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Many motile bacteria display wiggling trajectories, which correspond to helical
swimming paths. Wiggling trajectories result from flagella pushing off-axis relative
to the cell body and making the cell wobble. The spatial extent of wiggling trajectories
is controlled by the swimming velocity and flagellar torque, which leads to rotation
of the cell body. We employ the method of regularized stokeslets to investigate
the wiggling trajectories produced by flagellar bundles, which can form at many
locations and orientations relative to the cell body for peritrichously flagellated
bacteria. Modelling the bundle as a rigid helix with fixed position and orientation
relative to the cell body, we show that the wiggling trajectory depends on the position
and orientation of the flagellar bundle relative to the cell body. We observe and
quantify the helical wiggling trajectories of Bacillus subtilis, which show a wide range
of trajectory pitches and radii, many with pitch larger than 4 µm. For this bacterium,
we show that flagellar bundles with fixed orientation relative to the cell body are
unlikely to produce wiggling trajectories with pitch larger than 4 µm. An estimate
based on torque balance shows that this constraint on pitch is a result of the large
torque exerted by the flagellar bundle. On the other hand, multiple rigid bundles with
fixed orientation, similar to those recently observed experimentally, are able to produce
wiggling trajectories with large pitches.

Key words: micro-organism dynamics, propulsion, swimming/flying

1. Introduction
In most descriptions of bacterial swimming, such as analyses of run-and-tumble

behaviour or of swimming near boundaries, the trajectories of the bacteria are
considered to be relatively straight, with radii of curvature much larger than the
bacterial cell body, except for occasional sharp changes in direction (tumbles).
However, it has long been observed that, when examined in detail, the cell bodies of
bacteria ‘wobble’ (Berg & Brown 1972; Darnton et al. 2007), an indication that they
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are constantly rotating. A consequence of this rotation is that the natural trajectory
of bacteria is generally a helix (Keller & Rubinow 1976; Purcell 1977; Shapere
& Wilczek 1989). Its two-dimensional projection, as typically visualized under a
microscope, is a ‘wiggling’ trajectory.

Either because this fine-scale wiggling is difficult to resolve spatially and temporally,
or because it is considered inconsequential for the net motion of the cell, wiggling has
been ignored in both measurements and modelling of bacterial motility. Instead, the
wiggle is averaged out and the cell’s trajectory is considered to be the centreline of
the actual helical trajectory. We shall refer to this averaged trajectory as the centreline
trajectory.

Many aspects of bacterial motility can be adequately explained and modelled based
purely on centreline trajectories. For example, during the run portions of run-and-
tumble swimming, Berg & Brown (1972) measured the statistics of reorientation
during a tumble of Escherichia coli by comparing the angle between the run portions
of trajectories; their definition of run direction corresponds to centreline trajectories,
not to wiggling trajectories. Accordingly, in models of run-and-tumble chemotaxis (e.g.
Bearon & Pedley 2000; Locsei & Pedley 2009, and references therein) the transport
of bacteria due to swimming corresponds to travel along centrelines. Since wiggling
is deterministic, a random reorientation of the cell body due to Brownian rotational
diffusion or tumbling results in a reorientation of equal magnitude of the centreline
trajectory direction. However, there are cases when it is imperative to take into account
the fine-scale wiggling. One example of this, helical klinotaxis, has been extensively
discussed in the context of larger (≈10 µm) organisms such as protists (Crenshaw
1996; Crenshaw, Ciampaglio & McHenry 2000). Helical trajectories may enhance the
sensing of physicochemical stimuli, including chemical gradients and light.

Wiggling naturally arises from any arrangement of the flagellum or flagellar bundle
that is not collinear with a symmetry axis of the cell body, or if the cell body
or bundle is not symmetric. In general, wiggling can be influenced by time-varying
orientations and deformations of the flagella during propulsion, as well as the detailed
geometries of the bundle and the cell body. However, the most common models for
bacterial propulsion typically consider polar flagella or flagellar bundles modelled as
helices aligned with the axis of symmetry of a cell body, and hence cannot describe
wiggling dynamics.

Here, we investigate the minimal model capable of producing wiggling dynamics,
namely, a flagellar bundle modelled as a rigid helix with a fixed, non-symmetric
position and orientation relative to a rotationally symmetric cell body. We investigate
the dependence of wiggling trajectory parameters on the cell geometry and show
that the actual trajectory depends on the position and orientation of the flagellum
or flagellar bundle relative to the cell body. We compare our modelling results
to observations of wiggling trajectories of Bacillus subtilis. This approach can
complement the use of flagellar staining techniques to visualize flagellar bundles,
especially since the latter often requires high-sensitivity detection systems. In § 2, we
describe how a flagellar bundle pushing the cell off-axis leads to wiggling trajectories.
In § 3, we develop the model used to calculate wiggling trajectories. Then in § 4
we examine the wiggling trajectories produced by a single flagellar bundle, and find
that the pitch of the trajectory is limited to values below those often observed for
B. subtilis. Finally, in § 5, we discuss how multiple flagellar bundles can produce
wiggling trajectories with larger pitches.
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FIGURE 1. (Colour online) (a) A bacterium swimming with constant linear velocity V and
angular velocity Ω in the body-fixed frame. Although in the body-fixed frame V and Ω are
constant, in the space-fixed frame only Ω is constant and V rotates about Ω , leading to
a helical trajectory around the direction of the rotation axis. The dashed line is the actual
trajectory, while the dotted line is the centreline trajectory that one obtains if the wiggling
is averaged out. (b) Frames from a video of an E. coli bacterium show that the cell body
wobbles during swimming. Labels correspond to frame numbers, with frames spaced by 2 ms.
Reproduced from Darnton et al. (2007), with permission from the American Society for
Microbiology. (c) Trajectories of B. subtilis show different degrees of wiggling. Trajectories
were obtained from frames acquired at 8.2 ms intervals with a 1600 × 1200 pixel charge-
coupled device camera mounted on an inverted microscope equipped with a 40× objective.
This smooth-swimming strain, B. subtilis OI4139 (Szurmant, Muff & Ordal 2004), was grown
in Cap assay minimal medium (Zimmer et al. 2002) and swam at a mean speed of 50 µm s−1.
The trajectories labelled 1, 2 and 3 have pitch and radius of: (i) 7.3 µm and 1.1 µm; (ii) 3.0 µm
and 0.6 µm; and (iii) 10.3 µm and 0.4 µm.

