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Unified bounds for the independence
number of graphs
Jiang Zhou
Abstract. The Hoffman ratio bound, Lovász theta function, and Schrijver theta function are classical
upper bounds for the independence number of graphs, which are useful in graph theory, extremal
combinatorics, and information theory. By using generalized inverses and eigenvalues of graph
matrices, we give bounds for independence sets and the independence number of graphs. Our
bounds unify the Lovász theta function, Schrijver theta function, and Hoffman-type bounds, and
we obtain the necessary and sufficient conditions of graphs attaining these bounds. Our work leads
to some simple structural and spectral conditions for determining a maximum independent set, the
independence number, the Shannon capacity, and the Lovász theta function of a graph.

1 Introduction

The independence number α(G) of graph G is the maximum size of independent
sets in G, which is an important graph parameter in graph theory. The following is
a celebrated upper bound given by Hoffman.

Theorem 1.1 [5, Theorem 3.5.2] Let G be a k-regular (k ≠ 0) graph with n vertices, and
let τ be the minimum adjacency eigenvalue of G. Then

α(G) ≤ n ∣τ∣
k − τ

.

If an independent set C meets this bound, then every vertex not in C is adjacent to exactly
∣τ∣ vertices of C.

The upper bound in Theorem 1.1 is often called Hoffman (ratio) bound for α(G).
Haemers generalized the Hoffman bound to the general case.

Theorem 1.2 [17, p. 17] Let G be a graph with minimum degree δ, and let λ and τ be
the maximum and the minimum adjacency eigenvalue of G, respectively. Then

α(G) ≤ n λ∣τ∣
δ2 − λτ

.
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There are many Hoffman-type ratio bounds, which are useful in graph theory,
coding theory, and extremal combinatorics [8–10, 12, 13]. Some generalized Hoffman
ratio bounds involving adjacency eigenvalues, Laplacian eigenvalues, and normalized
Laplacian eigenvalues of graphs can be found in [14, 17, 18, 20].

For a graph G = (V , E), let Gk denote the graph whose vertex set is V k , in which
two vertices u1 . . . uk and v1 . . . vk are adjacent if and only if for each i ∈ {1, . . . , k}
either u i = v i or {u i , v i} ∈ E (see [1]). The Shannon capacity [5, 23] of G is defined as

Θ(G) = lim
k→∞

α(Gk)1/k = sup
k→∞

α(Gk)1/k ,

and represents the number of distinct messages per use the channel can communicate
with no error while used many times [1]. It is difficult to compute Θ(G) for a general
graph G, we do not even know the Shannon capacity of the cycle C7 (see [4, 21]).

The Lovász theta function ϑ(G) is an upper bound for α(G) introduced in [19],
which is a powerful tool for studying the Shannon capacity of graphs. Lovász [19]
proved that α(G) ≤ Θ(G) ≤ ϑ(G), and posed the problem of finding graphs with
Θ(G) = ϑ(G) (see Problem 1 in [19]). The Schrijver theta function ϑ′(G) is a smaller
upper bound for α(G). Schrijver [22] proved that α(G) ≤ ϑ′(G) ≤ ϑ(G). By consid-
ering the relation between α(G) and the rank of matrices associated with G, Haemers
[16] proved that Θ(G) is at most the minimum rank of a class of graph matrices.

Generalized inverses of graph matrices have important applications in random
walks on graphs [6] and the sparsification of graphs [24]. This paper uses generalized
inverses methods to study α(G), Θ(G), ϑ(G), and ϑ′(G), and gives bounds which
unify the Lovász theta function, Schrijver theta function, and Hoffman-type bounds.
Based on the generalized inverses method, we obtain simple structural and spectral
conditions to determine α(G), Θ(G), ϑ(G), and a maximum independent set in G.
Our conditions can also be used to find graphs with Θ(G) = ϑ(G), which is a partial
answer to the problem posed by Lovász.

The paper is organized as follows: In Section 2, we introduce some auxiliary
lemmas. In Section 3, we give bounds for the sizes of independent sets and the
independence number of graphs by using generalized inverses and eigenvalues of
graph matrices. In Sections 4–6, we show that our bounds unify the Lovász theta
function, Schrijver theta function, and Hoffman-type bounds in [5, 14, 18, 20], and
obtain the necessary and sufficient conditions of graphs attaining the bounds. In
Section 7, we give some simple structural and spectral conditions for determining a
maximum independent set, the independence number, the Shannon capacity, and the
Lovász theta function of a graph. Some concluding remarks are given in Section 8.

2 Preliminaries

For a real square matrix M, the group inverse of M, denoted by M#, is the matrix X such
that MXM = M , XMX = X, and MX = XM. It is known [2, p. 156] that M# exists if
and only if rank(M) = rank(M2). If M# exists, then M# is unique.

For a positive semidefinite real matrix M, there exists an orthogonal matrix U such
that

M = Udiag(λ1 , . . . , λn)U⊺ ,
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Unified bounds for the independence number of graphs 99

where diag(λ1 , . . . , λn) denotes a diagonal matrix with nonnegative diagonal
entries λ1 , . . . , λn . We set M 1

2 = Udiag(λ
1
2
1 , . . . , λ

1
2
n )U⊺ and M− 1

2 = Udiag((λ+1 )
1
2 , . . . ,

(λ+n)
1
2 )U⊺, where λ+i = λ−1

i if λ i > 0, and λ+i = 0 if λ i = 0. Then

M# = Udiag(λ+1 , . . . , λ+n)U⊺ = (M−
1
2 )2 .

Lemma 2.1 [2, pp. 162–163] Let M be a square matrix such that M# exists, and let
λ ≠ 0 be an eigenvalue of M with an eigenvector x. Then

M#x = λ−1x .

For a real matrix A, the Moore–Penrose inverse of A is the real matrix X such
that AXA = A, XAX = X, (AX)⊺ = AX , and (XA)⊺ = XA. Let A+ denote the Moore–
Penrose inverse of A. It is well known that A+ exists and is unique.

