ (r)− uo)/(ui − uo). The data
are represented in a colour map (a–d) and as profiles in (e–h).

flow structures in symmetrical set-ups has been observed before, not only in TC
flow (Huisman et al. 2014; van der Veen et al. 2016), but also in von Kármán flow
(López-Caballero & Burguete 2013). In figure 6(d,h) it can be seen that, in the case
of positive (outward) radial flow, the inner cylinder velocity is advected outwards,
shifting the profiles upwards at the inner half of the gap. For negative (inward) radial
flow, the profiles shift downwards in the outer half of the gap. In summary, the roll
structures are represented by a large secondary flow of ur, which advects velocity
from the cylinders and changes the azimuthal velocity profiles. In the following two
subsections we will elaborate on the characteristics of turbulent plumes and their
effect on the velocity profiles.

3.4. Turbulent plumes
In turbulent TC flow, structures detach from the boundary layers, called herring-
bone streaks (Dong 2007) or velocity plumes (Ostilla-Mónico et al. 2014b), in
correspondence to the thermal plumes in the analogous turbulent Rayleigh–Bénard
convection. These plumes in TC flow are large-scale spatial and temporal fluctuations
in the velocity fields that detach from either the inner or outer cylinder and advect
velocity from the respective cylinder. Because of the sufficiently high frame rate of
25 f.p.s. and large amount of data recorded in our experiments, these plumes can
be resolved in time, and the typical velocity can be extracted. We are interested in
understanding how these plumes are affected by roll structures and whether some
scaling relation exists for the typical plume velocity as a function of the driving
parameter Ta.

The time dependence of the profiles of the azimuthal and radial velocity can
be represented by the spatio-temporal fields ur(r, t) and uθ(r, t), with the value of
the velocities represented by a colour map, as shown in figure 7(a), for example.
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FIGURE 7. (Colour online) Overview of turbulent burst velocity depending on axial
position, for both pure inner cylinder rotation a= 0 (a–f ) and counter-rotation of a= 0.2
(g–l), at Ta= 4.2× 109. The radial velocity dependence is shown in (a,c,d,g,i,j) and the
azimuthal velocity in (b,e, f,h,k,l). (a,b,g,h) Example of the radial and azimuthal velocity
as a function of the normalised gap distance and time for the axial position of 0.50L.
Only 10 s of the total 200 s per experiment are shown for clarity. Diagonal lines with a
positive (negative) slope correspond to plumes coming from the inner (outer) cylinder. The
extracted plume velocity (see text for method) is shown as a black line. (c,e,i,k) As above,
for every height normalised by the total height of the cylinder L. (d, f,j,l) The inverse of
the resulting normalised burst velocity. For a= 0 the inner cylinder velocity is 1.1 m s−1

and for a= 0.2 the inner and outer cylinder velocities are 0.91 m s−1 and −0.36 m s−1,
respectively. The error bars show the width of the test function at 0.95 times the peak
value.

In this way, structures or fluctuations of the profiles that propagate inwards or
outwards become visible as diagonal lines. It has to be stressed that these diagonals
do not represent a non-zero mean radial flow, but only the fluctuations on these
profiles that travel outwards or inwards. In order to assign a velocity to these plumes,
we employ an analysis that is based on applying the following affine shearing
transformation to the functions ur(r, t) and uθ(r, t):

(r, t) 7→ (r, t+ d · r̃/vb), (3.8)
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with r̃ = (r − ri)/d, gap width d and plume velocity vb. For a certain amount of
shearing, the plumes that were represented by diagonal lines become vertical lines.
To find this optimal value of shearing, we postulate that, when averaging the sheared
function over r̃, the standard deviation of the resulting time signal has a maximum as
a function of the shearing value. At this optimal shearing, the plumes are represented
by narrow peaks in the time signal, creating a high standard deviation. Using a golden
section search algorithm (Kiefer 1953), the optimal shearing value is found, which
corresponds to the characteristic plume velocity vb. Note that plumes can go both
inwards and outwards and that this vb corresponds to the ‘strongest’ plume direction,
not necessarily to the mean plume velocity.

