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Travelling vortices over mountains and the
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In the context of rotating geophysical flows, the presence of variable topography affects the
motion of intense vortices and promotes the generation of new vortical structures. In this
study, the quasi-two-dimensional dynamics of such systems is examined with numerical
simulations and analytical models. The results are discussed from two points of view. First,
the motion of a barotropic, dipolar vortex encountering a submarine mountain is analysed,
with an emphasis on the modification of the trajectory and dipole structure when passing
over the topography. For relatively low mountains, the vortex path is deflected towards
the anticyclonic side of the dipole owing to squeezing effects (as the anticyclone becomes
more intense than the cyclonic part). For higher mountains, the dipole splits into two parts;
the anticyclone pairs with newly formed positive vorticity (generated by the stretching fluid
moving downhill), while the cyclone remains trapped near the summit. These results are
discussed using modulated point-vortex models. Second, the long-lived residual flows over
the topography are studied. The most conspicuous cases are asymmetric dipolar vortices,
which remain confined on the summit while rotating clockwise. The formation of new
dipoles arises from the combination of nonlinear motions and topographic Rossby waves
around the mountain. The results are illustrated with new analytical solutions of nonlinear
dipoles over mountains.

Key words: vortex dynamics, topographic effects, rotating flows

1. Introduction

When considering a homogeneous fluid layer in a rotating system, the flow can be
described in terms of vertical columns aligned with local gravity, as predicted by the
Taylor–Proudman theorem and observed in rotating tank experiments since the early
works of Taylor (1921). This phenomenon occurs for a sufficiently small Rossby number,
defined as the ratio of the system’s rotation period (one day) and the time scale of the
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flow (Pedlosky 1987; Vallis 2017). Thus, columnar motion is observed for rapidly rotating
systems or, equivalently, flows with sufficiently long time scales (of the order of several
days). Because the horizontal flow is depth-independent (outside boundary layers), the
dynamics are usually represented using two-dimensional (2-D) models (Hopfinger & van
Heijst 1993).

In the presence of bottom topography, the flow still moves in a columnar fashion,
but becomes affected by stretching and squeezing effects as columns move across
the topography. In such rotating systems vertical motions exist, but depend on the
divergence/convergence of the horizontal flow. The dynamical effects of topography
can be incorporated into quasi-2-D models. The most straightforward case is the
quasi-geostrophic (QG) model, in which the topographic variations are much smaller than
the average fluid depth (Carnevale et al. 1995). A more general quasi-2-D formulation is
the shallow-water (SW) equations under the rigid-lid approximation (Grimshaw, Tang &
Broutman 1994). In addition to the inclusion of variable topography, quasi-2-D models
may incorporate bottom damping effects, such as the so-called Ekman friction associated
with the thin boundary layer in rotating systems (Zavala Sansón & van Heijst 2002). A
general review of quasi-2-D models with topography and several experimental examples
has been reported by Zavala Sansón & van Heijst (2014). Geophysical flows in the oceans
and in the atmosphere, with horizontal length scales of O(100–1000) km and time scales
of days, weeks or even months, are sufficiently slow to be strongly affected by the Earth’s
rotation and, eventually, by bottom topography. Therefore, quasi-2-D formulations are
often applied for modelling geophysical vortices (Hopfinger & van Heijst 1993; van Heijst
& Clercx 2009).

This study is motivated by two different oceanic phenomena: (i) the encounter of
travelling dipolar vortices with a topographic obstacle, and (ii) the residual flow left over
the topography. Regarding the first motivation, an illustrative observational example is
the northwestward drift of the Agulhas rings, which travel through the South Atlantic
Ocean and transit over the Walvis Ridge and the Mid-Atlantic Ridge (Schouten et al. 2000;
Nencioli, Dall’Olmo & Quartly 2018). Monopolar vortices drift arises from the so-called
β-effect associated with latitudinal variations of the planetary vorticity (van Leeuwen
2007). Dipolar vortices, on the other hand, consist of two counter-rotating vortices
whose mutual interactions provide the self-propelling mechanism. Dipolar structures are
well-known in classical 2-D formulations (Meleshko & van Heijst 1994), geophysical
models (Flierl, Stern & Whitehead 1983) and field observations (Hughes & Miller 2017).
Because travelling structures transport heat, momentum and passive properties, it is of
interest to study the fate of the colliding dipolar vortex: whether it is destroyed, modified
or unaffected during its passage over the topography.

Our second motivation is the residual flow or ‘signature’ left by the vortex over a
topographic feature. Observational evidence has shown that mesoscale oceanic motions
may be trapped over the tip of seamounts for several days or weeks (Beckmann & Mohn
2002; Trasviña-Castro et al. 2003). Because these structures remain coherent during that
lapse of time, they may generate intense advection of nutrients and retain biological
material, which favours the abundance of plankton and fish (Genin 2004). Here we explore
with idealised models the generation of long-lived motions that arise when the fluid over
the topography is perturbed.

Based on experimental and observational antecedents, we study the evolution of a
barotropic flow over an isolated, submerged mountain on an f -plane from two points of
view. First, we examine the encounter of a dipolar vortex with the submarine mountain.
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Vortices over mountains and the residual flow

The main purpose is to investigate the fate of the travelling dipole depending on the
topographic parameters (height and width of the mountain). This approach follows the
line of reasoning applied in several experimental studies on vortices over topography.
For instance, monopolar cyclonic vortices over a weak linear topographic slope are
induced to drift upslope and to the left (looking uphill), under the so-called topographic
β-effect (Carnevale, Kloosterziel & van Heijst 1991; van Heijst 1994; Flór & Eames
2002). Steep slopes promote the formation of new vortices and oscillating jets (Zavala
Sansón & van Heijst 2000; Sutyrin & Grimshaw 2010). Topographic steps may cause
the deviation or ‘reflection’ of monopoles (Zavala Sansón, van Heijst & Doorschot 1999)
and dipoles (Tenreiro, Zavala Sansón & van Heijst 2006; Hinds et al. 2009). When using
an isolated topographic feature in the laboratory, the flow evolution strongly depends
on the shape of the submerged obstacle. Experiments with monopolar vortices have
been carried out using conical (Carnevale et al. 1991), cylindrical (Cenedese 2002)
and Gaussian (Zavala Sansón, Barbosa Aguiar & van Heijst 2012) ‘seamounts’, as well
as elongated ridges (Zavala Sansón 2002). To our knowledge, however, the case of a
dipolar vortex encountering a submerged mountain has not been addressed. We will
do so by using nonlinear SW simulations and also a point-vortex model modulated by
topography.

