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Distance Preserving Ramsey Graphs
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We prove the following metric Ramsey theorem. For any connected graph G endowed with

a linear order on its vertex set, there exists a graph R such that in every colouring of the

t-sets of vertices of R it is possible to find a copy G∗ of G inside R satisfying:

• distG∗ (x, y) = distR(x, y) for every x, y ∈ V (G∗);
• the colour of each t-set in G∗ depends only on the graph-distance metric induced in G

by the ordered t-set.

AMS 2010 Mathematics subject classification: Primary 05C55

1. Introduction

In [2], [4] and [22, 23] the following extension of the Ramsey theorem was proved.

Theorem 1.1. For any graph G there exists a graph R with the property that in any 2-

colouring of the edges of R there exists an induced copy G ⊂ R which is monochromatic.1

In other words, Theorem 1.1 states that the class of all graphs and induced embed-

dings has the edge-Ramsey property. This theorem, proved in 1973, together with some

generalizations and other related results that soon followed, gave rise to the study of

the restricted/induced/sparse family of Ramsey theorems (for a survey on these topics

see [5, 15]).

† Supported by a CAPES/Fulbright scholarship.
‡ Partially supported by NSF grant DMS0800070.
1 For a graph G, we will use G (typeset in a sans serif font) to denote an isomorphic copy of G.
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Remark 1.2. For simplicity we state Ramsey theorems only for 2-colourings, when in

fact it is straightforward to extend them to an arbitrary number of colours by applying

the 2-colour version inductively.

Theorem 1.1 was generalized by Deuber [3] and Nešetřil and the second author [12] in

the sense that the same statement remains true if the colouring of edges (K2) is replaced

by the colouring of cliques (Kk) or induced independent sets (Kk). Moreover, Theorem 1.1

fails to be true if one colours copies of an arbitrary non-homogeneous graph F . More

formally, for any graph F �= Kk,Kk there exists G such that, for every graph H , there is a

2-colouring of the set of all induced copies of F in H such that no induced copy G in H

is monochromatic (that is, there must be induced copies of F in G of both colours).

With terminology used in [10] this can be rephrased as follows.

Proposition 1.3. The class of graphs and induced embeddings has the F-Ramsey property

if and only if F is a complete graph or an independent set.

Let us show by means of a simple example that for non-homogeneous unordered graphs

F , the class of (unordered) graphs and induced embeddings does not have the F-Ramsey

property. Consider the graph F = P2, the path with two edges. Let G = C4 be the cycle

of length four and let R be an arbitrary graph. We will now introduce a 2-colouring of

the (unordered) induced copies of P2 in R. First, label the vertices of V (R) with integers

1, 2, . . . , |V (R)|. For a path ijk of length two in R, colour ijk red if the middle vertex j is

the smallest of the three (j < i and j < k); otherwise, colour it blue. Under this colouring,

any induced copy of G = C4 in R must contain P2 of both colours. Indeed, among the

four vertices of the C4, the smallest vertex is the middle vertex of a P2 coloured red and

the largest vertex is the middle vertex of a P2 coloured blue.

However, it was shown by Nešetřil and Rödl [12] that if one considers graphs with

linearly ordered vertex sets and induced monotone embeddings then the theorem becomes

true for all graphs (F,<). This is stated in Theorem 1.6 below.

Remark 1.4 (Ordered graphs). Since our result deals with an extension of Theorem 1.6,

in this paper we typically assume (as in [1] and [13]) that each graph has a linear order on

its vertex set. The example we described above (colouring P2) shows that this assumption

is crucial. All maps between ordered vertex sets are considered to be monotone, that is,

φ(u) < φ(v) whenever u < v. In particular, all isomorphisms between ordered graphs are

unique.

Definition 1.5 (Subgraphs). We say that the graph G is an induced subgraph of the graph

H (we write G ⊂ H) if V (G) ⊂ V (H), E(G) = {e ∈ E(H) : e ⊂ V (G)} and the order <G

in V (G) respects the order <H in V (H), that is, for every u, v ∈ V (G) we have u <G v if

and only if u <H v.

To avoid cumbersome notation, we will omit the linear orders <H , <G and denote by(
H
G

)
ind

the set of all induced subgraphs of H which are (monotone) isomorphic to G.
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With this definition we may now state the Ramsey theorem for graphs with monotone

induced embeddings.

Theorem 1.6 ([1, 13]). For any ordered graphs F and G there exists an ordered graph R

such that, for any partition (
R

F

)
ind

= A1 ∪ A2,

there exists some G ∈
(
R
G

)
ind

such that
(
G
F

)
ind

⊂ Ai for some i ∈ {1, 2}.

In other words, Theorem 1.6 states that the class of ordered graphs and induced

monotone embeddings has the (F,<)-Ramsey property for any ordered graph (F,<).

Remark 1.7. If a class K endowed with a set of embeddings has the K-Ramsey property

for all K ∈ K it is called a Ramsey class (see, for instance, [6]). Theorem 1.6 shows that

the class of ordered graphs with induced monotone embeddings is a Ramsey class. See

[5], [6], [7], [11], [17] and [20] for other examples of Ramsey classes, such as

• finite partially ordered sets (with a fixed linear extension),

• finite vector spaces (over a fixed field F),

• finite labelled partitions,

• finite linearly ordered metric spaces.

Another way to refine Theorem 1.1 is to consider distance preserving embeddings

rather than induced ones. (Distance preserving embeddings have been considered in other

contexts, for instance, in [8, 24].) For ordered graphs R and G, let G ∈
(
R
G

)
ind

be fixed. If,

for all x, y ∈ V (G) ⊂ V (R),

distG(x, y) = distR(x, y), (1.1)

then G is called a metric copy of G in R and the (unique) monotone isomorphism

φ : V (G) → V (G) ⊂ V (R) is called a distance preserving embedding of G into R. Denote

by
(
R
G

)
metric

the set of all metric copies of G in R. Notice that
(
R
G

)
metric

⊂
(
R
G

)
ind

.

The following theorem is a consequence of our main result, Theorem 1.11.

Theorem 1.8. For any ordered connected graphs F and H there exists an ordered graph R

such that, for any partition (
R

F

)
metric

= A1 ∪ A2,

there exists some H ∈
(
R
H

)
metric

such that
(
H
F

)
metric

⊂ Ai for some i ∈ {1, 2}.

In effect, Theorem 1.8 shows that the class of ordered connected graphs with metric

embeddings is also a Ramsey class. Our proof of Theorem 1.8 will use a slightly more

general setting.
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A discrete metric ρ on the set [t] = {1, 2, . . . , t} is a symmetric function ρ : [t]2 → N ∪ {∞}
satisfying: ρ(i, j) = 0 if and only if i = j, and the triangle inequality,

ρ(i, j) + ρ(j, k) � ρ(i, k).

In this paper, the metrics considered correspond to the distance given by shortest paths

in a graph. For instance, the metric of a clique would satisfy ρ(i, j) = 1 for all i �= j and

the metric of an empty graph would satisfy ρ(i, j) = ∞ for all i �= j.

Definition 1.9 (Metric induced by a set; (ρ, G)-tuples). Let G be an ordered graph and

let S = {v1, . . . , vt} ⊂ V (G), v1 < v2 < · · · < vt, be an arbitrary set. The metric ρ induced by

S in G is given by ρ(i, j) = distG(vi, vj).

Let ρ be a fixed metric. A set S which induces the metric ρ in G is called a (ρ, G)-tuple.

The set of all (ρ, G)-tuples of G is denoted
(
G
ρ

)
.

We prove a slightly stronger statement from which Theorem 1.8 is derived as a corollary.

Lemma 1.10. Let t ∈ N, ρ be a metric on [t] and H be an ordered connected graph. Then

there exists an ordered graph R such that, for every 2-colouring of
(
R
ρ

)
, there exists H ∈(

R
H

)
metric

such that
(
H
ρ

)
is monochromatic.

We now derive Theorem 1.8 from Lemma 1.10 as follows. Let F and H be given ordered

graphs. Take t = |V (F)|, and without loss of generality assume that V (F) = [t] (with the

usual order <). Let ρ be the metric corresponding to distF , namely, ρ(i, j) = distF (i, j).

We first obtain an ordered graph R from Lemma 1.10 applied to H and ρ. We claim

that the graph R has the Ramsey property of Theorem 1.8.

Notice that
(
R
F

)
metric

∼=
(
R
ρ

)
since the vertex set of a metric copy of F is necessarily a

(ρ, R)-tuple. Consequently, we can view any colouring χ of
(
R
F

)
metric

as a colouring of
(
R
ρ

)
.

By the hypothesis on R, there exists a graph H ∈
(
R
H

)
metric

such that every (ρ,H)-tuple

has the same colour c under χ. For every F ∈
(
H
F

)
metric

the set V (F) is a (ρ,H)-tuple, and

therefore χ(F) = c. It follows that
(
H
F

)
metric

is monochromatic.

In Section 4 we prove Lemma 1.10 and use it to establish our main result, Theorem 1.11.

Theorem 1.11. Let t ∈ N and H be a connected ordered graph.

There exists an ordered graph R with the following property. For every 2-colouring of(
V (R)
t

)
there exists H ∈

(
R
H

)
metric

such that
(
H
ρ

)
is monochromatic for every metric ρ on [t].

After fixing connected graphs H and F , note that Theorem 1.8 asserts that colouring all

metric copies of F in R yields a monochromatic
(
H
F

)
metric

. On the other hand, Theorem 1.11

applies to all subgraphs of H on t vertices (even those which are not connected). It

guarantees that there exists a copy of H in which the colour of a t element subgraph

depends only on its metric within H .

Note that Theorem 1.11 extends Theorem 1.8.
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Remark 1.12. The particular case t = 2 of Theorem 1.11 implies that for any connected

graph H it is possible to find some graph R such that every colouring of the pairs in(
V (R)

2

)
yields a metric copy H ∈

(
R
H

)
metric

in which the colour of {x, y} ∈
(
V (H)

2

)
is a function

of distH(x, y). (In particular, the edges of H are monochromatic.) This special case t = 2

was stated in the survey [15].

