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The natural ventilation flow driven by an internal buoyant plume in a box involving an
upper opening (vent) located at the ceiling (for the outflow) and a large lower opening
at the floor (for the inflow) is examined theoretically in a general non-Boussinesq case.
Analytical solutions of this emptying–filling box problem allow the characteristics of
the flow at the vent to be determined. From these characteristics, a non-dimensional
parameter Γd (called the discharge plume parameter) is expressed. This parameter
characterizes the initial balance of volume, buoyancy and momentum fluxes in
the plume-like flow that forms above the vent. We then note that the value of
Γd allows the buoyant fluid layer depth in the box to be estimated, which is a
new and interesting result for natural ventilation problems. Following previous
experimental results, the decrease of the vent discharge coefficient Cd when Γd
increases is discussed and a theoretical model based on plume necking is proposed.
The emptying–filling box model is then extended for a variable Cd (depending on
Γd). Even though the discharge coefficient may be markedly reduced at high values
of Γd, our results show that this only affects transients and the steady state of an
emptying–filling box for relatively thin buoyant fluid layers.

Key words: convection, mixing, plumes/thermals

1. Introduction
The fluid mechanics of displacement ventilation in a room with vents at floor and

ceiling levels was examined theoretically by Linden, Lane-Serff & Smeed (1990).
Their model (known as the ‘emptying–filling box’ model) considered a turbulent
plume driven by a point source of buoyancy and a stable stratification with an
upper layer of buoyant fluid underneath the ceiling. This buoyant layer is fed by the
entraining plume and drives a flow through the upper vent due to the hydrostatic
pressure difference. In both transients and at steady state, the emptying–filling box
model allows the thickness and the mean temperature (or density) of the buoyant
layer to be estimated, as well as the flow rate of buoyant fluid through the upper vent.
In this model, the filling mechanism is similar to that which had been considered by

† Email address for correspondence: olivier.vauquelin@univ-amu.fr

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

13
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0002-3817-8125
mailto:olivier.vauquelin@univ-amu.fr
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2017.130&domain=pdf
https://doi.org/10.1017/jfm.2017.130


172 O. Vauquelin, E. M. Koutaiba, E. Blanchard and P. Fromy

Baines & Turner (1969) in their ‘filling box’ model, and the draining flow (emptying
process) is estimated using Bernoulli’s theorem.

In the Boussinesq limit, one of the major results obtained by Linden et al. (1990)
is that, at steady state, the buoyant layer thickness is a function of a non-dimensional
geometrical parameter only, which is defined from the vent areas, the height of the
room and the discharge coefficient Cd. In most engineering applications, this discharge
coefficient is taken as a constant approximately 0.6–0.7. However, in two conference
papers, Hunt & Holford (2000) and Holford & Hunt (2001) quantified experimentally
the dependence of Cd on density contrast for a horizontal vent involved in a process of
emptying or simultaneous filling and emptying of a box. Their experimental results
(discussed further in § 4.1) showed that Cd can rapidly decrease with increasing
density contrast between the buoyant and ambient fluids. Such a finding suggests
that assuming a constant value of Cd could lead to an overestimate of flow rates in
natural ventilation problems for which density (or temperature) differences may be
significant.

Contrary to what the titles of their papers may suggest, Holford and Hunt’s
corrections for Cd were not based explicitly on the density contrast but on the value
of a dimensionless discharge (plume) parameter Γd which quantifies the ratio between
buoyancy and momentum in the plume-like flow that develops outside the box from
the vent. We can therefore imagine that the behaviour of the external plume (above
the vent) is not simply an indicator since it can control the state within the box by
modifying the vent discharge coefficient value. The main objective of this paper is to
address this issue.

The discharge plume parameter Γd depends not only on the density contrast, but
also on the outflow velocity and the size of the vent. Thus, for an emptying–filling
box problem, the value of Γd could in theory be estimated from the output data
of the model proposed by Linden et al. (1990). Since this model was originally
developed using the Boussinesq approximation, we first reformulate in § 2 the general
non-Boussinesq case. The expression of the discharge plume parameter Γd is then
obtained explicitly in § 3. In § 4, the dependence of the discharge coefficient Cd on Γd
is discussed on the basis of Holford and Hunt’s experiments and a simple theoretical
model is proposed. Implications of a modified Cd (via Γd) for both steady state and
transients of an emptying–filling box are then examined and discussed in § 5.