The second strand in this study is the long-term evolution of the residual flow that
remains trapped over the mountain. In this problem, the original dipole has moved away
from the topography and therefore plays a secondary role. Long-lived motions over the
summit can be regarded as the response of the flow dynamics before finite perturbations.
Trapped structures over submarine obstacles are sometimes referred to as ‘Taylor caps’
because they are associated with the dynamical constraint of rotating fluids to move
across isobaths (Chapman & Haidvogel 1992). Early works on this subject were developed
during the 1960s and 1970s, as summarised by Verron & Le Provost (1985). Most of
those studies were focused on QG uniform currents above an isolated mountain, which
generate an anticyclone over the summit (owing to squeezing effects) and a cyclonic
vortex at the lee side owing to stretching effects (Huppert & Bryan 1976). More recent
analytical studies describe the structure and stability of monopolar vortices over seamounts
(Nycander & Lacasce 2004; Ryzhov & Koshel 2013; Hinds, Johnson & McDonald 2016;
Zhao, Chieusse-Gérard & Flierl 2019).

In the present study, in contrast, we examine the flow response over the mountain after
being disturbed (by the passing of the original dipole) in SW simulations. The main results
are related to two main phenomena: (a) the excitation of topographic Rossby waves that
rotate clockwise around the mountain (for a positive Coriolis parameter) (Rhines 1969;
Zavala Sansón 2010); and (b) the generation of nonlinear dipolar structures that rotate as
a whole in the same direction. The formation of the latter was noted in the simulations by
Verron & Le Provost (1985). More recently, asymmetric dipoles on submerged mountains
were neatly observed in laboratory experiments, where the structures rotate around the
topography during several inertial periods (Zavala Sansón et al. 2012). We will show that
for sufficiently compact mountains, such dipoles are indeed the natural response before
perturbations. Additionally, the characteristics of the dipoles (strength and angular speed
around the mountain) will be discussed in terms of the nonlinear analytical solutions
derived by Gonzalez & Zavala Sansón (2021).

The paper is organised as follows. In § 2, we present the dynamical model and the
numerical methods, which includes an outline of the simulations. Section 3 is devoted
to examining the modification of the structure and trajectory of dipoles passing over the
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mountain. In § 4, we study the residual flow left over the summit at long times. Finally, in
§ 5, the results are summarised and discussed.

2. Dynamical model and numerical method

An appropriate dynamical model to represent the evolution of vortical structures in
a rotating fluid with topography is the SW formulation. Here we describe the model
equations and the procedure to solve them numerically.

2.1. Quasi-2-D homogeneous flow over topography
Consider a rapidly rotating system on an f -plane (with constant Coriolis parameter
f0), where the rotation axis is parallel to gravity. The motion of a homogeneous fluid
is sufficiently slow to assume that the hydrostatic approximation holds in the vertical
direction (Pedlosky 1987), which implies that the velocity components (u, v) in the
horizontal plane (x, y) are independent of depth. Thus, the fluid motion is nearly
two-dimensional (quasi-2-D). The thickness of the fluid layer h(x, y) is space-dependent
owing to the shape of the variable topography and time-independent by using the rigid-lid
approximation. From the integrated continuity equation, the horizontal velocities may be
defined in terms of a transport function ψ(x, y, t) as

u = 1
h
∂ψ

∂y
, v = −1

h
∂ψ

∂x
. (2.1a,b)

The vertical component of the relative vorticity is defined as ω(x, y, t) = ∂v/∂x − ∂u/∂y.
It is easily verified that

ω = −1
h
∇2ψ + 1

h2 ∇h · ∇ψ, (2.2)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 is the Laplacian. The relative vorticity equation is

∂ω

∂t
+ J

(
ω + f0

h
, ψ

)
= ν∇2ω, (2.3)

where J(a, b) = (∂a/∂x)(∂b/∂y)− (∂a/∂y)(∂b/∂x) is the Jacobian operator and ν is a
viscous coefficient. In the context of laboratory experiments, ν is the molecular viscosity;
for geophysical flows, this parameter is a turbulent coefficient. The potential vorticity is

q = ω + f0
h

. (2.4)

In the absence of viscous effects, the vorticity equation transforms into

∂q
∂t

+ u
∂q
∂x

+ v
∂q
∂y

= 0, (2.5)

which expresses the material conservation of q. Note that we will ignore any external
forcing at the upper surface and friction effects at the solid bottom. Additionally, recall
that the SW formulation admits significant depth changes owing to the topography, while
the traditional QG model demands that such changes must be much smaller than the mean
fluid depth (Grimshaw et al. 1994). For non-rotating systems ( f0 = 0), the dynamical
model (2.1a,b)–(2.3) is equivalent to the ‘lake equations’ (see e.g. Camassa, Holm &
Levermore 1997).
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2a

(0, 0)

y0

+

–

x0

Rm

Figure 1. Experimental configuration. The submarine mountain (2.6) is represented with topography contours
(grey circles) centred at the origin. The contours correspond to fluid depth h(r) evaluated at radial distances
(0.5, 1, 1.5, 2)Rm (dashed contour corresponds to h(Rm)). The dipolar vortex has a radius a and is initially
located to the left of the mountain x0 < 0 at (x0, y0) (in this example y0 > 0). Symbols ± indicate the vorticity
sign at each half of the dipole.

2.2. Topography and initial conditions
We consider an axisymmetric submarine mountain centred at the origin. The topography
has a Gaussian shape, such that the fluid depth is

h(r) = H − Hm exp(−r2/R2
m), (2.6)

where r2 = x2 + y2, H is the maximum depth (away from the mountain), Hm is the height
of the topography and Rm is its radial scale.

Using polar coordinates (r, θ), the initial dipolar condition is the well-known
Chaplygin–Lamb vortex (Meleshko & van Heijst 1994), whose vorticity distribution inside
a circle with radius a is

ω(r, θ) = − 2Usl

aJ0(sl)
J1(slr/a) sin θ, r � a (2.7)

and ω = 0 for r > a. Here, J0 and J1 are Bessel functions of the first kind. The constant
sl = 3.8317 is the smallest root of J1, that is, J1(sl) = 0. The dipole is symmetrical and
travels along the positive x-direction at a constant speed U > 0. The initial position of the
dipole is (x0, y0) with x0 < 0, so the vortex approaches the submarine mountain. In some
cases we explored the frontal collision (y0 = 0) and in some others the dipole trajectory
was not aligned with the mountain (y0 /= 0). Figure 1 shows a typical configuration in one
of the experiments with y0 > 0. Other useful quantities are the total energy per density
(Zavala Sansón, van Heijst & Backx 2001)

E0 = H
2

∫ 2π

0

∫ a

0
(u2 + v2)r dr dθ = 2πHa2U2, (2.8)

and the circulation of the poles (Meleshko & van Heijst 1994)

Γ ±
0 =

∫ 2π

0

∫ a

0
ω±r dr dθ = ±6.83Ua, (2.9)

where symbols + and − indicate positive and negative values. Because the initial dipole
is symmetric, we define Γ0 ≡ Γ +

0 = |Γ −
0 |.
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Variable parameters Symbol and identifier Values

y-initial position y0/a (A,B,C) 0 (frontal) 1 (‘north’) −1 (‘south’)
Mountain height Hm/H (i = 1, 2, 3) 0.1 (low) 0.3 (medium) 0.5 (tall)
Mountain radius Rm/a (j = 1, 2, 3) 1 (narrow) 2 (medium) 3 (wide)

Table 1. Outline of the 27 numerical simulations. The sets of experiments are identified according to a matrix
nomenclature: for instance, experiment A11 corresponds to y0/a = 0,Hm/H = 0.1,Rm/a = 0.15.

