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Distance Preserving Ramsey Graphs
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We prove the following metric Ramsey theorem. For any connected graph G endowed with
a linear order on its vertex set, there exists a graph R such that in every colouring of the
t-sets of vertices of R it is possible to find a copy G* of G inside R satisfying:

o distg+(x,y) = distr(x, y) for every x,y € V(G");
e the colour of each ¢-set in G* depends only on the graph-distance metric induced in G
by the ordered t-set.

AMS 2010 Mathematics subject classification: Primary 05C55

1. Introduction

In [2], [4] and [22, 23] the following extension of the Ramsey theorem was proved.

Theorem 1.1. For any graph G there exists a graph R with the property that in any 2-
colouring of the edges of R there exists an induced copy G = R which is monochromatic.'

In other words, Theorem 1.1 states that the class of all graphs and induced embed-
dings has the edge-Ramsey property. This theorem, proved in 1973, together with some
generalizations and other related results that soon followed, gave rise to the study of

the restricted/induced/sparse family of Ramsey theorems (for a survey on these topics
see [5, 15]).

 Supported by a CAPES/Fulbright scholarship.
t Partially supported by NSF grant DMS0800070.
! For a graph G, we will use G (typeset in a sans serif font) to denote an isomorphic copy of G.
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Remark 1.2. For simplicity we state Ramsey theorems only for 2-colourings, when in
fact it is straightforward to extend them to an arbitrary number of colours by applying
the 2-colour version inductively.

Theorem 1.1 was generalized by Deuber [3] and NeSetfil and the second author [12] in
the sense that the same statement remains true if the colouring of edges (K>) is replaced
by the colouring of cliques (Kj) or induced independent sets (Kj). Moreover, Theorem 1.1
fails to be true if one colours copies of an arbitrary non-homogeneous graph F. More
formally, for any graph F # K, K there exists G such that, for every graph H, there is a
2-colouring of the set of all induced copies of F in H such that no induced copy G in H
is monochromatic (that is, there must be induced copies of F in G of both colours).

With terminology used in [10] this can be rephrased as follows.

Proposition 1.3. The class of graphs and induced embeddings has the F-Ramsey property
if and only if F is a complete graph or an independent set.

Let us show by means of a simple example that for non-homogeneous unordered graphs
F, the class of (unordered) graphs and induced embeddings does not have the F-Ramsey
property. Consider the graph F = P,, the path with two edges. Let G = C4 be the cycle
of length four and let R be an arbitrary graph. We will now introduce a 2-colouring of
the (unordered) induced copies of P, in R. First, label the vertices of V' (R) with integers
1,2,...,|V(R)|. For a path ijk of length two in R, colour ijk red if the middle vertex j is
the smallest of the three (j < i and j < k); otherwise, colour it blue. Under this colouring,
any induced copy of G = C4 in R must contain P, of both colours. Indeed, among the
four vertices of the Cy4, the smallest vertex is the middle vertex of a P, coloured red and
the largest vertex is the middle vertex of a P, coloured blue.

However, it was shown by Nesetfil and Rodl [12] that if one considers graphs with
linearly ordered vertex sets and induced monotone embeddings then the theorem becomes
true for all graphs (F, <). This is stated in Theorem 1.6 below.

Remark 1.4 (Ordered graphs). Since our result deals with an extension of Theorem 1.6,
in this paper we typically assume (as in [1] and [13]) that each graph has a linear order on
its vertex set. The example we described above (colouring P,) shows that this assumption
is crucial. All maps between ordered vertex sets are considered to be monotone, that is,
¢(u) < ¢(v) whenever u < v. In particular, all isomorphisms between ordered graphs are
unique.

Definition 1.5 (Subgraphs). We say that the graph G is an induced subgraph of the graph
H (we write G = H) if V(G) = V(H), E(G) ={e€ E(H) : e < V(G)} and the order <g
in V(G) respects the order <y in V(H), that is, for every u,v € V(G) we have u <g v if
and only if u <g v.

To avoid cumbersome notation, we will omit the linear orders <p, <G and denote by

(g)md the set of all induced subgraphs of H which are (monotone) isomorphic to G.
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With this definition we may now state the Ramsey theorem for graphs with monotone
induced embeddings.

Theorem 1.6 ([1, 13]). For any ordered graphs F and G there exists an ordered graph R

such that, for any partition
R
( > =A UA,,
F ind

there exists some G € (}é) such that (?)ind < A; for some i € {1,2}.

ind
In other words, Theorem 1.6 states that the class of ordered graphs and induced
monotone embeddings has the (F, <)-Ramsey property for any ordered graph (F, <).

Remark 1.7. If a class K endowed with a set of embeddings has the K-Ramsey property
for all K € K it is called a Ramsey class (see, for instance, [6]). Theorem 1.6 shows that
the class of ordered graphs with induced monotone embeddings is a Ramsey class. See
[51, [6], [7], [11], [17] and [20] for other examples of Ramsey classes, such as

e finite partially ordered sets (with a fixed linear extension),
e finite vector spaces (over a fixed field F),

e finite labelled partitions,

e finite linearly ordered metric spaces.

Another way to refine Theorem 1.1 is to consider distance preserving embeddings
rather than induced ones. (Distance preserving embeddings have been considered in other
contexts, for instance, in [8, 24].) For ordered graphs R and G, let G € (g)in d be fixed. If,
for all x,y € V(G) < V(R),

diStG(X, y) = diStR(xa y)a (11)

then G is called a metric copy of G in R and the (unique) monotone isomorphism
¢: V(G) — V(G) = V(R) is called a distance preserving embedding of G into R. Denote
by (§) euic the set of all metric copies of G in R. Notice that (§) . < (§). .-

The following theorem is a consequence of our main result, Theorem 1.11.

Theorem 1.8. For any ordered connected graphs F and H there exists an ordered graph R

such that, for any partition
R
( ) =A UA,,
F metric

there exists some H € (}) such that (%) < A; for some i € {1,2}.

metric metric

In effect, Theorem 1.8 shows that the class of ordered connected graphs with metric
embeddings is also a Ramsey class. Our proof of Theorem 1.8 will use a slightly more
general setting.
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A discrete metric p on the set [t] = {1,2,...,t} is a symmetric function p : []*> — NU {00}
satisfying: p(i, j) = 0 if and only if i = j, and the triangle inequality,

p(i, j) + p(j. k) = p(i, k).

In this paper, the metrics considered correspond to the distance given by shortest paths
in a graph. For instance, the metric of a clique would satisfy p(i, j) = 1 for all i  j and
the metric of an empty graph would satisfy p(i, j) = co for all i # j.

Definition 1.9 (Metric induced by a set; (p, G)-tuples). Let G be an ordered graph and
let S = {v,...,0} = V(G), v1 < vy <--* <y, be an arbitrary set. The metric p induced by
S in G is given by p(i, j) = distg(v;,v;).

Let p be a fixed metric. A set S which induces the metric p in G is called a (p, G)-tuple.
The set of all (p, G)-tuples of G is denoted (ﬁ)

We prove a slightly stronger statement from which Theorem 1.8 is derived as a corollary.

Lemma 1.10. Let t € N, p be a metric on [t] and H be an ordered connected graph. Then
there exists an ordered graph R such that, for every 2-colouring of (I;) there exists H €

(f,)metric such that (;’) is monochromatic.

We now derive Theorem 1.8 from Lemma 1.10 as follows. Let F and H be given ordered
graphs. Take t = |V(F)|, and without loss of generality assume that V(F) = [t] (with the
usual order <). Let p be the metric corresponding to distr, namely, p(i, j) = distg(i, j).

We first obtain an ordered graph R from Lemma 1.10 applied to H and p. We claim
that the graph R has the Ramsey property of Theorem 1.8.

Notice that (§) . = (’;) since the vertex set of a metric copy of F is necessarily a

(p, R)-tuple. Consequently, we can view any colouring y of (%) as a colouring of (1;).

metric
By the hypothesis on R, there exists a graph H € () __ . such that every (p,H)-tuple
has the same colour ¢ under y. For every F € (;",,)metric the set V(F) is a (p, H)-tuple, and
therefore y(F) = c. It follows that (}) _ . is monochromatic.

In Section 4 we prove Lemma 1.10 and use it to establish our main result, Theorem 1.11.

Theorem 1.11. Let t € N and H be a connected ordered graph.
There exists an ordered graph R with the following property. For every 2-colouring of

(V'R there exists H € (R) such that (?) is monochromatic for every metric p on [t].

metric

After fixing connected graphs H and F, note that Theorem 1.8 asserts that colouring all
metric copies of F in R yields a monochromatic (;’)metm. On the other hand, Theorem 1.11
applies to all subgraphs of H on t vertices (even those which are not connected). It
guarantees that there exists a copy of H in which the colour of a t element subgraph
depends only on its metric within H.