2. The non-Boussinesq ‘emptying–filling box’ model
2.1. Configuration and hypothesis

As shown in figure 1, we consider the simultaneous filling and emptying of a cuboid
box of height H and (constant) horizontal surface area S. The box has an upper
opening of area A located at the ceiling and a large lower opening at the floor. Note
that this lower opening is large enough that the pressure at floor level is the same as
that outside the box. For this reason, only the upper opening is referred to as a vent
in what follows. For simplicity, we assume that this vent is a circular opening of
diameter D. A (non-Boussinesq) point source of buoyancy flux B is set at the floor
(z = 0). An internal turbulent plume then rises, impinges with the ceiling and flows
along it to form a thin layer in the upper part of the box at the initial time t = 0.
Hydrostatic pressure difference then allows the light (or hot) fluid to escape through
the vent. The interface between the buoyant fluid layer and ambient air descends
over time until steady state is reached. Both during the transients and at steady
state, a situation of ideal displacement flow is assumed which supposes: a negligible
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FIGURE 1. Schematic of the studied configuration.

‘overturning’ of the initial buoyant layer after colliding with the lateral walls (Kaye
& Hunt 2007) and a lower opening (for the incoming ambient air) large enough to
overcome bidirectional flows at the vent or an inlet jet strongly mixing the interface
(Coffey & Hunt 2010; Hunt & Coffey 2010). For the sake of simplicity, heat transfers
(Faure & Le Roux 2012; Lane-Serff & Sandbach 2012) and external wind effects
(Hunt & Linden 2001; Li & Delsante 2001; Coomaraswamy & Caulfield 2011) are
ignored.

2.2. The internal plume model
Following the turbulent plume theory proposed by Morton, Taylor & Turner
(1956), we model the internal buoyant release using the self-similar solutions of
a non-Boussinesq axisymmetric plume in which the classical Morton’s entrainment
coefficient is multiplied by the square root of the plume local density to account for
the non-Boussinesq effects (Ricou & Spalding 1961; Rooney & Linden 1996; Woods
1997). Note that these solutions are similar to those used for fire plumes (Heskestad
1984). Using a ‘top-hat’ formalism, the plume characteristics (mean vertical velocity
up, radius bp and mean density deficit ηp) are then expressed as functions of the
vertical coordinate z, thus

up(z)= a1/3B1/3z−1/3, (2.1)

bp(z)= 6α
5

z
[
ρ0

ρp(z)

]1/2

= 6α
5

z
√

1+ ηp(z), (2.2)

ηp(z)= ρ0 − ρp(z)
ρp(z)

= 4
3g

a2/3B2/3z−5/3, (2.3)

where ρp is the plume mean density (at location z), ρ0 is the ambient density, g is
the gravitational acceleration, α is the entrainment coefficient (generally taken to be
approximately 0.1) and a is a constant equal to 25/48πα2. The buoyancy flux B is
an invariant which can be expressed from the plume characteristics as:

B= ηpgπupb2
p

1+ ηp
. (2.4)
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For a buoyant fluid released from a finite area source, these solutions can be vertically
shifted using a virtual origin correction at location zv, z may be replaced by z− zv in
relations (2.1)–(2.3), and z may therefore be considered as the height above this virtual
origin. The determination of zv has been extensively studied in the past. Convenient
analytical solutions may be found in Candelier & Vauquelin (2012) for a wide range
of non-Boussinesq round plumes.

2.3. Emptying–filling box conservation equations
Conservation equations are written for the buoyant layer of thickness h and density ρ
shown in figure 1. This layer is fed by the internal plume (at height z=H − h) and
the buoyant fluid escapes at the mean velocity w through the vent of area A located
on the ceiling of the box. These equations are, for the mass flux and the buoyancy
flux, respectively:

dρSh
dt
= ρpπb2

pup

∣∣
z=H−h

− ρwA, (2.5)

d
dt

[
g
1ρ

ρ0
Sh
]
= B− g

1ρ

ρ0
wA, (2.6)

with 1ρ = ρ0 − ρ. Note that by combining these two relations, we naturally obtain
the volume flux conservation equation for the buoyant layer.