Let R(M) = {x ∶ x = My, y ∈ Rn} denote the range of an m × n real matrix M.

Lemma 2.2 [2, pp. 43, 49] Let A be a real matrix. Then

R(AA⊺) = R(A) = R(AA+),
(A⊺A)#A⊺ = A+.

Lemma 2.3 Let A be an n ×m real matrix, and let x be a unit real vector of
dimension n. Then

x⊺AA+x ≤ 1,

with equality if and only if x ∈ R(A).
Proof It is known [2] that AA+ is a real symmetric idempotent matrix. So each
eigenvalue of AA+ is 0 or 1. For a unit real vector x, we have x⊺AA+x ≤ 1, with equality
if and only if x ∈ R(AA+). By Lemma 2.2, x ∈ R(AA+) is equivalent to x ∈ R(A). ∎

We now introduce the Lovász theta function defined in [19]. An orthonormal
representation of an n-vertex graph G is a set {u1 , . . . , un} of unit real vectors such
that u⊺i u j = 0 if i and j are two nonadjacent vertices in G. The value of an orthonormal
representation {u1 , . . . , un} is defined to be

min
c

max
1≤i≤n

1
(c⊺u i)2

,

where c ranges over all unit real vectors. The Lovász theta function ϑ(G) is the
minimum value of all orthonormal representations of G.

Let (M)i j denote the (i , j)-entry of a matrix M, and let λ1(A) denote the largest
eigenvalue of a real symmetric matrix A. The independence number α(G), the
Shannon capacity Θ(G), and the Lovász theta function ϑ(G) have the following
relations.

Lemma 2.4 [19] For any graph G, we have

α(G) ≤ Θ(G) ≤ ϑ(G) =min
A

λ1(A),

where A ranges over all real symmetric matrices indexed by vertices of G such that
(A)i j = 1 when i = j or i , j are two nonadjacent vertices.
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For a graph G, its Schrijver theta function ϑ′(G) is defined as [22]

ϑ′(G) =min
A

λ1(A),

where A ranges over all real symmetric matrices indexed by vertices of G such that
(A)i j ≥ 1 when i = j or i , j are two nonadjacent vertices.

Lemma 2.5 [22] For any graph G, we have

α(G) ≤ ϑ′(G).

For an n-vertex graph G, the adjacency matrix A of G is an n × n symmetric matrix
with entries

(A)i j =
⎧⎪⎪⎨⎪⎪⎩

1, if {i , j} ∈ E(G),
0, if {i , j} ∉ E(G),

where E(G) denotes the edge set of G. Eigenvalues of the adjacency matrix of G are
called adjacency eigenvalues of G. The largest adjacency eigenvalue of a graph has the
following upper bound.

The following lemma will be used later in the proof of Example 4.3.

Lemma 2.6 [3] Let G be a graph with adjacency matrix A. Then

λ1(A) ≤ max
{u ,v}∈E(G)

√
dudv ,

where du denotes the degree of a vertex u.

3 Bounds for independent sets and independence number

Let A[S] denote the principal submatrix of a square matrix A determined by the rows
and columns whose index set is S. A real vector x = (x1 , . . . , xn)⊺ is called total nonzero
if x i ≠ 0 for i = 1, . . . , n.

For an n-vertex graph G, let V(G) denote the vertex set of G, and let P(G) denote
the set of real matrix-vector pairs (M , x) such that:

(a) M is a positive semidefinite n × n matrix indexed by vertices of G.
(b) x = (x1 , . . . , xn)⊺ ∈ R(M) is total nonzero and (M)i jx i x j ≤ 0 if i , j are two

nonadjacent distinct vertices.
For (M , x) ∈ P(G) and vertex subset T ⊆ V(G), let F(M , x) and FT(M , x) denote

the following functions:

F(M , x) = x⊺M#x max
u∈V(G)

(M)uu

x2
u

,

FT(M , x) = x⊺M#x
∣T ∣ ∑

u∈T

(M)uu

x2
u

.

In [14], Godsil and Newman gave bounds on the size of an independent set by using
positive semidefinite graph matrices. Motivated by the ideas of Godsil and Newman,
we give the following bounds in terms of generalized inverses of positive semidefinite
graph matrices.
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Unified bounds for the independence number of graphs 101

Theorem 3.1 Let (M , x) ∈ P(G) be a matrix-vector pair associated with an n-vertex
graph G. Then the following statements hold:

(1) For any independent set S of G, we have

∣S∣ ≤ FS(M , x),

with equality if and only if M[S] is diagonal and there exists a constant c such that

(M)vv

x2
v
= c (v ∈ S),

cxv = ∑
u∈S
(M)vu x−1

u (v ∉ S).

(2) The independence number α(G) satisfies

α(G) ≤ F(M , x),

with equality if and only if G has an independent set C such that M[C] is diagonal and

(M)vv

x2
v
= max

u∈V(G)

(M)uu

x2
u
= c (v ∈ C),

cxv = ∑
u∈C
(M)vu x−1

u (v ∉ C).

Moreover, if an independent set C satisfies the above conditions, then

α(G) = ∣C∣ = F(M , x).

(3) Suppose that (M)11
x2

1
≥ ⋅ ⋅ ⋅ ≥ (M)nn

x2
n

are arranged in a decreasing order. If α(G) ≥ t for
some positive integer t, then

α(G) ≤ FT(M , x),

where T = {1, . . . , t}.

Proof Since M 1
2 M− 1

2 M = M and x ∈ R(M), we have

M
1
2 M−

1
2 x = x .

For any independent set S of G, let y = (y1 , . . . , yn)⊺ be the vector such that

yu =
⎧⎪⎪⎨⎪⎪⎩

x−1
u , if u ∈ S ,

0, if u ∉ S .

By the Cauchy–Schwarz inequality, we have

∣S∣2 = (y⊺x)2 = (y⊺M
1
2 M−

1
2 x)2 ≤ (y⊺My)(x⊺M#x).