Remark 1.13. Notice that for t = 2 the linear order on the vertices is irrelevant. In

Section 4.2 we show a version of Lemma 1.10 that can be applied to unordered graphs

(provided that the metric is ‘homogeneous’).

Definition 1.14 (ρ�-metric sets and (ρ�, G)-tuples). Let �, t ∈ N be fixed and let ρ be a

metric on [t]. Let H = (H,<) be a graph and let S = {v1, v2, . . . , vt} ⊂ V (H) be a set with

v1 < v2 < · · · < vt. We say that S is ρ�-metric with respect to H if, for all 1 � i < j � t,

• distH (vi, vj) = ρ(i, j) whenever ρ(i, j) � �,

• distH (vi, vj) � � whenever ρ(i, j) > �.

A set S as above is called a (ρ�,H)-tuple. We denote by
(
H
ρ�

)
the family of all (ρ�,H)-tuples

of H .

A graph G naturally induces a metric ρ(G) over its vertices by defining the distance

between pairs of vertices as the length of a shortest path connecting them (when the pair

is not connected, their distance is ∞).

Definition 1.15 (�-metric (sub)graph). For a graphs G ⊂ R, the graph G is said to be

�-metric in R if V (G) is ρ(G)�-metric with respect to R. A connected graph G is metric in

R if it is �-metric in R for all �, namely, distG(x, y) = distR(x, y) for every x, y ∈ V (G).

Notice that G is �-metric in R if no pair of vertices in G admits a shortcut path in R

of length smaller than �. For instance, G is 2-metric in R if and only if it is an induced

subgraph of R.

Recalling that all vertex sets are linearly ordered, for A,B ⊂ V (G) we will write A ≺ B

if max(A) < min(B).

Definition 1.16 (q-partite graphs). For q � 2, the graph G together with the linear order

< on V (G) and a partition V (G) = V
q
1 (G) ∪ · · · ∪ Vq

q (G) is called q-partite if

• every edge e ∈ G is crossing, that is, |e ∩ Vq
i (G)| � 1 for all i = 1, . . . , q,

• the partition satisfies Vq
1 (G) ≺ V

q
2 ≺ · · · ≺ Vq

q (G).

Definition 1.17 (Partite embedding/isomorphism). If G and H are ordered q-partite

graphs, a partite embedding is an injective monotone map φ : V (G) → V (H) which is

edge preserving (φ(e) ∈ E(H) for all e ∈ E(G)) and satisfies φ(Vq
j (G)) ⊂ V

q
j (H) for all

j = 1, . . . , q. If, in addition, φ is an isomorphism then we call it a partite isomorphism.

Definition 1.18 (Notation). We will use the following notation.
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• For a (hyper)graph G we abuse the notation and write e ∈ G to denote e ∈ E(G).

• For a (hyper)graph G and a one-to-one map φ : V (G) → X, set

φ(G) =
(
φ(V (G)), {φ(e) : e ∈ G}

)
.

• For q-partite graphs G and H we denote by
(
H
G

)
Part(q)

the set of all subgraphs φ(G) of

H , where φ : V (G) → V (H) is a partite embedding.

• If G is an isomorphic copy of G with (unique) monotone isomorphism σ : V (G) → V (G)

and I is a hypergraph with V (I) ⊂ V (G), then we denote by IG the hypergraph σ(I).

Lemma 1.19 below is a technical result which will be used in the proof of our main

result, Theorem 1.11.

Lemma 1.19 (Partite Lemma). Let �, t, q ∈ N, t � q. Suppose that

• ρ is a fixed metric on [t],

• G is a q-partite (ordered ) graph with partition V (G) = V
q
1 (G) ∪ · · · ∪ Vq

q (G),

• for some 1 � j1 < j2 < · · · < jt � q, I ⊂
(
G
ρ�

)
is a t-partite t-uniform hypergraph with

classes {Vq
ji
(G)}ti=1 consisting of selected (ρ�, G)-tuples.

Then there exists a q-partite ordered graph R and G ⊂
(
R
G

)
Part(q)

satisfying the following

properties.

(L1) For any 2-colouring of the (ρ�, R)-tuples in
⋃

G∈G IG, there exists G ∈ G such that

IG ⊂
(

G
ρ�

)
⊂

(
R
ρ�

)
is monochromatic.

(L2) Every G ∈ G is �-metric in R.

Remark 1.20. Note that
⋃

G∈G IG is a t-partite t-uniform hypergraph with classes {Vq
ji
(R)}ti=1.

This is because by the definition of
(
R
G

)
Part(q)

every G ∈ G ⊂
(
R
G

)
Part(q)

is the image of G

under a partite embedding into R (and thus Vq
j (G) ⊂ V

q
j (R) for all j = 1, . . . , q).

Moreover, it will follow from our proof that for any pair of distinct G,G′ ∈ G we have

V (G) ∩ V (G′) ⊂
⋃t
i=1 V

q
ji
(R).

The proof of Lemma 1.19 uses the partite construction method, which was introduced by

Nešetřil and Rödl [16], and has been a successful tool for proving the existence of several

Ramsey structures such as metric spaces [11], systems of sets [19], Steiner systems [18],

etc. Perhaps a novelty here is that the Partite Lemma, which was usually proved using the

Hales–Jewett theorem directly, is proved here by induction using the partite construction

as well.

2. Proof of Lemma 1.19

We will prove a slightly stronger statement by double induction. The main induction is

over �. The base case (� = 2) is presented in Section 3 (Lemma 3.1). In this section we

will prove the induction step from � to �+ 1. For easy reference, we describe in detail the

induction hypotheses below (these are repeated in Appendix B for the reader who wishes
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to keep on hand the extensive list of hypotheses satisfied by the graphs and families of

graphs constructed here).

Remark 2.1. The somewhat complicated intersection conditions (A) and (B) below, serve

the purpose of imposing useful constraints on how the copies in the family may intersect

while at the same time being weak enough to be carried by the induction. The condition

(B) is later used to guarantee that when two vertices are shared by two copies then the

distances with respect to each copy are ‘compatible’. More precisely, if we wish to obtain

a family of �-metric subgraphs then it is obvious that any pair of vertices at distance

�′ < � in some copy should not have distance �= �′ in another copy.

Induction over �: Hypothesis for R� and G�. For a q-partite graph G, a metric ρ on [t]

and a t-partite t-uniform hypergraph I ⊂
(
G
ρ�

)
, there is a graph R� = R�(q, G, ρ, I) and

G� = G�(q, G, ρ, I) ⊂
(
R�
G

)
Part(q)

satisfying conditions (L1) and (L2) of Lemma 1.19 and

(L3) E(R�) =
⋃

G∈G� E(G).

Moreover, G� satisfies the conditions (A) and (B) below.

Intersection conditions for a family G of copies of G.

(A) If G1,G2 ∈ G and u ∈ V (G1) ∩ V (G2), then there are (ρ�,Gj)-tuples Ij ∈ IGj
, j = 1, 2,

such that u ∈ I1 ∩ I2.

(B) If G1,G2 ∈ G and u, v ∈ V (G1) ∩ V (G2), then either

(B1) there exist (ρ�,Gj)-tuples Ij ∈ IGj
, j = 1, 2, such that {u, v} ⊂ I1 ∩ I2 or

(B2) the (unique) isomorphisms σj : V (Gj) → V (G), j = 1, 2, satisfy σ1(u) = σ2(u)

and σ1(v) = σ2(v).

Remark 2.2. The condition (B2) above is an artifact of the induction base, which is then

propagated by induction. It should be possible to prove a stronger base assumption which

would entirely eliminate the need for (B2). This would simplify the proof of the induction

step at the cost of making the base case more involved.

Given q, G, ρ and I ⊂
(
G
ρ�+1

)
⊂

(
G
ρ�

)
as in the statement of the lemma, we obtain

R� = R�(q, G, ρ, I) and G� = G�(q, G, ρ, I) from the induction hypothesis over �. Our goal

is to construct R�+1 and G�+1 satisfying the hypothesis for �+ 1.

Consider the family

⋃
G∈G�

IG = {I1, I2, . . . , Im} ⊂
(
R�

ρ�

)
. (2.1)

This family is a t-partite t-uniform hypergraph with partition {Vq
ji
(R�)}ti=1 (see Figure 1).

We will construct a sequence of |V (R�)|-partite graphs P0, P1, . . . , Pm, which we will call

pictures,2 and families G(Pk) ⊂
(
Pk
G

)
Part(q)

, k = 0, 1, . . . , m. We will then show that R�+1 = Pm

2 The name ‘pictures’ has been used before, e.g., in [21].
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Figure 1. An illustration of R� and G ∈ G�. Here we assume t = 3, j1 = 1, j2 = 2 and j3 = 3. The triples

of (2.1) are represented by the crossing triangles.

(a) (b)

Figure 2. (a) P0 is a disjoint union of copies of G where each copy is projected by π0 into a copy of G in G�.
(b) P0 with its coarse q-partition and the refined r�-partition (see (2.2) and (2.3)). Notice that the copies of G

are partite embedded in the q-partite graph P0 (see Definition 1.17).

and G�+1 = G(Pm) satisfy conditions (L1), (L2), (L3), (A), and (B). This will establish the

induction step and conclude the proof of Lemma 1.19.

Let us start by constructing P0 (see Figure 2). For convenience, let r� = |V (R�)|. For

each u ∈ V (R�), let

V r�
u (P0) = {(u,G) : G ∈ G�, V (G) � u}. (2.2)

Recalling the total order on V (R�) we may assume in fact that V (R�) = {1, 2, . . . , r�}. We

then impose a total order in V (P0) that satisfies V r�
j (P0) ≺ V r�

j+1(P0) for all j = 1, . . . , r� − 1.
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The edges of P0 are of the form {(u,G), (w,G)}, where uw ∈ E(G), G ∈ G�. Notice that

the r�-partition of P0 given by (2.2) is indeed such that every edge of P0 is crossing. We set

G(P0) to be the set of copies of G in correspondence with G�. In particular, |G(P0)| = |G�|.
Moreover, the projection π0(u, G) = u defines a monotone homomorphism from P0 to R�.