The outflow velocity w can be estimated by applying Bernoulli’s theorem between
a point located at the interface and a point located at the vent. Denoting Cd the vent
discharge coefficient, this may be expressed as

1
2
ρ

(
w
Cd

)2

=1ρgh. (2.7)

We first replace bp, up and ηp from (2.1), (2.2) and (2.3) as functions of z in equation
(2.5) and we then introduce the dimensionless variables ζ = z/H, η=1ρ/ρ and ω=
w/
√

gH. Following some algebraic manipulations, equations (2.5), (2.6) and (2.7) can
then be rewritten as

dζ
dτ
=Λω− κΘ1/2(ζ 5/3 +Θ), (2.8)

dη
dτ
= 1+ η

1− ζ κΘ
1/2(Θ − ηζ 5/3), (2.9)

ω=Cd

√
2η(1− ζ ), (2.10)

with Λ= A/H2 a geometrical parameter, τ = g1/2H3/2t/S the dimensionless time, κ a
constant equal to 18

√
3α2π/25 and Θ = 4a2/3B2/3/3gH5/3. Note that the dimensionless

parameter Θ corresponds to the value of ηp for z= H (or ζ = 1), namely the value
of the density deficit in the initial layer that is formed at the ceiling at t = 0. This
parameter also characterizes the strength of the buoyant source relative to the box
height.

At steady state, the time derivative terms vanish. Combining (2.8), (2.9) and (2.10)
yields:

ζ 5/3
ss (ζ

5/3
ss +Θ)2

1− ζss
= 2

Λ2C2
d

κ2
, (2.11)
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with ζss the dimensionless interface height at steady state. Note that under the
Boussinesq approximation (Θ ≈ 0) it may be found that ζss only depends on the
geometrical parameter Λ, as highlighted by Linden et al. (1990). Subsequently, the
density difference ηss and the dimensionless outflow velocity ωss at steady state can
be expressed as a function of ζss:

ηss = Θ

ζ
5/3
ss

and ωss = κΘ
1/2

Λ
(ζ 5/3

ss +Θ). (2.12a,b)

3. The discharge plume parameter Γd

A vertical turbulent plume which results from the upward discharge of a light fluid
in a heavier ambient fluid of density ρ0 may be characterized by a non-dimensional
function Γ (z) called the ‘plume function’. The vertical coordinate, z, is measured
positively upwards with the source of the plume at z=0. By recasting the conservation
equations of Morton et al. (1956), this function was introduced by Hunt & Kaye
(2005) from a combination of the fluxes (volume, buoyancy and momentum) and later
extended in the general non-Boussinesq case by Michaux & Vauquelin (2008) from
the local plume variables (density ρp, radius bp and velocity up). The plume function
quantifies locally the ratio between buoyancy and momentum and can be seen as a
normalized form of a Richardson number. Using ‘top-hat’ profiles, it is expressed as

Γ (z)= 5
8α

ηpgbp

u2
p

√
1+ ηp

. (3.1)

For a pure (or ideal) plume, Γ (0)= 1 by definition, and the plume function turns out
to be invariant with z. For a non-pure plume, Γ (z) monotonically evolves from its
value at the source Γ (0) to unity at large heights. The value of the plume function at
z= 0, which is called the ‘plume parameter’, was identified and discussed a long time
ago by Morton (1959). In Morton & Middleton (1973) a classification was proposed
to distinguish the forced plumes (Γ (0) < 1) initially dominated by momentum from
the lazy plumes (Γ (0) > 1) initially dominated by buoyancy.

In an emptying–filling box problem, the flow at the upper vent is characterized by
its vertical velocity w, its density deficit η and its equivalent radius which can be
expressed as

√
A/π with A the vent area. From relation (3.1), the plume parameter

Γd of the plume-like flow that arises from the vent then reads

Γd = 5
8α

ηg
√

A/π
w2
√

1+ η =
5

16α
1

C2
d

√
Λ/π

(1− ζ )√1+ η , (3.2)

and is now called the ‘discharge plume parameter’. Note that this plume-like flow
arising from the vent will be simply referred as ‘the plume’ in the following. It
corresponds to the external plume of the problem and should not be confused with
the internal plume within the box.

