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Abstract
This study examines how human capital develops in response to early-life weather and
pollution exposures in the Philippines. Both pollution and weather are examined in relation
to short- and long-term human capital outcomes. We combine a three-decade longitudi-
nal survey measuring human capital development, a database of historical weather, and
multiple databases characterizing carbon monoxide and ozone in the Philippines during
the 1980s. We find evidence that extreme precipitation and temperature affect short-term
anthropometric outcomes, but long-term outcomes appear unaffected. For long-term cog-
nitive outcomes, we find that early-life pollution exposures negatively affect test scores and
schooling. These long-term responses to early-life pollution exposures extend to the labor
market with reduced hours worked and earnings. The implication is that a 25 per cent reduc-
tion in early-life ozone exposure would increase per person discounted lifetime earnings by
$1,367, which would scale to $2.05 billion at the national level (or 2 per cent of 2005 GDP).
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1. Introduction
Human capital is the set of skills and resources that contribute to individual productiv-
ity, income andmacroeconomic growth, making it critical to understand the factors that
influence the development of human capital. Among the potential factors are weather
and pollution exposure. Temperature and precipitation can affect human capital devel-
opment through income and health (Maccini and Yang, 2009; Graff Zivin et al., 2018);
pollution may also disrupt other bodily systems related to human capital (Altshuler
et al., 2003). And in early-life, small changes to the environment can influence long-term
developmental trajectories (Waterland and Michels, 2007). Existing cost-benefit analy-
ses of environmental regulations exclusively count the costs of mortality and short-term
morbidity; however, if the environment’s effects extend to long-term human capital, the
results may imply that environmental regulations, traditionally viewed as taxes, may be
investments that fuel economic growth (Graff Zivin and Neidell, 2013).
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Extensive evidence links weather and pollution to health outcomes (Deschênes et al.,
2009), and recent studies link pollution (Allen et al., 2017), temperature (Graff Zivin
et al., 2018) and precipitation (Maccini and Yang, 2009) to cognition and schooling. The
effects of temperature and precipitation on labormarket outcomes have been extensively
examined (Dell et al., 2014), and there is also evidence that pollution impacts labor mar-
ket outcomes (Kim et al., 2017). While the long-term human capital effects of weather
have been explored (Graff Zivin and Neidell, 2013), few studies have examined the long-
term human capital effects of early-life pollution exposure (Currie et al., 2014), with
fewer making the link to labor market outcomes (Kim et al., 2017).

This study addresses the following research questions: what are the long-term human
capital impacts of the early-life environment – both weather and pollution – and how
do these impacts translate to the labor market? We examine the effects of tempera-
ture and precipitation, as well as the effects of carbon monoxide (CO) and ozone (O3)
exposures. Temperature and precipitation have been previously linked to human capital
(Maccini and Yang, 2009) and CO and O3 are common emissions with biological
pathways to potentially impact human capital development (Block and Calderon-
Garciduenas, 2009). While previous studies have examined either weather or pollution,
we examine both because of their close relationship. And we look at both human capital
and labor market outcomes because of the extensive evidence linking human capital to
labor market outcomes (Strauss and Thomas, 1998), and the limited evidence of how
environmental factors affect each (Kim et al., 2017).

To do this, we combine a longitudinal birth cohort survey conducted in the Philip-
pines with a unique combination of data characterizing weather and pollution during
early-life. For each measure of human capital (anthropometrics including birth weight
and length/height, as well as cognitive measures such as test scores and years of school-
ing) and labormarket outcomes (earnings and hoursworked), we first estimate the direct
effects of temperature and precipitation while controlling for pollution exposure as well
as social, demographic and economic factors. Then, for outcomes not directly affected
by weather, we use weather as instruments for non-random pollution exposures. We
define the early-life exposure window as conception up to the time when the outcome is
observed (e.g., birth weight), or age 2 for long-term outcomes.

Data limitations have limited the analysis of the long-term effects of early-life
environmental exposures, particularly in developing countries like the Philippines. To
circumvent the data limitations, we combine multiple unique data sources. First, we use
the Cebu Longitudinal Health and Nutrition Survey (CLHNS) which documents fre-
quent anthropometric, cognitive and labor market measures of a cohort born in the
Cebu Metropolitan area of the Philippines between 1983–1984. The CLHNS is com-
bined withNational Climatic Data Center andWater Resources Center of the University
of San Carlos weather data, pollution emissions data from the REanalysis of the TRO-
pospheric chemical composition over the past 40 years (1960–2000) (RETRO) database
(Schultz et al., 2007), and historical emission source data including archived telephone
directories, pollution permits, land use, zoning and road networkmaps. RETRO and the
emission source data are combined and matched to the early-life exposure window of
each CLHNS birth cohort member.

The results of this study provide evidence from a developing country context of
weather’s short-term effects and pollution’s long-term effects on human capital. Extreme
precipitation and temperature demonstrate significant effects on short-term anthro-
pometric measures of human capital observed between birth and age 2. These effects
align with previous results like the effects of extreme temperatures on birth weight in
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Deschênes et al. (2009) and the birth weight effects of extreme precipitation in Grace
et al. (2015). However, weather does not demonstrate significant effects on long-term
outcomes like test scores, schooling, labor hours and earnings. This is similar to the
results of Graff Zivin et al. (2018) which demonstrate significant contemporaneous
effects of temperature on human capital but no long-term effects. In contrast, early-life
CO and O3 exposure demonstrate long-term effects on test scores and schooling. While
previous studies have shown long-term cognitive effects of lead exposure and environ-
mental disasters (Almond et al., 2009; Black et al., 2019), our results suggest that early-life
exposures to more common environmental toxins also exert long-term human capital
and labor market effects. Similar evidence has been found in few other studies (Sanders,
2012; Bharadwaj et al., 2017; Isen et al., 2017). In sum, the labor market results suggest
that if early-life pollution exposure was reduced by 25 per cent, cumulative discounted
lifetime earnings would increase by $1,367 per person, $44.5million in the province, and
$2.05 billion at the national level (or 2 per cent of 2005 GDP).

The paper proceeds as follows. Section 2 describes background information on
weather, air pollutants, the early-life origins of human capital, and the study’s con-
text. Section 3 describes the identification strategies, data and specifications. Section 4
describes the results, and Section 5 discusses the results. Section 6 concludes the study.

2. Background
There are multiple plausible short- and long-term mechanisms through which temper-
ature and precipitation may affect human capital. First, temperature and precipitation
are both related to income (Levine and Yang, 2014) which affects nutrition (Maccini and
Yang, 2009). Temperature and precipitation may also affect human capital via disease.
Temperature and precipitation are closely related to the incidence of infectious diseases,
both vector-borne and water-borne, and consequently may impact school attendance
and short-term human capital development. Alternatively, evidence suggests that early-
life illnesses may affect long-term human capital development (Baird et al., 2016). In the
short-term, elevated environmental temperatures reduce the flow of cool blood to the
brain and temporarily raise brain temperature (Kiyatkin, 2007). This diminishes atten-
tion, memory, information retention and the performance of psycho-perceptual tasks
(Hocking et al., 2001). However, even if themechanism is initially short-term, the effects
on human capital can accumulate over time (Graff Zivin et al., 2018).