Assuming that the hypothesis holds for some � � 2, we will now describe the induction

over k.

Induction over k: Hypothesis for Pk and G(Pk).

(K1) The picture Pk is r�-partite with classes V r�
j (Pk), j = 1, . . . , r�. The projection map

πk : V (Pk) → V (R�) = [r�] given by πk(x) = j if and only if x ∈ V r�
j (Pk) is a homo-

morphism of Pk into R�. Moreover, πk(G) ∈ G� for every G ∈ G(Pk).

(K2) The family G(Pk) is contained in
(
Pk
G

)
Part(q)

.

(K3) The family G(Pk) satisfies conditions (A) and (B).

(K4) Every G ∈ G(Pk) is (�+ 1)-metric in Pk .

Claim 2.3. The graph P0 satisfies the induction hypothesis for k = 0.

Since the copies of G in P0 are vertex-disjoint (and thus metric) and are projected by

π0 into copies of G in R� it is clear that (K1), (K3) and (K4) hold for P0 and G(P0). It

remains to check (K2), namely, that G(P0) is contained in
(
P0

G

)
Part(q)

.

We now observe that the q-partition of V (P0) may be expressed in terms of π0 as

V
q
j (P0) = π−1

0 (Vq
j (R�)) =

⋃
u∈Vq

j (R�)

V r�
u (P0) (2.3)

for j = 1, . . . , q (see Figure 2). For every G ∈ G(P0), we have G′ = π0(G) ∈ G�. From the

induction hypothesis over � we have G ∈ G(P0) ⊂
(
R�
G

)
Part(q)

, and hence the isomorphism

σ : V (G) → V (G′) must be a partite isomorphism. Then π−1
0 ◦ σ : V (G) → V (G) is a partite

isomorphism of G into G by our choice of Vq
j (P0), j = 1, . . . , q.

Hence P0 satisfies the induction hypothesis for k = 0 and Claim 2.3 is proved.

Suppose that Pk , G(Pk), and πk , k � 0, are constructed and satisfy the induction

hypothesis. Since every G ∈ G(Pk) is (�+ 1)-metric in Pk , it follows that IG ⊂
(

G
ρ�+1

)
⊂

(
Pk
ρ�+1

)
for every G ∈ G(Pk). Define

I (k) =

{
I ∈

⋃
G∈G(Pk)

IG : πk(I) = Ik+1

}
⊂

(
Pk

ρ�+1

)
, (2.4)

where the (ρ�, R�)-tuple Ik+1 = {w1, w2, . . . , wt} is the (k + 1)th tuple from (2.1).

Observe that by construction, I (k) is a t-partite t-uniform hypergraph. Indeed, every

tuple in I (k) is crossing with respect to the sets {π−1
k (u) = V r�

u (Pk)}u∈Ik+1
. To construct Pk+1

we invoke our induction assumption over � with

• r� in place of q,

• Pk in place of G,

• I (k) ⊂
(
Pk
ρ�+1

)
⊂

(
Pk
ρ�

)
in place of I .
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We then obtain the graph Pk+1 = R�(r�, Pk, ρ, I (k)) and a family Pk+1 = G�(r�, Pk, ρ, I (k)) ⊂(
Pk+1

Pk

)
Part(r�)

satisfying conditions (L1), (L2), (L3), (A) and (B). More specifically, the

following holds.

(1)k+1 For every 2-colouring of the (ρ�, Pk+1)-tuples in
⋃

P∈Pk+1
I (k)

P , there exists P ∈ Pk+1

such that I (k)
P ⊂

(
P

ρ�+1

)
⊂

(
Pk+1

ρ�

)
is monochromatic (recall that the hypergraph I (k)

P

is an isomorphic copy of I (k) in P).

(2)k+1 Every P ∈ Pk+1 is �-metric in Pk+1.

(3)k+1 E(Pk+1) =
⋃

P∈Pk+1
E(P).

(A)k+1 If P1,P2 ∈ Pk+1 are distinct and u ∈ V (P1) ∩ V (P2), then there are (ρ�+1,P
j)-tuples

I
j
∗ ∈ I (k)

Pj
, j = 1, 2, such that u ∈ I1

∗ ∩ I2
∗ .

(B)k+1 If P1,P2 ∈ Pk+1 are distinct and u, v ∈ V (P1) ∩ V (P2), then either

(B1)k+1 there exist (ρ�+1,P
j)-tuples Ij∗ ∈ I (k)

Pj
, j = 1, 2, such that {u, v} ⊂ I1

∗ ∩ I2
∗ or

(B2)k+1 the isomorphisms φj : V (Pj) → V (Pk), j = 1, 2, satisfy φ1(u) = φ2(u) and

φ1(v) = φ2(v).

Remark 2.4. The graph Pk+1 is obtained by amalgamating copies of Pk in a particular

way determined by the induction over �. For instance, due to (A)k+1, only vertices in

V r�
j (Pk+1), with j ∈ Ik+1, may be shared by distinct copies of Pk in Pk+1.

See Figure 3 for an illustration of the amalgamation.

The projection πk+1 : V (Pk+1) → V (R�) is defined in terms of the partition {V r�
j (Pk+1)}r�j=1

given by the induction hypothesis over �. More concretely, πk+1(u) = j if and only if

u ∈ V r�
j (Pk+1). For any P ∈ Pk+1, with isomorphism φ : V (Pk) → V (P), we claim that the

following diagram commutes:

Pk P Pk+1

R�

�� φ

�
πk

�ı

���������
πk+1

(2.5)

Indeed, because φ is a partite embedding, we have φ
(
V r�
j (Pk)

)
⊂ V r�

j (Pk+1) for all j =

1, . . . , r�. Hence, for u ∈ V (Pk), πk(u) = j if and only if u ∈ V r�
j (Pk) if and only if φ(u) ∈

V r�
j (Pk+1) if and only if πk+1 ◦ φ(u) = j. This shows that πk = πk+1 ◦ φ and thus the

diagram (2.5) commutes.

Constructing the q-partition of Pk+1. The graph Pk+1 is q-partite, with partition given by

the classes

V
q
j (Pk+1) = π−1

k+1

(
V
q
j (R�)

)
=

⋃
u∈Vq

j (R�)

V r�
u (Pk+1), j = 1, . . . , q. (2.6)

Notice that because Vq
1 (R�) ≺ V

q
2 (R�) ≺ · · · ≺ Vq

q (R�) and V r�
1 (Pk+1) ≺ · · · ≺ V r�

r�
(Pk+1) we

also have Vq
1 (Pk+1) ≺ · · · ≺ Vq

q (Pk+1): see Figure 4.

https://doi.org/10.1017/S096354831200003X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831200003X


564 D. Dellamonica and V. Rödl

(a)

{

(b)

Figure 3. (a) The picture Pk+1 is obtained from picture Pk by applying the induction hypothesis over �.

To simplify the figure, the vertical order of the vertices in the illustration does not coincide with the order

of V (R�) = {1, . . . , r�}. (b) The tuple Ik+1 = {w1, . . . , wt} and the corresponding classes V
q
wi (Pk+1) are drawn

according to the order of V (R�). NB It is rather cumbersome to draw the elements of (ρ�, R�)-tuples in their

correct order. For this reason we will refrain from having V (R�) vertically ordered in the next figures.

Figure 4. The linearly ordered vertices of Pk+1 (from left to right) and both q- and r�-partitions. Note that

the r�-partition of Pk+1 is a refinement of its q-partition.

Constructing the family G(Pk+1) ⊂
(

Pk+1

G

)
Part(q)

. For any P ∈ Pk+1 ⊂
(
Pk+1

Pk

)
Part(r�)

, given the

(unique monotone) isomorphism φ : V (Pk) → V (P), set

G(P) = {φ(G) : G ∈ G(Pk)}.

Define

G(Pk+1) =
⋃

P∈Pk+1

G(P). (2.7)
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Observe that there is a rich structure of copies of G in Pk+1 which is inherited by the

many overlapping copies of Pk in Pk+1.

We will now start the proof of the induction step over k. The proof is divided into

several claims, one for each of the conditions (K1)–(K4) of the induction over k (see

above).

Claim 2.5. Condition (K1) holds for Pk+1, namely, the projection map πk+1 is a homo-

morphism of Pk+1 into R� satisfying πk+1(G) ∈ G� for every G ∈ G(Pk+1).

We will start by showing that the projection map πk+1 is a homomorphism of Pk+1 into

R�. To this end we must prove that πk+1(E(Pk+1)) ⊂ E(R�).

By the induction hypothesis over Pk , the projection πk : V (Pk) → V (R�) is a homo-

morphism. Consequently, the diagram (2.5) shows that for every P ∈ Pk+1, the map

πk+1|V (P) is a homomorphism of P into R� and thus πk+1(E(P)) ⊂ E(R�). Since by (3)k+1

we have E(Pk+1) =
⋃

P∈Pk+1
E(P), it follows that πk+1(E(Pk+1)) ⊂ E(R�).

It remains to show that πk+1(G) ∈ G� for every G ∈ G(Pk+1) =
⋃

P∈Pk+1
G(P). For any

G ∈ G(P), P ∈ Pk+1, we have φ−1(G) ∈ G(Pk), where φ : V (Pk) → V (P) is the unique

isomorphism. By the induction hypothesis (K1) over Pk it follows that πk
(
φ−1(G)

)
∈ G�.

Since the diagram (2.5) commutes,

πk
(
φ−1(G)

)
= πk+1 ◦ φ

(
φ−1(G)

)
= πk+1(G)

and thus πk+1(G) ∈ G�. This concludes the proof that (K1) holds for Pk+1.

Claim 2.6. Condition (K2) holds for Pk+1, namely, G(Pk+1) ⊂
(
Pk+1

G

)
Part(q)

.

First observe that for every P ∈ Pk+1 ⊂
(
Pk+1

Pk

)
Part(r�)

we have V r�
j (P) ⊂ V r�

j (Pk+1) for all

j = 1, . . . , r�. Consequently,

V
q
j (P)

(2.3),(2.6)
=

⋃
u∈Vq

j (R�)

V r�
u (P) ⊂

⋃
u∈Vq

j (R�)

V r�
u (Pk+1)

(2.6)
= V

q
j (Pk+1) (2.8)

for all j = 1, . . . , q.