Since ζ decreases (from 1 to smaller values) during transients of an emptying–filling
box, relation (3.2) indicates that Γd must be infinite at the beginning. Since η increases
(from Θ to higher values), Γd always decreases over time (∂Γd/∂ζ > 0 and ∂Γd/∂η<
0) except if the variables ζ and η overshoot their final location (see Kaye & Hunt
2004 and Vauquelin 2015). In such a case the time derivative of Γd,

dΓd

dτ
= Γd

[
1

1− ζ
dζ
dτ
− 1

2
1

1+ η
dη
dτ

]
, (3.3)
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FIGURE 2. Evolution and overshoot occurrence of ζ , η and Γd as a function of the
dimensionless time τ . Calculations were made for Λ= 0.02 and Θ = 0.5.

indicates that Γd can overshoot and reach a minimal value if dζ/dτ and dη/dτ are
both positive, that is to say between the layer overshoot (dζ/dτ = 0) and the so-
called thermal overshoot (dη/dτ = 0). This behaviour is illustrated in figure 2 from a
numerical integration of conservation equations (2.8), (2.9) and (2.10) for a particular
case where Λ= 0.02 and Θ = 0.5.

At steady state, by using relations (2.11) and (2.12) in (3.2), we find that:

Γd =
(

3
8

)5/4

C−5/2
d

(
ζss

1− ζss

)5/4

H⇒ ζss = 1

1+ 3

8C2
dΓ

4/5
d

. (3.4)

This result is of considerable practical value since it demonstrates that the thickness
of the buoyant layer (or the smoke free height for fire safety issues) is a function
of the plume discharge parameter alone and is independent of the source buoyancy
flux and of the geometry. Hence, it is possible to estimate the interface location at
steady state from the ‘laziness’ of the plume at the vent alone. In particular, if we
consider the classical value Cd ≈ 0.6 we find that the plume at the vent will be lazy
(Γd > 1) as long as zss/H = ζss & 0.49, and then forced (Γd < 1) at lower locations
of the interface. Furthermore, for lazy plumes, a contraction (also called a neck) can
occur as soon as the plume parameter exceeds 1.5 or 2.5, depending on the density
contrast (Fanneløp & Webber 2003; Michaux & Vauquelin 2008), that is to say in the
range 0.53 . ζss . 0.67 according to relation (3.4). These results are summarized in
figure 3 in which a classification of the plume rising through the vent is given as a
function of the interface location at steady state. We should note, of course, that the
numerical values indicated in figure 3 are related to the assumptions used: ‘top-hat’
profiles and constant entrainment coefficient α.

4. How Cd depends on Γd

4.1. Holford and Hunt’s experimental results
Holford and Hunt’s experiments investigated a displacement mode of ventilation. A
layer of salt solution drained out through an opening in the base of a container
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Contracted lazy plume at the vent

Neck appearance

Uncontracted lazy plume at the vent

Forced plume at the vent

H

FIGURE 3. Classification of the plume at the vent as a function of the interface location
at steady state (for Cd = 0.6).

immersed in a larger water-filled tank (note that there is a switch in directions
between salt and heat). Their first paper (Hunt & Holford 2000) reported only a few
experiments, carried out for a restricted range of Γd lying between 0 and 40 in steady
state experiments that involved simultaneous filling and emptying of the immersed
container. A quadratic fit:

Cd = 0.71− 1.910−4Γ 2
d for 0 6 Γd 6 40, (4.1)

was proposed. The authors justified this fit with the observation that it is consistent
with dCd/dΓd = 0 at Γd = 0. Although the data were somewhat dispersed, these early
experiments clearly indicate a rapid decrease of the discharge coefficient Cd when
the plume discharge parameter Γd rises above 10. Their second paper (Holford &
Hunt 2001) reported additional data obtained from transient draining experiments. The
discharge coefficient Cd was deduced from a comparison between the experimental
volume flow rate and that given by an ideal model. A best fit was derived in two
regions, for a wider range of Γd:

Cd =
{

0.63 if 0<Γd < 4.9,
1.11Γ −0.356

d if 4.9<Γd < 500. (4.2)

It can be seen that a correction on the discharge coefficient is then required for a
discharge plume parameter that exceeds the critical value Γ crit

d = 4.9, and thus for a
lazy plume exhibiting a neck (i.e. a contraction relatively close to the source). In their
analyses, the authors considered that this buoyancy-induced contraction reduces the
fraction of the opening area occupied by the discharge, giving rise to reduced values
of Cd.
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4.2. A proposal for a simple model
Following the idea of an opening area reduction due to a plume contraction introduced
by Holford & Hunt (2001), we can consider that if an unmodified discharge coefficient
C?