Since (M)i jx i x j ≤ 0 when i , j are two nonadjacent vertices, we get

∣S∣2 ≤ (y⊺My)(x⊺M#x) ≤ x⊺M#x∑
u∈S

(M)uu

x2
u

,

∣S∣ ≤ FS(M , x),
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with equality if and only if M[S] is diagonal and there exists a constant c such that
M 1

2 y = cM− 1
2 x, that is, My = cx (because M 1

2 M− 1
2 x = x). When M[S] is diagonal,

My = cx is equivalent to

(M)vv

x2
v
= c (v ∈ S),

cxv = ∑
u∈S
(M)vu x−1

u (v ∉ S).

So part (1) holds.
Notice that ∣S∣ ≤ FS(M , x) ≤ F(M , x) for any independent set S of G. Hence

α(G) ≤ F(M , x).

If the equality holds, then G has an independent set C such that M[C] is diagonal and

(M)vv

x2
v
= max

u∈V(G)

(M)uu

x2
u
= c (v ∈ C),

cxv = ∑
u∈C
(M)vu x−1

u (v ∉ C).

If an independent set C satisfies the above conditions, then

∣C∣2 = (z⊺x)2 = (z⊺M
1
2 M−

1
2 x)2 = (z⊺Mz)(x⊺M#x) = ∣C∣F(M , x),

∣C∣ = F(M , x),

where z = (z1 , . . . , zn)⊺ is the vector such that

zu =
⎧⎪⎪⎨⎪⎪⎩

x−1
u , if u ∈ C ,

0, if u ∉ C .

Since α(G) ≤ F(M , x), we have

∣C∣ = α(G) = F(M , x).

So part (2) holds.
Suppose that (M)11

x2
1
≥ ⋅ ⋅ ⋅ ≥ (M)nn

x2
n

are arranged in a decreasing order. Let C be an
independent set such that ∣C∣ = α(G). If α(G) ≥ t, then

α(G) ≤ FC(M , x) ≤ FT(M , x) (T = {1, . . . , t}).

So part (3) holds. ∎

Remark 3.2 For a graph G, let M be a positive definite matrix indexed by vertices
of G such that (M)i j = 0 if i , j are two nonadjacent distinct vertices. Then M# = M−1

and (M , x) ∈ P(G) for any real vector x. By part (2) of Theorem 3.1, we have

α(G) ≤ F(M , x) = x⊺M−1x max
u∈V(G)

(M)uu

x2
u

for any total nonzero vector x.
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Unified bounds for the independence number of graphs 103

The {1}-inverse of M is a matrix X such that MXM = M. If M is singular, then it
has infinite {1}-inverses (see [2, page 41]).

Remark 3.3 Let M be a real symmetric matrix. Since MM#M = MM(1)M = M for
any {1}-inverse M(1) of M, we have x⊺M#x = x⊺M(1)x for any x ∈ R(M). Hence, the
upper bounds given in Theorem 3.1 can be obtained from any {1}-inverse of M.

The signless Laplacian matrix of a graph G is defined as D + A, where D is the
diagonal matrix of vertex degrees of G, A is the adjacency matrix of G. The subdivision
graph of G, denoted by S(G), is a graph obtained from G by replacing each edge of G
by a path of length 2.

We can find concrete examples such that an upper bound derived from Theorem 3.1
is smaller than the Hoffman bound given in Theorem 1.2.

Example 3.4 Let G be a nonregular graph with n vertices, m edges, and minimum
degree δ ≥ 2. Then there exists (M , x) ∈ P(S(G)) such that

α(S(G)) = x⊺M#x max
u∈V(S(G))

(M)uu

x2
u
< (m + n)λ2

4 + λ2 ,

where λ is the maximum adjacency eigenvalue of S(G).

Proof The signless Laplacian matrix of S(G) can be written as M = (2I B⊺
B D ),

where B is the vertex-edge incidence matrix of G, D is the diagonal matrix of vertex

degrees of G. Let x = (2I B⊺
B D )(

e
0) = (

2e
y ), where e is the all-ones vector, y is the

vector of vertex degrees of G. Let C be the independent set in S(G) corresponding to
the edge set of G, then (M , x) ∈ P(S(G)) and C satisfy the conditions given in part
(2) of Theorem 3.1. By part (2) of Theorem 3.1, we get

α(S(G)) = x⊺M#x max
u∈V(S(G))

(M)uu

x2
u
= ∣C∣ = m.

Let λ be the maximum adjacency eigenvalue of S(G), then −λ is the minimum
adjacency eigenvalue of S(G) (because S(G) is bipartite). By Theorem 1.2, we have

α(S(G)) = x⊺M#x max
u∈V(S(G))

(M)uu

x2
u
= m ≤ (m + n)λ2

4 + λ2 .

We next show that the inequality is strict. It is known that λ2 is the maximum
eigenvalue of the signless Laplacian matrix of G, and λ2 ≥ 4m

n , with equality if and
only if G is regular (see [7, Theorems 2.4.4 and 7.8.6]). Since G is nonregular, we have
λ2 > 4m

n , that is m < (m+n)λ2

4+λ2 . ∎

For a connected graph G, if M be a nonnegative matrix indexed by V(G) such
that (M)i j > 0 if and only if i , j are two adjacent vertices, then M is irreducible. By
the Perron–Frobenius Theorem, the spectral radius ρ of M is a positive eigenvalue of
M, and there exists unique positive unit eigenvector associated with ρ. The following
eigenvalue bound follows from Theorem 3.1.
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Corollary 3.5 Let M be a positive semidefinite nonnegative matrix associated with a
connected graph G, and (M)i j > 0 if and only if i , j are two adjacent vertices. Let ρ be
the spectral radius of M, and let x be the corresponding positive unit eigenvector. Then

α(G) ≤ ρ−1 max
u∈V(G)

(M)uu

x2
u

.

Proof Since Mx = ρx, we have (M , x) ∈ P(G). By Lemma 2.1, we get

M#x = ρ−1x .