For all G ∈ G(P) ⊂
(

P
G

)
Part(q)

, we have Vq
j (G) ⊂ V

q
j (P) ⊂ V

q
j (R�). It follows that

G(Pk+1) =
⋃

P∈G(Pk+1)

G(P) ⊂
(
Pk+1

G

)
Part(q)

.

Therefore the claim is proved.

Claim 2.7 (Auxiliary). If P1,P2 ∈ Pk+1 are distinct and u ∈ V (P1) ∩ V (P2), then πk+1(u) ∈
Ik+1. Consequently, for each G ∈ G(Pk+1) there is a unique P ∈ Pk+1 such that G ⊂ P.

From condition (A)k+1 there exist I
j
∗ ∈ I (k)

Pj
, j = 1, 2, such that u ∈ I1

∗ ∩ I2
∗ . From

diagram (2.5) we conclude that the isomorphism φ1 : V (Pk) → V (P1) satisfies πk =
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πk+1 ◦ φ1. Because I1 = φ−1
1 (I1

∗ ) ∈ I (k), we have

πk+1(I
1
∗ ) = πk+1 ◦ φ1(I

1) = πk(I
1)

(2.4)
= Ik+1.

Consequently, πk+1(u) ∈ Ik+1.

Since each G ∈ G(Pk+1) is mapped by πk+1 onto a member of G�, the projection must be

one-to-one over V (G). Therefore |πk+1

(
V (G)

)
| = |V (G)| > t and thus πk+1

(
V (G)

)
�⊂ Ik+1.

It follows that V (G) �⊂ V (P1) ∩ V (P2).

Claim 2.8. Condition (K3) holds for Pk+1, namely, G(Pk+1) satisfies the intersection condi-

tions (A) and (B).

Let G1,G2 ∈ G(Pk+1) be distinct and arbitrary. By Claim 2.7 there are unique P1,P2 ∈
Pk+1 such that Gj ⊂ Pj , j = 1, 2. If P1 = P2 then the induction hypothesis over P1 = P2 ∼=
Pk implies that both conditions (A) and (B) hold for G1 and G2. Hence let us suppose

that P1 �= P2.

Proof of (A). Since Pk+1 satisfies (A)k+1, it follows that for any u ∈ V (G1) ∩ V (G2) ⊂
V (P1) ∩ V (P2) there exist (ρ�+1,P

j)-tuples Ij∗ ∈ I (k)
Pj

, j = 1, 2, such that u ∈ I1
∗ ∩ I2

∗ . Let

G∗
j ∈ G(Pj) be such that Ij∗ ∈ IGj∗. For each j = 1, 2 we are going to obtain Ij ∈ IGj

with

u ∈ I1 ∩ I2.

First we show that there exists I1 ∈ IG1
such that u ∈ I1. If G1 = G′

1, we are done by

taking I1 = I1
∗ so let us assume that G1 �= G′

1. The induction hypothesis (K3) applied to

P1 ∼= Pk implies that G(P1) satisfies condition (A): since u ∈ V (G1) ∩ V (G′
1) there exists

I1 ∈ IG1
such that u ∈ I1 ∩ I1

∗ . Similarly we find I2 ∈ IG2
such that u ∈ I2 and hence

u ∈ I1 ∩ I2, thus proving that condition (A) holds for G(Pk+1).

Proof of (B). Suppose that there are two distinct u, v ∈ V (G1) ∩ V (G2) ⊂ V (P1) ∩ V (P2).

Condition (B)k+1 applies to Pk+1, implying that either (B1)k+1 or (B2)k+1 holds for

u, v,P1,P2.

If (B1)k+1 holds for u, v,P1,P2 we will show that (B1) holds for u, v,G1,G2. Consider the

(ρ�+1,P
j)-tuples Ij∗ ∈ I (k)

Pj
, j = 1, 2, such that u, v ∈ I1

∗ ∩ I2
∗ . Let G∗

j ∈ G(Pj) be such that

I
j
∗ ∈ IG∗

j
, j = 1, 2.

First we will show that there exists I1 ∈ IG1
such that u, v ∈ I1. If G∗

1 = G1, set I1 = I1
∗ .

Otherwise, observe that u, v ∈ V (G1) ∩ V (G∗
1) and G1,G

∗
1 ∈ G(P1). We may now use the

induction hypothesis (K3) on P1 ∼= Pk , which states that condition (B) holds for G(P1). In

particular, either (B1) applies and we immediately obtain I1 ∈ IG1
satisfying u, v ∈ I1 ∩ I1

∗ ,

or (B2) applies and the isomorphisms σ1, σ
∗
1 from G1,G

∗
1 to G are such that σ1(u) = σ∗

1(u)

and σ1(v) = σ∗
1(v). However, in the latter case, set I1 = σ−1

1 ◦ σ∗
1(I

1
∗ ) ∈ IG1

and observe that

u, v ∈ I1.

In the same way we obtain I2 ∈ IG2
such that u, v ∈ I2, and thus establish that (B1)

holds for u, v,G1,G2.

Consider now the case that (B2)k+1 holds for u, v,P1,P2. In other words, for the (unique)

isomorphisms φj : V (Pj) → V (Pk), j = 1, 2, we have φ1(u) = φ2(u) and φ1(v) = φ2(v). Let
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G∗
j = φj(Gj) ∈ G(Pk), j = 1, 2 and set x = φ1(u), y = φ1(v). Since x, y ∈ V (G∗

1) ∩ V (G∗
2) and

G(Pk) satisfies condition (B), one of the following must hold.

• There exist Ij∗ ∈ IG∗
j
, j = 1, 2, such that x, y ∈ I1

∗ ∩ I2
∗ . Letting Ij = φ−1

j (Ij∗) ∈ IGj
for

j = 1, 2, we have u, v ∈ I1 ∩ I2. Hence condition (B1) holds for u, v,G1,G2.

• The isomorphisms σ∗
j : V (G∗

j ) → V (G) satisfy σ∗
1(x) = σ∗

2(x), σ
∗
1(y) = σ∗

2(y). Since the

(unique) isomorphisms σj : V (Gj) → V (G) satisfy

σj = σ∗
j ◦ φj,

we have

σ1(u) = σ∗
1(φ1(u)) = σ∗

1(x) = σ∗
2(x) = σ∗

2(φ2(u)) = σ2(u)

and, similarly, σ1(v) = σ2(v). Consequently, condition (B2) holds for u, v,G1,G2.

This concludes the proof that G(Pk+1) satisfies condition (B).

Before showing that condition (K4) holds we will prove two auxiliary claims.

Claim 2.9 (Auxiliary). Suppose that P1,P2 ∈ Pk+1, u, v ∈ V (P1) ∩ V (P2), d1 = distP1 (u, v)

and d2 = distP2 (u, v). Then either min{d1, d2} � �+ 1 or d1 = d2.

Without loss of generality assume that P1 �= P2, d1 = min{d1, d2} � �, and u �= v. Since

Pk+1 satisfies condition (B)k+1, either condition (B1)k+1 or condition (B2)k+1 applies to

u, v ∈ V (P1) ∩ V (P2).

Suppose first that (B2)k+1 holds for u, v,P1,P2, namely, the isomorphisms φj : V (Pj) →
V (Pk) are such that φ1(u) = φ2(u) and φ1(v) = φ2(v). In this case, φ = φ−1

2 ◦ φ1 : V (P1) →
V (P2) is the isomorphism from P1 to P2. Moreover, φ satisfies φ(u) = u and φ(v) = v. It

follows that

distP1 (u, v) = distP2 (φ(u), φ(v)) = distP2 (u, v).

The equality in this case holds even for arbitrary distances d1, d2.

Suppose now that condition (B1)k+1 holds for u, v,P1,P2, namely, there exist (ρ�+1,P
j)-

tuples Ij ∈ I (k)
Pj

⊂
(

Pj

ρ�+1

)
, j = 1, 2, such that u, v ∈ I1 ∩ I2.

Let Gj ∈ G(Pj) be such that Ij ∈ IGj
for j = 1, 2. By the induction hypothesis over

Pj ∼= Pk , the graph Gj is (�+ 1)-metric in Pj . In particular, distP1 (u, v) = d1 � � implies

that distG1
(u, v) = d1.

Recall that

πk+1(I
1) = πk+1(I

2) = Ik+1 = {w1 < w2 < · · · < wt} ⊂ V (R�).

In particular, πk+1(u) = wa and πk+1(v) = wb, for some 1 � a, b � t. Consequently, u is the

ath element of Ij (j = 1, 2) and v is the bth element of Ij (j = 1, 2). Because distG1
(u, v) =
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d1 � �,

d1 = distG1
(u, v) =

I2 is a (ρ�+1 ,G2)-tuple︷ ︸︸ ︷
ρ(a, b)︸ ︷︷ ︸

I1 is a (ρ�+1 ,G1)-tuple

= distG2
(u, v) � distP2 (u, v) = d2 = max{d1, d2}

and thus d1 = d2. Hence, Claim 2.9 follows.

Claim 2.10 (Auxiliary). Suppose that G1,G2 ∈ G� and there are distinct u, v ∈ V (G1) ∩
V (G2). Moreover, assume that there exists I1 ∈ IG1

such that u, v ∈ I1. Then there exists

I2 ∈ IG2
such that u, v ∈ I2.

If G1 = G2 then the claim is trivial, so let us assume the graphs are distinct. By

assumption, G� satisfies condition (B). If (B1) holds then the existence of I2 is immediate.

If, on the other hand, (B2) holds, then the isomorphisms σj : V (Gj) → V (G) satisfy

σ1(u) = σ2(u) and σ1(v) = σ2(v). The map σ = σ−1
2 ◦ σ1 : V (G1) → V (G2) is clearly the

isomorphism from G1 to G2. Since σ(u) = u and σ(v) = v, it follows that I2 = σ(I1) ∈ IG2

satisfies the conditions of the claim.