Note that Theorem 1.11 extends Theorem 1.8.
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Remark 1.12. The particular case t = 2 of Theorem 1.11 implies that for any connected
graph H it is possible to find some graph R such that every colouring of the pairs in
(") yields a metric copy H € (). in which the colour of {x,y} € (V}") is a function
of disty(x, y). (In particular, the edges of H are monochromatic.) This special case t = 2

was stated in the survey [15].

Remark 1.13. Notice that for t =2 the linear order on the vertices is irrelevant. In
Section 4.2 we show a version of Lemma 1.10 that can be applied to unordered graphs
(provided that the metric is ‘homogenecous’).

Definition 1.14 (p,-metric sets and (p/, G)-tuples). Let /,t € N be fixed and let p be a
metric on [f]. Let H = (H, <) be a graph and let S = {v1,v2,...,0,} = V(H) be a set with
vy < vy < - <uv. We say that S is p,-metric with respect to H if, for all 1 <i<j<t,

e disty(v;,v;) = p(i, j) whenever p(i, j) < 7,

e disty(v;,v;) > £ whenever p(i, j) > /.

A set S as above is called a (p,, H)-tuple. We denote by (f/) the family of all (p/, H)-tuples
of H.

A graph G naturally induces a metric p(G) over its vertices by defining the distance
between pairs of vertices as the length of a shortest path connecting them (when the pair
is not connected, their distance is co).

Definition 1.15 (/-metric (sub)graph). For a graphs G — R, the graph G is said to be
/-metric in R if V(G) is p(G),-metric with respect to R. A connected graph G is metric in
R if it is /-metric in R for all Z, namely, distg(x, y) = distg(x, y) for every x,y € V(G).

Notice that G is /-metric in R if no pair of vertices in G admits a shortcut path in R
of length smaller than /. For instance, G is 2-metric in R if and only if it is an induced
subgraph of R.

Recalling that all vertex sets are linearly ordered, for 4, B < V(G) we will write A < B
if max(A4) < min(B).

Definition 1.16 (g-partite graphs). For ¢ > 2, the graph G together with the linear order
< on V(G) and a partition V(G) = V{(G)U--- U VA(G) is called g-partite if

e cvery edge e € G is crossing, that is, eN V(G)| < 1 foralli=1,...,q,
e the partition satisfies V(G) < Vy <+ < VI(G).

Definition 1.17 (Partite embedding/isomorphism). If G and H are ordered g-partite
graphs, a partite embedding is an injective monotone map ¢ : V(G) — V(H) which is
edge preserving (¢(e) € E(H) for all e € E(G)) and satisfies (;S(V;’(G)) c V;’(H) for all

j=1,...,q. If, in addition, ¢ is an isomorphism then we call it a partite isomorphism.

Definition 1.18 (Notation). We will use the following notation.
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For a (hyper)graph G we abuse the notation and write e € G to denote e € E(G).
For a (hyper)graph G and a one-to-one map ¢ : V(G) — X, set

$(G) = (p(V(G)). {$(e) : e € G}).

e For g-partite graphs G and H we denote by (Z)Part(q) the set of all subgraphs ¢(G) of
H, where ¢ : V(G) = V(H) is a partite embedding.
e If Gis an isomorphic copy of G with (unique) monotone isomorphism g : V(G) — V(G)

and 7 is a hypergraph with V(Z) < V(G), then we denote by Zg the hypergraph a(Z).

Lemma 1.19 below is a technical result which will be used in the proof of our main
result, Theorem 1.11.

Lemma 1.19 (Partite Lemma). Let /,t,q € N, t < q. Suppose that

e p is a fixed metric on [t],

e G is a g-partite (ordered) graph with partition V(G) = V(G)U -+~ U Vi(G),

o forsomel<ji<p<-<ji<q Ic (g) is a t-partite t-uniform hypergraph with
classes {V]?(G)}f=1 consisting of selected (p;, G)-tuples.

Then there exists a q-partite ordered graph R and G < (})
properties.

Part(q) satisfying the following

(L1) For any 2-colouring of the (ps, R)-tuples in Ugeg Za, there exists G € G such that
Te < (:3) c (f/) is monochromatic.
(L2) Every G € G is /-metric in R.

Remark 1.20. Note that | Jg.g Zg is a t-partite t-uniform hypergraph with classes {V;f(R) -
.. e R R . .
This is because by the definition of (G)Part(q) every GeG (G)Paﬁ(q) is the image of G
under a partite embedding into R (and thus V{(G) = V/(R) for all j = 1,...,q).
Moreover, it will follow from our proof that for any pair of distinct G,G’ € G we have
V(G)NV(G) < U, VI(R).

The proof of Lemma 1.19 uses the partite construction method, which was introduced by
Nesetfil and Rodl [16], and has been a successful tool for proving the existence of several
Ramsey structures such as metric spaces [11], systems of sets [19], Steiner systems [18],
etc. Perhaps a novelty here is that the Partite Lemma, which was usually proved using the
Hales—Jewett theorem directly, is proved here by induction using the partite construction
as well.

2. Proof of Lemma 1.19

We will prove a slightly stronger statement by double induction. The main induction is
over /. The base case (£ = 2) is presented in Section 3 (Lemma 3.1). In this section we
will prove the induction step from /# to / + 1. For easy reference, we describe in detail the
induction hypotheses below (these are repeated in Appendix B for the reader who wishes
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to keep on hand the extensive list of hypotheses satisfied by the graphs and families of
graphs constructed here).

Remark 2.1. The somewhat complicated intersection conditions (A) and (B) below, serve
the purpose of imposing useful constraints on how the copies in the family may intersect
while at the same time being weak enough to be carried by the induction. The condition
(B) is later used to guarantee that when two vertices are shared by two copies then the
distances with respect to each copy are ‘compatible’. More precisely, if we wish to obtain
a family of /-metric subgraphs then it is obvious that any pair of vertices at distance
/" < ¢ in some copy should not have distance # /' in another copy.

Induction over /: Hypothesis for R, and G,. For a g-partite graph G, a metric p on [t]
and a t-partite t-uniform hypergraph T < (/?/)’ there is a graph R, = R/(q, G, p,T) and

G, =G/(q,G,p,I) < (%’)Part(q) satisfying conditions (L1) and (L2) of Lemma 1.19 and

(L3) E(R/) = Ugeg, E(G).
Moreover, G, satisfies the conditions (A) and (B) below.

Intersection conditions for a family G of copies of G.
(A)If Gi,G, € G and u € V(Gi) N V(Gy), then there are (p,, G;)-tuples Il e Ts;, j=1,2,
such that u e I' N 12
(B)If G1,G, € G and u,v € V(Gy) N V(Gy), then either
(B1) there exist (p/, Gj)-tuples I € Zg,, j = 1,2, such that {u,0} = I'NI? or
(B2) the (unique) isomorphisms ¢;: V(G;) = V(G), j= 1,2, satisty o(u) = g2(u)
and g1(v) = a;3(v).

Remark 2.2. The condition (B2) above is an artifact of the induction base, which is then
propagated by induction. It should be possible to prove a stronger base assumption which
would entirely eliminate the need for (B2). This would simplify the proof of the induction
step at the cost of making the base case more involved.

Given ¢, G, p and 7 < (pil) c (pG/) as in the statement of the lemma, we obtain
R, =R/(q,G,p,7T) and G, = G,(q, G, p,T) from the induction hypothesis over /. Our goal
is to construct R+ and G, satisfying the hypothesis for 7 + 1.

Consider the family
U IGZ{Il,Iz,...,Im}C (R/) (21)
GeG, pr

This family is a t-partite t-uniform hypergraph with partition {VJ?(R/) f_, (see Figure 1).
We will construct a sequence of |V(R,)|-partite graphs Py, Py,..., P,, which we will call

pictures,> and families G(Py) < (PGk)Part(q), k =0,1,...,m. We will then show that R, = P,

2 The name ‘pictures’ has been used before, e.g., in [21].
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Figure 1. An illustration of R, and G € G,. Here we assume ¢t = 3, j; = 1, j, = 2 and j3 = 3. The triples
of (2.1) are represented by the crossing triangles.

qu (Ré)

bvzr

0 Va(Py)

V4 (RZ) V"q(G])o O Vee(Ry) q

Vo' (Re) E qu<@1><§5
E i

Figure 2. (a) Py is a disjoint union of copies of G where each copy is projected by np into a copy of G in G,.
(b) Py with its coarse g-partition and the refined r/-partition (see (2.2) and (2.3)). Notice that the copies of G
are partite embedded in the g-partite graph Py (see Definition 1.17).

and G,y = G(Py,) satisfy conditions (L1), (L2), (L3), (A), and (B). This will establish the
induction step and conclude the proof of Lemma 1.19.