2.3. Outline of numerical experiments
The experiments are designed to study: (i) the effect of the mountain on the structure and
trajectory of the dipole, and (ii) the long-term motions generated over the topography.
The relevant time scale is the rotation period of the system, T = 4π/f0, which defines
one ‘day’. The time step is a small fraction of one day, dt = 0.0239T . The duration of
the simulations was 71.62 days (3000 time steps). The interaction of the dipole with the
mountain occurs during the first 15 to 20 days, while the long-lived, residual structures are
observed during the subsequent 40 to 50 days.

A total of 27 simulations were performed, as indicated in table 1. The horizontal length
scales are given in terms of the vortex radius a, and the vertical ones are compared
with the total depth H. The experiments are identified with the nomenclature Aij,Bij,Cij.
Characters A,B,C define the type of collision according to three different values of
y0/a. Subscript i = 1, 2, 3 indicates three values of the mountain height Hm/H. Subscript
j = 1, 2, 3 corresponds to three mountain radii Rm/a. For instance, the case shown in
figure 1 corresponds to experiment B22: a ‘northern’ collision against a mountain with
medium height and medium width (y0/a = 1,Hm/H = 0.3,Rm/a = 2). All simulations
were performed within a square, closed box of side L × L with L = 20a. Note that
the domain size is several times larger than the size of the dipole and the horizontal
scale of the mountain, L � a,Rm. The vortex is initially located in the x-direction at
x0 = −L/3 = −6.667a. Because the dipole moves initially towards the centre of the
domain, the vortex-mountain interaction takes place far from the (no-slip) lateral walls.

The speed of the dipole is almost one vortex radius per day, U = 0.84a/T . Thus,
from (2.8) the energy is E0 = 4.43Ha4/T2. From (2.9), the absolute-value circulation in
each of the parts is Γ0 = 5.74a2/T . The viscous coefficient is set to obtain a Reynolds
number of Re = Ua/ν = 1500, while the Rossby number is Ro = U/f0a = 0.067. Thus,
the initial vortex resembles a nearly inviscid, slowly moving vortex. These numbers are
attainable in laboratory experiments in a rotating table, while being sufficiently adequate
to explore the dynamics of geophysical cases. For instance, typical values of experimental
dipoles in a rotating tank with tap water are f0 = 1 s−1, ν = 10−6 m2 s−1, a = 0.15 m,
U = 0.01 ms−1 (Zavala Sansón et al. 2001; Tenreiro et al. 2006). Maximum depths H
in different experimental arrangements range between 0.2 and 1 m (Zavala Sansón & van
Heijst 2014).

2.4. Numerical method
The numerical scheme is a finite differences code that has been used in several previous
works of experimental rotating flows over topography (Zavala Sansón & van Heijst 2014).
The code was originally developed by R. Verzicco and P. Orlandi for two-dimensional
flows (Orlandi 1990) and later extended to include rotation effects by J. van Geffen.
Further modifications were included by Zavala Sansón & van Heijst (2002) to account for
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variable topography effects and Ekman friction. For a homogeneous fluid, the code solves
the vorticity equation (2.3) to obtain the vertically uniform vorticity ω. The governing
equations are solved in a rectangular grid, in which an Arakawa scheme is used to
discretise the nonlinear terms, thus avoiding spurious production of energy (Verzicco
et al. 1995). The viscous terms are discretised with a centred, second-order scheme that
reduces numerical diffusion. Time advancement is performed with an explicit, third-order
Runge–Kutta method.

We used a grid of 257 × 257 points, which was sufficient to resolve the vorticity field
very well. To improve the results even further, we used a finer grid with 513 × 513 points
and a time step of 0.008T . Using this later grid, we checked that the influence of the
lateral walls is negligible by repeating the simulations with a larger domain (L = 40a).
We also verified that the main results hold at higher Reynolds number O(104); however,
some spurious wiggles appear in the vorticity field, so we report only the O(103) Reynolds
number simulations.

3. Encounter of dipoles with mountains

Our first task is to analyse the vortex structure and trajectory when encountering the
mountain. In this section, we describe two types of flow scenarios with different qualitative
characteristics which will be referred to as weak and strong interactions.

3.1. Weak interactions
Weak interactions consist of the initial dipole passing over the topography with a deflected
trajectory towards its right-hand side, that is, towards the anticyclonic side. Then, the
dipole moves away from the mountain, maintaining a coherent structure. To illustrate this
behaviour, figure 2 shows three examples of the frontal collision with the low mountain
and different radius (experiments A11,A12,A13). The dynamics of this phenomenon is
elementary: as the dipole approaches and climbs the topography, the anticyclonic part
becomes stronger because fluid columns are squeezed while the cyclonic part becomes
weaker. As a result, the dipole trajectory is deflected to the right (looking in the direction
of propagation). As the vortex moves downhill, it recovers its symmetric structure
approximately.

The modification of the trajectory depends on the height of the topography because
of the squeezing effects. Additionally, the mountain width is relevant because the dipole
becomes asymmetric during a more extended time-lapse for a greater radius (as observed
in figure 2c). Weak interactions are also found in experiments (ABC)23 and C33 (not
shown). Thus, the change of trajectory depends not only on the mountain parameters but
also the initial y-position of the dipole.

3.2. Strong interactions
Strong interactions occur when the structure of the colliding dipole is sensibly modified.
Figure 3 presents three examples with different y0 and a narrow mountain with medium
height (experiments A21,B21,C21). As the dipole climbs the mountain, some fluid
initially located on the summit is dragged downhill generating a new patch of positive
relative vorticity (owing to stretching effects). This newly formed vortex pairs the
original anticyclone and both structures conform a modified dipole that moves away
from the topography. The new cyclone is formed during strong interactions because
stretching effects are enhanced when the mountain is higher (in comparison with lower
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(a) A11

t/T = 4.8

t/T = 8.4

t/T = 11.9

t/T = 15.5

–0.2 0 0.2

(b) A12 (c) A13

Figure 2. Relative vorticity distributions (ω/f0) showing weak interactions at times t/T = 4.8, 8.4, 11.9 and
15.5 (T = 4π/f0) in experiments A1j: y0 = 0, Hm/H = 0.1 and (a) Rm/a = 1, (b) Rm/a = 2 and (c) Rm/a = 3.
Topography contours as explained in figure 1. The domain shown is a 12a × 10a rectangle (so the lateral walls
are not visible).

topographies, as shown in figure 2). The resulting dipole has a more irregular shape and
trajectory that is difficult to predict. For instance, the emerging dipole in figure 3(b) is
retroflected.