The dependence of the plume velocity on the axial position and the rotation ratio
is shown in figure 7. Again, for inner cylinder rotation only (a = 0), no height
dependence can be seen. The fluctuations on the radial velocity are moving outwards
with a velocity vb/(ui − uo) = 0.25 ± 0.02 (uo = 0, 2σ error). When the azimuthal
velocity is considered, the picture looks different. Crossing diagonal lines can be seen,
meaning that plumes emit from both the inner and outer cylinders. A maximum was
found for inward plumes with an average velocity of vb/(ui − uo) = −0.20 ± 0.02.
The velocity of these plumes is of the same order, but it remains to be explained
why the main plume direction is different for the two velocity components.

For counter-rotation (a = 0.2), the bottom half of figure 7 clearly indicates that
roll structures are present. There is a correspondence between the sign of the mean
radial velocity and the direction of these turbulent plumes, coming from either the
inner or outer cylinder – compare figure 6(c) with figure 7(i,k). For both velocity
components, the direction of the plumes corresponds to the direction of the mean
radial velocity. The mean radial velocity forces the plumes strongly in the inward or
outward direction, also typically creating a higher plume velocity than for the a= 0
case. Whereas for the a = 0 case there was some ambiguity in the direction of the
plumes for the azimuthal velocity, for a = 0.2 it exactly follows the roll structure.
When looking at the radial velocity, the inward plumes are less pronounced than the
outward ones, likely due to a tendency for the ur plumes to flow outwards, as could
be seen for the a= 0 case.

In addition to the dependence on the axial position and the rotation ratio, in figure 8
the dependence of the plume velocity on the driving parameter Ta is shown. With
increasing driving strength, the velocity of the plumes also increases. When the plume
velocity is normalised by (ui − uo), it is however nearly constant over two decades
of Ta.

3.5. Logarithmic velocity profiles
It has been proposed that the logarithmic temperature profiles in Rayleigh–Bénard
convection and logarithmic velocity profiles in TC flow are triggered by plume
ejection (Ahlers et al. 2014; Ostilla-Mónico et al. 2014b; van der Poel et al. 2015).
These authors also support the notion that parts of the boundary layer can be
turbulent, while others are not, and that the transition to the ultimate regime entails
plume emission from the full extent of the boundary layer.

We will now further investigate the effect of the plumes on the logarithmic nature
of the velocity profiles. As we have seen before, the roll structure that appears for
counter-rotation of a = 0.2 provides strong mean radial flows, which cause plume
emission away from either the inner or outer cylinder.
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FIGURE 8. (Colour online) Turbulent plumes in the radial velocity for varying Ta and
a = 0. (a,b) As in figure 7. (c) The plume velocity normalised by the inner cylinder
velocity (uo = 0). Errors are of the same order as in figure 7(d).

In figure 9(a) the angular velocity at the inner cylinder is shown. It can be seen
that there is a significant variation in the shape of the profiles, and that profiles at
the axial positions where a strong positive radial flow exists (top lines in figure 9c)
follow the shape of a logarithmic law more closely. This effect is even stronger at the
outer cylinder in figure 9(b), where profiles at an axial position with negative radial
flow, so a flow away from the outer cylinder, correspond best to a log law.