In addition to directly affecting human capital, weather (including temperature and
precipitation as well as humidity and wind) has been shown to impact agricultural
and industrial output, which results in pollutant emissions (Hassan and Barker, 1999;
Bennett and McMichael, 2010; Hsiang, 2010; Dell et al., 2012, 2014; Hsiang and Jina,
2014). If the indirect effects can be isolated from the direct effects, this relationship
makes weather potential instruments for non-random pollution exposure. Among the
pollutants affected by weather are CO and O3. CO and O3 are among the most com-
mon air pollutants. Both are odorless, colorless gases; CO is primarily emitted from
combustion processes and O3 is formed by chemical reactions in the sunlight with its
precursors: nitrogen oxides (NOx) and volatile organic compounds (VOCs). CO bonds
with hemoglobin more easily than oxygen, reducing the body’s ability to deliver oxy-
gen to organs and the fetus (Meter, 2000). Because oxygen is needed for proper growth
and development, CO exposure has demonstrated consistent associations with low birth
weight and early-life height/length (Currie et al., 2014), while a minority of studies
demonstrate an association to diminished cognitive function (Lavy et al., 2014). The
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bonding of CO with hemoglobin and the impaired delivery of oxygen throughout the
body is a potential short-term mechanism of pollution’s effects on human capital. O3
and its precursors1 are neurotoxins that also cause increased inflammation and oxida-
tive stress (Block and Calderon-Garciduenas, 2009). While O3 does not typically pass
through the placenta (Salam et al., 2005), a large body of literature describes the impact
that O3 has on cognition (Allen et al., 2017). These human capital implications of O3
exposure indicate potential long-term mechanisms.

Extensive human epidemiologic and animal research indicate that during critical
periods of prenatal and postnatal development, environmental exposures can influ-
ence developmental trajectories of lifetime health (Waterland and Michels, 2007). The
developmental origins of health outcomes are commonly assessed in both epidemiol-
ogy and economics, and although the economics literature has included assessments of
human capital and labor market outcomes, these are much less common (Currie et al.,
2014). However, rapid cell division, epigenetic programming, and the development of
diverse bodily systems during early-life magnify the potential impacts of environmental
influences on the development of human capital (Altshuler et al., 2003). The develop-
ment of physical human capital may be impeded by perturbations or reductions to the
flow of nutrients (Stieb et al., 2012). And the development of cognitive human capital
may be impacted by nutrient flow or inflammation, oxidative stress and neurotoxicity
(Waterland and Michels, 2007).

Most studies of human capital’s early-life origins are set in developed countries
because of the scarcity of environmental data in developing economies. Metropolitan
Cebu is located on the island of Cebu in the Central Visayas region of the Philippines.
In 1983–1984 Metro Cebu consisted of ten cities or municipalities: Cebu City, Mandaue
City, Talisay City, Lapu-lapuCity, Naga City, Consolacion, Liloan, Cordova,Minglanilla
and Compostela (see figure 1). It is the only area of high population and economic den-
sity on the island of Cebu. Figure A1 in the online appendix shows the daily rainfall and
temperatures in Metropolitan Cebu between 1978 and 1987. Metropolitan Cebu emis-
sions compares to cities of similar population size in both the developing and developed
world such as Kanpur, India and San Diego, United States, or even some larger cities in
the developing world like Rio de Janiero, Brazil (table A2, online appendix).

3. Methods
The effects of early-life extreme temperature and precipitation on human capital and
labor market outcomes are estimated using ordinary least squares (OLS) including a
rich set of controls for other weather variables (wind speed and humidity extremes,
as well as deviations from seasonal averages), CO and O3 exposures, urban/rural resi-
dence, gender, season of birth, and household and parental risk factors such as per capita
household income, maternal smoking and others (see table 1). The measures of extreme
temperature and precipitation that we use are based on their distributions during a 10
year window, 1978 to 1987. As commonly used in the literature (Strand et al., 2011),

1While this study refers to O3 exposure, the measure of O3 is derived via principal component analysis
of NOx and VOCs. This is done because NOx and VOCs share similar mechanisms to affect human capital
(Black et al., 2019), are highly correlated (see online appendix, table A1), and convert toO3 in the presence of
sunlight which is highly abundant inMetro Cebu where over 90 per cent of the hourly weather observations
describe the cloud cover as less than 20 per cent.
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Figure 1. Maps of the study area: Philippineswith Cebu Province andMetro Cebu highlighted (top left); cities and
municipalities of Metro Cebu with barangay highlighted (top right); map of 0.5× 0.5 degree RETRO grid divided
into 400 micro-environments at 0.025× 0.025 degrees (bottom).

extremes are measured as the number of days above the 90th and below the 10th per-
centile of the distributions. Focusing on the extremes of precipitation and temperature
avoids the potential problem of compensatory responses to predictable weather.

The effects of early-life CO and O3 exposure on human capital and labor market
outcomes are estimatedwith the limited-information-maximum-likelihood (LIML) esti-
mator which is consistent in the presence of many instrumental variables. In addition
to the precipitation and temperature extremes, we also include extreme wind speed
and humidity, as well as deviations from seasonal averages as instruments. Each of the
weather instruments are interacted with location specific concentrations of pollution
sources. The exclusion restriction is the key issue with this identification strategy. If
weather directly affects human capital outcomes, the instrumental variable exclusion
restriction is violated. However, if there are no direct effects of weather, the weather
instruments may be used to estimate the effects of pollution exposure.

We examine whether our instruments exert direct effects in two ways. First, we use
the previously described OLS estimates of the effects of temperature and precipitation.
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Second, we use a test introduced by the many invalid instrumental variables method
of Kolesár et al. (2015). Kolesár et al. (2015) introduced the modified-bias-two-stage-
least-squares (MBTSLS) which produces consistent estimates with invalid instruments
if the instruments’ direct effects are independent of their indirect effects. If we were con-
fident in the assumption that the direct and indirect effects of the weather instruments
are independent, we could use MBTSLS to estimate pollution’s indirect effects even if
the weather instruments directly affect the outcomes. However, we cannot verify that
assumption, so the MBTSLS estimates do not comprise our main results. Instead, we
only use the MBTSLS estimates as part of our second test for whether our instruments
exert direct effects. We test whether the LIML and MBTSLS estimates differ. LIML pro-
duces consistent estimates with many instrumental variables, but inconsistent estimates
if the instruments are invalid. A significant difference between the LIML and MBTSLS
estimates indicates the presence of the instruments’ direct effects. So, if theOLS estimates
of the weather variables’ effects are null and the LIML-MBTSLS test is null, we havemul-
tiple pieces of evidence that the instruments do not directly affect the outcomes and are
valid. Where both these tests are null, the effects of early-life CO and O3 exposure are
identified using the LIML estimator.

3.1. Data
We use four types of data: human capital and labor market data from the CLHNS,
weather data from the National Climatic Data Center (NCDC) and Water Resources
Center of theUniversity of SanCarlos (WRC), historical emissions data from theRETRO
(REanalysis of the TROpospheric chemical composition over the past 40 years) database,
and polluter source location and industry/sector data collected specifically for this study
from various governmental and non-governmental agencies in Cebu. The CLHNS pro-
vides birth outcomes including birth weight, measures of length/height throughout life,
test scores measuring cognitive development, and the labor market outcomes of hours
worked and hourly earnings.Weather data from the NCDC andWRC identify extremes
and deviations from seasonal patterns in temperature and precipitation. Combining the
RETRO database describing historical emissions in Metro Cebu with specific informa-
tion on the locations and industries of pollution sources generates temporal and spatial
variation in emissions. Emissions are translated into exposures using detailed residential
and exposure window information for individuals in the CLHNS birth cohort.