Because the vortex–mountain collision is nearly inviscid (which will be shown
quantitatively in § 4), the quasi-conservation of potential vorticity (PV) illustrates the
material exchange of fluid during strong interactions. Figure 4 presents the PV fields
of the same examples shown in figure 3. Indeed, the PV plots reveal that the negative
part of the original dipole is always expelled from the mountain when pairing with the
fluid descending from the topography. The PV evolution indicates that the remaining
motions over the mountain do not contain fluid from the anticyclonic part of the
dipole.
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(a) A21

t/T = 4.8

t/T = 8.4

t/T = 11.9

t/T = 15.5

–0.2 0 0.2

(b) B21 (c) C21

Figure 3. Relative vorticity distributions (ω/f0) showing strong interactions in experiments ABC21:
Hm/H = 0.3, Rm/a = 1 and (a) y0 = 0, (b) y0/a = 1 and (c) y0/a = −1. Topography contours as in figure 1.

A summary of the resulting interaction, weak or strong, is shown in the following matrix
arrangement: ⎛

⎜⎜⎜⎜⎜⎝

(ABC)11 : Weak (ABC)12 : Weak (ABC)13 : Weak

(ABC)21 : Strong (ABC)22 : Strong (ABC)23 : Weak

(ABC)31 : Strong (ABC)32 : Strong (AB)33 : Strong
C33 : Weak

⎞
⎟⎟⎟⎟⎟⎠ . (3.1)

3.3. Point-vortices modulated by topography
The dynamical mechanisms of weak and strong interactions are inviscid, as we discuss now
with a point-vortex model. The strength of point vortices is modulated by local topography
according to the conservation of volume and potential vorticity (van Heijst 1994).
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(a) A21

t/T = 4.8

t/T = 8.4

t/T = 11.9

t/T = 15.5

0.5 1 1.5

(b) B21 (c) C21

Figure 4. Potential vorticity distributions (qH/f0) in the strong interactions shown in figure 3. Note that
qH/f0 = 1 (white colour) corresponds to fluid with no relative vorticity and away from the mountain.

The strength of a point vortex is defined as the circulation Γ = ζA, where ζ is the vorticity
averaged over a cross-sectional area A of the columnar vortex with depth h. The value of
these functions depend on the vortex position x(t), y(t) at time t. The volume and potential
vorticity conservation are given by

A(x, y)h(x, y) = A0h0,
f0 + ζ(x, y)

h(x, y)
= f0 + ζ0

h0
, (3.2a,b)

where ζ0, h0 and A0 indicate initial values. Combining these expressions shows that the
circulation is modified as the vortices transit from deep to shallow regions or vice-versa,
according to the formula

Γ (x, y) = Γ0 + f0A0

(
1 − h0

h(x, y)

)
. (3.3)
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Vortices over mountains and the residual flow

(a) (b) (c)

Figure 5. Trajectories of two oppositely signed point vortices representing weak interactions with a low
mountain of height Hm/H = 0.1 and radius: (a) Rm/a = 1, (b) Rm/a = 2, (c) Rm/a = 3. The vortices are
denoted with +, − signs and the initial positions are (−6.667, 0.6)a and (−6.667,−0.6)a, respectively (frontal
collision). The initial circulations are ±Γ0 = ±5.74a2/T and the reference areas are chosen as A0 = 0.54πa2.
The experiments are equivalent to simulations A11, A12 and A13, shown in figure 2.

The motion of a point vortex is induced by the presence of its neighbours. Given the
initial positions and strengths of n vortices, the new positions are calculated with 2n
ordinary differential equations

dxk

dt
= − 1

2π

∑
l /= k

Γl(xl, yl)
( yk − yl)

d2
kl

,
dyk

dt
= 1

2π

∑
l /= k

Γl(xl, yl)
(xk − xl)

d2
kl

, (3.4a,b)

where dkl is the separation between vortices k and l. Given the spatially dependent strength
of the vortices (3.3), the positions (3.4a,b) are easily calculated with the Matlab solver
ode45, based on an explicit Runge–Kutta scheme. The model was applied by Tenreiro
et al. (2006) to study the deflection of dipole trajectories passing over a topographic step.
In the absence of topography, modulated vortices were first used by Kono and Yamagata
(cited by van Heijst 1994) and Zabusky & McWilliams (1982).

Weak interactions are modelled using two oppositely signed point-vortices with initial
strengths ±Γ0 separated by a distance d12. The circulation Γ0 is chosen as in the
simulations (§ 2.3) and d12 = 1.2a. The dipole starts sufficiently far from the mountain,
so the initial depth is h0/H = 1. Figure 5 shows three examples of frontal encounters of
dipolar vortices against low mountains. The trajectories can be compared with the results
obtained for experiments A1j shown in figure 2. As the vortices climb the topography, the
ratio H/h(x, y) becomes greater than one because the fluid depth over the mountain is
smaller than the initial depth. The negative part of the dipole becomes stronger than the
positive part according to (3.3):

Cyclone strength Anticyclone strength

Γ0 + f0A0

(
1 − H

h(x, y)

)
< −Γ0 + f0A0

(
1 − H

h(x, y)

)
.

⎫⎬
⎭ (3.5)

Thus, the dipole trajectory is deflected to the right, that is, towards the stronger part. The
deflection is more significant for larger mountain radius, a result that was also observed in
the simulations. The reason is that the time that the dipole remains asymmetric over the
topography is longer for a larger mountain radius (as in figure 5c). As the dipole moves
downhill, it recovers its linear motion.

Strong interactions can be mimicked with a suitable arrangement of three modulated
point vortices: the original symmetrical dipole and a new vortex with initial strength
Γ03 = 0 located near the summit at depth h03 < H. The additional vortex will be displaced

922 A33-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.567


L. Zavala Sansón and J.F. Gonzalez

(a) (b) (c)

Figure 6. Trajectories of three point-vortices representing strong interactions with a submarine mountain of
height Hm/H = 0.3 and radius: (a) Rm/a = 1, (b) Rm/a = 2, (c) Rm/a = 3. The vortices forming the dipole
are identical to those in figure 5 but now initially located at (−6.667, 1.8)a and (−6.667, 0.6)a (‘northern’
collision). Initially, the strength of the third vortex is Γ03 = 0, it is located at (−Rm,−Rm) and its subsequent
trajectory is denoted with a grey curve. The experiments are equivalent to simulations B21, B22 and B23.

downhill by the arriving dipole and, according to (3.3), it will acquire a strength

Γ3(x, y) = f0A03

(
1 − h03

h(x, y)

)
. (3.6)

The reference area is chosen as A03 = Γ0/[ f0(1 − h03/H)], so Γ3 = Γ0 > 0 when
displaced downhill (i.e. when h(x, y) → H). This example aims to show that the third
vortex may be captured by the anticyclonic part of the original dipole, thus forming a new
dipolar structure moving away from the topography.