Claim 2.11. Condition (K4) holds for Pk+1, namely, every G ∈ G(Pk+1) is (�+ 1)-metric.

For an arbitrary G ∈ G(Pk+1) and u, v ∈ V (G) we will show the following.

(i) If distG(u, v) � � then distPk+1
(u, v) = distG(u, v).

(ii) If distG(u, v) � �+ 1 then distPk+1
(u, v) � �+ 1.

The two conditions above imply that G is (�+ 1)-metric in Pk+1. Indeed, when distG(u, v) =

�+ 1 we have

�+ 1
(ii)

� distPk+1
(u, v) � distG(u, v) = �+ 1,

and equality holds. Consequently, for all u, v ∈ V (G) we have distPk+1
(u, v) = distG(u, v)

whenever distG(u, v) � �+ 1 and distPk+1
(u, v) � �+ 1 whenever distG(u, v) > �+ 1.

We start by proving (i). Assume that distG(u, v) � �. If distPk+1
(u, v) < distG(u, v), consider

a shortest path P(u, v) in Pk+1. The projection of this path, πk+1(P(u, v)), is a trail in R�
starting at x = πk+1(u) and ending at y = πk+1(v). Since G′ = πk+1(G) ∈ G� and πk+1 is an

isomorphism between G and G′, it follows that distG′(x, y) = distG(u, v) � �. On the other

hand, the trail πk+1(P(u, v)) shows that

distR�(x, y) � |πk+1(P(u, v))| � |P(u, v)|
= distPk+1

(u, v) < distG(u, v) = distG′(x, y). (2.9)

However, this contradicts the fact that G′ is �-metric in R�.

Now let us prove (ii). Suppose for the sake of contradiction that there exists a path

P(u, v) in Pk+1 with

|P(u, v)| � � and distG(u, v) � �+ 1. (2.10)

By Claim 2.7, there exists a unique P1 ∈ Pk+1 ⊂
(
Pk+1

Pk

)
Part(r�)

such that G ⊂ P1.
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Fact 2.12. The path P(u, v) satisfies the following:

(a) P(u, v) �⊂ P1,

(b) there is no internal vertex of P(u, v) in V (P1), hence E
(
P(u, v)

)
∩ E(P1) = ∅,

(c) πk+1(u), πk+1(v) ∈ Ik+1,

(d) P(u, v) �⊂ P2 for every P2 ∈ Pk+1.

By the induction hypothesis over the picture P1 ∼= Pk , the graph G must be (�+ 1)-metric

in P1, and thus

distP1 (u, v) � �+ 1. (2.11)

In particular, (a) holds, that is, the path P(u, v) cannot be entirely contained in P1.

Suppose that the path P(u, v) contains an internal vertex w ∈ V (P1). Then the (non-

trivial) induced sub-paths P(u, w) and P(w, v) have length strictly shorter than �. Our

assumption that P1 is �-metric in Pk+1 implies that |P(u, w)| � distP1 (u, w) and |P(w, v)| �
distP1 (w, v). Therefore

|P(u, v)| = |P(u, w)| + |P(w, v)| � distP1 (u, w) + distP1 (w, v)

� distP1 (u, v)
(2.11)

� �+ 1, (2.12)

which contradicts the fact that |P(u, v)| � �. Therefore (b) holds.

Because of (b), the edge of the path incident to u, say e = {u, w}, must be contained in

some P2 ∈ Pk+1, P2 �= P1, otherwise w would be an internal vertex of P(u, v). In particular,

u ∈ V (P1) ∩ V (P2). From Claim 2.7 we conclude that πk+1(u) ∈ Ik+1. For the same reason

we conclude that πk+1(v) ∈ Ik+1 and therefore (c) holds.

To show that (d) is satisfied, suppose that P(u, v) ⊂ P2 for some P2 ∈ Pk+1, P2 �= P1.

Then d2 = distP2 (u, v) � �. From Claim 2.9 we conclude that

distP1 (u, v) = d1 = d2 = �,

which contradicts (2.11). Therefore (d) holds.

We now return to the proof of Claim 2.11(ii). From (a)–(d) we conclude that the path

P(u, v) can be decomposed into sub-paths contained in at least two distinct copies of Pk
in Pk+1. Therefore we may find vertices u = x1, x2, . . . , xr = v, r � 3, belonging to P(u, v)

such that each (non-trivial) sub-path P(xj, xj+1), j = 1, . . . , r − 1, is entirely contained in

some Pj+1 ∈ Pk+1, and Pj+1 �= Pj+2 for j = 1, . . . , r − 2 (see the illustration in Figure 5).

Note that each P(xj, xj+1) has length at most �− 1 since the sum of the

lengths of each sub-path equals |P(u, v)| � �. From Claim 2.7 and (c) we infer that

πk+1(xj) ∈ Ik+1 = {w1 < w2 < · · · < wt} for j = 1, . . . , r. For each j = 1, . . . , r, let aj ∈ [t]

be such that πk+1(xj) = waj .

For every j = 1, . . . , r − 1, the projection πk+1

(
P(xj, xj+1)

)
is a trail connecting waj and

waj+1
of length |P(xj, xj+1)| � �− 1. Consequently, distR�(waj , waj+1

) � �− 1. Let GIk+1
∈

G� ⊂
(
R�
G

)
Part(q)

be such that Ik+1 ∈ IGIk+1
⊂

(
GIk+1
ρ�+1

)
. Since GIk+1

is �-metric in R�, it follows

that

distGIk+1
(waj , waj+1

) = distR�(waj , waj+1
) � |P(xj, xj+1)| � �− 1.
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Figure 5. An illustration of a path P(u, v) and its sub-paths from case (ii) of Claim 2.11 with u = x1 and v = x4.

We also have t = 4, a1 = 3, a2 = 1, a3 = 2 and a4 = 4. The vertex x3 is repeated because P4 is wrapped around

and effectively intersects both P3 and P1. Note that G′ = πk+1(G) and that GIk+1
contains Ik+1.

Because Ik+1 ∈
(
GIk+1
ρ�+1

)
, we must have distGIk+1

(waj , waj+1
) = ρ(aj , aj+1) and thus

|P(u, v)| =

r−1∑
j=1

|P(xj, xj+1)| �
r−1∑
j=1

distGIk+1
(waj , waj+1

)

=

r−1∑
j=1

ρ(aj , aj+1) � ρ(a1, ar), (2.13)

where in the last part we used the triangle inequality.

Let G′ = πk+1(G) ∈ G�. Notice that wa1
=πk+1(u), war =πk+1(v) ∈ V (G′) ∩ V (GIk+1

). From

Claim 2.10 applied to G′ and GIk+1
we conclude that there exists I ′ ∈ IG′ such that

wa1
, war ∈ I ′ ∩ Ik+1. Moreover, by the induction hypothesis (over �) every graph in G� is

partite embedded into R�, that is, G� ⊂
(
R�
G

)
Part(q)

. In particular, Vq
j (G′), V q

j (GIk+1
) ⊂ V

q
j (R�)

for all j = 1, . . . , q. Because I ⊂
(
G
ρ�+1

)
is a t-partite hypergraph with classes {Vq

ji
(G)}ti=1,

it follows that IG′ is t-partite with classes {Vq
ji
(G′) ⊂ V

q
ji
(R�)}ti=1 and IGIk+1

is t-partite

with classes {Vq
ji
(GIk+1

) ⊂ V
q
ji
(R�)}ti=1. This ensures that both I ′ ∈ IG′ and Ik+1 ∈ IGIk+1

are

crossing with respect to {Vq
ji
(R�)}ti=1. Therefore, the a1th element in I ′ is wa1

and the

arth element in I ′ is war . Because I ′ ∈
(

G′

ρ�+1

)
and ρ(a1, ar) � �, we have distG′(wa1

, war ) =

ρ(a1, ar) � �

Since πk+1 is the isomorphism of G into G′ we have

distG(u, v) = distG′ (wa1
, war ) = ρ(a1, ar) � �,

which is a contradiction to the original assumption (2.10) that distG(u, v) � �+ 1. This

finishes the proof of Claim 2.11.
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Remark 2.13. A subtle point in the proof Claim 2.11(ii) is that while the copies of G in G�
are only guaranteed to be �-metric in R�, for G1,G2 ∈ G� and u, v ∈ V (G1) ∩ V (G2) – as in

Claim 2.9 – we have either distG1 (u, v) = distG2 (u, v) or min{distG1 (u, v), distG2 (u, v)} � �+ 1.

In other words, if distG1 (u, v) = �+ 1 there may exist a path P(u, v) in R� of length � but

this path cannot be entirely contained in any G2 ∈ G�.

We have proved the induction step over k by establishing Claims 2.5, 2.6, 2.8 and 2.11.

In order to prove that

R�+1 = Pm and G�+1 = G(Pm) (2.14)

satisfy the induction hypothesis for �+ 1, it remains to show that (L1) and (L3) hold.

The property (L3) follows from (3)m, (3)m−1, . . . , (3)1 since every edge e ∈ E(Pm) must

belong to some copy P0 of P0, and thus e ∈ E(G) for some G ∈ G(P0) ⊂ G(Pm) = G�+1.

More formally,

E(R�+1) = E(Pm) =
⋃

Pm−1∈Pm

E(Pm−1)

=
⋃

Pm−1∈Pm

⋃
Pm−2∈Pm−1(Pm−1)

· · ·
⋃

P0∈P1(P1)

E(P0)

=
⋃

Pm−1 ,...,P0

⋃
G∈G(P0)

E(G)

(2.7)
=

⋃
G∈G(Pm)

E(G). (2.15)

To prove3 that the condition (L1) is satisfied by R�+1 and G�+1, we first show that

under certain assumptions on a colouring of P0 one can obtain G ∈ G(P0) with IG

monochromatic. Our goal is then reduced to finding some P0 ⊂ R�+1, P0 ∼= P0, which is

coloured in such a way.

Claim 2.14 (Auxiliary). Suppose that the tuples in
⋃

G∈G(P0)
IG are coloured in such a way

that the colour of any I ∈
⋃

G∈G(P0)
depends only on the projection π0(I) ∈

⋃
G∈G� IG.