d (∼ 0.6) can be applied to the reduced area Aneck, then the discharge coefficient has
to be modified considering the effective area A of the vent. This would mean that
C?

dAneck =CdA, i.e. Cd/C?
d = (bneck/b)2 where bneck is the plume radius at the neck and

b is the radius (or the equivalent radius) of the vent.
For non-Boussinesq lazy plumes, Michaux & Vauquelin (2008) showed that the

plume radius bp(z) and the plume density deficit ηp(z) can be expressed from the
plume function Γ (z) and the known initial values at z=0 (indicated with the subscript
i) as follows:

bp(z)
bi
=
[

1+ η(z)
1+ ηi

]1/2 [
Γ (z)
Γi

]1/2 [
Γi − 1
Γ (z)− 1

]3/10

, (4.3)

ηp(z)
ηi
=
[
Γi

Γ (z)

]1/2 [
Γ (z)− 1
Γi − 1

]1/2

. (4.4)

Thus, for a contracting lazy plume, by considering z at the neck location and the
(initial) values of the plume variables at the vent (radius b, density deficit η and plume
parameter Γd), relations (4.3) and (4.4) lead to

(
bneck

b

)2

=
1+ η

(
Γd

Γneck

)1/2 (
Γneck − 1
Γd − 1

)1/2

1+ η
Γneck

Γd

(
Γd − 1
Γneck − 1

)3/5

. (4.5)

For non-Boussinesq plumes, the value of Γneck is the real root of a third-order
polynomial form whose coefficients depend on the value of η (see Michaux &
Vauquelin 2008). This introduces an additional parameter, so we will simply consider
the two asymptotic cases corresponding to low and to high density contrasts in the
following.

For low density contrasts (η� 1, i.e. in the Boussinesq approximation) the value
of the plume function at the neck location is exactly 5/2 (Fanneløp & Webber 2003)
and the previous relation then becomes:

Cd

C?
d
= 5

22/533/5

(Γd − 1)3/5

Γd
' 1.96

(Γd − 1)3/5

Γd
for Γd >Γ

crit
d = 5/2. (4.6)

For large density contrasts (η→∞) the value of the plume function decreases towards
5/4 (Michaux & Vauquelin 2008) yielding:

Cd

C?
d
=
√

5
24/5

(Γd − 1)1/10

Γ
1/2

d

' 1.28
(Γd − 1)1/10

Γ
1/2

d

for Γd >Γ
crit

d = 5/4. (4.7)

In both cases, when Γd�1, we find that Cd∝Γ −2/5
d is qualitatively consistent with the

correlation (4.2) derived by Holford & Hunt (2001) from their draining experiments.
The fits (4.1) and (4.2) proposed in Hunt & Holford (2000) and Holford & Hunt

(2001) are plotted with the theoretical wrap-around relations (4.6) and (4.7) illustrated
in figure 4. The first fit given by the relation (4.1) does not seem to fully reflect
physical reality probably because it was derived from a very limited number of data
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1 10 100 200

FIGURE 4. Decrease of the discharge coefficient (divided by the constant unmodified
discharge coefficient C?

d) as a function of the discharge plume parameter Γd. Here, (a) is
the best fit from Hunt & Holford (2000), (b) is the best fit from Holford & Hunt (2001),
(c) is the relation (4.6) for low density contrasts and (d) is the relation (4.7) for high
density contrasts.

points. The second fit given by relation (4.2) and the theoretical relation (4.6) for
low density contrasts are more likely to agree. However, whatever the hypothesis with
respect to the density contrast, the main difference between the theoretical relations
in (4.6) and (4.7) and Holford and Hunt’s second correlation is due to our choice
of Γ crit

d (theoretically 5/2 for low density contrasts and 5/4 for large density contrast
instead of the experimental value 4.9). This difference is not really surprising since our
theoretical model based on the necking effect only is a somewhat simplified view of
the physics of such a discharge flow. Furthermore, the present plume theory considers
‘top-hat’ profiles and a constant entrainment coefficient, which is probably, in the near
field of a lazy plume, a source of additional uncertainties, as recently discussed by van
Reeuwijk & Craske (2015) and Carlotti & Hunt (2017).