Figure 6 shows three examples of a ‘northern’ collision over medium height mountains
Hm/H = 0.3 with different radius (as those in simulations B2j). The third vortex over the
mountain is initially located slightly off the summit. In figure 6(a,b), the dipole approaches
the mountain and displaces the third vortex downhill, which then acquires positive relative
vorticity. Then, such a vortex pairs with the anticyclonic part of the original dipole and
together move away from the topography. The original cyclone remains static over the
mountain as the newly formed dipole separates from it. In contrast, for the wide mountain
(figure 6c) the interaction is weak again: the original dipole simply deviates to the right.

The representation of strong interactions with three-point vortices may fail when using
slightly different values in the initial position of the third vortex over the hill. This problem
is to be expected because the evolution of three-point vortices is, in general, very sensitive
to the initial conditions (see Aref 1979, 2009 and references therein). Nevertheless, the
dynamical mechanism is well-illustrated by choosing suitable values.

4. Residual flow over the mountain

Our second task is to study the residual flow over the mountain. Residual motions are
defined as flow structures persisting for long times after the fluid over the summit has been
perturbed (in this study, by the passing of the original dipole).

4.1. Residual energy
A quantitative signature of residual motions is the time evolution of the kinetic energy over
the mountain before and after the passing of the original dipole. The amount of energy per
density over the mountain is defined for a circle with radius 2Rm centred at the mountain as

Em(t) = 1
2

∫∫
[u(x, y, t)2 + v(x, y, t)2]h(x, y) dx dy,

√
x2 + y2 � 2Rm. (4.1a,b)
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Figure 7. Time evolution of the kinetic energy over the mountain Em (solid lines), outside the mountain
Eout (thick dashed lines) and the total energy Etot = Em + Eout (thin dashed lines) in experiments A2j (where
Hm/H = 0.3) with (a) Rm/a = 1, (b) Rm/a = 2, (c) Rm/a = 3. All values are normalised with the energy of
the initial dipole Etot(0) = E0.

The exterior energy Eout(t) is calculated with the same expression but integrating outside
the circle. The total energy is Etot(t) = Em(t)+ Eout(t).

For instance, figure 7 shows the time evolution of Em, Eout and Etot in experiments
A2j (frontal collision with a medium height mountain and different radii). At early times
the energy over the mountain is zero and then increases abruptly as the original dipole
passes over. Afterwards, Em decreases and reaches a value that remains nearly stationary
during the rest of the simulations. The energy of the long-lived residual flow persists for
approximately 50 days. The energy at the outer region Eout is mainly associated with the
original dipole and decays continuously far away from the mountain owing to viscous
effects.

In 25 of the 27 experiments, the residual energy fluctuated between 5 and 25 % of
the initial total energy and was lower than the outer value, Em < Eout. Only in two
strong interactions did the energy over the mountain slightly surpass the external energy
(simulations B21 and B31, which shall be examined below). Indeed, residual motions are
not necessarily weak: the strength will depend on the details of the perturbation from
which they are generated. The type of flow, in turn, will depend on the height and width
of the mountain, as we discuss next.

4.2. Motion classes
The long-lived structures over the summit can be classified according to the qualitative
features of the vorticity fields during extended periods. A common feature of all residual
motions is that they rotate clockwise around the topography. The sense of this rotation is
associated with the direction of propagation of topographic Rossby waves, which travel
with shallow water to the right in the Northern Hemisphere. In the following descriptions,
we focus on the residual flows over the mountain, recalling that the original dipole has
moved away and it is no longer visible.

4.2.1. Asymmetric dipoles
The most conspicuous residual motions over the topography are asymmetric dipolar
structures, in which the anticyclonic side is concentrated near the summit, while the
cyclonic part spreads more at the periphery. These vortices are mostly generated during
strong interactions over narrow mountains (Rm/a = 1). Furthermore, the newly formed

922 A33-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.567


L. Zavala Sansón and J.F. Gonzalez

structures rotate clockwise as a whole (with shallow water to the right). A residual dipolar
vortex is made of the cyclonic part of the original dipole and the negative vorticity
generated over the summit. After a brief adjustment period, the asymmetric dipole over
the mountain is well-established, which thereafter persists for long times.

Figure 8 shows three examples of residual dipoles generated during experiments Bi1
(northern collision with low, medium and tall mountains with short radius). The vorticity
fields in each column correspond to four snapshots at late times in the simulations. As
expected, the residual dipoles are more intense for steeper mountains (panels (b) and (c))
because their origin arises from stretching effects. The whole dipolar structures rotate
clockwise at different angular speeds −Ω (with Ω > 0), as can be directly inferred
because the time difference between each plot is the same. To obtain Ω , we measured
the orientation angle ϕ of the dipoles during a time span in which the structures are
clearly identified. Figure 9 shows that in such periods the dipoles rotate almost two (B11),
seven (B21) and ten (B31) times around the respective mountain. The linear relationship
ϕ ∼ −Ωt shows that the angular speed is indeed approximately constant in the three cases.
Furthermore, Ω is faster for higher mountains (numerical values are shown in the figure
caption). The formation and evolution of the residual dipole in simulation B21 are shown
in the supplementary movie 1 available at https://doi.org/10.1017/jfm.2021.567.

The residual dipoles remain coherent over long periods, which is an indication that they
are stable features. Such persistence occurs regardless of the dipole strength. To support
this assertion, consider the positive and negative circulations over the mountain defined as

Γ ±
m (t) =

∫
ω±(x, y, t) dx dy,

√
x2 + y2 � 2Rm, (4.2a,b)

where ω+ and ω− are the positive and negative values of the vorticity inside the circle of
radius 2Rm, respectively. Of course, the initial circulations inside this region are zero in all
of the experiments, Γ +

m (0) = Γ −
m (0) = 0.

For instance, figure 10 shows the evolution of Γ ±
m (t) in the simulations presented in

figures 8 and 9. As the original dipole perturbs the flow over the mountain during the
first ten days, there is an abrupt increase of both curves. After reaching a peak value,
the circulations diminish and reach stable values while slowly decaying. Residual values
correspond to times after 20–30 days (the plots indicate averages over the last 40 days in
each simulation). In these examples, the negative circulation is somewhat stronger than
the positive circulation, but there are other experiments in which the contrary occurs.
Figure 10(a) shows the mountain circulations corresponding to the weak residual dipole
discussed in figure 8(a). Although rather slow, the resulting dipole and its clockwise
rotation remain detectable during the rest of the simulation. In contrast, the long-term
circulations in figure 10(b,c) are higher, which reflects that the residual dipoles are rather
intense (see figure 8b,c). Recall that the latter cases correspond to strong interactions.
Either way, residual dipoles maintain a very coherent structure during long periods (several
days).