By part (2) of Theorem 3.1, we get

α(G) ≤ F(M , x) = x⊺M#x max
u∈V(G)

(M)uu

x2
u
= ρ−1 max

u∈V(G)

(M)uu

x2
u

. ∎

The Laplacian matrix of a graph G is defined as L = D − A, where D is the diagonal
matrix of vertex degrees of G, A is the adjacency matrix of G. It is well known that L
is positive semidefinite. The following result follows from Theorem 3.1.

Corollary 3.6 Let G be a connected graph with Laplacian matrix L. For any total
nonzero vector x satisfying∑u∈V(G) xu = 0, we have

α(G) ≤ F(L, x).

Proof Since G is connected, the null space of L has dimension one. Since Le = 0
for the all-ones vector e, we have x ∈ R(L) for any vector x satisfying e⊺x = ∑u∈V(G)
xu = 0. By part (2) of Theorem 3.1, we get

α(G) ≤ F(L, x). ∎

4 Lovász theta function and Shannon capacity

For a graph G, let M(G) denote the set of real matrix-vector pairs (M , x) such that:
(a) M is a positive semidefinite matrix indexed by vertices of G such that (M)i j = 0

if i , j are two nonadjacent distinct vertices.
(b) x ∈ R(M) is a total nonzero vector.
Since M(G) is a subset of P(G), the notations F(M , x) and FT(M , x) defined in

Section 3 can be used for (M , x) ∈M(G) directly.
In the following theorem, we show that the Lovász theta function ϑ(G) is a special

upper bound given in Theorem 3.1, and obtain the necessary and sufficient conditions
of graphs satisfying α(G) = ϑ(G).

Theorem 4.1 For any graph G, we have

α(G) ≤ min
(M ,x)∈M(G)

F(M , x) = ϑ(G),

with equality if and only if there exist (M , x) ∈M(G) and an independent set C
satisfying the conditions given in part (2) of Theorem 3.1.
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Proof By Theorem 3.1, we have

α(G) ≤ min
(M ,x)∈M(G)

F(M , x),

with equality if and only if there exist (M , x) ∈M(G) and an independent set C
satisfying the conditions in part (2) of Theorem 3.1. We need to prove that the
minimum value equals to ϑ(G).

We first prove that the minimum value does not exceed ϑ(G). Let c, u1 , . . . , un be
unit real vectors such that {u1 , . . . , un} is an orthonormal representation of G and

ϑ(G) = max
1≤i≤n

1
(c⊺u i)2

.

Let U be the matrix whose ith column is u i , then each diagonal entry of U⊺U is 1. Take
z = U⊺c, then (U⊺U , z) ∈M(G) and

z i = c⊺u i ≠ 0, i = 1, . . . , n.

By Lemmas 2.2 and 2.3, we have

F(U⊺U , z) = z⊺(U⊺U)#z max
1≤i≤n

1
z2

i
= ϑ(G)c⊺UU+c ≤ ϑ(G).

So we have

min
(M ,x)∈M(G)

F(M , x) ≤ F(U⊺U , z) ≤ ϑ(G).

We turn to prove that min(M ,x)∈M(G) F(M , x) is at least ϑ(G). There exists
(M0 , y) ∈M(G) such that

F(M0 , y) = y⊺(M0)# y max
1≤i≤n

(M0)i i

y2
i
= min
(M ,x)∈M(G)

F(M , x).

Since M0 is positive semidefinite, there exists real matrix B such that M0 = B⊺B. Since
y ∈ R(M0), we can choose y such that y = B⊺c for a unit real vector c ∈ R(B). Let b i
be the ith column of B. By Lemmas 2.2 and 2.3, we have

F(M0 , y) = y⊺(M0)# y max
1≤i≤n

(M0)i i

y2
i
= c⊺BB+c max

1≤i≤n

b⊺i b i

(c⊺b i)2
= max

1≤i≤n

b⊺i b i

(c⊺b i)2
.

We next prove that F(M0 , y) ≥ ϑ(G) by using the method similar with proof of [19,
Theorem 3]. Let A = (a i j)n×n be the matrix with entries

a i i = 1, i = 1, . . . , n,

a i j = 1 −
b⊺i b j

(c⊺b i)(c⊺b j)
= 1 −

(M0)i j

y i y j
, i ≠ j.

By Lemma 2.4, we get

λ1(A) ≥ ϑ(G).
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We set

β = F(M0 , y) = max
1≤i≤n

b⊺i b i

(c⊺b i)2
,

then

−a i j = (c − b i

(c⊺b i)
)
⊺

(c −
b j

(c⊺b j)
) , i ≠ j,

β − a i i = (c − b i

(c⊺b i)
)
⊺

(c − b i

(c⊺b i)
) + β − b⊺i b i

(c⊺b i)2
.

Hence, βI − A (I is the identity matrix) is positive semidefinite, that is,

min
(M ,x)∈M(G)

F(M , x) = β ≥ λ1(A) ≥ ϑ(G). ∎

The following conclusion comes from Theorems 3.1 and 4.1 and Lemma 2.4.
Theorem 4.2 Let (M , x) ∈M(G) be a matrix-vector pair for graph G. If G has an
independent set C such that (M , x) and C satisfy the conditions given in part (2) of
Theorem 3.1, then

α(G) = Θ(G) = ϑ(G) = ∣C∣ = F(M , x).
A bipartite graph G is called semiregular with parameters (n1 , n2 , r1 , r2) if V(G)

has a bipartition V(G) = V1 ∪ V2 such that ∣V1∣ = n1 , ∣V2∣ = n2 and vertices in the same
color class have the same degree (n i vertices of degree r i , i = 1, 2).

Let I denote the identity matrix. The following are some examples for Theorem 4.2.
Example 4.3 Let G be a graph with a spanning subgraph H, and let H be a semireg-
ular bipartite graph with parameters (n1 , n2 , r1 , r2) (n1r1 = n2r2 > 0, n1 ≤ n2). If the
independent set with n2 vertices in H is also an independent set in G, then

α(G) = Θ(G) = ϑ(G) = n2 .