Then there exists G ∈ G(P0) with IG monochromatic.

Under the assumptions of the claim there is an induced colouring of the tuples in⋃
G∈G� IG given by assigning to each I ′ ∈

⋃
G∈G� IG the same colour of the tuples I ∈⋃

G∈G(P0)
satisfying π0(I) = I ′.

By the induction hypothesis (L1) over R� and G�, there must be some G∗ ∈ G� such

that IG∗ is monochromatic under this induced colouring. By construction, G = π−1
0 (G∗) is

contained in G(P0) (see Figure 2). Since the colour of any tuple I ∈ IG is given by the

colour of π0(I) ∈ IG∗ , it is clear that IG is monochromatic.

Claim 2.15 below establishes (L1).

3 This proof closely follows [18].
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Claim 2.15. For every 2-colouring of
⋃

G∈G�+1
IG ⊂

(
R�+1

ρ�+1

)
there exists some G ∈ G�+1 such

that IG is monochromatic.

Let a 2-colouring of
⋃

G∈G�+1
IG be given. In view of Claim 2.14 we now look for a copy

P0 ⊂ R�+1 such that the colouring of
⋃

G∈G(P0) IG satisfies the conditions of the claim.

Notice that because of (2.4) and (2.7), we have⋃
P∈Pm

I (m−1)
P ⊂

⋃
P∈Pm

⋃
G∈G(P)

IG =
⋃

G∈G(Pm)

IG.

Hence there is an induced 2-colouring of
⋃

P∈Pm
I (m−1)

P . By property (1)m, there exist

some Pm−1 ∈ Pm such that I (m−1)

Pm−1 is monochromatic. Let πm−1 : V (Pm−1) → V (R�) be the

natural projection/homomorphism of Pm−1 onto R�. Notice that because Pm−1 ∼= Pm−1,

I (m−1)

Pm−1
∼= I (m−1) and πm−1 is the map induced by πm−1, the definition in (2.4) translates to

I (m−1)

Pm−1 =

{
I ∈

⋃
G∈G(Pm−1)

IG : πm−1(I) = Im

}
. (2.16)

Hence, the colour of all the tuples in
⋃

G∈G(Pm−1) IG projecting onto Im is the same.

Applying property (1)m−1 to Pm−1 ∼= Pm−1, we obtain some graph Pm−2 ∈ Pm−1(P
m−1) ⊂(

Pm−1

Pm−2

)
Part(r�)

such that I (m−2)

Pm−2 is monochromatic. As before, the projection πm−2 of Pm−2

onto R� is such that

I (m−2)

Pm−2 =

{
I ∈

⋃
G∈G(Pm−2)

IG : πm−2(I) = Im−1

}
.

Moreover, because Pm−2 ∈
(
Pm−1

Pm−2

)
Part(r�)

, we have πm−2 = πm−1|V (Pm−2). Since G(Pm−2) ⊂
G(Pm−1), from (2.16) we have{

I ∈
⋃

G∈G(Pm−2)

IG : πm−2(I) = Im

}
⊂ I (m−1)

Pm−1 .

By repeating this argument sequentially (invoking (1)m−2, . . . ,(1)1) we obtain Pm−1 ⊃
Pm−2 ⊃ · · · ⊃ P0, satisfying the following. For all k = 0, . . . , m− 1, the family I (k)

Pk
is

monochromatic and {
I ∈

⋃
G∈G(P0)

IG : π0(I) = Ik+1

}
⊂ I (k)

Pk
,

where π0 = π1|V (P0) = · · · = πm−1|V (P0) is the projection/homomorphism of P0 onto R�.

Consequently, the colour of a tuple I ∈
⋃

G∈G(P0) IG depends only on its projection π0(I).

This means that the assumptions of Claim 2.14 are satisfied by P0. The claim then yields

G ∈ G(P0) ⊂ G�+1 such that IG is monochromatic, thus proving that (L1) holds for R�+1

and G�+1.

The conditions (K1)–(K4), which hold for R�+1 = Pm and G�+1 = G(Pm), together with

(2.15) and Claim 2.15, establish that the induction hypothesis holds for �+ 1. Lemma 1.19

then follows by induction.
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3. The base of the induction

Here we state Lemma 3.1, the induction base of the proof of Lemma 1.19. The proof of

this lemma is based on an application of the Hales–Jewett theorem.

Lemma 3.1. Let t, q ∈ N, t � q. Suppose that

• ρ is a fixed metric on [t],

• G is a q-partite (ordered) graph with partition V (G) = V
q
1 (G) ∪ · · · ∪ Vq

q (G),

• for some 1 � j1 < j2 < · · · < jt � q, I ⊂
(
G
ρ2

)
is a t-partite t-uniform hypergraph with

classes {Vq
ji
(G)}ti=1 consisting of selected (ρ2, G)-tuples.

Then there exists a q-partite graph R and G ⊂
(
R
G

)
Part(q)

satisfying the following properties.

(L1) For any 2-colouring of the (ρ2, R)-tuples in
⋃

G∈G IG, there exists G ∈ G such that every

IG ⊂
(

G
ρ2

)
⊂

(
R
ρ2

)
is monochromatic.

(L2) Every G ∈ G is 2-metric in R.

(L3) E(R) =
⋃

G∈G E(G).

(L4) The family G satisfies conditions (A) and (B).

Remark 3.2. For the fixed (discrete4) metric ρ on [t], consider a graph Fρ with vertex set

[t] such that ij ∈ Fρ if and only if ρ(x, y) = 1. With this definition we have
(
G
ρ2

) ∼=
(
G
Fρ

)
,

i.e.,
(
G
ρ2

)
coincides with the set of all induced copies of Fρ in G.

Notice also that the fact that every G ∈ G is 2-metric in R implies that G is an induced

subgraph of R. Indeed, by the definition, for all x, y ∈ V (G), when distR(x, y) � 2 we must

have distG(x, y) = distR(x, y) and when distR(x, y) > 2 we must have distG(x, y) � 2. In

particular, xy ∈ R if and only if xy ∈ G.

Lemma 3.1 appears in [18] without explicitly stating condition (L4), which is needed

here for technical reasons to carry on the induction. For completeness we include in the

Appendix the proof of [18] modified to explicitly establish (L4).

4. Proof of Theorem 1.11

In this section we give a sketch of the proof of Lemma 1.10 and later use it to prove

Theorem 1.11 in Section 4.1. Since this proof is very similar to the proof of the induction

step in Lemma 1.19 (albeit simpler), we avoid repeating some details and instead refer

the reader to parts of the proof of Lemma 1.19 that present similar arguments. The main

difference between this proof and that of Lemma 1.19 is that here the ‘metric’ part of the

result follows rather trivially from our use of the Partite Lemma 1.19. On the other hand,

we are now able to partition (colour) all of
(
R
ρ

)
and not just a t-partite system.

Let H be a given connected graph on n vertices and let ρ be a metric on t elements.

Set N = Rt(n), where Rt(n) is the smallest number such that for every 2-colouring of the

complete t-uniform hypergraph
(
[N]
t

)
there exists a monochromatic

(
S
t

)
with |S | = n.

4 Recall that all metrics in this paper are discrete.
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As in the proof of Lemma 1.19 we construct an N-partite graph P0 consisting of disjoint

copies of H (see Figure 2). Set V (P0) = [N] ×
(
[N]
n

)
. For a set S ∈

(
[N]
n

)
, let φS : V (H) → S

be the unique monotone map and set HS to be a graph with vertex set S × {S} and edges

given by

{{(φS (x), S), (φS (y), S)} : xy ∈ H}.

Let

E(P0) =
⋃

S∈([N]
n )

E(HS ).

Notice that P0 is indeed the disjoint union of the copies of H in the family H(P0) = {HS :

S ∈
(
[N]
n

)
}. Let π0 : V (P0) → [N] be the projection onto the first coordinate.

Define

H0 =

{
π0(HS ) : S ∈

(
[N]

n

)}
.

Consider the hypergraph

⋃
H∈H0

(
H

ρ

)
= {I1, . . . , Im} ⊂

(
[N]

t

)
,

and set

I (0) =

{
I ∈

⋃
H∈H(P0)

(
H

ρ

)
: π0(I) = I1

}
⊂

(
P0

ρ

)
.

(Note that I (0) is defined in a similar way as the hypergraph in (2.4).) Observe that the

t-uniform hypergraph I (0) is t-partite with respect to {VN
j (P0) = π−1

0 (j)}j∈I1 .
Set � = max{distH (x, y) : x, y ∈ V (H)} < ∞ and apply Lemma 1.19 to the N-partite

graph P0 (instead of a q-partite G) and the family I (0) ⊂
(
P0

ρ�

)
. We then obtain the Ramsey

N-partite graph P1 and P1 ⊂
(
P1

P0

)
Part(N)

for which (L1) and (L2) hold. In particular, (L2)

ensures that every P ∈ P1 is �-metric in P1. By our choice of �, this implies that every

H ∈ H(P) is metric in P1.

In general, we obtain Pk+1 from Pk , k = 0, . . . , m− 1, by applying Lemma 1.19 to the

N-partite graph Pk and the t-partite t-uniform hypergraph

I (k) =

{
I ∈

⋃
H∈H(Pk)

(
H

ρ

)
: πk(I) = Ik+1

}
⊂

(
Pk

ρ�

)
.

The graph Pk+1 and the family Pk+1 ⊂
(
Pk+1

Pk

)
Part(N)

we obtain are such that every H ∈
H(Pk+1) =

⋃
P∈Pk+1

H(P) is metric in Pk+1 and πk+1(H) ∈ H0 (where πk+1 : V (Pk+1) → [N]

is defined as the projection that maps every v ∈ VN
j (Pk+1) to j for all j = 1, . . . , N).