Let us start by constructing Py (see Figure 2). For convenience, let r, = |V(R/)|. For
each u € V(Ry), let

Vi (Po) = {(u,G) : G € G, V(G) > uj. (2.2)

Recalling the total order on V(R,) we may assume in fact that V(R,) = {1,2,...,r,}. We
then impose a total order in V(Py) that satisfies V;*(Py) < V]’fjrl(PO) forall j=1,....r,— 1.
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The edges of Py are of the form {(u, G),(w,G)}, where uw € E(G), G € G,. Notice that
the r,-partition of Py given by (2.2) is indeed such that every edge of Py is crossing. We set
G(Py) to be the set of copies of G in correspondence with G,. In particular, |G(Poy)| = |G/|.
Moreover, the projection 7y(u, G) = u defines a monotone homomorphism from Py to R,.

Assuming that the hypothesis holds for some /# > 2, we will now describe the induction
over k.

Induction over k: Hypothesis for P; and G (Py).

(K1) The picture Py is r,-partite with classes Vj” (Py), j=1,...,r,. The projection map
me: V(Px) = V(Ry) = [r/] given by m(x) = j if and only if x € V"(Py) is a homo-
morphism of Py into R,. Moreover, 7;(G) € G, for every G € G(Py).

(K2) The family G(Py) is contained in (%)Pm(q).

(K3) The family G(Py) satisfies conditions (A) and (B).

(K4) Every G € G(Py) is (£ + 1)-metric in Py.
Claim 2.3. The graph Py satisfies the induction hypothesis for k = 0.

Since the copies of G in Py are vertex-disjoint (and thus metric) and are projected by
my into copies of G in Ry it is clear that (K1), (K3) and (K4) hold for Py and G(Py). It
remains to check (K2), namely, that G(Py) is contained in (@)Part(q).

We now observe that the g-partition of V(Py) may be expressed in terms of 7y as

ViP) =mg' (ViR = | V() (23)
uEVj'.’(R/)

for j=1,...,q (see Figure 2). For every G € G(Py), we have G’ = no(G) € G,. From the

induction hypothesis over / we have G € G(Py) < (Ié/ )Parl(q)’ and hence the isomorphism

c: V(G) — V(G') must be a partite isomorphism. Then 75! o ¢ : V(G) — V(G) is a partite
isomorphism of G into G by our choice of V;’(Po), j=1...,q.
Hence Py satisfies the induction hypothesis for k = 0 and Claim 2.3 is proved.

Suppose that Py, G(Px), and m, k > 0, are constructed and satisfy the induction
hypothesis. Since every G € G(Py) is (£ + 1)-metric in Py, it follows that Zg < (pil) c (pfil)
for every G € G(Py). Define

70 = {I € U Is : ﬂk(I)ZlkH} = < P ), (24)

GegG(Py) prt

where the (p/, R/)-tuple Ij+1 = {wi,wa,...,w,} is the (k + 1)th tuple from (2.1).

Observe that by construction, Z®) is a t-partite t-uniform hypergraph. Indeed, every
tuple in Z") is crossing with respect to the sets {m; !(u) = V*(Pi)}uer,.,- To construct Py
we invoke our induction assumption over / with

e 1, in place of ¢,
e P in place of G,

o 70 (pfi]) c (5’;) in place of 7.
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We then obtain the graph Py = R/(r/, P, p,Z%")) and a family Piy = G/(rs, P, p,I®) <

(P;’,ZI)Pan( ) satisfying conditions (L1), (L2), (L3), (A) and (B). More specifically, the
ry

following holds.

(1)k+1 For every 2-colouring of the (p/, Pyy1)-tuples in Upcp, T, there exists P € Py

such that Z& < (pil) < (" ;jl) is monochromatic (recall that the hypergraph Z
is an isomorphic copy of Z®) in P).
(2)k+1 Every P € Py is /-metric in Pjyg.

3+t E(Pit1) = Upep,,, E(P).

(A)y1 If PLP? € Py are distinct and u € V(P') N V(P?), then there are (p/11,P/)-tuples
Il e Igj), j=1,2, such that u € I N I2.
(B)iy1 If P1,P? € Py g are distinct and u,v € V(P') N V(P?), then either

(B1),y1 there exist (p/41, P/)-tuples Ii € Igj.’, j = 1,2, such that {u,v} = I N 12 or
(B2)k+1 the isomorphisms ¢;: V(P/) = V(Py), j = 1,2, satisfy ¢1(u) = ¢»(u) and

$1(v) = Pa(v).

Remark 2.4. The graph Py, is obtained by amalgamating copies of Py in a particular
way determined by the induction over /. For instance, due to (A)x+1, only vertices in
V}‘ (Pi41), with j € I, 1, may be shared by distinct copies of Py in Pjy.

See Figure 3 for an illustration of the amalgamation.

The projection mi41 : V(Pyt1) — V(Ry) is defined in terms of the partition { V" (Pit1)}',
given by the induction hypothesis over /. More concretely, m;y((u) = j if and only if
u € Vi'(Py41). For any P € Py, with isomorphism ¢ : V(Px) — V(P), we claim that the
following diagram commutes:

Py P —— P

(2.5)

Tk
Tk+1

R,
Indeed, because ¢ is a partite embedding, we have qS(V;'/ (Pk)) c Vj” (Pxsq) for all j =
1,...,r,. Hence, for u € V(Py), m(u) = j if and only if u € Vj”(Pk) if and only if ¢(u) €
Vj”(PkH) if and only if m4; o ¢p(u) = j. This shows that m = m g 0 ¢p and thus the
diagram (2.5) commutes.

Constructing the g-partition of P;q. The graph Py is g-partite, with partition given by
the classes

VIiP) =i (VIR)) = | Vi(Pesn). j=1....q. (2.6)

ueVy(Ry)

Notice that because V(R/) < V3 (R) < -+ < VI(R;) and V{"(Piy1) < -+ < V[ (Pry1) we
also have V(Piy1) <+ < Vi(Piy1): see Figure 4.
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R,
m™(G) | |
; Vit (Pe) Iy ( Vit (Prya)
Vi (Pr) . + Vi (Prg)
Pri
(a)
Ry
v;'um{

|
vi( Ré){w@i 1 (Pys1)

l‘i Ve, (Prn)

VJZ éRk) {w2| i
fo(m))ﬂ?% Vi, (Prs1)

varo {_1]
(b)

Figure 3. (a) The picture Py is obtained from picture P, by applying the induction hypothesis over /.
To simplify the figure, the vertical order of the vertices in the illustration does not coincide with the order
of V(R;)={L,...,rs}. (b) The tuple I)4; = {wi,...,w;} and the corresponding classes Vi, (P41) are drawn
according to the order of V(R/). NB It is rather cumbersome to draw the elements of (p/, R/)-tuples in their
correct order. For this reason we will refrain from having V(R/) vertically ordered in the next figures.

| Ve Bera) | V3 (Prr) | V5 Besd) || Vi (Pe) | V¥ (Prsn) |- [ Vi1 (Prt) | V2 (Pist) ]

—— — = N\ 4
N N . 28

qu(Pk;+1) VQq(Pk+1) qu(Pk+1)

Figure 4. The linearly ordered vertices of Py (from left to right) and both g- and r/-partitions. Note that
the ry-partition of Py is a refinement of its g-partition.

Constructing the family G (P;,1) < ( 1) part @
(unique monotone) isomorphism ¢ : V(P;) — V(P), set

G(P) = {¢(G) : G € G(Py)}.

For any P € Py © (Pk+1)Part(r,)’ given the

Define

G(Pey)= | J G(P). (2.7)

PEPit1
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Observe that there is a rich structure of copies of G in P4y which is inherited by the
many overlapping copies of Py in Pjyq.

We will now start the proof of the induction step over k. The proof is divided into
several claims, one for each of the conditions (K1)-(K4) of the induction over k (see
above).

Claim 2.5. Condition (K1) holds for Pyiy, namely, the projection map myyy is a homo-
morphism of Py into R, satisfying nx+1(G) € G, for every G € G(Pyy1).

We will start by showing that the projection map m;+; is @ homomorphism of Py ; into
R,. To this end we must prove that ;1 ((E(Pr+1)) < E(Ry).