2. The kinematics of wiggling
A helical trajectory is the general result of a swimmer undergoing a periodic

swimming stroke in a body-fixed reference frame (Keller & Rubinow 1976; Purcell
1977; Shapere & Wilczek 1989). Over one stroke, the swimmer will both rotate and
translate, arriving at a new position and orientation at the end of the stroke. During
the next stroke, the swimmer rotates and translates by the same amounts relative to
the body-fixed axes, which are now rotated with respect to the original frame. The net
result of many swimming strokes is a helical trajectory.

It is simplest to understand the kinematics of such a trajectory by considering
bacteria that swim using a single polar flagellum (monotrichous bacteria) or a single
bundle of flagella (peritrichous bacteria) with a fixed orientation relative to the cell
body. In the body-fixed frame, one may describe the motion induced by the rotation
of the flagellum or flagellar bundle as a constant counter-rotation of the cell body
combined with a constant translation of the entire cell (figure 1a). To analyse the
resulting helical trajectory, the axis of rotation in a space-fixed frame remains constant,
so that the rotation axis Ω (figure 1a) must coincide with the axis of the helical
trajectory. The distance travelled in the direction of the axis of rotation during one
flagellar revolution thus determines the pitch,

P= TV‖, (2.1)

where T is the period of one flagellar revolution, V‖ = V · Ω/|Ω | is the component
of the swimming velocity along the rotation axis, and V and Ω are the instantaneous
translational and angular velocities of the cell body, respectively. The radius of the
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FIGURE 2. (Colour online) Probability distribution functions of (a) pitch and (b) radius
of observed wiggling trajectories of B. subtilis OI4139. The mean pitch and radius were
8.9 ± 6.0 µm and 0.91 ± 0.81 µm, respectively (6.9 and 0.62 µm median pitch and radius,
respectively). Images were analysed using BacTrack, an in-house cell-tracking Java software.
BacTrack locates bacteria in each image and tracks them between two consecutive images, by
applying a search radius (the maximum distance a bacterium can move between successive
images). We applied a linear least-squares fit to each trajectory to obtain the centreline
trajectory. The trajectory radius was determined from the root mean square (r.m.s.) of the
perpendicular distance from each data point to the centreline. The trajectory pitch was
determined as twice the average distance between consecutive crossings of the centreline.
Trajectories with pitch greater than 30 µm or radius greater than 5 µm were discarded because
upon visual inspection they did not correspond to wiggling trajectories. Pitches and radii from
72 087 trajectories are included in the data shown.

helical trajectory, R, is then obtained by noting that during one period, T , the velocity
perpendicular to the rotation axis takes the swimmer around a circle of circumference
2πR. Thus,

R= TV⊥/(2π), (2.2)

where V⊥ = |V · (I − ΩΩ/ |Ω |2)| is the velocity component perpendicular to
the rotation axis. Hence, specifying the wiggling trajectory’s pitch, radius, and
instantaneous swimming speed is equivalent to specifying the instantaneous
translational and angular velocities of the cell body. We note that when V and Ω
become parallel, the radius becomes zero and the trajectory is straight. For these
straight trajectories, the pitch in a geometric sense is ill-defined because the trajectory
repeats after any length travelled, but the pitch as defined by (2.1) remains well-
defined and is the limit of the pitch obtained as V and Ω continuously approach
coincident directions.

The precise wiggling kinematics varies among different species of bacteria and even
among individuals within a species. For example, Darnton et al. (2007) reported that
E. coli swim with the long axis of their cell bodies making an average angle of
23◦ with the centreline trajectory (figure 1b). They observed the cell body rotating
around the average trajectory direction, but the radius of the helical trajectory was
too small to be directly observed. Different wiggling kinematics are observed for
B. subtilis. We have imaged the trajectories of a smooth-swimming (i.e. non-tumbling)
strain of B. subtilis and processed the images to track the position of the centre
of cell bodies. Representative recordings (figure 1c) reveal that B. subtilis exhibits
wiggling trajectories. Figure 2 shows the probability distribution functions of pitch and
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radius for observed wiggling trajectories. The average pitch and radius were 8.9 and
0.91 µm, respectively, although it should be kept in mind that the pixel dimension
was 0.38 µm. Additionally, substantial variability among trajectories is evident; the
standard deviations for the pitch and radius were 6.0 and 0.81 µm, respectively. In
figure 1(c) we have labelled three trajectories with radii varying from 0.4 to 1.1 µm
and pitches varying from 3.0 to 10.3 µm, and listed their pitches and radii in the
caption.

Since the flagellar bundle in peritrichously flagellated species like E. coli and
B. subtilis can form at many positions and can be oriented in many possible directions,
we focus on how altering flagellar bundle configuration affects wiggling bacterial
trajectories.