The years of life documented and the human capital and labor market outcomes
measured in the CLHNS provides the unique opportunity to assess the effects of the
early-life environment in a developing economy context. The CLHNS randomly sam-
pled 33 barangay (17 urban and 16 rural) in Metro Cebu in order to form a cohort of
pregnant women (see figure 1). Barangays are the smallest administrative district in the
Philippines. The 33 sampled barangays contained in total roughly 28,000 households
in 1982, all of which were canvassed in search of pregnant women. Women from the
selected barangays who gave birth between 1 May 1983, and 30 April 1984 are included
in the baseline sample that took place during the 6th or 7thmonth of pregnancy. In total,
3,327 women were surveyed at baseline and 3,122 were resurveyed at childbirth. Follow-
ing the child’s birth, the mother-child pair was resurveyed every twomonths for the first
two years of the child’s life, and then in 1991, 1994, 1998, 2002 and 2005 (followed by
limited tracking surveys).

Table 1 provides summary statistics of mothers, fathers, household characteris-
tics, residence, migration, attrition, and children’s health and human capital at birth,
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Table 1. Summary statistics of individual and household characteristics, environmental exposures, and outcomes

Percent
or Mean Std. Dev.

Percent
or Mean Std. Dev.

Child, Parental, and Household Characteristics (n = 3327) Emissions Exposure Prior to Age 2 in ng/m2/s(n = 3122)

Child: Birth in amihan season (Sept-May) 59% CO: monthly average exposure prior to birth 48.12 27.9

Child: Male % 53% Ozone: monthly average exposure prior to birth 11.84 8.83

Mother: Elementary school or less education % 54% CO: monthly average exposure prior to age 2 75.94 40.79

Mother: Smoked during pregnancy % 14% Ozone: monthly average exposure prior to age 2 18.89 14.08

Mother: Drank alcohol during pregnancy % 8%

Mother: Consumes pre-natal vitamines % 58% Short-term Anthropometric Outcomes

Mother: Number of previous pregnancies 2.52 2.43 Low birth weight (2500 grams) % 13% 0.34

Mother: Height in cm 150.64 5.1 Birth length in cm 49.25 2.14

Mother: Age in years 26.04 5.98 Height in cm at age 2 78.79 3.9

Father: Present in household % 94%

Father: Elementary school or less education % 47% Cognitive and Schooling Outcomes

Father: Age in years 28.82 6.56 Non-verbal intelligence scores (scale 0+) in 1994 67.01 11.16

Household: Per capita monthly income in 1983–1984
(PhP)

255.37 309.62 Math test scores (scale 0+) in 1994 51.23 13.16

Household: Uses solid fuels 83% Language (Cebuano and English) test scores (scale 0+)
in 1994

56.72 9.26

Household: No piped water 72% Achieved years of schooling by 2009 12.5 4.38

Household: Urban residence 77%

(continued)
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Table 1. Continued

Percent
or Mean Std. Dev.

Percent
or Mean Std. Dev.

Labor Market Outcomes

Migration and Attrition (n = 3327) Male hours worked per week in 2005 40.5 18.06

Ever temporarily attrit throughout all waves % 17% Female hours worked per week in 2005 42.8 21.16

Ever permanently attrit throughout all waves % 24% Male individual monthly income in 2005 (PhP) 7614.35 37405.35

Female individual monthly income in 2005 (PhP) 5793.23 10934.12

ExtremeWeather Exposures Prior to Age 2 (n = 3122)

Temperature (>90% of distribution) 22% 0.05 Short-termMorbidity Outcomes

Temperature (<10% of distribution) 12% 0.04 Number of reported diarrheal incidences 3.44 3.89

Precipitation (>90% of distribution) 8% 0.01 Number of reported acute respiratory infections 4.47 2.41

Precipitation (<10% of distribution) 3% 0.04 Medical expenditures (pesos) during first two years 193.73 266.6

https://doi.org/10.1017/S1355770X20000224 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1355770X20000224


Environment and Development Economics 9

adolescence, and in adulthood. Anthropometrics such as height and weight were col-
lected for women beginning with the baseline survey and for children beginning at birth.
Parents in the sample are young (26–28 years old on average), and not highly educated
(approximately 50 per cent with primary or less education). Fifty-three per cent of chil-
dren born in the sampleweremale and themajority of childrenwere born in the lengthier
Amihan season between September/October andMay/June.Mothers are relatively small
(151 cm tall) and are, on average, 26 years old at the time of the birth of the CLHNS
cohort member. Just under 50 per cent of the sample reside in Cebu City at birth and
over three-quarters of the sample reside in urban barangays. Furthermore, 24 per cent
of the sample permanently attrit from the three-decade long survey, while 17 per cent
temporarily attrit for a period of time and are observed in later periods. Thirteen per
cent of children are low birth weight (less than 2,500 g). Height and length until adult-
hood are expressed in z-scores; the z-score system expresses the anthropometric value
as a number of standard deviations or z-scores below or above the international age and
sex specific reference means. Between birth and ages 1 and 2, mean child height z-scores
go from −.32 to −1.43 and −2.11. Miscarriages, stillbirths and deaths within a week of
birth represent only 2 per cent of pregnancies in the sample, and infant mortality within
the first year is 4 per cent.2

Hourly observations of wind direction and wind speed from the NCDC provide high
frequency observations of temperature, wind speed and humidity. WRC data provides
daily precipitation measures from five observation stations throughout Metro Cebu.
Table 1 provides summary statistics of early-life exposures to extreme temperature and
precipitation. Generally, the cohort experienced greater exposure to extreme tempera-
tures than to extreme precipitation during their exposure window between conception
and age 2. Weather patterns in Cebu are influenced by the seasons: the dry season, or
Amihan, from September/October toMay/June, and the wet season, or Habagat. Online
appendix figure A1 shows trends and variation in daily precipitation andmaximum and
minimum temperatures across the seasons before, during and after the early-life period
of the CLHNS cohort (1978 to 1987).

The RETRO database of historical emissions describes the temporal variation in CO
and O3 precursors for Metro Cebu during the first two years of the lives of CLHNS
birth cohort members. RETRO contains global monthly emissions by sectors for the
years 1960–2000 at a 0.5 × 0.5 latitude-longitude degree of spatial resolution.3 RETRO
combines five global-scale numerical models of atmospheric transport and chemistry
to achieve statistically robust and temporally consistent estimates of emissions (Schultz
et al., 2007). FigureA2 in the online appendix shows examples of theRETROdatabase for
CO and O3 precursor emissions for a randomly selected month and an example sector
(residential/commercial).We focus solely on the single 0.5 × 0.5 grid located at the 10.25
degreesNorth and 123.75 degrees East latitude-longitudewhich coversMetroCebu. This
0.5 × 0.5 degree, 55 km× 55 km grid is shown as the outer border in the bottom panel of
figure 1. The RETRO database is particularly relevant for the current study because the
0.5 × 0.5 grid covering Metro Cebu does not cover any other land mass or population
hub that could contribute to emissions.

2The low number of miscarriages, stillbirths and infant deaths indicate an oversampling of healthy
pregnancies.

3While concentrations in weight per cubic meter, or m3, are most common, RETRO uses nanograms per
square meter per second (ng/m2/s).
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Available monitored emissions as well as descriptions of economic activity (energy
and solvent usage, and biomass burning), technology, behavior (legislation, economic
and industrial policies), population, and meteorology form inputs to the atmospheric
transport and chemistry models yielding monthly emissions by pollutant and sector for
each 0.5 × 0.5 latitude-longitude grid (Schultz et al., 2007). Comparisons to regional
observational data have demonstrated the validity of the estimated RETRO emissions
database and shown accurate representation of temporal atmospheric variability and
chemical state (Schultz et al., 2007).4 Where deviations from existing databases exist,
the RETRO estimated emissions are generally conservative (Schultz et al., 2007).