Proof The adjacency matrix of H can be written as A = (0 B⊺
B 0 ), and each row

(column) sum of B ∈ Rn1×n2 is r1 (r2). By Lemma 2.6, we have λ1(A) ≤
√r1r2. Then

λ1(BB⊺) = λ1(A2) ≤ r1r2 .

Let M = (r1I B⊺
B r2I), then the all-ones vector e ∈ R(M) because Me = (r1 + r2)e.

Since the Schur complement

r2I − r−1
1 BB⊺ = r−1

1 (r1r2I − BB⊺)
is positive semidefinite, M is positive semidefinite. Hence (M , e) ∈M(G). Let C be
the independent set with n2 vertices in H, which is also an independent set in G.
Since (M , e) and C satisfy the conditions given in part (2) of Theorem 3.1, then by
Theorem 4.2, we have

α(G) = Θ(G) = ϑ(G) = ∣C∣ = α(H). ∎
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For two disjoint graphs G1 and G2, let G1 ∨G2 denote the graph obtained from the
union of G1 and G2 by joining each vertex of G1 to each vertex of G2. Let G denote the
complement of a graph G.

Example 4.4 Let G be an n-vertex graph with minimum degree δ. For any integer
s ≥ n − δ, we have

α(G ∨ Ks) = Θ(G ∨ Ks) = ϑ(G ∨ Ks) = s,

where Ks is the complete graph with s vertices.

Proof The adjacency matrix of G ∨ Ks can be written as ( 0 Js×n
J⊺s×n A ), where A is

the adjacency matrix of G, Js×n is the s × n all-ones matrix. Let L be the Laplacian

matrix of G, and let M = ( sI Js×n
J⊺s×n nI − L). Then the all-ones vector e ∈ R(M) because

Me = (s + n)e. Since the Schur complement

nI − L − s−1 J⊺s×n Js×n

equals to the Laplacian matrix of G (which is positive semidefinite), M is positive
semidefinite. Hence (M , e) ∈M(G). Let C be the independent set of size s in G ∨ Ks .
Since (M , e) and C satisfy the conditions given in part (2) of Theorem 3.1, then by
Theorem 4.2, we have

α(G ∨ Ks) = Θ(G ∨ Ks) = ϑ(G ∨ Ks) = ∣C∣ = s. ∎

Let e = (1, . . . , 1)⊺ denote the all-ones vector.

Corollary 4.5 Let G be a graph with adjacency matrix A and A+ λI is positive definite
for some λ > 0. Then

α(G) ≤ λe⊺(A+ λI)−1e ,

with equality if and only if there exists an independent set C such that every vertex not
in C is adjacent to exactly λ vertices of C. Moreover, if an independent set C satisfies the
above condition, then

α(G) = Θ(G) = ϑ(G) = ∣C∣ = λe⊺(A+ λI)−1e .

Proof Since A+ λI is positive definite, we have (A+ λI, e) ∈M(G) and F(A+
λI, e) = λe⊺(A+ λI)−1e. The conclusions follow from Theorems 3.1 and 4.2. ∎

The following is an example for Corollary 4.5.

Example 4.6 For the path P2k+1 with 2k + 1 vertices, let C be the independent set in
P2k+1 with k + 1 vertices. Then every vertex not in C is adjacent to exactly two vertices
of C. By Corollary 4.5, we have

α(P2k+1) = Θ(P2k+1) = ϑ(P2k+1) = ∣C∣ = 2e⊺(A+ 2I)−1e = k + 1,

where A is the adjacency matrix of P2k+1.
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A clique covering of G is a set ε = {Q1 , . . . , Qr} of cliques in G that cover all edges
of G, that is, each edge of G belongs to at least one Q i . For a clique covering ε and a
vertex u of G, the ε-degree of u is the number of cliques in ε containing u, denoted
by d ε

u . The clique covering matrix Aε is the n × n symmetric matrix with entries

(Aε)i j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d ε
i , if i = j,

w i j , if {i , j} ∈ E(G),
0, if {i , j} ∉ E(G),

where w i j is the number of cliques in ε containing the edge {i , j}.

Theorem 4.7 Let G be a graph without isolated vertices. For any clique covering ε of G,
we have

α(G) ≤ F(Aε , x),

where x is a vector satisfying xu = d ε
u . The equality holds if and only if there exists an

independent set C such that d ε
v =minu∈V(G) d ε

u for each v ∈ C, and ∣C ∩ Q∣ = 1 for each
Q ∈ ε. Moreover, if an independent set C satisfies the above conditions, then

α(G) = Θ(G) = ϑ(G) = ∣C∣ = F(Aε , x).

Proof For a clique covering ε = {Q1 , . . . , Qr} of G, the corresponding vertex-clique
incidence matrix B is a ∣V(G)∣ × r matrix with entries

(B)i j =
⎧⎪⎪⎨⎪⎪⎩

1, if i ∈ V(G), i ∈ Q j ,
0, if i ∈ V(G), i ∉ Q j .

Then BB⊺ = Aε . Notice that x = Be ∈ R(B) = R(Aε), so (Aε , x) ∈M(G). The conclu-
sions follow from Theorems 3.1 and 4.2. ∎

The following is an example for Theorem 4.7.

Example 4.8 The graph G in Figure 1 has a clique covering ε = {Q1 , Q2 , Q3}, where
Q1 = {1, 2, 3}, Q2 = {2, 4, 5}, Q3 = {3, 5, 6}. Then G has ε-degrees d ε

1 = 1, d ε
2 = 2,

d ε
3 = 2, d ε

4 = 1, d ε
5 = 2, d ε

6 = 1 (see [25]). The independent set C = {1, 4, 6} satisfies the
conditions in Theorem 4.7. So we have

α(G) = Θ(G) = ϑ(G) = ∣C∣ = 3.