3. Off-axis flagellar configurations produce wiggling
First consider a flagellar bundle located at the pole of a symmetric cell body and

oriented collinearly with the major axis of the cell body. Owing to the symmetry
there will be nearly no wiggling. In principle, the symmetry is broken by the phase
angle of the rotating bundle, which leads to slight helical deviations from a straight
path (Keller & Rubinow 1976); however, the flagellar rotation is much faster than the
counter-rotation of the cell body, so that this symmetry breaking is averaged out over
time scales much shorter than those relevant for the cell-body dynamics we describe
here. Therefore, over time scales longer than a flagellar rotation period, the cell
body merely counter-rotates against the flagellar rotation. In other words, the angular
and translational velocities of the cell body are parallel, leading to nearly straight
trajectories.

The wiggling we are concerned with therefore occurs when a flagellar bundle is
attached to the cell body in an off-axis configuration. In this case, the flagellar thrust
produces a torque on the cell body that leads to cell-body rotation beyond the usual
counter-rotation produced at the rotary flagellar motor. The net result is that the overall
angular velocity of the cell body is no longer parallel to the translational velocity of
the cell body, generating a wiggling helical trajectory.

3.1. Boundary element method
To investigate the dependence of the shape of the helical trajectory on the flagellar
configuration, we calculate trajectories for a range of configurations using the method
of regularized stokeslets (Cortez 2001; Cortez, Fauci & Medovikov 2005), a type of
boundary element method (BEM). Boundary element methods (Goto et al. 1910; Phan-
Thien, Tran-Cong & Ramia 1987; Ramia, Tullock & Phan-Thien 1993; Flores et al.
2005; Smith et al. 2009; Shum, Gaffney & Smith 2010) have been used extensively
to model swimming bacteria. In the method of regularized stokeslets, the flow is
modelled as due to localized forces at the surface of the cell body and flagellum. In
contrast to the stokeslet, which is the flow field caused by a point force acting on
the fluid, the regularized stokeslet is the flow field established by a smooth, localized
distribution of force (Cortez 2001). The total velocity field is

vi(r)=
N∑
α

Sij(r− rα)f αj , (3.1)

where rα is the location of the localized force f α, and Sij(r) = [(r2 + 2ε2)δij + rirj]/
[8πµ (r2 + ε2)

3/2] is the regularized stokeslet. The parameter ε represents the
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width of an individual stokeslet’s force distribution, which takes the form
15f αε4/[8π (r2 + ε2)

7/2] for a net force f α centred at the origin.
To specify the flow we must determine the forces f α, which in turn are determined

if we know the velocity field at N points, since (3.1) is an invertible linear system
of equations. Equation (3.1) is evaluated to provide the velocity at each of the
N positions rα on the surface of the swimmer. The regularization of the stokeslet
prevents singularities of the flow field at the positions rα. The velocities at the surface
points can in turn be determined from no-slip boundary conditions and the swimming
velocity, cell-body angular velocity and the prescribed swimming stroke:

v(rα)= V +Ω × r′α + δṙα, (3.2)

where r′α are the positions measured from the centroid of the cell body. The swimming
stroke is specified by δṙα, which is the velocity of surface elements relative to the
centroid of the cell body in a body-fixed frame; in our case they specify that the
flagella rotate relative to the cell body at a fixed angular frequency. This reduces the
problem to six unknown degrees of freedom, the components of V and Ω , which
are solved for by applying the conditions of zero total force and zero total torque
appropriate for a freely suspended swimmer,

0=
∑
α

f α, (3.3)

0=
∑
α

r′α × f α. (3.4)

From the resulting linear system of equations, we determine the instantaneous
swimming velocity and the angular rotation of the cell body as a function of the
geometry of the swimmer and the swimming stroke, which is specified by the rotation
rate of the flagellar bundle relative to the cell body.

3.2. Bacterial geometry and discretization
The cell body is modelled as an ellipsoid. The surface of the ellipsoid is discretized
using a mesh generation scheme for implicit geometries due to Persson (2005). At
each node of the discretization, we place one regularized stokeslet. The average
separation between neighbouring stokeslets on the surface of the cell body is denoted
by 1sc.

In peritrichous bacteria, a flagellar bundle is composed of multiple flagella that
come together to rotate synchronously. The hook at the base of a flagellum provides
the compliance necessary to allow the formation of a bundle from multiple flagella
attached at different locations. Owing to this compliance, the bundle may be able
to vary its position and orientation relative to the cell body during propulsion. The
bundle is a composite of many flagellar helices so its shape may not be precisely
helical, especially at the base where flagella from different locations enter the bundle.
Nonetheless, since studies of bundle dynamics (Flores et al. 2005; Janssen 2011)
and geometries do not currently provide detailed guidance for bundle geometry and
dynamics, we use a minimal model capable of producing wiggling trajectories that
treats the flagellar bundle as a rigid helix with a fixed position and orientation
(apart from rotation about the helical axis) relative to the cell body. Away from the
hook, flagella are stiffer, and modelling them as rigid helices can be justified by the
experiments by Magariyama et al. (2005). These experiments verified the calculation
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of Takano et al. (2003), who found that for an individual flagellum flows generated by
swimming deform the flagellum by less than 3 %.

To prevent the close approach of the flagella and cell body, especially when the
bundle is off-axis, we taper the bundle’s helical radius near the cell body. When the
bundle lies along the x-axis, the centreline of the bundle filament is given by

r(s)=−sx̂+ [1− e−s2/k2
E ]r[cos(2πs/p)ŷ+ sin(2πs/p)ẑ], (3.5)

where p and r are the pitch and radius of the flagellar bundle, s is the distance along
the axis of the helix, ranging from 0 to the length of the helix L, and kE is the
characteristic length of the tapering region. This flagellum geometry has previously
been used extensively in the literature (Phan-Thien et al. 1987; Ramia et al. 1993;
Shum et al. 2010).