Table 1 also provides summary statistics of early-life monthly average expo-
sures.5 Encompassing various industries and activities, the sectors represented in the
RETRO database are: industrial combustion, power generation, manufacturing with
solvents/chemicals, fossil fuel extraction and distribution, agriculture, residential and
commercial, shipping, road and other land transportation, and waste disposal. Among
point sources, monthly emissions of O3 precursors exceed those of CO and the majority
of emissions come from the power generation sector, which is entirely composed of two
coal-fired power plants in Metro Cebu. CO is the most commonly emitted pollutant by
non-point sources, the majority emitted by residential and commercial sources.

While the RETRO emissions database provides temporal variation in total emissions
of CO and O3 precursors for Metro Cebu, the database contains no spatial variation to
determine individual CLHNS birth cohort member exposure. Spatial variation in expo-
sure is generated by linking RETRO to the locations of point and non-point sources of
pollution in Metro Cebu. Because Metro Cebu is the only area of economic and popula-
tion density on the island and within the RETRO 0.5 × 0.5 latitude-longitude grid, the
sources of pollution within Metro Cebu are assumed to characterize the complete set of
sources that contribute to the emissions described in RETRO.

Point sources are single, identifiable sources including immobile structures like
power and manufacturing plants, while non-point sources emit frommore diffuse areas
like agricultural land or roads. Online appendix figure A3 shows the locations of point
sources by industry and sector (top row) and non-point sources of pollution (middle
and bottom rows). Telephone directories from the Directories Philippines Corpora-
tion locate and describe the point sources that existed during the years 1982–1986.
Telephone directories provide information regarding the existence, location and indus-
try ofMetroCebu firms. Sources that belong to industries that required pollution permits
during the 1999–2012 period are assumed to require them during the 1982–1986 period
and are included as point sources for the years 1982–1986. The remaining point sources
included in the data come from the Provincial Mining Office (PMO) and the Provincial
Planning and Development Office (PPDO) and describe large and small scale mines.
Only mines that existed between 1982–1986 are included (per PMO and PPDO data).
In total, 21 large and small scale mines existed during the early 1980s in Metro Cebu;
12 of the 21 mines were copper mines, five were coal mines, and others were clay, gold
and silver mines. To describe non-point sources within Metro Cebu during the years
1982–1986, we use maps describing land use (from the PPDO), zoning (eachmunicipal-
ity planning and development offices), and the road network (PPDO) generated from

4While RETRO uses existing ambient air quality monitors as inputs, the resulting emissions are modeled
to give a more complete description of air quality (Daly and Zannetti, 2007).

5Table A3 in the online appendix provides annual means and standard deviations of monthly emissions
of CO and O3 precursors by source type (point and non-point) and sector.
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data collected from the PPDO. Land use and zoningmaps describe agricultural and com-
mercial/residential pollution sources. The road network is limited to roads in existence
during the 1982–1986 period. Traffic flows are estimated using a standard gravity model
incorporating relative populations of barangays from the 1980s census collected from the
National Statistics Office and supplemented with 1980–1985 zoning information from
the Information Services Offices of the various municipalities of Metro Cebu in order to
describe commuting flows between each barangay (Fernandez and Santos, 2014).

Data on the point and non-point sources of pollution inMetroCebu enables the over-
all pollution levels described by RETRO to be disaggregated spatially. In the next section
we will describe how this disaggregation is performed in order to generate more refined
measures of exposure. Additionally, the counts of point sources and the area of non-
point sources will be interacted with the weather instruments as part of the set of many,
invalid instrumental variables. These instruments and their use will be further described
in the following section.

3.2. Econometric specification
A standard linear functional form is adopted for the human capital production function,
simplifying interpretation and avoiding specification pitfalls, and human capital out-
comes are examined at the ends of periods p : birth (p = 0), age 1 (p = 1), age 2 (p = 2),
ages 10–12 (p = 3) and ages 21–23 (p = 4). LetYibp denote the human capital outcomes,
namely height, cognition and labor market outcomes including labor sector, hours and
earnings, of individual i residing in barangay b. The outcome is observed at the end of
period p. Equation (1) shows the relationship between the human capital outcomes and
early-life environmental factors:

Yibp = α +
∑

l

βW
l W iblt +

∑

j
βσ
j σibjt + δXibt + μg + εibp. (1)

Here W iblt denotes the exposure of individual i to extreme weather and b denotes
individual i’s barangay of residence. Let l denote the type of extreme weather exposure
and let t denote the time period of exposure. Let j denote the pollutant type such that
σibjt = {σi,b,CO,t , σi,b,O3,t} describes the exposure of individual i to pollutant j during time
t. For early-life outcomes observed at birth, age 1, or age 2, t and p are equal (i.e., for
birth outcomes the period of exposure is from the estimated date of conception until
birth, and at age 1 the period of exposure is from estimated conception until age 1). For
later life outcomes, t and p are not equal. For these outcomes, t describes the early-life
time of exposure (prenatal up to age 2), while p describes the period when the outcome
is observed (age 10–12 or 21–23). Furthermore, let Xibt denote a rich set of observable
control variables. The set of observable control variables includes child gender and sea-
son of birth,6 indicators for household environmental quality (solid fuel use, sanitary
conditions and access to piped water), as well as maternal, paternal and household risk
factors including per capita income, mother’s education, mother’s smoking, mother’s
alcohol consumption, mother’s consumption of prenatal vitamins, the number of the
mother’s previous pregnancies, mother’s height, mother’s age, father’s presence in the

6The distribution of births across the year in the sample as well as the regional vital statistics gives no
indication of fertility timing. Table A4 in the online appendix compares observable parent and household
characteristics across season and quarter of birth, giving little indication of birth timing.
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household, father’s education and father’s age. For test score outcomes, month of year
when the tests were taken is also included in order to control for contemporaneous expo-
sures. Finally, let μg capture urban/rural fixed effects within the broader urban/rural
geographic category denoted g.

When the coefficients of interest are βW
l , the estimation of equation (1) should yield

unbiased estimates because the unpredictable extremes of temperature and precipita-
tion denoted byW iblt are unlikely to be correlated with the error term εibp. For βσ

j , the
situation is more complicated. The first problem is that pollution exposures are non-
random. In the context ofMetro Cebu, households of higher income and socioeconomic
status live in areas of greater economic activity and high emissions (see online appendix
table A4). This suggests that unobserved determinants of human capital (denoted as
V ibt) in the error term could be correlated with σijp producing positive omitted variable
bias. The second problem is that measures of true exposures to (CO, O3) are unavailable.
To address this, we estimate σibjt by combining the emissions described in RETRO, the
locations of point and non-point sources of pollution in Metro Cebu, and the early-life
exposure window of CLHNS birth cohort members. Intuitively, we do this by dividing
the total emissions measured by RETRO across Metro Cebu according to the loca-
tions of pollution sources, and then relating the timing of the exposures to the early-life
exposure windows of the CLHNS birth cohort members. The first step is to divide the
0.5 × 0.5 degree RETRO grid into 400 0.025 × 0.025 degree grids.7 These smaller grids
are matched to CLHNS birth cohort members’ barangay of residence. Assuming equal
emissions for each pollution source within a particular sector, we estimate the emissions
of pollutant j during quarter of the year q for the 0.025 × 0.025 gridm, denoted as Êmjq.8

Figure A4 in the online appendix displays Êmjq for CO and O3 in each 0.025 × 0.025
grid of Metro Cebu for a selected year. Estimated emissions levels vary spatially accord-
ing to the locations of sources, and temporally according to aggregate emissions levels
described in RETRO. Finally, the estimated exposure of the CLHNS birth cohort mem-
ber, or σ̂ibjt , is the average of Êmjq across the quarters q of the years corresponding to the
individual’s exposure window t. An underlying assumption in the process of generating
σ̂ibjt is that within sectors the emissions of each pollutant source are equal. This assump-
tion is unlikely to be true. In other words, σ̂ibjt may have measurement error (denoted
as uibjt) that may be systematically correlated with the error term. The bias caused by
measurement error is also likely to be positive because of the residential sorting patterns
in Metro Cebu.