By the induction hypothesis over Py, the projection 7w : V(Px) — V(R/) is a homo-
morphism. Consequently, the diagram (2.5) shows that for every P € Py, the map
Tk+1|v(e) 1s @ homomorphism of P into R, and thus m4((E(P)) = E(R/). Since by (3)x+1
we have E(Pi+1) = Upep,,, E(P), it follows that my1(E(Py+1)) = E(R/).

It remains to show that 7 ((G) € G, for every G € G(Px41) = Upepk+1 G(P). For any
G € G(P), P € Piyy, we have ¢~ 1(G) € G(P,), where ¢: V(P;) — V(P) is the unique
isomorphism. By the induction hypothesis (K1) over Py it follows that m (¢~ (G)) € G,.
Since the diagram (2.5) commutes,

1 (67 (G) = ms1 © $(¢(G)) = me11(G)
and thus m;41(G) € G,. This concludes the proof that (K1) holds for Py;.

Claim 2.6. Condition (K2) holds for Py, namely, G(Pyy1) < (Pkgl)part(q)'

First observe that for every P € Py < (P“ !

Py )Part(r/) we have VJ'”(P) < er/(Pk+1) for all

j=1,...,r,. Consequently,

(2.3),(2.6) (2.6)

U vieye U VP = ViPe) (2.8)
ueV/fl(R/) MEV;’(R/)

Vi(P)

forall j=1,...,q.

For all G € G(P) = (Z)Pm(q), we have V/(G) = V/(P) = V/(R,). It follows that
Pyyi
6Py = |J 9P < ( : ) |
PEG(Pi+1) Part(q)

Therefore the claim is proved.

Claim 2.7 (Auxiliary). If P',P? € Pi., are distinct and u € V(P') N V(P?), then myy1(u) €
I+1. Consequently, for each G € G(Pyy1) there is a unique P € Py such that G < P.

From condition (A)gs; there exist I{ eIgj), j=1,2, such that ueI!NnI2. From

diagram (2.5) we conclude that the isomorphism ¢;: V(Py) — V(P') satisfies m; =
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Tet1 © 1. Because I'' = ¢p71(1}) € W, we have

2.4
T (1) = s 0 (1) = ml1") = Iy,
Consequently, mq(u) € Ii41.
Since each G € G(Px41) is mapped by 7,41 onto a member of G, the projection must be
one-to-one over V(G). Therefore |m41 (V(G))| = |V(G)| > t and thus w1 (V(G)) & Ikt
It follows that V(G) ¢ V(P') N V(P?).

Claim 2.8. Condition (K3) holds for Piy1, namely, G(Py11) satisfies the intersection condi-
tions (A) and (B).

Let Gi,Gs € G(Piy1) be distinct and arbitrary. By Claim 2.7 there are unique P!,P? €
Pit1 such that G; = P/, j = 1,2. If P! = P? then the induction hypothesis over P! = P? =
Py implies that both conditions (A) and (B) hold for G; and G,. Hence let us suppose
that P! # P2,

Proof of (A). Since Py4q satisfies (A)xyq, it follows that for any u € V(G;) NV (G;) <
V(PY)N V(P?) there exist (ps.1,P’)-tuples I € Igj) j=1,2, such that u e I! NI2. Let
G; € G(P/) be such that Il e I, For each j = 1,2 we are going to obtain I/ € Zg, with
uel N>

First we show that there exists I' € Zg, such that u € I'. If G; = G|, we are done by
taking I' =I! so let us assume that Gy # G|. The induction hypothesis (K3) applied to
P! >~ P, implies that G(P!) satisfies condition (A): since u € V(G) N V(G}) there exists
I' € g, such that u € I' NI}, Similarly we find I?> € Zg, such that u € I> and hence
u € I' N 12, thus proving that condition (A) holds for G(Py1). O

Proof of (B). Suppose that there are two distinct u,v € V(G;) N V(Gy) < V(PY) NV (P?).
Condition (B),y+; applies to Piyq, implying that either (Bl)y4; or (B2)y4q holds for
u,v, P!, P2,

If (B1)x4; holds for u,v, P!, P?> we will show that (B1) holds for u,v, G', G. Consider the
(ps+1,P/)-tuples I € I(Plj-), Jj=1,2, such that w,v € I! NIZ. Let G; € G(P/) be such that
Hels, j=12

First we will show that there exists I' € Zg, such that u,v € I'. If G} = Gy, set I = I
Otherwise, observe that u,v € V(G;) N V(G}) and G;,G] € G(P'). We may now use the
induction hypothesis (K3) on P! = Py, which states that condition (B) holds for G(P'). In
particular, either (B1) applies and we immediately obtain I'! € Zg, satisfying u,v € I' N1},
or (B2) applies and the isomorphisms ¢y, 0] from Gy, G} to G are such that o1(u) = o7 (u)
and ¢1(v) = o} (v). However, in the latter case, set I' = o7! 0 6](I}) € Zg, and observe that
uvell.

In the same way we obtain I?> € Zg, such that u,v € I?, and thus establish that (B1)
holds for u,v, G', G2.

Consider now the case that (B2),4; holds for u, v, P!, P2, In other words, for the (unique)
isomorphisms ¢;: V(P/) = V(Px), j = 1,2, we have ¢(u) = ¢»(u) and ¢(v) = ¢2(v). Let

https://doi.org/10.1017/5096354831200003X Published online by Cambridge University Press


https://doi.org/10.1017/S096354831200003X

Distance Preserving Ramsey Graphs 567

G} = ¢;(G)) € G(Px), j = 1,2 and set x = ¢y(u), y = $1(v). Since x,y € V(G]) N V(G3) and
G(Py) satisfies condition (B), one of the following must hold.

o There exist I] € Ta;, j= 1,2, such that x,y € I} N1I2. Letting I/ = qﬁj‘l(lf) € Ig, for
j = 1,2, we have u,v € I' N I,. Hence condition (B1) holds for u,v, G, G.

e The isomorphisms ¢} : V(G}) = V(G) satisfy oj(x) = 03(x), o{(y) = a5(y). Since the
(unique) isomorphisms o, : V(G;) — V(G) satisfy

*
O-j = O-J © ¢j7
we have

a1(u) = a1($1(u)) = 0{(x) = 05(x) = 03(d2(u)) = 02(u)
and, similarly, o1(v) = o,(v). Consequently, condition (B2) holds for u,v, G!, G2.

This concludes the proof that G(Py.) satisfies condition (B). U]
Before showing that condition (K4) holds we will prove two auxiliary claims.

Claim 2.9 (Auxiliary). Suppose that P',P> € Piyq, u,v € V(P)NV(P?), d; = distpi(u,v)
and d, = distp2(u,v). Then either min{dy,d>} >/ + 1 or dy = d>.

Without loss of generality assume that P! # P%, d; = min{d,d,} </, and u # v. Since
Prs1 satisfies condition (B),. g, either condition (Bl),y; or condition (B2),,; applies to
u,v € VIPHY N V(P?).

Suppose first that (B2)c4; holds for u,v, P!, P%, namely, the isomorphisms ¢;: V(P/) —
V(Py) are such that ¢1(u) = ¢2(u) and ¢1(v) = ¢2(v). In this case, ¢ = ¢3! 0 ¢y : V(P') —
V(P?) is the isomorphism from P! to P2. Moreover, ¢ satisfies ¢(u) = u and ¢(v) = v. It
follows that

distpr (u,0) = distp(p(u), p(v)) = distps(u, v).

The equality in this case holds even for arbitrary distances dy, d>.

Suppose now that condition (B1)i4; holds for u,v, P!, P2, namely, there exist (p,41, P/)-
tuples I/ € Igj.) c (pf’i)’ j=1,2, such that u,v € I' N 12

Let G; € G(P/) be such that I/ € Zg, for j=1,2. By the induction hypothesis over
P/ = Py, the graph G; is (£ + 1)-metric in P/. In particular, distpi(u,v) = d; </ implies
that distg, (u,v) = d.

Recall that

Tt (1) = M1 (1) = I = {wi < wa < --- < w} = V(Ry).

In particular, mgiq(u) = w, and 71 1(v) = wy, for some 1 < a,b < t. Consequently, u is the
ath element of I/ (j = 1,2) and v is the bth element of I/ (j = 1,2). Because distg, (u,v) =
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di

/N
~

1% is a (pr41,Ga)-tuple

d; = distg, (u,v) = p(a, b) = distg, (u,v) > distp2(u,v) = dy = max{dy, d,}

I' is a (p/41,G1)-tuple
and thus d; = d,. Hence, Claim 2.9 follows.