The surface of the flagellar bundle is discretized as follows. The bundle is cut into
cross-sections that are normal to the centreline of the helix. Regularized stokeslets are
placed at n equally spaced points around this cross-section, i.e. at the vertices of a
regular n-gon. At the next cross-section, another n-gon is constructed, but rotated so
that each regularized stokeslet has two nearest neighbours in the n-gon of the previous
cross-section. An integer number of evenly spaced cross-sections are chosen such that
the spacing of nearest-neighbour stokeslets between adjacent cross-sections is as close
as possible to the distance between the vertices of the n-gon. We denote the mean
spacing between nearest neighbour stokeslets on the tail with 1sf . The first and last
cross-sections lie at the faces of the flagellar filament, specified by s = 0 and s = L.
Finally, hemispherical caps are placed at the ends of the flagellar filament. The caps
are discretized using the grid method described in Cortez et al. (2005); the spacing
between elements on the equator is chosen to be as close as possible to 1sf .

3.3. Validation of boundary element method

3.3.1. Ellipsoids
We first validate the BEM by calculating the translational and rotational resistance

coefficients of an ellipsoid, and comparing them to analytical results (Steinberger et al.
1994). To calculate the translational (rotational) velocity due to an external force
(torque), the equation for force (torque) balance, equation (3.3) (equation (3.4)) is
modified to include a net external force (torque) on the left-hand side.

Analytic results (Happel & Brenner 1965) indicate that for a prolate ellipsoid
moving through a fluid in the Stokes limit, the total force F and total torque N
are linearly related to the translational and rotational velocities V and Ω , respectively,
and are given by F = CT1V and N = CR1Ω , for V and Ω parallel to the major axis;
and by F = CT2V and N = CR2Ω , for V and Ω in the plane of the minor axes.
For the cell-body ellipsoid with major semi-axis 4b and minor semi-axis b moving
through a fluid with dynamic viscosity µ, the analytic results give CA

T1 = 30.1µb,
CA

T2 = 38.3µb, CA
R1 = 72.5µb3 and CA

R2 = 341µb3 (Steinberger et al. 1994). In figure 3
we plot the values of the four resistance coefficients normalized by the analytic results
as a function of the number of regularized stokeslets. The different curves correspond
to different values of stokeslet regularization parameter to stokeslet spacing (ε/1s).
The numerical values converge on the analytic results. For the ellipsoid, the fastest
convergence is obtained for ε/1s = 1/3, for which the average error is 0.99 % using
1712 stokeslets (which is the number we use to discretize the bacterial cell body). For
ε/1s= 1, the average error is 5.2 % using 1712 stokeslets.
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FIGURE 3. (Colour online) Validation of BEM by calculation of the resistance coefficients
for an ellipsoid: (a) CT1, (b) CR1, (c) CT2 and (d) CR2, all normalized by their analytic values
CA

T1, CA
R1, CA

T2 and CA
R2, respectively, as a function of number of stokeslets used to discretize

the ellipsoid surface.

3.3.2. Bacterial geometries
We validate our calculations of bacterial swimming velocities by comparing results

to the BEM calculations reported by Phan-Thien et al. (1987). Those authors used
the same form of flagellar centreline as in (3.5) and reported swimming speeds for
spherical cell bodies and a variety of flagellar geometries, calculated using a BEM.
They compared their results to those calculated using the slender-body theory of
Higdon (1979). We calculate the swimming speed for the same flagellar geometries but
with our own discretization scheme, with cross-sections represented by 18-gons, and
1608 regularized stokeslets discretizing the cell body. These choices lead to a stokeslet
separation on the cell body (1sc) that is approximately 23.5 times as large as the
stokeslet separation on the bundle (1sf ). The regularization parameter ε is chosen to
be equal to 1sc on the cell body and to 1sf on the flagellar bundle (as justified in
§ 3.4).

Representative results are shown in figure 4. There, the cell body has radius a, the
contour length of the flagellar filament is 5a, and the radius of the filament centreline
is r = 2π/p, where p is the pitch. In figure 4(a) the swimming speed is plotted as a
function of the number of turns of the helical flagellar filament, Nλ, and the radius of
the flagellar filament, rf , is held constant at rf = 0.02a. The pitch, p, of the filament
centreline varies inversely with the number of turns Nλ. In figure 4(b) the swimming
speed is plotted as a function of the radius of the flagellar filament rf , and the
number of turns is held constant at Nλ = 1, hence the pitch is also constant. Figure 4
shows that there is good agreement between our BEM, Phan-Thien et al. (1987) and
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FIGURE 4. (Colour online) Validation of the BEM by comparison to the BEM results of
Phan-Thien et al. (1987) and the slender-body theory of Higdon (1979). (a) Component of
swimming velocity in the rotation direction (V‖) normalized by helical wave speed c as a
function of the number of turns Nλ, as in figure 2 of Phan-Thien et al. (1987). (b) Plot of
V‖/c as a function of the ratio of the flagellum filament radius to cell-body radius (rf /a), as in
figure 5 of Phan-Thien et al. (1987).

slender-body theory. Across figure 4, the average discrepancy is 2.6 % relative to the
results of Phan-Thien et al. and 3.2 % relative to the slender-body theory. In figure 4(a)
the maximum discrepancy is 13.5 % for half a turn (Nλ = 0.5), but for three turns
(the number of turns in our B. subtilis model) the discrepancy is 1.9 % relative to
Phan-Tien et al. and 2.3 % relative to slender-body theory. In figure 4(b) the maximum
discrepancy is 1.8 % relative to Phan-Thien et al. and 4.1 % relative to slender-body
theory.