Denoting νibp as the combination of the previous error term, εibp, with the unobserved
determinants, V ibt , and the measurement error, uibjt , equation (1) becomes:

Yibp = α +
∑

l

βW
l W iblt +

∑

j
βσ
j ˆσibjt + δXibt + μg + νibp. (2)

7These smaller grids are 2.75 km long on each side. The 0.025 × 0.025 latitude-longitude grids were cho-
sen due to correspondence with average area of Metro Cebu barangay. Robustness checks of differently
sized grids have been performed.

8The relationship between the total emissions and the density of sector-specific sources in each 0.025 ×
0.025 grid is specified as: Ejsk = g

( ∑
m Nmjsq, q;αjsq

)
, where Ejsk denotes the total emissions in Metro Cebu

of pollutant j from sector s in month k; Nmjsq denotes the pollutant source density in the small grids during
quarter of the year q; and q denotes quarter of the year indicators. The scaling factor αjsq is estimated which
is used to scale the density of pollution sources into estimated emissions, or Êmjq. These scaling factors are
reported in online appendix table A5.
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Instrumental variables can address the omitted variable and measurement error
biases. As discussed, we use weather instruments to estimate the effects of early-life
pollution exposure. The obvious problem is that weather,W iblt , is included in equation
(2) and may directly affect Yibp. Estimating βW

l using equation (2) provides our first
test of whether weather instruments can be used. For the outcomes where the esti-
mates of βW

l indicate that weather does not directly affect the outcomes, the empirical
specification becomes:

σ̂ibjt = γ1Zibt + γ2Xibt + μg + ξibjt , (3)

Yibp = α +
∑

j
βσ
j σ̂ibjt + δXibt + μg + νibp. (4)

Zibt denotes the set of many instrumental variables, including extreme weather,
deviations from seasonal averages, and the interactions of each with location-specific
concentrations of pollution sources (counts of point pollution sources and area of non-
point pollution sources). Equations (3) and (4) are estimated with LIML and MBTSLS.
Comparing the LIML andMBTSLS estimates provides the second test of the direct effects
of weather. For the human capital outcomes where weather does not demonstrate direct
effects either in equation (2) or by comparing the LIML andMBTSLS estimators, we use
the weather instruments to estimate βσ

j .

4. Results
Tables 2–4 show themain results, the effects of the early-life environment on short-term
anthropometric, and long-term cognitive and labor market outcomes. In table 2, only
the OLS estimates of weather’s effects are shown, while tables 3 and 4 show the effects of
weather (panel A) and pollution (panel B). Table 2 omits estimates of βσ

j and shows that
weather directly affects short-term anthropometric outcomes. In contrast, estimates of
βW
l in tables 3 and 4 show no direct effects of weather on long-term cognitive and labor

market outcomes. Consequently, βσ
j is estimated. Sargan tests of the differences between

the LIML and MBTSLS estimates are given for each of the cognitive outcomes (table 3)
and labor market outcomes (table 4). For outcomes where weather does not exhibit any
direct effects, our main results are the LIML estimates. In tables 3 and 4 we also show
Sargan test p-values that have been adjusted formultiple hypothesis tests (Benjamini and
Hochberg, 1995).

The anthropometric outcomes in table 2 are low birth weight, birth length and age 2
height. Birth length and age 2 height are expressed in z-scores which convert the mea-
sures to the number of standard deviations or z-scores below or above the age and sex
specific international reference mean (WHO, 2014). The cognitive outcomes in table 3
are the standardized scores on non-verbal, math and language tests administered when
the respondents were 10–12 years old. The labor market outcomes in table 4 are hours
worked per week and log of hourly earnings in 2005 when the respondents were 21–23
years old.

In order to assist in the interpretation of the coefficients, each of the exposure mea-
sures have been standardized. Each OLS regression employs robust standard errors,
each LIML regression employs Bekker standard errors robust to many instruments and
many exogenous regressors, and each MBTSLS regression employs Kolesár et al. (2015)
standard errors that are robust to the presence of independent direct effects.
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Table 2. Short-term anthropometric outcomes

Low Birth Weight
(n = 3059)

Birth Length
Z-Score
(n = 3059)

Age 2 Height
Z-Score
(n = 2663)

Panel A: Weather

Temperature (>90% of distribution) 0.024** −0.017* −0.020
(0.012) (0.010) (0.020)

Temperature (<10% of distribution) 0.032 −0.022* −0.023
(0.028) (0.013) (0.015)

Precipitation (>90% of distribution) 0.005 −0.003 −0.009
(0.004) (0.004) (0.010)

Precipitation (<10% of distribution) 0.012* −0.029*** −0.014**
(0.007) (0.008) (0.006)

Notes: Control variables included in each regression are: CO and O3 exposure, gender, birth season, mother’s education,
mother smoked during pregnancy, mother drank alcohol during pregnancy, mother’s consumption of prenatal vitamins,
number of previous pregnancies,mother’s height,mother’s age, father present, father’s education, father’s age, per capita
household income, household uses solid fuels, non-piped water, and urban residence. OLS standard errors are robust.
Significance levels are indicated by *** 1%, ** 5%, *10%.

4.1. Short-term anthropometrics
Table 2 shows the estimated effects of extreme precipitation and temperature on short-
term anthropometricmeasures. Because extreme temperature and precipitation demon-
strate significant direct effects on these measures, we do not estimate the effects of CO
and O3 exposure.

The results indicate that extremely high temperature and low precipitation during
gestation significantly increase the likelihood of low birth weight. A 1 standard devi-
ation increase in the incidence of temperatures greater than the 90th percentile of the
distribution during gestation increases the likelihood of low birth weight by 2.4 per cent,
and a 1 standard deviation increase in the incidence of precipitation below the 10th per-
centile of the distribution during gestation increases the likelihood of low birth weight
by 1.2 per cent. Extreme weather also has significant, negative effects on birth length. A 1
standard deviation increase in exposures to extreme high and low temperatures reduces
birth length by .017 and .022 z-score standard deviations, respectively. Low precipitation
exhibits the largest effect. A 1 standard deviation increase in exposures to low precip-
itation reduces birth length by .029 z-score standard deviations. While the signs and
magnitudes of the estimated effects of high and low temperature remain the same, only
low precipitation exerts a significant effect on height at age 2. A 1 standard deviation
increase in exposures to low precipitation reduces age 2 height by .014 z-score standard
deviations.