Claim 2.10 (Auxiliary). Suppose that Gi,G; € G, and there are distinct u,v € V(Gy)N
V(Gs). Moreover, assume that there exists I' € Zg, such that u,v € I'. Then there exists
I? € Tg, such that u,v € I°.

If G; = G, then the claim is trivial, so let us assume the graphs are distinct. By
assumption, G, satisfies condition (B). If (B1) holds then the existence of I? is immediate.

If, on the other hand, (B2) holds, then the isomorphisms ¢;: V(G;) — V(G) satisfy
c1(u) = o2(u) and o(v) = 02(v). The map ¢ =35  oay: V(G)) = V(Gy) is clearly the
isomorphism from G to Gj. Since o(u) = u and a(v) = v, it follows that I> = o(I') € Zg,
satisfies the conditions of the claim.

Claim 2.11. Condition (K4) holds for Py, namely, every G € G(Pyy1) is (£ + 1)-metric.

For an arbitrary G € G(Px+1) and u,v € V(G) we will show the following.
(i) If distg(u,v) < ¢ then distp, , (u,v) = distg(u,v).
(i) If distg(u,v) > / + 1 then distp,, (u,v) = £ + 1.
The two conditions above imply that G is (/£ + 1)-metric in Py ;. Indeed, when distg(u,v) =
¢+ 1 we have

(ii)
{4+ 1 < distp,,, (u,v0) < distg(u,v) =74 + 1,

and equality holds. Consequently, for all u,v € V(G) we have distp,, (u,v) = distg(u,v)
whenever distg(u,v) < £+ 1 and distp,, (u,v) > £ + 1 whenever distg(u,v) > 7 + 1.

We start by proving (i). Assume that distg(u,v) < 7. If distp, ,, (u,v) < distg(u,v), consider
a shortest path P(u,v) in P,.y. The projection of this path, 7, 1(P(u,v)), is a trail in R,
starting at x = m.1(4) and ending at y = m;,1(v). Since G’ = m;11(G) € G, and i, is an
isomorphism between G and G/, it follows that distg/(x, y) = distg(u,v) < /. On the other
hand, the trail 7, ;(P(u,v)) shows that

distg, (x, y) < [r41 (P, 0))] < [P(u,v)]
= distp,, , (u,v) < distg(u,v) = diste(x, ). (2.9)

However, this contradicts the fact that G’ is /-metric in R,.
Now let us prove (ii). Suppose for the sake of contradiction that there exists a path
P(u,v) in Py with

[Pu,v)| </ and distg(u,v) >/ + 1. (2.10)

By Claim 2.7, there exists a unique P! € Py < (% such that G = PL.

Py )Part(r/)
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Fact 2.12. The path P(u,v) satisfies the following:

(a) P(u,v) ¢ P!,

(b) there is no internal vertex of P(u,v) in V(P'), hence E(P(u,v)) N E(P') =0,
() Tk 1(u), Th41(v) € Thyt,

(d) P(u,v) & P? for every P> € Pyy.

By the induction hypothesis over the picture P! = Py, the graph G must be (£ 4 1)-metric
in P!, and thus

distpr (u,0) = £ + 1. (2.11)

In particular, (a) holds, that is, the path P(u,v) cannot be entirely contained in P!.

Suppose that the path P(u,v) contains an internal vertex w € V(P!). Then the (non-
trivial) induced sub-paths P(u,w) and P(w,v) have length strictly shorter than /. Our
assumption that P! is /-metric in Py, implies that |P(u, w)| > distp: (1, w) and |P(w,v)| >
distp: (w,v). Therefore

\P(u,v)\ = |P(U,W)| + |P(st)‘ 2 diStP1 (U,W) + diStP1 (W,U)
(2.11)
> distpi(u,v) = £ +1, (2.12)

which contradicts the fact that |P(u,v)| < /. Therefore (b) holds.

Because of (b), the edge of the path incident to u, say e = {u, w}, must be contained in
some P> € Py, P? # P!, otherwise w would be an internal vertex of P(u,v). In particular,
u € V(P') N V(P?). From Claim 2.7 we conclude that 7, (1) € I;4;. For the same reason
we conclude that 7;11(v) € I;4+1 and therefore (c) holds.

To show that (d) is satisfied, suppose that P(u,v) = P> for some P> € P4, P? # Pl
Then d, = distp2(u,v) < /. From Claim 2.9 we conclude that

distpi (u,0) =dy = dy =/,

which contradicts (2.11). Therefore (d) holds.

We now return to the proof of Claim 2.11(ii). From (a)—(d) we conclude that the path
P(u,v) can be decomposed into sub-paths contained in at least two distinct copies of Py
in Pyyq. Therefore we may find vertices u = x1,x2,...,x, = v, r > 3, belonging to P(u,v)
such that each (non-trivial) sub-path P(x;,x;41), j = 1,...,r — 1, is entirely contained in
some P/t € Py, and P/ £ Pi+2 for j=1,...,r — 2 (see the illustration in Figure 5).

Note that each P(xj,x;11) has length at most /—1 since the sum of the
lengths of each sub-path equals |P(u,v)] < /. From Claim 2.7 and (c) we infer that
Ter1(X) € Ig1 = {wy <wp <+~ <wy} for j=1,...,r. For each j=1,...,r, let a; € [t]
be such that m1(x;) = wy,.

For every j=1,...,r — 1, the projection 7y (P(xj, Xj+1)) is a trail connecting w,; and
Wa;,, of length [P(x;,x;11)] </ — 1. Consequently, distg, (W, w,,,) <7 —1. Let Gy, €
gh/ c (%’)Pan(q) be such that Iiy1 € Zg, , < (Gp’/k:ll) Since Gy, is /-metric in Ry, it follows
that

diStG[k+1 (Wajawa,ur]) = diStR/(Wa/awaj+1) g |P(X]’ xj+1)| < {—1.
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(° L3\
\ [7]
\ X/

P2 P3

Figure 5. An illustration of a path P(u,v) and its sub-paths from case (ii) of Claim 2.11 with u = x{ and v = x4.
We also have t =4, a; = 3, ay = 1, a3 = 2 and a4 = 4. The vertex x3 is repeated because P* is wrapped around
and effectively intersects both P3 and P!. Note that G’ = m;+1(G) and that Gy, contains Iy ;.

Because Iy € (i’/k:]l

), we must have distG,kH (Waj> Wa;,,) = plaj,ajr1) and thus

r—1 r—1
Pw,v)] =Y [P(xj,xj41) = Y dista, _ (Waj Way,,)
j=1 j=1

r—1
= plaj.aj) > plar.ay). (2.13)
j=1

where in the last part we used the triangle inequality.

Let G’ = m41(G) € G,. Notice that w,, =mkq1(u), we, =mk41(v) € V(G') N V(Gy,,,). From
Claim 2.10 applied to G’ and Gj,,, we conclude that there exists I’ € Zg such that
Ways Wa, € I’ N I141. Moreover, by the induction hypothesis (over /) every graph in G, is
partite embedded into Ry, that is, G, (RG/)Pm(q). In particular, V(G), V{(Gy,.,) = V] (R/)
for all j=1,...,q. Because I c (WGH) is a t-partite hypergraph with classes {V/(G)}i_,,
it follows that Zg is t-partite with classes {V(G') = V}(R/)}i_; and Zg,,, is t-partite
with classes {V](Gy,,,) = V/(R/)}i_;. This ensures that both I" € Zg' and Iiy1 € T, are

crossing with respect to {VJ?(R/) ‘_,. Therefore, the a;th element in I’ is w,, and the
G/

a,th element in I' is w,,. Because I' € (.

p(alaal‘) < /
Since 74 is the isomorphism of G into G’ we have

) and p(aj,a,) < ¢, we have distg (wq,, Wa,) =

dista(u, v) = dista (Wa,, Wa,) = plar,a,) < 4,

which is a contradiction to the original assumption (2.10) that distg(u,v) > ¢ + 1. This
finishes the proof of Claim 2.11.
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Remark 2.13. A subtle point in the proof Claim 2.11(ii) is that while the copies of G in G,
are only guaranteed to be /-metric in Ry, for G',G?> € G, and u,v € V(G')N V(G?) — as in
Claim 2.9 — we have either distgi (u,v) = distg:(u,v) or min{distgi (1, v), distg: (u,v)} > £ + 1.
In other words, if distgi(u,v) =/ + 1 there may exist a path P(u,v) in R, of length / but
this path cannot be entirely contained in any G* € G,.