Nevertheless, in spite of the simplicity of our approach, by rescaling the theoretical
relations (4.6) and (4.7) using the suitable (experimental) critical value Γ crit

d = 4.9,
the coefficients in these relations become 2.16 and 1.89 (instead of 1.96 and 1.28),
respectively, in good agreement with (4.2) as shown in figure 5.

5. The modified emptying–filling box model
In this section, the emptying–filling box equations are solved for a variable

discharge coefficient Cd = f (Γd). In particular, comparisons are made with results
obtained for an unmodified discharge coefficient C?

d = 0.6. For these comparisons we
have chosen to use the theoretical relation (4.6), modified to be in accordance with
the critical value Γ crit

d = 4.9 found experimentally by Holford & Hunt (2001):

Cd =
0.6 if Γd < 4.9,

1.3
(Γd − 1)3/5

Γd
if Γd > 4.9.

(5.1)

Note that according to relation (3.4), the critical value Γ crit
d = 4.9 corresponds to a

dimensionless layer height ζ crit
ss ≈ 0.77 which indicates that consideration of a variable
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FIGURE 5. Decrease of the discharge coefficient (divided by the constant unmodified
discharge coefficient C?

d) as a function of the discharge plume parameter Γd. Here, the
bold line is the best fit from Holford & Hunt (2001), (c) is the relation (4.6) and (d) is
the relation (4.7) both corrected to agree with the experimental critical value Γ crit

d = 4.9.

3010 20 40 50 60 70 800

1.0

0.9

0.5

0.6

0.7

0.8

(a)

(a)

(b)

(c)

FIGURE 6. Time evolution of the dimensionless interface height ζ for Λ = 0.1 and
three different values of Θ: 0.5 (a); 1 (b); 1.5 (c). The solid line represents a constant
discharge coefficient Cd= 0.6, and the dashed line the modified discharge coefficient given
in relation (5.1).

Cd will have an impact on steady state predictions only for relatively thin upper layers
(lower than v23 % of the box height).

Figure 6 presents the results of a numerical integration of conservation equations
(2.8), (2.9) and (2.10) with and without correction of the discharge coefficient, for a
geometrical parameter Λ = 0.1 and three values of the dimensionless parameter Θ
(0.5, 1 and 1.5). Curves (a) for Θ = 0.5 reveal faster filling, a slight overshoot and a
deeper layer of buoyant fluid at steady state when considering the modified discharge
coefficient. By doubling the value of Θ (that is, by multiplying the buoyancy flux
by 23/2), it can be seen from curves (b) that ζ drops below the critical value (ζ crit =
0.77) during transients and the steady state is then unaffected by the correction of
the discharge coefficient. Filling is still faster with the modified model. Curves (c) for
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Θ = 1.5 no longer allow us to distinguish between the two models since ζ rapidly
drops below ζ crit during transients.

6. Conclusion

In the simultaneous filling (by an internal plume issuing from a point source
of buoyancy) and emptying of a box, the characteristics of the plume-like flow
that develops outside the box from an upper vent allows a ‘plume parameter’
to be constructed: the ‘discharge plume parameter’ which we denote Γd. This
non-dimensional parameter quantifies the ratio between buoyancy and momentum
in the flow at the vent and it can be expressed analytically from the output data of
the emptying–filling box model assuming a displacement ventilation mode. In the
transient phase of an emptying–filling box, the discharge plume parameter decreases
from an infinite value (at t = 0) to a finite value at steady state which allows the
height of the interface (between air and buoyant fluid) to be estimated whatever
the source buoyancy flux. In particular, the plume above the vent is buoyancy
dominated at the beginning and can become momentum dominated as soon as the
box is (approximately) half-filled. Previous experiments have shown that the discharge
coefficient Cd of a draining process may fall dramatically below its classical value
(Cd ∼ 0.6–0.7) for large values of the discharge plume parameter. By including the
relation that links Cd to Γd in the emptying–filling box model, we show that transients
and steady state are broadly unchanged provided the buoyant layer depth is greater
than approximately one-quarter of the box height. For thinner buoyant layers however,
estimations made with an unmodified Cd significantly underestimate the buoyant layer
depth in both transients and steady state of an emptying–filling box.
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