Let m(H) denote the matching number of a hypergraph H. The intersection graph
Ω(H) of H has vertex set E(H), and two vertices f1 , f2 of Ω(H) are adjacent if and
only if f1 ∩ f2 ≠ ∅. Clearly, we have m(H) = α(Ω(H)). The vertex-edge incidence
matrix B of H is a ∣V(H)∣ × ∣E(H)∣matrix with entries

(B)u f =
⎧⎪⎪⎨⎪⎪⎩

1, if u ∈ V(H), u ∈ f ∈ E(H),
0, if u ∈ V(H), u ∉ f ∈ E(H).

We say that H is k-uniform if each edge of H has exactly k vertices.
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Figure 1: Graph G.

Theorem 4.9 Let H be a k-uniform hypergraph without isolated vertices, and let B be
the vertex-edge incidence matrix of H. Then

m(H) ≤ ke⊺(B⊺B)#e ,

with equality if and only if H has a perfect matching. If H has a perfect matching, then

m(H) = Θ(Ω(H)) = ϑ(Ω(H)) = ke⊺(B⊺B)#e .

Proof Notice that e = k−1B⊺e ∈ R(B⊺) = R(B⊺B), so (B⊺B, e) ∈M(Ω(H)) and
F(B⊺B, e) = ke⊺(B⊺B)#e. The conclusions follow from Theorems 3.1 and 4.2. ∎

5 Schrijver theta function

In the following theorem, we show that the Schrijver theta function ϑ(G) is the
minimum upper bound given in part (2) of Theorem 3.1, and obtain the necessary
and sufficient conditions of graphs satisfying α(G) = ϑ′(G).

Theorem 5.1 For any graph G, we have

α(G) ≤ min
(M ,x)∈P(G)

F(M , x) = ϑ′(G),

with equality if and only if there exist (M , x) ∈ P(G) and an independent set C satisfying
the conditions given in part (2) of Theorem 3.1.

Proof By Theorem 3.1, we have

α(G) ≤ min
(M ,x)∈P(G)

F(M , x),

with equality if and only if there exist (M , x) ∈ P(G) and an independent set C
satisfying the conditions given in part (2) of Theorem 3.1. We will prove that the
minimum value equals to ϑ′(G) by using the method similar with proof of [19,
Theorem 3].
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We first prove that the minimum value does not exceed ϑ′(G). Let A = (a i j)n×n
be the real symmetric matrix indexed by vertices of G such that λ1(A) = ϑ′(G), and
a i j ≥ 1 when i = j or i , j are two nonadjacent vertices. Then ϑ′(G)I − A is positive
semidefinite. So there exists real matrix T such that

ϑ′(G)I − A = T⊺T

and the rank of T is smaller than the number of rows of T. Let c be a unit real vector
such that c⊺T = 0. Suppose that t i is the ith column of T, then

t⊺i t j = ϑ′(G)δ i j − a i j ,

where δ i j = 1 if i = j, and δ i j = 0 if i ≠ j. We set

u i = ϑ′(G)− 1
2 (c + t i), i = 1, . . . , n,

and let U be the matrix whose ith column is u i . Then

(U⊺U)i i = ϑ′(G)−1(1 + ϑ′(G) − a i i) ≤ 1, i ∈ V(G),
(U⊺U)i j = ϑ′(G)−1(1 − a i j) ≤ 0, {i , j} ∉ E(G).

Take z = U⊺c, then z i = c⊺u i = ϑ′(G)− 1
2 (i = 1, . . . , n) and (U⊺U , z) ∈ P(G). By

Lemmas 2.2 and 2.3, we have

F(U⊺U , z) = z⊺(U⊺U)#z max
1≤i≤n

(U⊺U)i i

z2
i

≤ ϑ′(G)c⊺UU+c ≤ ϑ′(G).

So we have

min
(M ,x)∈P(G)

F(M , x) ≤ F(U⊺U , z) ≤ ϑ′(G).

We next prove that min(M ,x)∈P(G) F(M , x) is at least ϑ′(G). There exists (M0 , y) ∈
P(G) such that

F(M0 , y) = y⊺(M0)# y max
1≤i≤n

(M0)i i

y2
i
= min
(M ,x)∈P(G)

F(M , x).

Since M0 is positive semidefinite, there exists matrix B such that M0 = B⊺B. Since
y ∈ R(M0), we can choose y such that y = B⊺c for a unit real vector c ∈ R(B). Let b i
be the ith column of B. By Lemmas 2.2 and 2.3, we have

F(M0 , y) = y⊺(M0)# y max
1≤i≤n

(M0)i i

y2
i
= c⊺BB+c max

1≤i≤n

b⊺i b i

(c⊺b i)2
= max

1≤i≤n

b⊺i b i

(c⊺b i)2
.

Let A = (a i j)n×n be the matrix with entries

a i i = 1, i = 1, . . . , n,

a i j = 1 −
b⊺i b j

(c⊺b i)(c⊺b j)
= 1 −

(M0)i j

y i y j
, i ≠ j.
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Since (M0)i j y i y j ≤ 0 for nonadjacent vertices i , j, we have a i j ≥ 1 when i = j or i , j
are two nonadjacent vertices. By the definition of ϑ′(G), we have

λ1(A) ≥ ϑ′(G).

We set

β = F(M0 , y) = max
1≤i≤n

b⊺i b i

(c⊺b i)2
,

then

−a i j = (c − b i

(c⊺b i)
)
⊺

(c −
b j

(c⊺b j)
) , i ≠ j,

β − a i i = (c − b i

(c⊺b i)
)
⊺

(c − b i

(c⊺b i)
) + β − b⊺i b i

(c⊺b i)2
.

Hence, βI − A is positive semidefinite, that is,

min
(M ,x)∈P(G)

F(M , x) = β ≥ λ1(A) ≥ ϑ′(G).

∎

The following is an example for a graph G satisfying α(G) = ϑ′(G) < ϑ(G) (see
[22]).

Example 5.2 [22] Let G be a graph with vertex set {0, 1}6, and two vertices are
adjacent if and only if their Hamming distance is at most 3. Then {000000, 001111,
110011, 111100} is an independent set of G. It is known that 4 = ϑ′(G) < ϑ(G) = 16/3.

By Theorems 3.1 and 5.1 and Lemma 2.5, we can get the following conclusion.