4.2.2. Convoluted patterns and shielded vortices
The second class of residual motions consists of a convoluted pattern of positive
and negative vorticity patches generated over wide mountains (Rm/a = 2 and 3). The
structures rotate clockwise. The convoluted patterns result from the generation of
dispersive topographic Rossby waves over the mountain slope, which travel with shallow
water to the right. Figure 11 presents an example for the wide mountain with radius
Rm/a = 3 and height Hm/H = 0.3 (simulation A23). The process starts at early stages
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Vortices over mountains and the residual flow

(a) B11

t/T = 62.1

t/T = 63.3

t/T = 64.5

t/T = 65.7

–0.1 0 0.1

(b) B21 (c) B31

Figure 8. Vorticity distributions showing newly formed dipolar structures over the summit at long times in
experiments with Rm/a = 1 and (a) Hm/H = 0.1, (b) Hm/H = 0.3 and (c) Hm/H = 0.5. Topography contours
as in figure 1. Black arrows indicate the clockwise rotation of the structures.

as the original dipole collides with the mountain at t/T = 2.4. The waves manifest as
an alternate pattern of positive and negative vorticity patches, which travel clockwise
around the summit. The original dipole is deflected downward and moves away from
the topography (t/T = 19.1). During the rest of the simulation, the waves form the
convoluted flow as they continue travelling at different wave speeds around the mountain.
The resulting pattern after several weeks (t/T = 71.6) is shown in panel (b). The whole
process is shown in the supplementary movie 2.

In some simulations, the residual flow consisted of an anticyclonic core almost centred
over the summit and surrounded by an annulus of positive vorticity. Such structure is
observed in simulation A31 for a narrow topography (figure 12a): an anticyclonic vortex
is established over the summit, surrounded by a slightly asymmetric ring of positive
vorticity. As in previous cases, the structure rotates clockwise. Over a wider mountain, the
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Figure 9. Orientation angle ϕ/2π (revolutions) of the residual dipole in experiments Bi1 (shown in figure 8).
Straight lines are the best fit to the data points, where the slope is the angular speed −Ω in rad/day. Here, B11
(circles), Ω = 0.32/T; B21 (squares), Ω = 1/T; B31 (diamonds), Ω = 1.9/T .
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Figure 10. Time evolution of the positive (red lines) and negative (blue lines) circulations over the mountain
in experiments Bi1 (shown in figure 8). The negative circulation is shown as an absolute value. The curves
are normalised with the circulation of the initial condition, Γ0. The average values over the last 40 days
(
〈
Γ +

m
〉
,
〈
Γ −

m
〉
)/Γ0 are: (a) (0.16,−0.33); (b) (0.72,−0.88); (c) (0.85,−0.97); these are indicated as absolute

values by the horizontal dashed lines.

surrounding cyclonic vorticity may have multiple local maxima, as shown in figure 12(b)
for experiment A22. Again, the whole structure rotates with shallow water to the right.

4.3. Quasi-geostrophic analytical solutions of asymmetric dipoles
Residual vortices are compatible with analytical solutions of barotropic flows over
topography. Here we compare the asymmetric dipolar structures over the mountain,
discussed in § 4.2.1, with nonlinear QG solutions recently derived by Gonzalez & Zavala
Sansón (2021). The derivation is relatively simple but not trivial, so further details should
be consulted in that paper. The solutions satisfy the inviscid QG vorticity equation in polar
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A23

t/T = 2.4

t/T = 71.6

t/T = 10.7 t/T = 19.1

–0.1 0 0.1

Topographic waves

Convoluted pattern

(a)

(b)

Figure 11. Vorticity distributions (ω/f0) showing the development of convoluted patterns over the summit at
long times in simulation A23 (Hm/H = 0.3 Rm/a = 3): (a) the generation of topographic Rossby waves at early
times; (b) the clockwise-rotating, convoluted pattern at the end of the simulation. Topography contours as in
figure 1.

t/T = 71.6

(a) A31 (b) A22

–0.1 0 0.1

Figure 12. Vorticity distributions (ω/f0) at time t/T = 71.6 in simulations (a) A31 (Hm/H = 0.5 Rm/a = 1)
and (b) A22 (Hm/H = 0.3 Rm/a = 2). The residual flows consist of an anticyclonic vortex shielded by an
annulus of positive vorticity. Topography contours as in figure 1.

coordinates (r, θ):
∂

∂t
(∇2ψq)+ J[ψq,∇2ψq + ωa(r)] = 0, (4.3)

where ψq(r, θ, t) is the QG stream function, and J, ∇2 are the polar Jacobian and
Laplacian operators, respectively. The ambient vorticity arising from the presence of the
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axisymmetric mountain is

ωa(r) = f0b(r)
H

, (4.4)

where b(r) = Hm exp (−r2/R2
m) is the same topography used in the simulations. Gonzalez

& Zavala Sansón (2021) denoted the ambient vorticity with symbol h, as customary;
here we shall use ωa to avoid confusion with the fluid depth h(r) = H − b(r). The main
difference with the SW system is that in QG theory the mountain height is restricted to
small values, Hm � H (Carnevale et al. 1995). Further, the relative vorticity is simply
∇2ψq, instead of the more elaborate expression (2.2) in the SW model. Note that the
stream function ψq is defined with the opposite sign of the transport function ψ . The QG
potential vorticity is ∇2ψq + ωa(r).

The vortical solutions are based on azimuthal modes m = 0 (circular monopoles) and
m = 1 (asymmetric dipoles) over an isolated topographic feature, such as the Gaussian
mountain used here. In Appendix A we discuss how to construct the relative vorticity
field for dipolar modes. Given H and f0, the dipolar solutions depend on four additional
parameters: the mountain height Hm and its horizontal scale Rm, the amplitude |ψ̂1|, and
the factor c0 (with units of inverse length) with which the radial coordinate is scaled as
s = c0r. The vortex radius is defined as sl/c0, where sl = 3.8317 is the first zero of the
Bessel function J1(s); note the resemblance with the size of the Chaplygin–Lamb dipole
(2.7).

A crucial feature of the analytical dipole is that the structure rotates clockwise at a
constant angular speed −Ω , which is calculated with (A11). A close inspection of this
formula reveals thatΩ depends explicitly on Hm and Rm contained in the ambient vorticity
ωa(r) (see (4.4)), and implicitly on c0, contained in the scaled coordinate s.