4.2. Long-term cognition
In contrast, estimates of extreme precipitation’s and temperature’s long-term effects on
cognition are not statistically significant (table 3). None of the measures of extreme
weather during early-life – high or low temperature, high or low precipitation – show
significant effects on non-verbal test scores, math test scores, language test scores, or
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Table 3. Long-term cognitive outcomes

Std.
Non-Verbal
Test Score
(n = 2180)

Std. Math
Test Score
(n = 2167)

Std.
Language
Test Score
(n = 2165)

Achieved
Years of
Schooling
(n = 2006)

Panel A: Weather

Temperature (>90% of distribution) −0.004 −0.006 0.002 −0.006
(0.009) (0.009) (0.011) (0.008)

Temperature (<10% of distribution) 0.002 0.006 0.001 0.002

(0.003) (0.009) (0.010) (0.004)

Precipitation (>90% of distribution) 0.002 0.007 0.008 0.009

(0.012) (0.019) (0.009) (0.009)

Precipitation (<10% of distribution) 0.001 −0.003 −0.005 0.002

(0.033) (0.034) (0.036) (0.036)

Panel B: Pollution

LIML:

CO (std.) −0.027* −0.038 −0.042** −0.309
(0.015) (0.024) (0.021) (0.197)

O3 (std.) −0.050** −0.041* −0.070*** −0.498**
(0.020) (0.022) (0.024) (0.238)

MBTSLS:

CO (std.) −0.027 −0.038 −0.042 −0.307
(0.027) (0.028) (0.031) (0.261)

O3 (std.) −0.050** −0.041* −0.070*** −0.498*
(0.025) (0.025) (0.025) (0.266)

Sargan Tests:

CO: P-Value 0.649 0.148 0.356 0.134

CO: Adjusted P-Value 0.822 0.822 0.822 0.822

O3: P-Value 0.328 0.153 0.275 0.367

O3: Adjusted P-Value 0.822 0.822 0.822 0.822

Notes: Panel A regressions include controls for CO and O3 exposure. Additional control variables included in each Panel
A and B regression are: gender, birth season, mother’s education, mother smoked during pregnancy, mother drank alco-
hol during pregnancy, mother’s consumption of prenatal vitamins, number of previous pregnancies, mother’s height,
mother’s age, father present, father’s education, father’s age, per capita household income, household uses solid fuels,
non-piped water, and urban residence. Test score outcomes also include indicators of the month the test was adminis-
tered. OLS standard errors are robust. For pollution, first stage regressions employ extreme weather & deviations from
seasonal means and interactions with local prevalence of polluters as instruments. LIML standard errors are Bekker and
robust to many instruments and many exogenous regressors, and MBTSLS standard errors are robust to the presence of
direct effects of the instrument on the outcome. Sargan test p-values for each coefficient and outcome are adjusted for
multiple hypothesis tests using the Benjamini-Hochbergmethod. Significance levels are indicated by *** 1%, ** 5%, *10%.

years of schooling. With this first test of weather’s direct effects exhibiting null results,
we estimate the effects of CO andO3 exposure using the LIML andMBTSLS estimators.9

9A representative example of the first stage is displayed in online appendix tableA6. The results of the first
stage show that the many instruments including extreme weather, deviations from seasonal averages, and
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Table 4. Long-term labor market outcomes

Weekly Hours Worked Log of Hourly Earnings

Full
Sample
(n = 1942)

Females
(n = 951)

Informal
(n = 1398)

Full
Sample
(n = 1792)

Females
(n = 878)

Informal
(n = 1342)

Panel A: Weather

Temperature (>90%
of distribution)

0.065 −0.051 −0.024 −0.026 −0.017 −0.006

(0.063) (0.126) (0.105) (0.033) (0.014) (0.004)

Temperature (<10%
of distribution)

0.129 0.106 −0.031 0.024 0.030 −0.003

(0.096) (0.157) (0.125) (0.025) (0.042) (0.031)

Precipitation (>90%
of distribution)

0.209 0.501 0.341 0.026 0.032 0.014

(0.214) (0.416) (0.295) (0.023) (0.030) (0.027)

Precipitation (<10%
of distribution)

−0.082 −0.098 0.137 −0.003 0.002 −0.001

(0.124) (0.216) (0.143) (0.033) (0.041) (0.035)

Panel B: Pollution

LIML:

CO (std.) 0.287 −0.144 0.143 −0.042 −0.011 −0.004
(0.606) (0.277) (0.229) (0.037) (0.014) (0.004)

O3 (std.) −1.335*** −0.825 −1.394** −0.082** −0.123** −0.089**
(0.506) (0.544) (0.552) (0.041) (0.049) (0.041)

MBTSLS:

CO (std.) 0.286 −0.147 0.147 −0.042 −0.011 −0.004
(0.606) (0.279) (0.275) (0.053) (0.017) (0.004)

O3 (std.) −1.335*** −0.824 −1.398** −0.084* −0.125** −0.089**
(0.506) (0.545) (0.662) (0.049) (0.052) (0.041)

Sargan Tests:

CO: P-Value 0.783 0.102

CO: Adjusted P-Value 0.822 0.822

O3: P-Value 0.822 0.132

O3: Adjusted P-Value 0.822 0.822

Notes: Panel A regressions include controls for CO and O3 exposure. Additional control variables included in each Panel
A and B regression are: gender, birth season, mother’s education, mother smoked during pregnancy, mother drank alco-
hol during pregnancy, mother’s consumption of prenatal vitamins, number of previous pregnancies, mother’s height,
mother’s age, father present, father’s education, father’s age, per capita household income, household uses solid fuels,
non-piped water, and urban residence. OLS standard errors are robust. For pollution, first stage regressions employ
extreme weather & deviations from seasonal means and interactions with local prevalence of polluters as instruments.
LIML standard errors are Bekker and robust to many instruments and many exogenous regressors, and MBTSLS standard
errors are robust to the presence of direct effects of the instrument on the outcome. Sargan test p-values for each coeffi-
cient and outcome are adjusted for multiple hypothesis tests using the Benjamini-Hochberg method. Significance levels
are indicated by *** 1%, ** 5%, *10%.
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First note that, for each outcome, the LIML and MBTSLS estimates in table 3 are
nearly identical and not significantly different according to the Sargan tests. This pro-
vides the second piece of evidence that weather does not directly affect long-term
cognitive outcomes. Focusing on the LIML estimates which are consistent and effi-
cient for many instrumental variables, the evidence suggests that early-life CO exposure
significantly reduces non-verbal and language test scores, and early-life O3 exposure sig-
nificantly reduces non-verbal, math, and language test scores. A 1 standard deviation
increase in early-life CO emissions exposure corresponds to a 0.027 standard devia-
tion decrease in non-verbal test scores, and a 0.042 standard deviation in language test
scores. The effect of early-life O3 exposure is larger: non-verbal test scores are reduced by
0.05 standard deviations, math test scores are reduced by 0.041 standard deviations, and
language test scores are reduced by 0.07 standard deviations. The results also indicate
that early-life O3 negatively affects achieved years of schooling: a 1 standard deviation
increase in early-life O3 exposure corresponds to 0.5 fewer years of schooling.

4.3. Long-term labor market
Similar to the cognitive outcomes, the estimated effects of extreme precipitation and
temperature on long-term labor market outcomes in table 4 do not indicate any signifi-
cant direct effects. None of the measures of extreme weather show significant effects on
weekly hours worked or the log of hourly earnings in the full sample or among females or
informal sector employees. Consequently, we estimate the effects of CO andO3 exposure
using the LIML and MBTSLS estimators.

For both hours worked and earnings, the LIML and MBTSLS estimates in table 4
are nearly identical and not significantly different. This provides the second piece of
evidence that weather does not directly affect long-term labor market outcomes. In the
full sample, early-life O3 exposures corresponds to fewer hours worked per week and
lower hourly wage, while early-life CO exposures exhibit no significant effects on hours
or earnings. Early-life O3 exposures are shown to decrease the number of hours worked
per week by approximately 1.34 and hourly earnings by 8.2 per cent. These effects on
hours and earnings are large and likely reflect the compounding effects of O3 exposure
on multiple dimensions of cognition (non-verbal, math and language) and schooling.
Interestingly, the effect on hours is concentrated among males, and the earnings effect
is driven by females. A 1 standard deviation increase in early-life O3 exposure does not
significantly reduce female hours but is shown to reduce female earnings by 12.3 per
cent. Additionally, the informal sector is driving both the hours effect and the earnings
effect. In the informal sector, a 1 standard deviation increase in early-life O3 exposure
significantly reduces hours by 1.39 and earnings by 8.9 per cent.