3.4. Geometry for Bacillus subtilis
We model the bacterial cell body as an ellipsoid with major and minor axes of 4 and
1 µm, respectively, corresponding to the typical size of the cell body of B. subtilis in
our experiments. In reality B. subtilis often have pill-shaped cell bodies which may not
be completely symmetric; we discuss the possible effects of more realistic body shapes
in § 6.

The flagellar bundle is modelled as a three-turn helix with a pitch angle of 37◦

and a length along the helical axis of 6 µm, according to values measured in the
literature (Fujii, Shibata & Aizawa 2008). The bundle contains approximately 7–8
individual flagella, each of diameter approximately 12–20 nm (Li 2010). The packing
fraction within the bundle is not known, so we pick a bundle filament radius of
45 nm. (For a close-packed bundle of 20 nm thick flagella, the bundle filament radius
would be 30 nm; we discuss the effect of varying the bundle filament radius in § 6.)
We prescribe the rotation rate of the flagellar bundle about its helical axis to be
150 rotations per second relative to the cell body, which yields a swimming velocity
of 17.9 µm s−1 in the polar, on-axis configuration. These are physically reasonable
values based upon our observed speeds of B. subtilis. More importantly, our results
for trajectory shapes are not sensitive to the precise rotation rate (or swimming speed,
which varies proportionally to rotation rate), since the shape of the helical trajectory
depends only on the ratio of the swimming velocity and the flagellar rotation rate.

In contrast to the geometry used in Phan-Thien et al. (1987), the flagellum is not
directly attached to the body. Instead, as in Ramia et al. (1993) and Shum et al.
(2010), the flagellum base is separated from the cell body by a gap to prevent the
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z y z
Attachment point(a) (b) (c)

FIGURE 5. (Colour online) Schematic illustrating the definitions of the angle (a) α of the
attachment point between the flagellar bundle and the ellipsoidal body, and the angles (b) β
and (c) γ specifying the orientation of the flagellar bundle.

close approach of moving surfaces. Accurate treatment of two nearby moving surfaces
requires that the separation between the surfaces be larger than the spacing between
regularized stokeslets, 1s (Ramia et al. 1993). Since (as detailed later in this section)
the stokeslet spacing in the cell body is 1sc = 0.07, we choose a gap of 0.3625 µm,
approximately five times as large as the stokeslet spacing.

The flagellar configuration can be specified using three angles (figure 5): one for the
attachment point, and two for the orientation of the flagellum. Relative to a body-fixed
coordinate system {ê1, ê2, ê3}, where ê1 is aligned with the major axis of the cell
body, the angle α from the −x-axis specifies the attachment point, while the angles β
and γ specify the orientation of the flagellum. Note that values of β that correspond
to mirror-image bundle configurations (e.g. β = 37◦ and β = 360◦–37◦ = 323◦) are
distinct and do not yield the same wiggling trajectories, because the chirality of the
helical flagellum breaks the mirror symmetry.

In figure 6 we plot the calculated translational and angular velocities V and Ω of
the cell body as a function of the number of stokeslets per flagellum cross-section
(n) for a representative flagellar configuration geometry, demonstrating the convergence
of our results as the discretization becomes finer. The different curves correspond
to different values of the ratio of stokeslet regularization parameter ε to stokeslet
separation 1sc,f . In contrast to the ellipsoidal geometry, for the bacterial geometry
ε/1s= 1 led to the fastest convergence; hence we only calculated the computationally
intensive case of n = 24 for ε/1s = 1, and use this value for the remainder of our
calculations.

For ε/1s = 1, the values of |V | = 16.29 µm s−1 and |Ω | = 34.68 rad s−1 for
n = 12 are within 3.5 % of the results for n = 24 (|V | = 16.88 µm s−1 and
|Ω | = 35.74 rad s−1); while the values of P = 2.88 µm and R = 0.102 µm are within
0.6 % of the results for n = 24 (P = 2.90 µm and R = 0.102 µm). Therefore, in
order to reduce computational time, the calculations in § 4 use n = 12, for which
1sf = 0.007 85 and the total number of regularized stokeslet in the discretization of
the flagellar bundle is 4204. The discretization of the cell body uses 1712 regularized
stokeslets, leading to 1sc = 0.07. In figure 7 we show the resulting discretization for
one flagellar configuration.

In order to compute the helical wiggling trajectory, it is important to realize that
even in the body frame, the translational and rotational velocities are not constant,
because the geometry of the bacterium changes as a result of the rotation of the
flagellar bundle. We calculate the instantaneous translational and angular velocities
of the cell body at time intervals corresponding to 1/32nd of a flagellar rotation
period. We then integrate the velocities to find the net displacement and rotation of
the cell body after a complete flagellar rotation. The average translational and angular
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FIGURE 6. (Colour online) The kinematic parameters (a) swimming speed |V |, (b) cell-body
rotation rate |Ω |, (c) helical trajectory pitch P and (d) radius R, as functions of n, the number
of stokeslets used to discretize a cross-section of the flagellar bundle. The different curves
correspond to different values of the ratio of stokeslet regularization parameter ε and stokeslet
separation 1s. Results are for the flagellar configuration specified by α = 74◦, β = 323◦ and
γ = 61◦.

FIGURE 7. The model bacterium has a 1×4 µm ellipsoidal body. Each point on the surface of
the bacterium corresponds to the location of a regularized stokeslet. There are 1712 stokeslets
on the cell body and 4204 stokeslets on the flagellar bundle. Shown here is the configuration
with flagellar angles α = 74◦, β = 323◦ and γ = 62◦.

velocities are calculated by dividing the net displacement and rotation by the flagellar
rotation period. The pitch and radius of the helical trajectory are calculated using these
average velocities in (2.1) and (2.2).