Theorem 5.3 Let (M , x) ∈ P(G) be a matrix-vector pair for graph G. If G has an
independent set C such that (M , x) and C satisfy the conditions given in part (2) of
Theorem 3.1, then

α(G) = ϑ′(G) = ∣C∣ = F(M , x).

6 Hoffman-type bounds

In this section, we show that the Hoffman-type bounds in [5, 14, 18, 20] are special
cases of Theorem 3.1.

By Theorem 3.1, we can get the following classical Hoffman bound, and obtain
the necessary and sufficient conditions of graphs attaining the Hoffman bound. The
necessary condition of the equality case given in Theorem 1.1 is indeed a sufficient
condition.

Corollary 6.1 Let G be a k-regular (k ≠ 0) graph with n vertices, and let τ be the
minimum adjacency eigenvalue of G. Then

α(G) ≤ n ∣τ∣
k − τ

,
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with equality if and only if there exists an independent set C such that every vertex not
in C is adjacent to exactly ∣τ∣ vertices of C. Moreover, if an independent set C satisfies the
above condition, then

α(G) = Θ(G) = ϑ(G) = ∣C∣ = n ∣τ∣
k − τ

.

Proof Since G is k-regular, we have (A− τI, e) ∈M(G), where A is the adjacency
matrix of G. By Lemma 2.1, we get

(A− τI)#e = (k − τ)−1e ,

F(A− τI, e) = ∣τ∣e⊺(A− τI)#e = n ∣τ∣
k − τ

.

The conclusions follow from Theorems 3.1 and 4.2. ∎

Let du denote the degree of a vertex u, and let dS = ∣S∣−1∑u∈S du denote the average
degree in a vertex set S. The largest Laplacian eigenvalue of a graph G is the largest
eigenvalue of the Laplacian matrix of G.

The following bound for independent sets was given in Theorem 4.3 of [14] without
sufficient condition of the equality case.

Corollary 6.2 [14] Let G be an n-vertex graph with the largest Laplacian eigenvalue
μ > 0. For any independent set S of G, we have

∣S∣ ≤ n(μ − dS)
μ

,

with equality if and only if there exists a constant d such that du = d for each u ∈ S, and
every vertex not in S is adjacent to exactly μ − d vertices of S.

Proof Let L be the Laplacian matrix of G. Since (μI − L)e = μe, we have (μI − L, e) ∈
M(G). By Lemma 2.1, we get

(μI − L)#e = μ−1e ,

FS(μI − L, e) = e⊺(μI − L)#e∑
u∈S

μ − du

∣S∣ =
n
μ
(μ − dS).

The conclusion follows from part (1) of Theorem 3.1. ∎

The following bound was given independently in [20] and [14], and the necessary
condition of the equality case was given in Theorem 3.2 of [20].

Corollary 6.3 [14, 20] Let G be an n-vertex graph with the largest Laplacian eigenvalue
μ > 0 and the minimum degree δ. Then

α(G) ≤ n(μ − δ)
μ

,

with equality if and only if there exists an independent set C such that du = δ for each
u ∈ C, and every vertex not in C is adjacent to exactly μ − δ vertices of C. Moreover, if
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an independent set C satisfies the above conditions, then

α(G) = Θ(G) = ϑ(G) = ∣C∣ = n(μ − δ)
μ

.

Proof Let L be the Laplacian matrix of G. Since (μI − L)e = μe, we have (μI − L, e) ∈
M(G). By Lemma 2.1, we get

(μI − L)#e = μ−1e ,

F(μI − L, e) = (μ − δ)e⊺(μI − L)#e = n(μ − δ)
μ

.

The conclusions follow from Theorems 3.1 and 4.2. ∎

For a graph G without isolated vertices, the normalized Laplacian matrix L of G is
the n × n symmetric matrix with entries

(L)i j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if i = j,
−(d i d j)−

1
2 , if {i , j} ∈ E(G),

0, if {i , j} ∉ E(G).

The largest normalized Laplacian eigenvalue of G is the largest eigenvalue of L.
The following bound was given in [18] without necessary and sufficient conditions

of the equality case.

Corollary 6.4 [18] Let G be a graph with m edges, the largest normalized Laplacian
eigenvalue μ and the minimum degree δ > 0. Then

α(G) ≤ 2m(μ − 1)
μδ

,

with equality if and only if there exists an independent set C such that du = δ for each
u ∈ C, and every vertex v not in C is adjacent to exactly (μ − 1)dv vertices of C. Moreover,
if an independent set C satisfies the above conditions, then

α(G) = Θ(G) = ϑ(G) = ∣C∣ = 2m(μ − 1)
μδ

.

Proof Let L be the normalized Laplacian matrix of G, and let x = (d
1
2
1 , . . . , d

1
2
n )⊺.

Since (μI −L)x = μx, we have (μI −L, x) ∈M(G). By Lemma 2.1, we get

(μI − L)#x = μ−1x ,

F(μI −L, x) = μ − 1
δ

x⊺(μI −L)#x = 2m(μ − 1)
μδ

.

The conclusions follow from Theorems 3.1 and 4.2. ∎

The following bound was given in Theorem 6.1 of [14] without necessary and
sufficient conditions of the equality case.

Corollary 6.5 [14] Let G be an n-vertex graph, and M is a positive semidefinite matrix
indexed by vertices of G such that:
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(a) (M)i j ≤ 0 if i , j are two nonadjacent vertices.
(b) M has constant row sum r > 0.
(c) Every diagonal entry of M is t.
Then

α(G) ≤ nt
r

,

with equality if and only if G has an independent set C such that M[C] is diagonal
and ∑u∈C(M)vu = t (v ∉ C). Moreover, if an independent set C satisfies the above
conditions, then

α(G) = ϑ′(G) = ∣C∣ = nt
r

.

Proof Since Me = re, we have (M , e) ∈ P(G). By Lemma 2.1, we get
M#e = r−1e ,

F(M , e) = te⊺M#e = nt
r

.