4.4. Long-term effects by exposure time period
In table 5 the estimated effects of COandO3 exposure on cognitive and labormarket out-
comes are broken down by time period: pregnancy and birth to age 2. Overall the results
for CO suggest that the effects of CO exposure may be more pronounced during preg-
nancy. This aligns with CO’s likely mechanism, the more ready binding to hemoglobin

the interactions of each with location specific concentrations of pollution sources, are related to emission
levels. The partial F-statistics are large and the signs of the base weather coefficients align with previous
research (Dell et al., 2012; Hsiang and Jina, 2014).
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than oxygen, and biological evidence that CO impedes the flow of oxygen to the fetus
(Meter, 2000). For O 3, overall the results indicate that the effects of O3 exposure may be
more pronounced after birth. This would align with the neurotoxic effects of O3 expo-
sure as well as evidence that O3 does not typically pass through the placenta (Salam et al.,
2005). However, these conclusions should be interpretedwith caution. These patterns do
not hold for every long-term outcome, and the time period estimates do not significantly
differ from each other.

4.5. Attrition
Selective attrition is an important threat to identification in our analysis. The CLHNS
includes respondents that never attrit, respondents that permanently attrit, and respon-
dents that temporarily attrit from at least one wave of the survey. Given the negative
long-term effects of early-life pollution exposures, the selective attrition of a high human
capital subsample could be driving the results. In order to assess whether selective attri-
tion is driving our main results, we leverage the presence in the data of temporary
attritors (or those that attrit for one ormore waves but reappear later). Comparing never
attritors to temporary and permanent attritors, comparison of baseline observable char-
acteristics shows that temporary and permanent attritors are similar, while both differ
from those that never attrit (see online appendix table A4). Leveraging the similarity
between temporary and permanent attritors, we can assess whether attrition is driving
the results. Specifically, if we observe that the long-term effects are driven by tempo-
rary attritors, then we can conclude that selective attrition is likely driving the results.
Table 6 shows estimates of an interactive model of early-life CO and O3 exposure and a
temporary attrition indicator. Negative and significant estimates would suggest that the
main results in tables 3 and 4 are driven by selective attrition. However, the estimates
show that among the temporary attritor subsample the differences are small and not
statistically significant.

4.6. Corrections for multiple hypothesis tests
Because we estimate the effects of multiple early-life environmental exposures on mul-
tiple short- and long-term outcomes, the p-values should be adjusted to reflect the
number of tests. Table 7 summarizes the p-values of all the statistically significant effects
(for brevity, not all p-values are shown). Since there is little consensus on which cor-
rection procedure is most appropriate, the p-values are adjusted using the Simes (1986)
method and the more restrictive Benjamini and Hochberg (1995) method. After adjust-
ment, the following relationships remain significant (by at least one method): low
precipitation’s effect on birth length, O3’s effect on language test scores, O3’s effect on
hours worked, O3’s effect on non-verbal test scores, low precipitation’s effect on age 2
height, and O3’s effect on years of schooling.

5. Discussion
In summary, the results demonstrate that the early-life environment may affect multiple
dimensions of short- and long-termhuman capital. However, the various environmental
exposures exhibit different effects on different dimensions of human capital. The results
show that extreme weather is detrimental to short-term anthropometric measures of
human capital, and pollution exposure – particularly O3 – is shown to negatively affect
long-term cognitive and labor market outcomes.
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Table 5. Time period of exposure

Std. Non-Verbal
Test Score

Std. Math Test
Score

Std. Language
Test Score

Achieved Years of
Schooling

Weekly Hours
Worked

Log of Hourly
Earnings

CO (std.) Pregnancy −0.031* −0.041* −0.036 0.043 −0.025 −0.046
(0.017) (0.022) (0.026) (0.222) (0.509) (0.040)

Birth to Age 2 −0.025 −0.035 −0.044** −0.375 0.219 −0.034
(0.020) (0.029) (0.022) (0.240) (0.562) (0.033)

O3 (std.) Pregnancy −0.041 −0.011 −0.068** −0.401 −1.293* −0.085*
(0.026) (0.018) (0.035) (0.272) (0.692) (0.049)

Birth to Age 2 −0.052** −0.045 −0.071* −0.501** −1.403*** −0.078
(0.026) (0.028) (0.040) (0.254) (0.611) (0.052)

Estimator: LIML LIML LIML LIML LIML LIML

Notes: Control variables included in each regression are: gender, birth season,mother’s education, mother smoked during pregnancy,mother drank alcohol during pregnancy,mother’s consump-
tion of prenatal vitamins, number of previous pregnancies, mother’s height, mother’s age, father present, father’s education, father’s age, per capita household income, household uses solid fuels,
non-piped water, and urban residence. LIML standard errors are Bekker and robust to many instruments and many exogenous regressors. Temporary attritors make up 17% of the full sample.
Significance levels are indicated by *** 1%, ** 5%, *10%.
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Table 6. Is attrition selective?

Std. Non-Verbal
Test Score

Std. Math Test
Score

Std. Language
Test Score

Achieved Years of
Schooling

Weekly Hours
Worked

Log of Hourly
Earnings

Temporary Attrition −0.011 0.601 0.214 −0.321 −0.103 −0.987
(0.402) (0.980) (0.675) (0.223) (1.263) (0.765)

CO (std.)*Temporary Attrition −0.003 −0.001 −0.010 0.023 0.154 −0.003
(0.022) (0.003) (0.016) (0.053) (0.452) (0.031)

O3 (std.)* Temporary Attrition −0.002 0.004 0.002 −0.004 −0.513 −0.051
(0.005) (0.005) (0.004) (0.025) (0.459) (0.061)

Estimator: LIML LIML LIML LIML LIML LIML

Temporary Attritor Observations: 490 484 482 327 339 302

Notes: Control variables included in each regression are: gender, birth season,mother’s education, mother smoked during pregnancy,mother drank alcohol during pregnancy,mother’s consump-
tion of prenatal vitamins, number of previous pregnancies, mother’s height, mother’s age, father present, father’s education, father’s age, per capita household income, household uses solid fuels,
non-piped water, and urban residence. LIML standard errors are Bekker and robust to many instruments and many exogenous regressors. Temporary attritors make up 17% of the full sample.
Significance levels are indicated by *10%.

https://doi.org/10.1017/S1355770X20000224 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1355770X20000224


Environment and Development Economics 21

Table 7. Multiple hypothesis test adjustments

P-Value

Benjamini-
Hochberg

Adjusted P-Values

Simes
Adjusted
P-Values

Short-Term Anthropometric Outcomes:

Low Birth Weight Temp (high) 0.046** 0.495 0.165

Precip. (low) 0.087* 0.717 0.330

Birth Length Temp (high) 0.089* 0.753 0.373

Temp (low) 0.091* 0.792 0.413

Precip. (low) 0.000*** 0.045** 0.008***

Age 2 Height Z-Score Precip. (low) 0.020** 0.285 0.051*

Long-Term Cognitive Outcomes:

Std. Non-Verbal Test Score CO (std) 0.070* 0.659 0.202

O3 (std) 0.012** 0.260 0.043**

Std. Math Test Score O3 (std) 0.061* 0.594 0.202

Std. Language Test Score CO (std) 0.045** 0.489 0.156

O3 (std) 0.003*** 0.082* 0.019**

Achieved Years of Schooling O3 (std) 0.037** 0.315 0.085*

Long-Term Labor Market Outcomes:

Weekly Hours Worked O3 (std) 0.008*** 0.193 0.035**

Log of Hourly Earnings O3 (std) 0.046** 0.495 0.165

Note: Only the p-values of statistically significant estimates are included here, though all estimates were included in the
multiple hypothesis test adjustments. P-values for the short-term anthropometric outcomes are from OLS estimates.
P-values for long-term cognitive and long-term labor market outcomes are from the LIML estimates. Significance levels
are indicated by *** 1%, ** 5%, *10%.