While one should in principle construct the helical trajectory by discrete iterations
of the translation and rotation produced by one flagellar rotation, the error induced by
instead using average velocities (equations (2.1) and (2.2)) is minimal, because there
are >10 flagellar rotations for each period of the helical trajectory. For the flagellar
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configuration in figure 6, we verified that the translational and rotational velocities
are only slightly changed by decreasing the time step from 1/32nd to 1/64th of the
flagellar rotation period; decreasing the time step in this fashion changed the pitch and
radius of the trajectory by 0.0038 and 0.077 %, respectively.

Note that different results are obtained by calculating the average translational
and angular velocities by a simple average of the body-frame velocities over the
32 flagellar positions. This simple average leads to large errors in the radius and pitch,
because the body frame constantly changes during one rotation of the bundle owing to
flagellar propulsion. This type of error is less important for on-axis geometries without
wiggling (Ramia et al. 1993; Shum et al. 2010).

4. Wiggling trajectories of Bacillus subtilis with one flagellar bundle
We calculated the trajectories produced by the entire range of flagellar bundle

configuration geometries by varying the angles α, β and γ . Figure 8(a–h) shows the
pitch (P) or radius (R) as a function of flagellar orientation angles β and γ for a fixed
value of α. The range from α = 0◦ (polar bundle) to α = 90◦ encompasses all possible
flagellar configuration geometries. We varied the angles α, β and γ in 15◦ increments,
but figure 8 only shows the results for selected α. We excluded unphysical parameters
for which the flagellum and cell body overlap.

The pitch and radius both vary from roughly 0 to 4 µm. There is the least variation
in pitch as a function of configuration angle when γ ≈ 90◦ or β ≈ ±90◦; otherwise
there can be quite strong variations in pitch as the angles β and γ vary. A notable
feature of these results is that through the entire range of flagellar configurations the
pitch is never greater than 4 µm (precisely, 3.875 µm). Since 81.5 % of the observed
wiggling trajectories of B. subtilis in figure 2 have pitches greater than 3.875 µm, this
result provides strong evidence that a single flagellar bundle cannot explain all of the
observed swimming kinematics of B. subtilis.

In figure 9 we compare the pitch and radius obtained for each of our calculated
trajectories to those of our experimentally observed trajectories; the calculated
trajectories occupy a markedly smaller space in pitch–radius space than the observed
trajectories. While the range of radius in our calculated trajectories is comparable
to the range in our calculated trajectories, it is clear that many of the observed
trajectories have pitch larger than those generated by our model.

4.1. Physical constraint on maximum pitch from a single flagellar bundle
To understand why a single flagellar bundle cannot produce wiggling trajectories
with large pitch, we return to the kinematics described in § 2. The pitch is the
distance travelled in the direction of Ω by the cell body during one period of
body rotation (T = 2π/|Ω |). Thus, an upper bound on the pitch can be obtained as
2πVmax/Ωmin, where Vmax is the maximum swimming speed and Ωmin is the minimum
rotation rate. Among the trajectories for flagellar bundle configurations calculated in
§ 4, Vmax ≈ 22 µm s−1 and Ωmin ≈ 25 s−1, leading to an estimated maximum pitch of
approximately 5.5 µm.

A physical constraint on the maximum pitch is set by the smallest cell-body rotation
rate Ωmin. In turn, the minimum counter-rotation rate is determined from the torque
produced by rotation of the flagellar bundle (from our BEM calculations, 1.54 pN µm
for a bundle rotating at 150 Hz) and the maximum rotational resistance coefficient of
the cell body, CRmax . This CRmax can be estimated as the resistance coefficient for the
cell body rotating about an axis parallel to a minor axis and intersecting the polar end
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FIGURE 8. (Colour online) The pitch P and radius R of trajectories of B. subtilis calculated
using our BEM. By varying the flagellar configuration angles (see figure 5), we explore
the entire parameter space of possible flagellar configurations. The angle specifying the
attachment point (α) takes a fixed value, while the angles specifying the orientation of the
bundle (β and γ ) vary.
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FIGURE 9. (Colour online) Scatter plots of pitch P and radius R of trajectories calculated
using our BEM for B. subtilis with a single flagellar bundle (colour symbols), and
of trajectories observed in our experiments (black points, obtained as in figure 2).
Panel (b) shows a magnified view of the small-pitch region of panel (a).

of the cell body, CR2 + CT2 (4b)2 = 0.12 pN µm s. Together, the torque and resistance
coefficient lead to an upper bound for the pitch generated by a single flagellum of
10.7 µm. This upper bound is somewhat larger than the maximum pitch of 4 µm
calculated with the BEM, but our estimate is rather conservative; in particular Vmax

leads to a significant overestimate because the relevant velocity is the component of
velocity in the direction of Ω , not the entire swimming speed. Furthermore, when
the flagellum is in the configuration producing CRmax , the swimming speed is slower
because of additional drag from the cell body.

Nonetheless, this analysis sheds light on the physical reason why a single flagellar
bundle cannot produce a large pitch: the flagellar torque required for propulsion is too
large, and induces counter-rotation rates of the cell body that are too fast to allow the
bacterium to travel very far during one rotation of the cell body. Thus, generically,
wiggling trajectories of bacteria result from a flagellum or flagellar bundle pushing the
cell body off-axis, while the period of the wiggle (hence, wiggle dimension) is limited
by the swimming speed and flagellar torque.

This analysis assumes that bundles are rigid helices and the cell body is an ellipsoid,
and ignores hydrodynamic interactions between the bundle and cell body in estimating
the torque and rotational resistance. The estimated upper bound is obtained using
maximal rotational resistance and swimming velocity; therefore we expect the bound
to be valid not only for our model’s time-independent bundle configuration, but also
for time-varying configurations of a rigid helical bundle.