The conclusions follow from Theorems 3.1 and 5.3. ∎

7 Structural and spectral conditions

Let δ(G) denote the minimum degree of a graph G. In the following theorem, we
give some simple structural and spectral conditions for determining the independence
number α(G), the Shannon capacity Θ(G), and the Lovász theta function ϑ(G).
These conditions mean that if a given independent set C satisfies some properties,
then C must be a maximum independent set in G, and Θ(G) = ϑ(G) = ∣C∣.
Theorem 7.1 Let G be a graph with an independent set C. Then

α(G) = Θ(G) = ϑ(G) = ∣C∣

if C satisfies one of the following conditions:
(1) Every vertex not in C is adjacent to exactly λ > −τ vertices of C, where τ is the

minimum adjacency eigenvalue of G.
(2) Every vertex not in C is adjacent to exactly−τ vertices of C and G is regular, where

τ < 0 is the minimum adjacency eigenvalue of G.
(3) du = δ(G) for each u ∈ C, and every vertex not in C is adjacent to exactly

μ − δ(G) vertices of C, where μ > 0 is the largest Laplacian eigenvalue of G.
(4) du = δ(G) > 0 for each u ∈ C, and every vertex v not in C is adjacent to exactly

(μ − 1)dv vertices of C, where μ is the largest normalized Laplacian eigenvalue of G.
(5) Every vertex not in C is adjacent to all vertices of C and 2∣C∣ ≥ ∣V(G)∣ −

δ(G − C).
(6) G has a spanning subgraph H (δ(H) > 0) which is semiregular bipartite with

parameters (n1 , n2 , r1 , r2) (n1 ≤ n2), and C is the independent set with n2 vertices in H.
(7) There exists a clique covering ε such that d ε

v =minu∈V(G) d ε
u > 0 for each v ∈ C,

and ∣C ∩ Q∣ = 1 for each Q ∈ ε.
(8) There exists a uniform hypergraph H such that G = Ω(H) and C corresponds to

a perfect matching in H.
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Proof Parts (1) and (2) follow from Corollaries 4.5 and 6.1, respectively. Parts (3)
and (4) follow from Corollaries 6.3 and 6.4, respectively. Parts (5) and (6) follow from
Examples 4.4 and 4.3, respectively. Parts (7) and (8) follow from Theorems 4.7 and 4.9,
respectively. ∎

A family F of k-subsets of {1, . . . , n} is called intersecting if F1 ∩ F2 ≠ ∅ for any
F1 , F2 ∈ F. For n ≥ 2k, Erdös, Ko, and Rado [11] proved that the maximum size of
intersecting families of {1, . . . , n} is (n−1

k−1).
The Kneser graph K(n, k) is a graph whose vertices consist of all k-subsets of

{1, . . . , n}, and two vertices U1 , U2 ⊆ {1, . . . , n} are adjacent if and only if U1 ∩U2 = ∅.
The Erdös–Ko–Rado Theorem is equivalent to say that α(K(n, k)) = (n−1

k−1) for n ≥ 2k.
It is known [15, Theorem 9.4.3] that the minimum adjacency eigenvalue of K(n, k)
is −(n−k−1

k−1 ). By computation, the Hoffman bound for K(n, k) is (n−1
k−1). So we have

α(K(n, k)) = (n−1
k−1) because K(n, k) has an independent set of size (n−1

k−1).
We can also obtain the EKR Theorem without using the Hoffman bound. All

k-subsets containing a fixed vertex 1 forms an independent set C of size (n−1
k−1), and

every vertex not in C is adjacent to exactly (n−k−1
k−1 ) vertices of C. From part (2) of

Theorem 7.1, we have

α(K(n, k)) = Θ(K(n, k)) = ϑ(K(n, k)) = ∣C∣ = (n − 1
k − 1
).

8 Concluding remarks

Let M⊗k denote the Kronecker product of k copies of matrix M. If there is some k such
that α(Gk) = ϑ(G)k , then Θ(G) = ϑ(G). We can derive the following characteriza-
tion of graphs satisfying α(Gk) = ϑ(G)k .

Theorem 8.1 Let (M , x) ∈M(G) be a matrix-vector pair for graph G such that ϑ(G) =
F(M , x). There is some k such that α(Gk) = ϑ(G)k if and only if Gk has an independent
set C such that (M⊗k , x⊗k) and C satisfy the conditions given in part (2) of Theorem 3.1.
Moreover, if Gk has an independent set C satisfies the above conditions, then

α(Gk) = ϑ(G)k = Θ(G)k = ∣C∣.

Proof Since (M , x) ∈M(G), we have (M⊗k , x⊗k) ∈M(Gk). By Theorem 3.1, we
have

α(Gk) ≤ F(M⊗k , x⊗k) = F(M , x)k = ϑ(G)k ,

with equality if and only if Gk has an independent set C such that (M⊗k , x⊗k) and
C satisfy the conditions given in part (2) of Theorem 3.1. Moreover, if Gk has an
independent set C satisfies the above conditions, then by Theorem 4.2, we have

α(Gk) = ϑ(Gk) = Θ(Gk) = ∣C∣ = F(M , x)k = ϑ(G)k .

Since α(Gk) 1
k ≤ Θ(G) ≤ ϑ(G), we have Θ(G) = ϑ(G). ∎
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In [19], Lovász proved that Θ(C5) =
√

5. The cycle C5 is also an example for
Theorem 8.1.

Example 8.2 Let A be the adjacency matrix of the cycle C5, then (A+ 2I, e) ∈M(C5)
and ((A+ 2I)⊗2 , e⊗2) ∈M(C2

5). Suppose that {0, 1, 2, 3, 4} is the vertex set of C5
and E(C5) = {{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 0}}. Then S = {00, 12, 24, 31, 43} is an
independent set of C2

5 . By computation, we know that ((A+ 2I)⊗2 , e⊗2) and S satisfy
the conditions given in part (2) of Theorem 3.1. By Theorem 8.1, we have α(C2

5) =
ϑ(C5)2 = Θ(C5)2 = 5.
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