We have proved the induction step over k by establishing Claims 2.5, 2.6, 2.8 and 2.11.
In order to prove that

R/y1 =P, and G,y =G(Pp) (2.14)
satisfy the induction hypothesis for / + 1, it remains to show that (L1) and (L3) hold.
The property (L3) follows from (3),,, (3)m—1, - - -, (3)1 since every edge e € E(P,,) must

belong to some copy P° of Py, and thus e € E(G) for some G € G(P°) = G(Py) = Gra1.
More formally,

E(Rs41) = E(P,) = U E(mel)

pr-leP,
- U Uy
pm—1 €EPom pm—zepm 1(pm—l) P°e791 (pl)

= U U E@©
pm— 1 pO Geg pO)
= |J E@). (2.15)
GEG(Pm)

To prove® that the condition (L1) is satisfied by R,.; and G, we first show that
under certain assumptions on a colouring of Py one can obtain G € G(Py) with Zg
monochromatic. Our goal is then reduced to finding some P° = R/, P° = Py, which is
coloured in such a way.

Claim 2.14 (Auxiliary). Suppose that the tuples in Ueeg yZa are coloured in such a way
that the colour of any I € Ueeg (po) depends only on the pr0]ectlon no(l) € Ueeg,
Then there exists G € G(Py) with Zg monochromatic.

Under the assumptions of the claim there is an induced colouring of the tuples in
Ugeg, Zc given by assigning to each I’ € (Jgg, Zg the same colour of the tuples I €
Useg(p,) satistying no(I) =1".

By the induction hypothesis (L1) over R, and G,, there must be some G* € G, such
that Zg- is monochromatic under this induced colouring. By construction, G = n; 1(G*) is
contained in G(Py) (see Figure 2). Since the colour of any tuple I € Zg is given by the
colour of ny(I) € Zg, it is clear that Zg is monochromatic.

Claim 2.15 below establishes (L1).

3 This proof closely follows [18].
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Claim 2.15. For every 2-colouring of Ugeg,,, Za < (R’“) there exists some G € Gy11 such
that Ig is monochromatic.

Let a 2-colouring of Ueegm Zs be given. In view of Claim 2.14 we now look for a copy
P® = R/y1 such that the colouring of | Jg.gpo) Za satisfies the conditions of the claim.

Notice that because of (2.4) and (2.7), we have

JrcU Uzn- U %
PEP, PP, GEG(P) GeG(Pn)

Hence there is an induced 2-colouring of Jpcp, I('"fl) By property (1), there exist
some P"~! € P, such that Z\," ~V is monochromatic. Let n~1: V(P"!) - V(R,) be the
natural projection/homomorphism of P"~! onto R,. Notice that because P"~! = P, _;,
7D >~ 7m=1) and 7™~ is the map induced by m,_1, the definition in (2.4) translates to

Pm—l
ol = {1 e |J Zo:n"'D)= Im}. (2.16)
Geg(P’”—l)

Hence, the colour of all the tuples in (Jgcgpn-1)Z6 projecting onto I, is the same.
Applying property (1)1 to P"~! = P, _;, we obtain some graph P"* € P, _(P"') =
m—1 . . .

" 72)Part(r) such that Ié,',ﬁ 2 is monochromatic. As before, the projection 72 of P"~2

onto R, is such that

I,(:'Z 22 = {I S U IG . nm—2(1) = Im—l}'

Geg(Pm—2)

pm—1

Dy W€ have "% = n" oy, Since G(P"?) <
l?l

Moreover, because P"2 € (j,
G(P™1), from (2.16) we have

{I = U IG . nm—2(1) = Im} < Igz_ll)

GeG(P2)
By repeating this argument sequentially (invoking (1),_2,...,(1);) we obtain P"! >
P"2 5 ... 5 PY satisfying the following. For all k =0,..., — 1, the family Ig? is
monochromatic and

{1 e | Zo: n0(1)21k+1} <14,

Geg(PY)

where 7% = 7t![ypo) = -+ = 1| ypoy is the projection/homomorphism of P° onto R,.

Consequently, the colour of a tuple I € UGeg(PO) T depends only on its projection (I ).
This means that the assumptions of Claim 2.14 are satisfied by P°. The claim then yields
G € G(P%) = G/, such that Zg is monochromatic, thus proving that (L1) holds for R/,
and ng.

The conditions (K1)—(K4), which hold for R,y = P,, and G,+; = G(P,,), together with
(2.15) and Claim 2.15, establish that the induction hypothesis holds for Z + 1. Lemma 1.19
then follows by induction.
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3. The base of the induction

Here we state Lemma 3.1, the induction base of the proof of Lemma 1.19. The proof of
this lemma is based on an application of the Hales—Jewett theorem.

Lemma 3.1. Let t,q € N, t < q. Suppose that

e p is a fixed metric on [t],

e G is a g-partite (ordered) graph with partition V(G) = V{(G)U--- U Vi(G),

o forsome l<ji<p<-<ji<q Ic (g) is a t-partite t-uniform hypergraph with
classes {V;f(G)}le consisting of selected (p,, G)-tuples.

Then there exists a q-partite graph R and G < (2) ) satisfying the following properties.

Part(q
(L1) For any 2-colouring of the (p2, R)-tuples in | Jgcg Za, there exists G € G such that every
Is < (G) c (R) is monochromatic.
P2 P2
(L2) Every G € G is 2-metric in R.

(L3) E(R) = Ugeg E(G).
(L4) The family G satisfies conditions (A) and (B).

Remark 3.2. For the fixed (discrete*) metric p on [t], consider a graph F » With vertex set
[1] such that ij € F, if and only if p(x,y) = 1. With this definition we have (/?2) = FG)
ie., (ﬂGz) coincides with the set of all induced copies of F, in G.

Notice also that the fact that every G € G is 2-metric in R implies that G is an induced
subgraph of R. Indeed, by the definition, for all x, y € V(G), when distg(x, y) < 2 we must
have distg(x, y) = distg(x,y) and when distg(x,y) > 2 we must have distg(x,y) > 2. In
particular, xy € R if and only if xy € G.

Lemma 3.1 appears in [18] without explicitly stating condition (L4), which is needed
here for technical reasons to carry on the induction. For completeness we include in the
Appendix the proof of [18] modified to explicitly establish (L4).

4. Proof of Theorem 1.11

In this section we give a sketch of the proof of Lemma 1.10 and later use it to prove
Theorem 1.11 in Section 4.1. Since this proof is very similar to the proof of the induction
step in Lemma 1.19 (albeit simpler), we avoid repeating some details and instead refer
the reader to parts of the proof of Lemma 1.19 that present similar arguments. The main
difference between this proof and that of Lemma 1.19 is that here the ‘metric’ part of the
result follows rather trivially from our use of the Partite Lemma 1.19. On the other hand,
we are now able to partition (colour) all of (5) and not just a t-partite system.

Let H be a given connected graph on n vertices and let p be a metric on t elements.
Set N = R;(n), where R,(n) is the smallest number such that for every 2-colouring of the

complete ¢-uniform hypergraph (") there exists a monochromatic (%) with |S| = n.

4 Recall that all metrics in this paper are discrete.
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As in the proof of Lemma 1.19 we construct an N-partite graph Py consisting of disjoint
copies of H (see Figure 2). Set V(Po) = [N] x (™). For a set § € (M), let ¢s: V(H) — S
be the unique monotone map and set Hs to be a graph with vertex set S x {S} and edges
given by

{(¢s(x),8),(ds(¥),S)} : xy € H}.
Let

E(Po) = | E(Hs).
se(’))
Notice that Py is indeed the disjoint union of the copies of H in the family H(Py) = {Hs :
S € (")} Let my: V(Po) — [N] be the projection onto the first coordinate.

Define
Ho = {no(Hs) S e <[ZZ]>}

Hyio (Z) =i dnf = <[]j]>,

I““:{Ie <H) :n([):]}c<P°>.
HEE{.JPO) P ' 1 P

(Note that 7 is defined in a similar way as the hypergraph in (2.4).) Observe that the
t-uniform hypergraph Z©) is t-partite with respect to {VY(Po) = 75" (J)} jer,-

Set / = max{disty(x,y) : x,y € V(H)} < oo and apply Lemma 1.19 to the N-partite
graph P, (instead of a g-partite G) and the family Z©) (f: ‘/)) We then obtain the Ramsey

;’))Part(m for which (L1) and (L2) hold. In particular, (L2)
ensures that every P € P; is /-metric in P;. By our choice of 7/, this implies that every
H € H(P) is metric in P;.