Hereafter we construct analytical dipoles that are similar to the residual flows found
in simulations B11,B21,B31, shown in figure 8. The flow parameters and other useful
quantities are shown in table 2. To obtain the most relevant numbers, we proceeded as
follows:

(a) The mountain height Hm and length scale Rm are chosen as in the simulations. The
amplitude Hm defines the peak ambient vorticity ωa0 = ωa(0) = f0Hm/H (to be used
below).

(b) To obtain c0, we estimate the vortex radius as a fraction α > 1 of the mountain length
scale: sl/c0 = αRm. Then, the scaling factor c0 = sl/(αRm) is chosen to obtain the
desired angular speed Ω from (A11).

(c) The vortex amplitude is estimated by considering that the solutions are composed
of two main terms: a dipolar mode (A4) of order |ψ1| and a topographic term
(A5) proportional to ωa0/c2

0. By setting |ψ1| = 2ωa0/c2
0 we find that the negative

circulations Γ −
m are almost the same as those found in the simulations (presented in

figure 10).

Figure 13 shows the analytical vorticity fields. The initial dipole orientations at t/T = 0
are chosen to be similar to the cases shown in figure 8 at t/T = 62.1. The time interval
between successive plots is also the same (1.2 days). The analytical vortices reproduce
the most conspicuous characteristics of the simulated dipoles: (i) the asymmetric shape of
the structure, with the cyclonic part embracing the anticyclone, and (ii) the angular speed
around the mountain. The resemblance of the dipole asymmetry is only qualitative, while
the magnitude of the angular speed is quantitatively the same as in the simulations.

Table 2 also shows the theoretical circulations Γ ±
q , which are compared with the average

residual circulations over the mountain presented in figure 10. For the negative circulations
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Scaled parameters Symbol B11 B21 B31

Mountain height Hm/H 0.1 0.3 0.5
Mountain radius c0Rm 2.0 2.2 2.4
Vortex amplitudes |ψ1|/(ωa0/c2

0) 2 2 2
Vortex/mountain ratio α = sl/(c0Rm) 1.90 1.75 1.60

Results

Angular speed Ω (rad/day) 0.32/T 1.05/T 1.91/T
Positive circulation Γ +

q /
〈
Γ +

m
〉

5.76 3.27 3.85
Negative circulation Γ −

q /
〈
Γ −

m
〉

0.88 0.84 1.06

Table 2. Flow parameters used in the analytical solutions shown in figure 13, which mimic the simulations
Bi1 in figure 8. The magnitude of the angular speed Ω is calculated with (A11). The theoretical circulations
Γ +

q , Γ
−

q are compared with the average residual values calculated in the simulations
〈
Γ +

m
〉
,
〈
Γ −

m
〉

(see caption
of figure 10).

t/T = 0

t/T = 1.2

t/T = 2.4

t/T = 3.6

–0.1 0 0.1

(a) B11 (b) B21 (c) B31

Figure 13. Analytically calculated relative vorticity distributions (ω/f0) of asymmetric dipolar vortices over
the Gaussian mountains used in simulations Bi1. The vorticity fields are obtained from (A10), (A4)–(A6) using
the parameters in table 2. The magenta circles indicate the size of the interior solution. Topography contours
as in figure 1.

there is a good agreement between the theory and the simulations (the relative difference is
between 6 and 16 %). However, the positive circulations of the analytical solutions exceed
the numerical values by up to 3 to 5 times. A possible reason for this discrepancy may be
the absence of dissipation in the inviscid solutions. Additionally, recall that the solutions
are QG, in contrast with the SW dynamics resolved in the numerical experiments.

922 A33-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.567


L. Zavala Sansón and J.F. Gonzalez

Summarising, the form and behaviour of residual asymmetric dipoles in the SW
simulations are consistent with the nonlinear analytical solutions in QG. Some qualitative
and quantitative features are remarkably well-reproduced, though some others are not.

5. Summary and discussion

We presented quasi-2-D, SW numerical simulations of barotropic flows over a topographic
mountain in a constantly rotating system. The dynamical model assumes a columnar
motion over the whole depth, whose relative vorticity is modulated by changes in height
as the fluid columns move over the topography. In the first part, we studied the collision of
an initially symmetric dipole against the mountain. The main results were further explored
with a topographically modulated point-vortex model. Afterwards, we carefully examined
the long-term residual flow over the topography. Such a persistent flow (trapped over the
mountain) was compared with QG analytical solutions. The main findings are discussed
separately.

5.1. Collision of dipoles against mountains
The encounter of an initially symmetric dipole with different submerged mountains
revealed two dynamical scenarios: weak and strong collisions. In the former case, the
dipole structure is only slightly modified while the trajectory is being deflected towards
the anticyclonic side. The intensification of the anticyclone arising from squeezing effects
clearly explains this behaviour. At later times, the vortex moves away from the topography.
Weak collisions mostly occur when the mountain height is sufficiently small.

In contrast, strong collisions occurred over higher mountains. These interactions
consisted of the formation of a new cyclonic vortex from stretching effects, which
paired with the original anticyclone side of the dipole and together moved away from
the mountain. This striking effect has been observed in laboratory experiments with
monopoles (Zavala Sansón et al. 1999) and dipoles (Tenreiro et al. 2006) approaching
a step-topography. The problem becomes complicated when using a mountain because of
the round shape and steepness of the slope.

Weak and strong interactions are nearly inviscid, as shown by the small decay of the
total energy (approximately 10 %) during the occurrence of these processes (first 10–20
days in figure 7). The results obtained with the point-vortex model support the notion that
the predominant dynamical mechanisms are inviscid.

The present results may serve as a starting point to study the fate of the colliding
dipole in a stratified fluid, as in oceanic cases. It is expected that in the presence
of vertical stratification, the surface vortices will experience weaker effects from the
bottom topography. To what extent the topographic mountain affects the passing of a
travelling vortex in the upper layers? A first model to study such cases might be the
equivalent-barotropic dynamics used to simulate atmospheric and (less often) oceanic
flows (Killworth 1992; Zavala Sansón 2019). The equivalent-barotropic model considers
a flow with a given vertical structure, whose magnitude changes with depth while
maintaining the same direction. For instance, a vertical exponential decay implies that
the active motion is confined to the upper layer, which inhibits the interaction of a
vortex passing over the topography. The implications are relevant to understand better
the long-range propagation of mesoscale geophysical vortices in the world oceans. This
research line is under current investigation. Another dynamical effect to be taken into
account is the β-effect (the constant latitudinal gradient of the Coriolis parameter). The
combined effects of topography and β on vortices is usually a complicated matter (van
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Geffen & Davies 2000; Zavala Sansón 2002; Herbette, Morel & Arhan 2005) that deserve
further study.