Take R = Pm and H = H(Pm) ⊂
(
R
H

)
. Just as in Claim 2.15 one may show that in

any 2-colouring of
⋃

H∈H(Pm)

(
H
ρ

)
⊂

(
R
ρ

)
there exists a copy of P0 in R, say P0 ⊂ R, such

that the colour of a tuple I ∈
(
H
ρ

)
⊂

(
R
ρ

)
, H ∈ H(P0), depends only on the projection

π0(I) ∈ {I1, . . . , Im}, where π0 : V (P0) → [N] is the natural projection of P0 onto [N]. In
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particular, there is an induced 2-colouring of the tuples I1, I2, . . . , Im ∈
(
[N]
t

)
. Extend this

induced 2-colouring to all of
(
[N]
t

)
arbitrarily.

By the definition of N, there must be a monochromatic
(
S
t

)
with |S | = n. Let H ∈ H(P0)

be the (unique) graph such that π0(V (H)) = S . Since the colour of every I ∈
(
H
ρ

)
is the

same as the colour of π0(I) ∈
(
S
t

)
, it follows that

(
H
ρ

)
is monochromatic. Moreover H is

metric in R = Pm since it belongs to H(Pm).

4.1. Proof of Theorem 1.11

By repeated applications of Lemma 1.10, we will obtain Theorem 1.11.

Let M = {ρ1, . . . , ρm} be the set of all metrics induced by t vertices of H . Apply

Lemma 1.10 to R0 = H and ρ1 to obtain a graph R1. After Ri is constructed, 1 � i � m− 1,

obtain Ri+1 by applying Lemma 1.10 to Ri and ρi+1.

We claim that R = Rm satisfies the conditions of Theorem 1.11. Indeed, given any

2-colouring of
(
V (R)
t

)
, we can find a metric copy Rm−1 of Rm−1 in which every (ρm, t)-tuple

in
(
Rm−1

ρm

)
is coloured by cm. Iterating this argument yields a sequence R0 ⊂ R1 ⊂ · · · ⊂

Rm−1 ⊂ R such that Ri ∼= Ri is metric in Ri+1 and every (ρi+1, t)-tuple in
(

Ri

ρi+1

)
has the

same colour ci+1. The graph H = R0 ∼= H is metric in R and is such that
(

H
ρi

)
⊂

(
Ri−1

ρi

)
is

monochromatic (with colour ci) for i = 1, . . . , m.

4.2. An unordered version of Lemma 1.10

We now address the question of what could be an ‘unordered version’ of Lemma 1.10.

Let (M,ρ) be a finite unordered metric space with |M| = t and integer distances. For any

connected graph H , let
(
H
ρ

)
be the set of all t-sets T ⊂ V (H) such that the metric spaces

(T , distH ) and (M,ρ) are isometric.

Analogously to Proposition 1.3, one can show the following characterization of the

metric spaces (M,ρ) for which the class of unordered graphs with metric embeddings has

the (M,ρ)-Ramsey property.

Proposition 4.1. Let (M,ρ) be a finite metric space with integer distances. The following

statements are equivalent.

(a) For any unordered connected graph H there exists an unordered graph R such that, for

any partition (
R

ρ

)
= A1 ∪ A2,

there exists i ∈ {1, 2} and H ∈
(
R
H

)
metric

satisfying

(
H

ρ

)
⊂ Ai.

(b) ρ is homogeneous, that is, there exists a positive integer c such that for any pair of

distinct elements m,m′ ∈ M we have ρ(m,m′) = c.
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The proof of (b) =⇒ (a) is a direct consequence of Theorem 1.11. Indeed, due to the

symmetry of homogeneous metrics the ordering is irrelevant.

The proof of (a) =⇒ (b) closely follows the arguments from [12] and [14] and therefore

we omit it.

Appendix A: Proof of Lemma 3.1

Before proving the lemma, we recall some definitions relevant to the Hales–Jewett theorem.

Suppose that I ⊂
(
G
ρ2

)
is a t-partite t-uniform hypergraph with vertex set V and

classes V1 = V
q
j1
(G), . . . , Vt = V

q
jt
(G). Let In be the set of n-tuples of elements of I . A

combinatorial line L in In associated with a partition [n] = ML ∪ FL, ML �= ∅, and an

|FL|-tuple (ILk )k∈FL ∈ IFL is given by

L = {(I1, I2, . . . , In) ∈ In : Ir = Is for r, s ∈ ML and Ik = ILk for k ∈ FL}.

The set ML is called the set of moving coordinates, while FL is called the set of fixed

coordinates. Notice that every combinatorial line has precisely |I| elements.

The Hales–Jewett theorem is stated as follows. For a proof, see for instance [7].

Theorem A.1 ([9]). For any integer r � 2 and finite set I there exists n such that in every

r-colouring of In there exists a monochromatic line.

For our purposes it will be useful to interpret an element I ∈ I as a vector with t

coordinates, where the jth coordinate is simply the unique vertex in I ∩ Vj . In this way,

an element in In may be viewed as a t× n matrix. Consequently, a line L of In may

be described as a collection of size |I| consisting of t× n matrices QLI , I ∈ I , where the

columns of QLI indexed by FL are fixed and independent of I , while every column indexed

by ML is precisely I . For example, for n = 4, ML = {1, 2}, FL = [4] \ML = {3, 4} and

L = {(I, I, IL3 , IL4 ) : I ∈ I}, the elements of L are the matrices

QLI =

⎡
⎣ | | | |
I I IL3 IL4
| | | |

⎤
⎦ (A.1)

for all I ∈ I .

Proof of Lemma 3.1. Suppose that G and I are given as in the statement of the lemma.

Let J = {j1, . . . , jt} be the set of indices with the property of the assumption, namely, I is

a t-partite t-uniform hypergraph with classes {Vq
j (G)}j∈J . Let n be given by Theorem A.1

(with r = 2) applied to I . Let {L1, . . . , LN} denote the set of all lines in In
Let W =

⋃
I∈I I and Wj = V

q
j (G) ∩W . (Notice that Wj = ∅ when j /∈ J .) The vertex

set of R is given by

V (R) =
(
[N] × (V (G) \W )

)
∪

⋃
j∈J

Wn
j .

The edge set of R will be defined later (see (A.3) below).
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In our construction, the family G will be in direct correspondence with the set of lines

in In, namely, to each line Lj there will be a corresponding Gj ∈ G. In order to guarantee

that G satisfies (A) we will have V (Gj) \
⋃
I∈IGj

I = {j} × (V (G) \W ) for j = 1, . . . , N.

For a line La determined by the values
(
Iak

)
k∈Fa of its fixed coordinates Fa, we represent

Iak = {Iak,j ∈ Wj}j∈J as a column-vector [Iak,j]j∈J . Let us define the map ψa : V (G) → V (R)

as follows:

ψa(v) =

⎧⎪⎪⎨
⎪⎪⎩

(a, v) for v ∈ V (G) \W,

(v1, v2, . . . , vn) for v ∈ Wj, j ∈ J, where

vk = v for k ∈ Ma and vk = Iak,j for k ∈ Fa.

(A.2)

Fix some I = {u1 < u2 < · · · < ut} ∈ I . Because I is t-partite with classes {Vq
ji
(G)}ti=1, we

have ui ∈ Wji and thus ψa(ui) is an n-tuple for all i = 1, . . . , t. Therefore, in view of (A.1)

and (A.2),

QLaI = ψa(I) =

⎡
⎢⎢⎢⎣
ψa(u1)

ψa(u2)
...

ψa(ut)

⎤
⎥⎥⎥⎦ .

Indeed, the equality above is true because

• for k ∈ Ma we have ψa(ui)k = ui for all i, and hence the kth column of the matrix on

the right is simply I ,

• for k ∈ Fa, we have ψa(ui)k = Iak,ji for all i, and hence the kth column of the matrix on

the right is simply Iak .

Observe that the rows of the matrices QLaI correspond to vertices of R.

Claim A.2. The map ψa : V (G) → V (R) is one-to-one.

Suppose for the sake of contradiction that two distinct u, v ∈ V
q
j (G), 1 � j � q, are

such that ψa(u) = ψa(v). We cannot have ψa(u) = (a, u) since that would imply u = v.

Consequently, u, v ∈ Wj with j ∈ J . Hence both ψa(u) and ψa(v) must be n-tuples such

that ψa(u)k = u �= v = ψa(v)k for all k ∈ Ma. Therefore u cannot be distinct from v and

hence Claim A.2 holds.

Set

E(R) =

N⋃
a=1

E
(
ψa(G)

)
(A.3)

and let G = {Ga = ψa(G) : a = 1, . . . , N}. Observe that by our definition of G, (L3) follows

directly from (A.3).

We now must prove that the conclusions of the lemma hold for R and G. This will be

accomplished by the following steps.
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Step I. Define a total order on V (R) and a q-partition V (R) = V
q
1 (R) ∪ Vq

2 (R) ∪ · · · ∪
Vq
q (R) such that every ψa is a monotone map satisfying ψa(V

q
j (G)) ⊂ V

q
j (R) for

every j.

Step II. Show that G satisfies the intersection conditions (A) and (B) and thus prove (L4).

Step III. Use Step II to show that every Ga ∈ G is an induced subgraph of R and thus

prove (L2).

Step IV. Show that the family G is Ramsey in R, namely, prove (L1).

Proof of Step I. For all j, define

V
q
j (R) =

(
[N] × (Vq

j (G) \W )
)

∪Wn
j . (A.4)

Observe that V (R) = V
q
1 (R) ∪ Vq

2 (R) ∪ · · · ∪ Vq
q (R). Moreover, it is simple to check that

ψa(V
q
j (G)) ⊂ V

q
j (R) for all j. Let us now define a total order on V (R) for which every

map ψa is monotone. It is enough to define the order for each V
q
j (R) since we require

V
q
1 (R) ≺ V

q
2 (R) ≺ · · · ≺ Vq

q (R).

For j /∈ J , we have Wj = ∅ and thus Vq
j (R) = [N] × V

q
j (G). Order the vertices lexico-

graphically and observe that for every a ∈ [N], ψa(v) < ψa(w) if and only if v < w.

Since for j ∈ J the class Vq
j (R) may contain both pairs and n-tuples as elements, our

ordering is somewhat more complicated than a simple lexicographical order on tuples.