First, the results show that high temperatures and low precipitation increase the inci-
dence of low birthweight. Existing evidence suggests that both high and low temperature
extremes increase the incidence of low birth weight (Deschênes et al., 2009). While
temperatures above the thresholds previously identified in the literature are relatively
common in Cebu, the insignificance of low temperatures is likely because tempera-
tures below the previously identified thresholds are uncommon in Cebu. Birth length
is negatively affected by both high and low temperatures, and low precipitation. And
the effects of low precipitation extend to age 2 height. Our results align with evidence
that early-life exposures to longer dry seasons reduce height (Sohn, 2015). On the other
hand, we do not observe any significant effects of high precipitation on any short-term
anthropometric outcomes.10 Additionally, the lack of direct effects of weather on long-
term cognitive and labormarket outcomes align with recent research on the relationship

10Relevant to this result is that the Philippines is vulnerable to typhoons and two typhoons hitMetro Cebu
and the surrounding areas during the first two years of life of the CLHNS birth cohort members: typhoon
Nitang on 2 September 1984 and typhoon Undang on 4 November 1984. Typhoons are characterized by
high precipitation and high windspeeds, both of which do not show any effects in our results. However, this
result is likely because the entire Metro Cebu area was affected and we have no temporal or spatial variation
in exposures to identify the typhoon’s effects.
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between temperature and human capital. Graff Zivin et al. (2018) show that short-term
exposures to high temperatures negatively affect cognitive performance, but the effect
diminishes in the long-term.

The results show that early-life exposures to both CO andO3 are likely detrimental to
test scores, and that these effects carry through to schooling attainment and labor mar-
ket hours worked and earnings. The estimated effects of CO exposure on non-verbal and
language test scores are similar to the trimester specific impact of CO exposure in Chile
fromBharadwaj et al. (2017). Relatively speaking, the results suggest that CO’s effects are
smaller than the effects of O3. And because O3 is also shown to negatively affect math
test scores, the results suggest that O3 may negatively affect a wider range of cognitive
abilities thanCO.O3’s largermagnitude and breadth of cognitive impact alignswith doc-
umented biological mechanisms (Block and Calderon-Garciduenas, 2009). Ultimately,
the evidence indicates that early-life O3 exposure reduces schooling attainment, hours
worked and earnings. While our results confirm previous estimates of pollution’s long-
term effect on hours (Kim et al., 2017), the effect we estimate is larger. We also show
that O3’s effects on hours are driven by males and the informal sector, and the effects on
earnings are driven by females and the informal sector.

Up to this point, evidence of the long-term human capital and labormarket outcomes
of early-life pollution exposure comes from developed economies. For example, Isen
et al. (2017) show that the Clean Air Act of 1970 increased long-term earnings for those
less exposed in utero. However, the estimated effects in developed economies are not
directly applicable to developing nations given the different levels of exposure, differ-
ent institutions and different labor markets. Consequently, the cost-benefit analysis of
environmental regulations are different. We provide the first evidence of the effects on
long-term earnings of early-life pollution exposure.

While environmental regulations have demonstrated large monetary benefits in
developed economies like the United States (Graff Zivin and Neidell, 2013), the argu-
ment that environmental regulations are heavy taxes on developing economies is popular
(Dasgupta et al., 2002). As a hypothetical exercise to describe the potential benefits of
environmental regulations, consider a mandated 25 per cent reduction to emissions,
which is a conservative estimate of the effects of the Philippine 1999 Clean Air Act which
cost $50million annually (EMB, 2010). In order to perform this hypothetical exercise we
generalize outside the sample and assume external validity,11 in order to scaleO3’s effects
on hours and earnings. Under these assumptions, the long-term effect of a 25 per cent
reduction in early-life exposure to O3 precursor emissions is an increase in earnings by
2.8 per cent and an increase in hoursworked by 0.45 perweek.With amean present value
of lifetime earnings at age zero inMetropolitanCebu of approximately $39,927 and using

11Estimation of average treatment effects (ATEs) requires that agents not select into exposure on the basis
of an idiosyncratic (and unobserved) component of their exposure response, an assumption which implies
the ignorance of agents (Heckman, 1997). Stylized, contextual facts provide evidence of agent ignorance in
this context. As previously mentioned, the pollution monitors did not exist in Metro Cebu during the early
1980s and because CO andO3 are colorless, odorless gases, it is likely that individuals were uninformed and
unaware of their exposures. Additionally, the exposures were typical to other time periods in the area and
therefore unlikely to illicit idiosyncratic responses. Furthermore, at the time research had not progressed
beyond the assumption that the fetal part of the early-life exposure window was protected from nutritional,
environmental and other damage. If these facts are assumed to hold and the estimates are assumed ATEs
with external validity, the estimates can be extended to the province and national level.
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standard assumptions,12 the discounted present value of reducing O3 exposures by 25
per cent is $1,367 per person. Scaling by the size of the provincial birth cohort and the
national birth cohort, the 25 per cent reduction in O3 precursor emissions translates to
an annual provincial impact of approximately $44.5 million (2005 USD) and an annual
national impact of $2.05 billion (2005 USD). $2.05 billion is roughly 2 per cent of the $90
billion Philippine GDP in 2005 (TheWorld Bank, 2014). Comparing the $2.05 billion in
benefits to the $50 million annual cost of the Philippine Clean Air Act of 1999 suggests
that the long-term benefits of environmental regulations may outweigh the costs and
may fuel economic growth in developing nations (Nelson and Phelps, 1966; Graff Zivin
and Neidell, 2013).

6. Conclusion
By utilizing unique data and novelmethods, we examine the short- and long-term effects
of weather and pollution on multiple measures of human capital. The results add to
the growing evidence of the wide ranging effects of the early-life environment. These
long-term effects also translate to the labor market. The results imply that environmen-
tal policy should also consider the often ignored costs to long-term human capital. The
long-term human capital gains from improvements to the early-life environment could
provide fuel for economic growth and development.

While this study provides evidence of the short- and long-term human capital effects
of the early-life environment, its limitations point to potential future research. While
the data is unique in the developing country context, future studies should employ
more detailed and accurate measures of weather and pollution exposures. Addition-
ally, we assume a limited scope for pollution avoidance behaviors in this context due
to the lack of monitoring and alerts, and limited, if any, difference between indoor and
outdoor exposures. However, the limited scope for avoidance behaviors is an assump-
tion that should be explored further. Furthermore, follow-up longitudinal data could
uncover additional labor market effects over time as well as potential intergenerational
effects. Future research should also address general equilibrium costs and benefits of
efforts to improve environmental quality – both in terms of pollution as well as for cli-
mate change. Additionally, future research should aim to identify the interactive and
cumulative effects of various early-life environmental exposures.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.
1017/S1355770X20000224
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