The maximum estimated pitch is smaller than many of the wiggling trajectories
that we observe for B. subtilis, indicating that factors not included in our model must
be important for wiggling dynamics. These factors include static and time-dependent
variations from a helical bundle geometry, non-ellipsoidal and asymmetric cell-body
geometries and time-varying bundle configurations which lead to large hydrodynamic
interactions with the cell body. In what follows, we investigate yet another possibility
that can produce larger pitches even for rigid, helical flagella with fixed orientation
and position: whereas one bundle generates too much torque, a suitable arrangement
of two flagellar bundles may be able to reduce the total torque exerted by the flagella.
This scenario is inspired by recent experimental observations, based on flagellar
staining, which revealed that B. subtilis can swim using two flagellar bundles (Li
2010). Although two flagellar bundles will have twice the torque due to rotation about
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FIGURE 10. (Colour online) (a) Bacterium with one flagellar bundle at α1 = 45◦, γ1 = 0◦ and
β1 = β, and the other bundle at α2 = 45◦, γ2 = 0◦ and β2 = −β. The flagellar thrust force
from the first bundle (Ft) produces a torque (Nt) that tends to cancel the torque due to rotation
of the second bundle (Nf ), and vice versa. The reduced total torque can lead to a considerably
larger wiggling pitch, compared to the case of a single flagellum. (b) The pitch P as a function
of β for the geometries in panel (a).

their axes, the flagellar thrust is exerted along different lines of action, reducing the
net torque, as illustrated in figure 10(a). Thus, multiple flagellar bundles can allow
B. subtilis to generate the experimentally observed wiggling trajectories with pitch
greater than 4 µm.

5. Wiggling trajectories produced by two flagellar bundles
With two flagellar bundles, the number of possible flagellar configurations rises

dramatically, so we are not able to perform an exhaustive parametric study of
configuration geometries. Furthermore, literature results on the precise arrangement
of the two bundles are insufficient to provide guidance in this respect. However, by
choosing a class of configurations, we are able to verify the physical mechanism
generating large pitches described above. Consider B. subtilis swimming with two
flagellar bundles, both with the same helical geometry as used in our model of one
flagellar bundle. The first bundle is attached with angles α1 = 45◦ and γ1 = 0◦, with
the orientation angle β1 = β allowed to vary. The second bundle is attached on the
opposite side, with angles α2 =−45◦ and γ2 = 0◦ and β2 =−β1 =−β (figure 10a).

Based on the mechanism proposed above, we expect that, if β is positive, then
the line of action of the flagellar thrust due to the first bundle creates a torque that
tends to cancel the torque due to the rotation of the second bundle, and vice versa
(figure 10a). As the angle β increases from zero, more torque is cancelled and hence
larger pitches are expected. On the other hand, for negative values of β, the torque
due to thrust enhances the torque due to rotation of the other bundle, and so the pitch
should remain small.

We use our BEM to calculate the wiggling trajectories of the configurations with
two flagellar bundles shown in figure 10(a). In these calculations, each bundle
is discretized using 12-gon cross-sections, but the cross-sections are slightly more
separated than in the single bundle, so that the total number of stokeslets used in each
bundle is 3304. The cell body is still discretized with 1712 stokeslets. In figure 10(b),
we plot the pitch of the wiggling trajectory as a function of β. In accordance with
our expectation, the pitch remains small when β is negative and increases for positive
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Trajectory α1
(deg.)

α2
(deg.)

β1
(deg.)

β2
(deg.)

γ1
(deg.)

γ2
(deg.)

Calculated
pitch
(µm)

Calculated
radius
(µm)

1 35 −35 23 −22.5 21 0 7.9 1.6
2 18 0 20 −0 0 0 3.0 0.6
3 55 −55 47 −47 5.1 0 10.3 0.4

TABLE 1. Examples of calculated wiggling trajectories produced by two flagellar bundles
with pitch and radius similar to numbered trajectories in figure 1. The angles α1, β1 and γ1
are for the first bundle, while α2, β2 and γ2 are for the second bundle.

values of β. This corroborates our explanation of the wiggling kinematics produced by
two flagellar bundles.

Multiple-bundle configurations can lead to the trajectories with pitch larger than
4 µm that we observed for B. subtilis, but which could not be generated by a single
bundle in our BEM calculations. Because the configurations shown in figure 10(a)
are symmetric upon rotation around the major axis of the cell body by 180◦, for
these configurations Ω and V must both be parallel to the major axis, and thus
the wiggling trajectory radius is zero. However, by introducing small asymmetries
into this flagellar configuration, V and Ω become slightly misaligned and wiggling
trajectory radii similar to those observed in our imaging experiments can be generated
while maintaining longer pitches. Consider the three wiggling trajectories labelled
in figure 1(c). Using our BEM, we find bacterial geometries involving two flagellar
bundles that result in trajectories which closely approximate these three trajectories,
and present them in table 1. Given the number of degrees of freedom, we do not
expect there to be a unique configuration generating any particular wiggling trajectory.
However, these results show that our physical understanding of the kinematics of
swimming with two bundles allows us to find configurations producing three realistic
wiggling trajectories, suggesting that many B. subtilis may swim using more than one
bundle at a time.

6. Discussion
A bacterial trajectory is made of smoothly varying runs and rather abrupt tumbles.

It has long been known that, even during runs, the trajectory is not straight because
of rotational Brownian diffusion. We have shown that, in addition to this effect, the
trajectory is not straight due to flagella pushing the body off-axis, which results
in helical wiggling trajectories. We expect that wiggling trajectories are the norm
among bacteria, because perfect on-axis pushing by the flagellum is unlikely. Since
peritrichous bacteria may form flagellar bundles at many possible positions, and
with many orientations relative to the cell body, their trajectories will have a wide
distribution of wiggling amplitudes.