Let f : Vq
j (R) → V

q
j (G)n × {0, 1, . . . , N} be defined as follows. For a tuple (v1, . . . , vn) ∈

Wn
j , set f(v1, . . . , vn) = (v1, . . . , vn, 0); for (a, v) ∈ [N] × (Vq

j (G) \W ) set f(a, v) = (v1, . . . , vn, a),

where vk = v for all k ∈ Ma and vk = Iak,j for all k ∈ Fa. The ordering on Vq
j (R) is induced

by f and the lexicographic order on the image of f, namely, we set x < y if and only if

f(x) < f(y).

Let v, w ∈ V
q
j (G) be such that v < w. By definition, for every a ∈ [N], ψa(v) < ψa(w) if

and only if f(ψa(v)) < f(ψa(w)). Since f(ψa(v))k = f(ψa(w))k = Iak,j for every k ∈ Fa, the

first coordinate where the elements f(ψa(v)) and f(ψa(v)) differ is in Ma. On the other

hand, for k ∈ Ma we have

f(ψa(v))k = v < w = f(ψa(w))k.

We conclude that f(ψa(v)) < f(ψa(w)) if and only if v < w. Hence ψa(v) < ψa(w) if and

only if v < w.

Proof of Step II. Suppose that x ∈ V (Ga) ∩ V (Gb) with a �= b. We must have x ∈ Wn
j

for some j ∈ J since otherwise for some v ∈ V (G) \W , we have x = (a, v) = (b, v) which

contradicts a �= b. It follows therefore that ψ−1
a (x), ψ−1

b (x) ∈ Wj . Since Wj ⊂ W =
⋃
I∈I I ,

there exists I ′
a, I

′
b ∈ I such that ψ−1

a (x) ∈ I ′
a and ψ−1

b (x) ∈ I ′
b. Consequently, x ∈ Ia =

ψa(I
′
a) ∈ IGa

and x ∈ Ib = ψb(I
′
b) ∈ IGb

. This establishes the intersection condition (A) for

members of G.

Now let us prove condition (B). Suppose that there are distinct x = (x1, . . . , xn), y =

(y1, . . . , yn) ∈ V (Ga) ∩ V (Gb), a �= b.
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We distinguish between two cases:

(i)Ma ∩Mb �= ∅,

(ii)Ma ∩Mb = ∅ (then Ma ⊂ Fb and Mb ⊂ Fa).

Suppose first that (i) holds and fix k ∈ Ma ∩Mb. We have ψ−1
a (x) = xk = ψ−1

b (x),

and similarly ψ−1
a (y) = ψ−1

b (y). Consequently, in this case condition (B2) holds as the

isomorphisms σa = ψ−1
a : V (Ga) → V (G) and σb = ψ−1

b : V (Gb) → V (G) satisfy σa(x) =

σb(x) and σa(y) = σb(y).

Now suppose that (ii) holds; in particular, we must have Ma ⊂ Fb and Mb ⊂ Fa. Let(
Iak = [Iak,j]j∈J

)
k∈Fa and

(
Ibk = [Ibk,j]j∈J

)
k∈Fb

be the tuples of fixed elements that define the

lines La and Lb respectively. Let j, j ′ ∈ J be such that x ∈ Wn
j and y ∈ Wn

j′ .

For k ∈ Ma ⊂ Fb, (A.2) implies that

ψ−1
a (x)

k∈Ma= xk
k∈Fb= Ibk,j

and similarly ψ−1
a (y) = yk = Ibk,j′ . In particular, {ψ−1

a (x), ψ−1
a (y)} = {Ibk,j , Ibk,j′ } ⊂ Ibk ∈ I . Let

Ia = ψa(I
b
k ) ∈ IGa

and notice that

{x, y} = ψa
(
{ψ−1

a (x), ψ−1
a (y)}

)
⊂ ψa

(
Ibk

)
= Ia.

A symmetric argument yields Ib ∈ IGb
such that {x, y} ∈ Ib. Hence, condition (B1) follows.

To summarize, case (i) implies condition (B2) and case (ii) implies condition (B1).

Proof of Step III. Let Ga ∈ G be arbitrary. To prove that Ga is an induced subgraph of R,

we must check that for every pair of distinct x, y ∈ V (Ga), if x, y ∈ V (Gb) for some b �= a,

then {x, y} ∈ Ga if and only if {x, y} ∈ Gb. Since x, y ∈ V (Ga) ∩ V (Gb), we may invoke the

intersection properties of G proved in Step II.

If condition (B2) holds, the unique isomorphisms σa, σb of Ga,Gb into G satisfy σa(x) =

σb(x) and σa(y) = σb(y). Since σa is an isomorphism, {x, y} ∈ Ga if and only if e =

{σa(x), σa(y)} ∈ G. Similarly, {x, y} ∈ Gb if and only if e′ = {σb(x), σb(y)} ∈ G. Because

e = e′, we infer that {x, y} ∈ Ga if and only if {x, y} ∈ Gb.

If condition (B1) holds, let Ia ∈ IGa
and Ib ∈ IGb

be such that x, y ∈ Ia ∩ Ib. Let jr, js ∈
J (1 � r, s � t) be such that x ∈ V

q
jr
(R) and y ∈ V

q
js
(R). Because Ia ∈

(
Ga

ρ2

)
, it follows

that distGa
(x, y) = ρ(r, s) whenever ρ(r, s) � 2 and distGa

(x, y) � 2 whenever ρ(r, s) > 2.

In particular, {x, y} ∈ Ga if and only if ρ(r, s) = 1. Similarly, {x, y} ∈ Gb if and only if

ρ(r, s) = 1. Therefore {x, y} ∈ Ga if and only if {x, y} ∈ Gb.

Proof of Step IV. We will now show that for any 2-colouring of the (ρ2, R)-tuples in⋃
G∈G IG there exists G ∈ G such that every t-tuple in IG ⊂

(
G
ρ2

)
is monochromatic. It will

be convenient to assume that all t-tuples in Vq
j1
(R) × · · · × V

q
jt
(R) are coloured.

Consider Q = (I1, . . . , In) ∈ In as a t× n matrix with columns I1, . . . , In. The kth row of

the matrix is in V
q
jk
(R) (recall that J = {j1, . . . , jt}). In particular, Q is in correspondence

with a t-tuple of Vq
j1
(R) × · · · × V

q
jt
(R). Define the colour of Q as the colour of the

corresponding t-tuple.
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By the Hales–Jewett theorem, there is a monochromatic line La, a ∈ [N], in such

a colouring. It follows that G = Ga is such that IG is monochromatic. Indeed, every

t-tuple ψa(I) ∈ IGa
, I ∈ I , corresponds to the matrix QLaI contained in the line La

(see (A.2)).

Appendix B: Induction hypotheses (reprise)

Induction over �: Hypothesis for R� and G�. For a q-partite graph G, a metric ρ on [t]

and a t-partite t-uniform hypergraph I ⊂
(
G
ρ�

)
, there is a graph R� = R�(q, G, ρ, I) and

G� = G�(q, G, ρ, I) ⊂
(
R�
G

)
Part(q)

satisfying conditions (L1) and (L2) of Lemma 1.19 and

(L3) E(R�) =
⋃

G∈G� E(G).

Moreover, G� satisfies the conditions (A) and (B) below.

Intersection conditions for a family G of copies of G.

(A) If G1,G2 ∈ G and u ∈ V (G1) ∩ V (G2), then there are (ρ�,Gj)-tuples Ij ∈ IGj
, j = 1, 2,

such that u ∈ I1 ∩ I2.

(B) If G1,G2 ∈ G and u, v ∈ V (G1) ∩ V (G2), then either

(B1) there exist (ρ�,Gj)-tuples Ij ∈ IGj
, j = 1, 2, such that {u, v} ⊂ I1 ∩ I2 or

(B2) the (unique) isomorphisms σj : V (Gj) → V (G), j = 1, 2, satisfy σ1(u) = σ2(u)

and σ1(v) = σ2(v).

Induction over k: Hypothesis for Pk and G(Pk).

(K1) The picture Pk is r�-partite with classes V r�
j (Pk), j = 1, . . . , r�. The projection map

πk : V (Pk) → V (R�) = [r�] given by πk(x) = j if and only if x ∈ V r�
j (Pk) is a homo-

morphism of Pk into R�. Moreover, πk(G) ∈ G� for every G ∈ G(Pk).

(K2) The family G(Pk) is contained in
(
Pk
G

)
Part(q)

.

(K3) The family G(Pk) satisfies conditions (A) and (B).

(K4) Every G ∈ G(Pk) is (�+ 1)-metric in Pk .

(1)k+1 For every 2-colouring of the (ρ�, Pk+1)-tuples in
⋃

P∈Pk+1
I (k)

P , there exists P ∈ Pk+1

such that I (k)
P ⊂

(
P

ρ�+1

)
⊂

(
Pk+1

ρ�

)
is monochromatic (recall that the hypergraph I (k)

P

is an isomorphic copy of I (k) in P).

(2)k+1 Every P ∈ Pk+1 is �-metric in Pk+1.

(3)k+1 E(Pk+1) =
⋃

P∈Pk+1
E(P).

(A)k+1 If P1,P2 ∈ Pk+1 are distinct and u ∈ V (P1) ∩ V (P2), then there are (ρ�+1,P
j)-tuples

I
j
∗ ∈ I (k)

Pj
, j = 1, 2, such that u ∈ I1

∗ ∩ I2
∗ .

(B)k+1 If P1,P2 ∈ Pk+1 are distinct and u, v ∈ V (P1) ∩ V (P2), then either

(B1)k+1 there exist (ρ�+1,P
j)-tuples Ij∗ ∈ I (k)

Pj
, j = 1, 2, such that {u, v} ⊂ I1

∗ ∩ I2
∗ or

(B2)k+1 the isomorphisms φj : V (Pj) → V (Pk), j = 1, 2, satisfy φ1(u) = φ2(u) and

φ1(v) = φ2(v).
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[11] Nešetřil, J. (2007) Metric spaces are Ramsey. European J. Combin. 28 457–468.
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