In general, we obtain Py from Py, k =0,...,m— 1, by applying Lemma 1.19 to the

N-partite graph Py and the t-partite t-uniform hypergraph

W = {1 € U (H> s (1) =1k+1} c (P").
Herpy \P pe

The graph Py and the family g <= (7 ;:I)Part(N) we obtain are such that every H €

H(Piy1) = Upepk+I ‘H(P) is metric in P4y and mxq1(H) € Ho (where myiq @ V(Pry1) — [N]
is defined as the projection that maps every v € VJN(PkH) to jforall j=1,...,N).

Take R = P,, and H = H(P,) < (fl) Just as in Claim 2.15 one may show that in
any 2-colouring of ycsp,) (;') c (ﬁ) there exists a copy of Py in R, say P’ c R, such

Consider the hypergraph

and set

N-partite graph P; and Py < (

that the colour of a tuple I € (;') c (1;), H € H(P°), depends only on the projection
n°(I) € {I1,...,1,,}, where n°: V(P%) — [N] is the natural projection of P’ onto [N]. In
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particular, there is an induced 2-colouring of the tuples Iy,15,...,1, € ([[;’]). Extend this
induced 2-colouring to all of (1) arbitrarily.

By the definition of N, there must be a monochromatic (f) with |S| = n. Let H € H(P°)
be the (unique) graph such that 7%V (H)) = S. Since the colour of every I € (';) is the
same as the colour of 7n°(I) € (%), it follows that (';) is monochromatic. Moreover H is
metric in R = P,, since it belongs to H(P,,).

4.1. Proof of Theorem 1.11
By repeated applications of Lemma 1.10, we will obtain Theorem 1.11.

Let M = {p',....,p"} be the set of all metrics induced by ¢ vertices of H. Apply
Lemma 1.10 to Ry = H and p! to obtain a graph R;. After R; is constructed, 1 <i < m — 1,
obtain R;;; by applying Lemma 1.10 to R; and p'*!.

We claim that R = R,, satisfies the conditions of Theorem 1.11. Indeed, given any

2-coloulring of (V(ZR)), we can find a metric copy R"~! of R,_; in which every (p™, t)-tuple
Rlﬂ*
o . . . i

R™! < R such that R' = R; is metric in R and every (p'*',)-tuple in (pﬁl) has the

in (V) is coloured by c,. Iterating this argument yields a sequence R c R' = -+ <
same colour c¢;;;. The graph H = R® = H is metric in R and is such that (;',) c (R;;l) is
monochromatic (with colour ¢;) fori=1,...,m.

4.2. An unordered version of Lemma 1.10
We now address the question of what could be an ‘unordered version’ of Lemma 1.10.
Let (M, p) be a finite unordered metric space with |[M| =t and integer distances. For any
connected graph H, let (IZ ) be the set of all t-sets T < V(H) such that the metric spaces
(T,disty) and (M, p) are isometric.

Analogously to Proposition 1.3, one can show the following characterization of the
metric spaces (M, p) for which the class of unordered graphs with metric embeddings has
the (M, p)-Ramsey property.

Proposition 4.1. Let (M, p) be a finite metric space with integer distances. The following

Statements are equivalent.

(a) For any unordered connected graph H there exists an unordered graph R such that, for

any partition
R
( ) = A UA,,
p

there exists i € {1,2} and H € (})__ . satisfying

()=

(b) p is homogeneous, that is, there exists a positive integer ¢ such that for any pair of
distinct elements m,m' € M we have p(m,m’) = c.

https://doi.org/10.1017/5096354831200003X Published online by Cambridge University Press


https://doi.org/10.1017/S096354831200003X

576 D. Dellamonica and V. Rodl

The proof of (b) = (a) is a direct consequence of Theorem 1.11. Indeed, due to the
symmetry of homogeneous metrics the ordering is irrelevant.

The proof of (a) = (b) closely follows the arguments from [12] and [14] and therefore
we omit it.

Appendix A: Proof of Lemma 3.1

Before proving the lemma, we recall some definitions relevant to the Hales—Jewett theorem.

Suppose that 7 < (fz) is a t-partite t-uniform hypergraph with vertex set V and
classes V| = Vﬁ(G),...,V[ = V;f(G). Let 7" be the set of n-tuples of elements of Z. A
combinatorial line L in I" associated with a partition [n] = My UF;, M} # 0, and an
|Fp|-tuple (IF)er, € ' is given by

L={U.I,...,I,)€T" : I, =1 for r,s € My and I} = I} for k € F.}.

The set My is called the set of moving coordinates, while Fy is called the set of fixed
coordinates. Notice that every combinatorial line has precisely |Z| elements.
The Hales—Jewett theorem is stated as follows. For a proof, see for instance [7].

Theorem A.1 ([9]). For any integer r > 2 and finite set T there exists n such that in every
r-colouring of I" there exists a monochromatic line.

For our purposes it will be useful to interpret an element I € 7 as a vector with ¢
coordinates, where the jth coordinate is simply the unique vertex in I N V;. In this way,
an element in Z" may be viewed as a t x n matrix. Consequently, a line L of Z" may
be described as a collection of size |Z| consisting of ¢t x n matrices QF, I € Z, where the
columns of QF indexed by F;, are fixed and independent of I, while every column indexed
by M, is precisely I. For example, for n =4, M, = {1,2}, F = [4] \ M, = {3,4} and
L={(I1,1E1}) : I €T}, the elements of L are the matrices

I .
Qf =11 1 I+ Ik (A.1)
I .

foralll € 7.

Proof of Lemma 3.1. Suppose that G and 7 are given as in the statement of the lemma.
Let J = {ji,...,j:} be the set of indices with the property of the assumption, namely, Z is
a t-partite t-uniform hypergraph with classes {VJ‘-](G)} jes- Let n be given by Theorem A.1
(with r = 2) applied to Z. Let {Li,..., Ly} denote the set of all lines in Z"

Let W =J;czI and W; = V}(G)n W. (Notice that W; = 0 when j ¢ J.) The vertex
set of R is given by

V(R) = (IN] x (V(G)\ W) u| wy.

jeJ
The edge set of R will be defined later (see (A.3) below).
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In our construction, the family G will be in direct correspondence with the set of lines
in 7", namely, to each line L; there will be a corresponding G; € G. In order to guarantee
that G satisfies (A) we will have V(G;) \ Ulezej I ={j} x(V(G)\ W) for j=1,...,N.

For a line L, determined by the values (I ,f)k cF, of its fixed coordinates F,, we represent
Il = {I,f,j € W,}jes as a column-vector [I,f’j]je;. Let us define the map vy, : V(G) — V(R)
as follows:

(a,v) forve V(G)\ W,
Pa(v) = ¢ (v1,0,...,0,) forv e W;,j € J, where (A.2)
v, =v for k € M, and vy =I,f’j for k € F,.

Fix some I = {u; <up <--- <u,;} € Z. Because Z is t-partite with classes {V(G)}[_;, we
have u; € W, and thus y,(u;) is an n-tuple for all i = 1,...,t. Therefore, in view of (A.1)
and (A.2),

WPa(up)

Pa(uz)
Q[ “=yu(l) = .

Walur)
Indeed, the equality above is true because

e for k € M, we have y,(u;)r = u; for all i, and hence the kth column of the matrix on
the right is simply I,

o for k € F,, we have p,(u;)x = Ilg,j, for all i, and hence the kth column of the matrix on
the right is simply I}.

Observe that the rows of the matrices QIL“ correspond to vertices of R.
Claim A.2. The map v, : V(G) = V(R) is one-to-one.

Suppose for the sake of contradiction that two distinct u,v € Vf(G), 1<j<gq, are
such that y,(u) = yp,(v). We cannot have y,(u) = (a,u) since that would imply u = v.
Consequently, u,v € W; with j € J. Hence both y,(u) and y,(v) must be n-tuples such
that y,(u)y = u # v = Yy(v) for all k € M,. Therefore u cannot be distinct from v and
hence Claim A.2 holds.

Set
N

ER) = | J E(vd(G)) (A3)

a=1
and let G = {G, = ,(G) : a=1,...,N}. Observe that by our definition of G, (L3) follows
directly from (A.3).

We now must prove that the conclusions of the lemma hold for R and G. This will be
accomplished by the following steps.
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Step I. Define a total order on V(R) and a g-partition V(R) = V{(R)UV](R)U---U
V{(R) such that every p, is a monotone map satisfying p.(V}/(G)) = V/(R) for
every j.
Step II. Show that G satisfies the intersection conditions (A) and (B) and thus prove (L4).
Step I1I. Use Step II to show that every G, € G is an induced subgraph of R and thus
prove (L2).
Step IV. Show that the family G is Ramsey in R, namely, prove (L1).