We imaged the trajectories of B. subtilis bacteria and found that the average
pitch and radius of the wiggling trajectories are 8.9 ± 6.0 µm and 0.91 ± 0.81 µm,
respectively, with a wide distribution of pitches and radii. We used a BEM based
on the method of regularized stokeslets (Cortez 2001) to calculate the wiggling
swimming trajectories of B. subtilis for the entire range of possible time-independent
flagellar bundle configurations. For a single rigid flagellum, our model produced no
wiggling pitch greater than 4 µm. Using physical estimates based on torque-balance
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considerations, we showed that pitch is limited for bacteria swimming with a single
bundle by the relatively large torque exerted by the bundle. We then showed that
model geometries of B. subtilis swimming with two flagellar bundles can generate the
wiggling trajectories observed in our experiments with pitch greater than 4 µm.
B. subtilis swimming with multiple flagellar bundles have recently been observed

using flagellar staining and videomicroscopy (Li 2010). The bundles can be aligned
off-axis, tangentially to the cell surface. Little is known about the dynamics
of swimming with multiple bundles. Our approach of combining experimental
tracking of wiggling trajectories with quantitative modelling provides an additional,
complementary method of interrogating this type of propulsion.

Based on the combined errors associated with modelling the ellipsoid (§ 3.3.1),
our BEM (§ 3.3.2) and our choice of mesh size (§ 3.4), we estimate that our results
for pitch and radius have an error of approximately 10 %. When making detailed
comparisons with observations, three additional factors must be considered.

First, we have assumed an ellipsoidal cell body 4 µm long by 1 µm wide, which
matches the average size of B. subtilis observed in our experiments. In reality,
however, there is variation in cell-body sizes and aspect ratios within a population,
including asymmetric body shapes.

Second, the shape of B. subtilis cell bodies is not perfectly ellipsoidal, but somewhat
‘pill-shaped’. We have used our BEM to model cell-body shapes consisting of a
cylindrical mid-section with hemispherical caps at their ends, and found that for cell
bodies with aspect ratio 4, the wiggling trajectory pitch and radius are 20 and 30 %
larger, respectively, than those obtained for ellipsoidal cell bodies.

Third, we assumed that the bundle filament radius is 45 nm. We performed
BEM calculations to investigate the dependence of our results on the bundle
filament radius. Changing the bundle filament radius for the flagellar configuration
specified by α = 30◦, β = 51◦ and γ = 24◦ did not affect the swimming speed V
much (V = 15.64 µm s−1 for filament radius 25 nm; V = 15.62 µm s−1 for filament
radius 60 nm), but the rotation rate Ω varied approximately linearly with filament
radius, increasing by 51 % as the bundle filament radius increases from 25 nm
(Ω = 34.6 rad s−1) to 60 nm (Ω = 52.3 rad s−1). The wiggling trajectory pitch and
radius also varied approximately linearly with filament radius, decreasing by 35 %
as the bundle filament radius increases from 25 nm (P = 2.77 µm, R = 2.77 µm) to
60 nm (P= 1.79 µm, R= 1.86 µm).

Combining all these errors, we estimate that, in the worst case, the maximum pitch
generated by a single flagellar bundle might be approximately 10 µm. Importantly, the
conclusion drawn from our model that many of the large pitches observed in wiggling
trajectories of B. subtilis are produced by swimming with multiple bundles rather than
a single bundle is robust to errors of these magnitudes, since 32 % of our observed
trajectories still have pitch greater than 10 µm.

Future investigations of wiggling trajectories may incorporate additional effects not
present in our minimal model for wiggling. As mentioned in § 3.2, owing to the
flexibility of the hook, the orientation of flagella relative to the cell body can vary
in time. This intriguing elastohydrodynamic problem could potentially impact the
wiggling dynamics presented here, but will require a full treatment of fluid–structure
interactions. We note that, for peritrichous bacteria, many flagella in a flagellar bundle
are oriented in the same direction; hence, altering the bundle orientation requires
deforming many hooks, not just one. Thus elastic deformation of flagellar bundles may
be less important for peritrichous bacteria such as B. subtilis than elastic deformation
of a single flagellum for monotrichous bacteria. Additionally, the detailed geometry of
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the cell body, especially if it is curved and asymmetric, can lead to helical trajectories
even for polar flagella or flagellar bundles. Finally, the bundle is a composite object
consisting of many flagella, and future modelling may take into account the dynamics
and detailed geometry of the flagellar bundle, which may deviate significantly from a
rigid helix, especially at its base.

To date, not much attention has been paid to off-axis flagella and flagellar
bundles in models of swimming bacteria. Understanding the microhydrodynamics of
motile microorganisms provides fundamental information to predict the ecological
implications of these organisms (Durham, Kessler & Stocker 2009). Here we have
shown that a minimal model incorporating small deviations from the simplest and
most widely used morphological configuration – a flagellar bundle pushing on-axis
– leads to the existence of wiggling in bacterial trajectories, observed for B. subtilis
and for a wide range of other bacterial species.

The detailed kinematics produced by the non-symmetric geometries of off-axis
flagellar configurations are important for bacterial behaviours beyond the wiggling
trajectories studied here. One example is the recently discovered hybrid movement
pattern of certain marine bacteria (Stocker 2011; Xie et al. 2011), which alternate
reversals with flicks of their flagellum, the flick resulting in a marked reorientation
(mean of 90◦). During a flick the flagellum develops a kink at the base and so is not
aligned with the symmetry axis of the cell body. Therefore we expect that refining
commonly used models of bacterial propulsion to incorporate off-axis flagella may
shed light on a range of bacterial processes.
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