To quantify this phenomenon, the velocity profiles are fitted with the modified
(Grossmann et al. 2014) Prandtl–von Kármán law of the wall: ω+ = 1/κω ln y+ + B,
with both κω and B as fitting parameters. We quantify the deviation from a log
profile by the standard error of the fitting parameter σ(κω). A small value of σ(κω)
corresponds to a profile that closely follows a log law. In figure 9(d) it can be seen
that, for a mean wall-normal velocity away from the cylinder (positive 〈ũ · n〉), the
value of κω more closely approaches the known classical value of 0.40. Additionally,
the error of the fit is much smaller for positive values of the outward wall-normal
velocity as compared to negative values. This means that, for regions with strong
radial flow away from a cylinder surface, the velocity profiles follow a log law more
closely. In the previous section it was found that, at these regions, plumes are emitted
from the cylinder surface. We therefore postulate that turbulent plumes are responsible
for logarithmic boundary layers. This is in line with results from DNS (van der Poel
et al. 2015; Ostilla-Mónico et al. 2014b).
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FIGURE 9. (Colour online) Angular velocity profile dependence on mean radial flow for
counter-rotation a= 0.2 and Ta= 4.2× 109 at varying axial positions (data from figure 6h).
(a) Angular velocity profiles near the inner cylinder (r̃ ∈ [0, 1/2]). The angular velocity
ω+ and wall-normal distance y+ are defined in the caption of figure 4, the colours and
line styles of the profiles correspond to those in figure 6. The grey area is the fitting
domain y+ ∈ [50, 800], chosen to encompass the start of the outer region up to mid-gap
for both inner and outer cylinders. (b) Angular velocity profiles near the outer cylinder
(r̃ ∈ [1/2, 1]). (c) Normalised radial velocity ũr as in figure 6(g). (d) The von Kármán
constant κω found by fitting ω+ = 1/κω ln y+ + B for y+ ∈ [50, 800] near the inner (IC)
and outer (OC) cylinder. The horizontal axis shows the normalised wall-normal velocity,
equal to ũr and −ũr for the IC and OC, respectively, averaged over r̃ ∈ [1/4, 3/4]. The
error bars have a total length of four times the standard error of the fit. (e) The standard
error of the fitting parameter κω.

4. Conclusions

In this work, we measured velocity profiles, the wind Reynolds number and
characteristics of turbulent plumes in TC flow for a radius ratio of 0.5 and Taylor
number of up to 6.2 × 109. The flow profiles show Taylor vortices for a Taylor
number smaller than Ta ≈ 109. The normalised profiles approach the Prandtl–von
Kármán log law, although at the highest Ta= 6.2× 109 the log layer is not yet fully
developed. They are in good agreement with DNS data from other work (Chouippe
et al. 2014; Ostilla-Mónico et al. 2014c; Ostilla-Mónico et al. 2016). Owing to the
strong curvature of this η = 0.5 set-up, a large difference between the azimuthal
velocity u+ and the angular velocity ω+ arises. The angular velocity ω+ resembles
a log law more closely, as suggested by Grossmann et al. (2014), based on their
Navier–Stokes based theoretical considerations.

Because of the late onset of the ultimate regime for η= 0.5, the measurements with
Ta up to 6.2× 109 are in the classical turbulent regime. For the first time, the wind
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Reynolds number has been measured in the classical regime of TC flow, and it indeed
follows the theoretically predicted classical scaling of Rew ∝ Ta3/7. The scaling of the
turbulence intensity was found to be I ∝ Taγ with −0.1< γ <−0.07, depending on
the position in the gap.

Moreover, we focused on the interplay between rolls, turbulent plumes and
logarithmic velocity profiles. At a strong driving of Ta = 4.2 × 109, no significant
coherent structures exist for pure inner cylinder rotation, but roll structures appear for
counter-rotation at a = −ωo/ωi = 0.2. This behaviour has been observed previously
for different values of η and Ta, and shows the important part that rolls play in
momentum transfer between the two cylinders.

For inner cylinder rotation only, strong outward plumes are visible in the radial
velocity. In the azimuthal velocity, the plumes mainly go inwards. The exact
mechanism causing this difference is yet to be elucidated. For counter-rotation,
the roll structures strongly influence the direction of the plumes. There is a direct
correspondence between the direction of the mean radial flow and the direction of the
plumes at a certain position. The plume velocity in the radial flow profiles increases
with Taylor number, and has an approximately constant value of one-quarter of the
inner cylinder velocity for pure inner cylinder rotation.

Lastly, by quantifying the correspondence of the angular velocity profiles to a log
law for several axial positions, it was found that, in regions with strong radial flow
away from a cylinder surface, plumes will emit from that cylinder, which in turn
create logarithmic boundary layers.

This work confirms predictions about velocity profiles and the scaling of the wind
Reynolds number and sheds new light on the characteristics and the role of plumes
in TC flow for a radius ratio η = 0.5, and hopefully will spark further research into
these intricate phenomena.
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