Proof of Step I. For all j, define
Vf(R) = ([N] x (qu(G)\ W)) U W (A4)

Observe that V(R) = V{(R)U V;(R)U---U VJ(R). Moreover, it is simple to check that
wa(VJq(G)) c V;](R) for all j. Let us now define a total order on V(R) for which every
map v, is monotone. It is enough to define the order for each VJQ(R) since we require
VI(R) < V{(R) < -+ < VI(R).

For j ¢ J, we have W; =0 and thus V(R) = [N] x V/(G). Order the vertices lexico-
graphically and observe that for every a € [N], p,(v) < p,(w) if and only if v < w.

Since for j € J the class Vf(R) may contain both pairs and n-tuples as elements, our
ordering is somewhat more complicated than a simple lexicographical order on tuples.

Let f: VJQ(R) — V;’(G)” x {0,1,...,N} be defined as follows. For a tuple (vy,...,v,) €
Wi, set f(vt,...,v5) = (v1,...,00,0); for (a,v) € [N] X (Vf(G)\ W) set f(a,v) = (v1,...,04, ),
where vy = v for all k € M, and v, = I for all k € F,. The ordering on VJQ(R) is induced
by f and the lexicographic order on the image of f, namely, we set x < y if and only if
F(x) < f).

Let v,w € Vf(G) be such that v < w. By definition, for every a € [N], w.(v) < pu(w) if
and only if f(ya(v)) < f(ya(w)). Since f(pa(V) = f(pa(w) = I{; for every k € F,, the
first coordinate where the elements f(y,(v)) and f(y4(v)) differ is in M,. On the other
hand, for k € M, we have

FWa@e = v <w = f(a(W)-

We conclude that f(y,(v)) < f(p.(w)) if and only if v < w. Hence p,(v) < p,(w) if and
only if v < w.

Proof of Step II. Suppose that x € V(G,) N V(Gp) with a # b. We must have x € wi
for some j € J since otherwise for some v € V(G)\ W, we have x = (a,v) = (b,v) which
contradicts a # b. It follows therefore that v, (x), ;' (x) € W;. Since W; = W = ;. 1,
there exists I),I; € T such that w;!(x) €1, and y;!(x) € I;. Consequently, x € I, =
wa(l}) € Zg, and x € I, = y(I;) € Zg,. This establishes the intersection condition (A) for
members of G.

Now let us prove condition (B). Suppose that there are distinct x = (xy,...,X,),y =
(V1525 yn) € V(Ga) NV (Gp), a # b.
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We distinguish between two cases:

(ii)) M, " My = 0 (then M, = F, and M, < F,).

Suppose first that (i) holds and fix k € M, N M,. We have v, !(x) = x, = p; '(x),
and similarly y;!(y) = w;l(y). Consequently, in this case condition (B2) holds as the
isomorphisms o, =y, !: V(G,) = V(G) and o, =y;': V(Gy) = V(G) satisfy g,(x) =
op(x) and a4(y) = op(y).

Now suppose that (ii) holds; in particular, we must have M, < F, and M, < F,. Let
(I¢ = U 1jes)yep, and (I7 = [I{;1jes) o, be the tuples of fixed elements that define the
lines L, and L, respectively. Let j, j/ € J be such that x € Wi and y € Wj.

For k € M, = F,, (A.2) implies that

-1 keM, keFy +p
v, (X)) ="xc ="I;

and similarly v, ! (y) = yx = I} ;. In particular, {y,'(x), 9, ' (v)} = (I, I} ;} = I} € T. Let
1, = pa(I}) € Tg, and notice that

(v} =va({w; ' (x)w ') < wa(IY) = I

A symmetric argument yields I, € Zg, such that {x,y} € I,. Hence, condition (B1) follows.
To summarize, case (i) implies condition (B2) and case (ii) implies condition (B1).

Proof of Step III. Let G, € G be arbitrary. To prove that G, is an induced subgraph of R,
we must check that for every pair of distinct x,y € V(G,), if x,y € V(Gp) for some b # a,
then {x,y} € G, if and only if {x,y} € Gj. Since x,y € V(G,) N V(Gp), we may invoke the
intersection properties of G proved in Step II.

If condition (B2) holds, the unique isomorphisms ¢,, a5 of G,, G into G satisfy g,(x) =
op(x) and o,(y) = op(y). Since o, is an isomorphism, {x,y} € G, if and only if e=
{64(x),04(y)} € G. Similarly, {x,y} € G, if and only if ¢ = {o4(x),04(y)} € G. Because
e = ¢, we infer that {x,y} € G, if and only if {x,y} € Gp.

If condition (B1) holds, let I, € Zg, and I, € Zg, be such that x,y € I, NI. Let j., js €
J (1<r,s<t) be such that x € V/(R) and y € V/(R). Because I, € (‘3;), it follows
that distg,(x,y) = p(r,s) whenever p(r,s) < 2 and distg,(x,y) > 2 whenever p(r,s) > 2.
In particular, {x,y} € G, if and only if p(r,s) = 1. Similarly, {x,y} € G, if and only if
p(r,s) = 1. Therefore {x,y} € G, if and only if {x,y} € Gy.

Proof of Step IV. We will now show that for any 2-colouring of the (p;, R)-tuples in
Ugeg Za there exists G € G such that every t-tuple in Zg < (;) is monochromatic. It will
be convenient to assume that all t-tuples in VZ (R) x -+ X V;Z(R) are coloured.

Consider Q = (Iy,...,1,) € Z" as a t X n matrix with columns I4,...,I,. The kth row of
the matrix is in V;Z(R) (recall that J = {ji,...,ji}). In particular, Q is in correspondence
with a t-tuple of V;i(R) X X V]ff(R). Define the colour of Q as the colour of the
corresponding t-tuple.
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By the Hales—Jewett theorem, there is a monochromatic line L,, a € [N], in such
a colouring. It follows that G = G, is such that Zg is monochromatic. Indeed, every
t-tuple y,(I) € Zg,, I € Z, corresponds to the matrix QIL“ contained in the line L,
(see (A.2)). ]

Appendix B: Induction hypotheses (reprise)

Induction over /: Hypothesis for R, and G,. For a g-partite graph G, a metric p on [f]

and a t-partite t-uniform hypergraph 7 < (pG/), there is a graph R, = R/(q, G, p,Z) and

G
(L3) E(R/) = Ugeg, E(G).

Moreover, G, satisfies the conditions (A) and (B) below.

G, =G/(q,G,p,T) c (R/)Part(q) satisfying conditions (L1) and (L2) of Lemma 1.19 and

Intersection conditions for a family G of copies of G.

(A)If Gi,G, € G and u € V(Gy) N V(Gy), then there are (p,, Gj)-tuples e Ts;, j=1,2,
such that u e I' N 12
(B)If G1,G, € G and u,v € V(G;) N V(Gy), then either

(B1) there exist (p,, Gj)-tuples I/ € Zg,, j = 1,2, such that {u,v} = I' N I* or
(B2) the (unique) isomorphisms ¢;: V(G;) = V(G), j= 1,2, satisty o1(u) = o2(u)
and g1(v) = a;3(v).

Induction over k: Hypothesis for P; and G(P;).

(K1) The picture Py is r,-partite with classes V]'-A’(Pk), j=1,...,r,. The projection map
e V(Pg) = V(Ry) = [r/] given by m(x) = j if and only if x € V;"(Py) is a homo-
morphism of Py into R,. Moreover, n;(G) € G, for every G € G(Py).

(K2) The family G(Py) is contained in () p,.q, -

(K3) The family G(Py) satisfies conditions (A) and (B).

(K4) Every G € G(Py) is (£ + 1)-metric in Py.

(1)g+1 For every 2-colouring of the (p,, Pr4+1)-tuples in Upepk+1 Ig‘), there exists P € Py
such that I,f.,") c ( P ) c (P ;j‘) is monochromatic (recall that the hypergraph Z,g")

Pr+1
is an isomorphic copy of Z®) in P).

(2)k+1 Every P € Py is /-metric in Pjy;.
k+1 E(Pes1) = Upep,., E(P).

(A)iy1 If P1,P? € Py are distinct and u € V(P') N V(P?), then there are (p/1, P/)-tuples
ez, j=1,2 such thatue 1! n12.
(B)gy1 If P1,P? € Py are distinct and u,v € V(P') N V(P?), then either

k+1 there exist (p/+1, )-tuples '*'E 7, j=1,2, such that {u,v} < I, NI; or
(B1)ks1 th ist (p/11, P)-tuples I € I, j = 1,2, such that {u,0} = I} N2

J

(B2)i41 the isomorphisms ¢;: V(P/) = V(Py), j = 1,2, satisfy ¢;(u) = ¢>(u) and
$1(v) = pa(v).
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