5.2. Long-term residual flows
A different problem was the residual flow left over the mountain during the subsequent 40
to 50 days. The remaining flow patterns over the mountain are so persistent that they can
be regarded as the typical signature of the perturbed flow over the topography. We noticed
three types of residual motions. The most notorious structures were long-lived asymmetric
dipoles that rotate clockwise as a whole over narrow mountains. Over wide topographies,
in contrast, the flow patterns may be highly convoluted. The third type was quasi-circular
anticyclones over the mountain, surrounded by an annulus of cyclonic vorticity. All of
these motions are mostly inviscid, as revealed from the time evolution of the energy over
the mountain (figure 7).

Oceanic flows over a Gaussian mountain were studied numerically by Verron & Le
Provost (1985) in a different context. Their f -plane experiments were QG and simulated a
permanent, uniform stream passing over the mountain. The authors found the entrapment
of an anticyclonic vortex, as well as different transient regimes which were attributed to
the generation of topographically trapped waves. In contrast, the present SW simulations
allow intense flows and relatively abrupt topographies. Nevertheless, some features of the
residual flows may also be associated with topographic (Rossby) waves, which are the
most basic oscillations admitted by the dynamics. The following evidence points out this
relationship:

(i) The generation of waves is observed in the convoluted pattern over wide
topographies, as shown in figure 11. The oscillations consist of successive patches
of positive and negative vorticity that develop as the flow is perturbed. The waves
travel clockwise with shallow water to the right because f0 > 0 (Rhines 1969). The
complicated patterns may be associated with the dispersive nature of the waves.

(ii) Topographic Rossby waves are subinertial oscillations. In our simulations, residual
flows indeed rotate clockwise at a low frequency, |2Ω| < f0. Additionally, the
frequency increases for higher mountains, as seen in figure 9 (see also Verron &
Le Provost 1985, figure 11).

(iii) The formation of asymmetric dipolar vortices over the summit (as in figure 8) is
compatible with the shape of analytically derived wave modes (see Zavala Sansón
2010, figure 3). The waves rotate clockwise with an angular speed that depends
on the shape of the mountain and the azimuthal and radial wavenumbers. The
resemblance of the vorticity distribution is only qualitative, however, because the
waves are azimuthally symmetrical modes.

It must be kept in mind that residual motions in our simulations may not behave precisely
as linear waves. The nonlinear origin of residual flows may explain the asymmetry of the
persistent dipolar structures seen in figure 8(b,c). Interestingly, a similar asymmetry is
characteristic of the nonlinear dipolar solutions of Gonzalez & Zavala Sansón (2021).
We showed that some qualitative and quantitative features of the residual dipoles are
congruent with the theoretical solutions. Again, no perfect match is expected with the
analytical examples, which are based on the QG dynamics.

Assuming that the described residual flows are the natural response of the flow over a
mountain, it remains to investigate to what extent they are found in real physical systems. In
rotating tank experiments, asymmetric mountain dipoles may be tough to observe because
typical laboratory length scales are often short (a few tens of cm). Such conditions make
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it difficult to measure the vorticity field in detail. Furthermore, dissipative effects owing
to solid walls and lateral friction limit the duration of the experiments. To our knowledge,
the only laboratory evidence of asymmetric dipoles trapped over a mountain was reported
in the experiments by Zavala Sansón et al. (2012). The experiments were performed in
a large rotating tank (the Coriolis platform in Grenoble, France), where the mentioned
difficulties were significantly overcome. The finding of asymmetric dipoles in that study
was fortuitous because the purpose of the experiments was different. The present results
may shed some light on how to design future experiments or field measurements to study
residual flows more systematically.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.567.
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Appendix A. Analytical solutions of asymmetric dipoles

Here we present a brief account of the nonlinear, QG vortex solutions on the f -plane with
axisymmetric topography (mountains and valleys) obtained by Gonzalez & Zavala Sansón
(2021) (referred to as GZS21). The most important features are the following:

(i) The solutions are stationary in a uniformly rotating frame around the origin, such
that the rotated azimuthal coordinate is θ ′ = θ +Ωt, where the rotation is clockwise
(anticlockwise) for Ω > 0 (Ω < 0). Using a scaled radial coordinate s = c0r, the
stationary vorticity equation (4.3) yields

J

[
ψ ′

q(s, θ
′)+ Ω

2c2
0

s2,∇2ψ ′
q(s, θ

′)+ ωa(s)

]
= 0. (A1)

(ii) The vortex solutions are defined in two regions: (a) an interior flow within a circular
area with non-dimensional radius sl = 3.8317 centred at the origin, and (b) an
exterior flow to keep the interior distribution confined over the topography:

ψ ′
q(s, θ

′) =
⎧⎨
⎩ψI1(s, θ ′)− Ω

2c2
0

s2 s � sl

ψE1(s, θ ′) s � sl.

(A2)

Subindex 1 indicates that the solutions correspond to dipolar structures.
(iii) The interior solutions are of the form

ψI1(s, θ ′) = ψV1(s, θ ′)+ φ(s). (A3)

The first term is the mode-1, 2-D dipolar solution found by Viúdez (2019) in the
absence of topography:

ψV1(s, θ ′) = |ψ̂1|J1(s) sin θ ′, (A4)

where |ψ̂1| is the amplitude. This case corresponds to a symmetrical dipole initially
oriented in the horizontal direction and pointing to the left in a planar system. Viúdez
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(2019) discussed more general 2-D solutions based on Bessel functions of arbitrary
order, Jm (m = 0, 1, 2 . . .). The second term in (A3), φ(s), contains the influence of
the topography:

φ(s) = ωa0

c2
0

C1J0(s)+ π

2
Y0(s)

∫ s

0
Π(s′)J0(s′)s′ ds′ − π

2
J0(s)

∫ s

0
Π(s′)Y0(s′)s′ ds′,

(A5)

where J0 and Y0 are the first- and second-kind Bessel functions of order 0, and the
radial function Π(s) is

Π(s) = ωa0 − ωa(s)

c2
0

. (A6)

Note that Π = 0 at the origin and also in the absence of topography (i.e. when
ωa = 0). The integration constant C1 in (A5) is set to guarantee the continuity of the
vorticity at the interior–exterior boundary (C1 is explicitly calculated with formula
B6 in GZS21, but is not essential in the present analysis).

(iv) The exterior solution ψE1(s, θ ′) is the sum of a potential flow and a uniform vorticity
field proportional to s2 (Meleshko & van Heijst 1994; Viúdez 2019):

ψE1(s, θ ′) = 1
2
|ψ̂1|J′

1(sl)

(
s − s2

l
s

)
sin θ ′ + d0 + d1 ln s + d2s2 s � sl. (A7)

The coefficients d0, d1 and d2 are chosen to satisfy the continuity of the stream
function, the azimuthal velocity and the vorticity at sl (formulae (2.25) and B5 in
GZS21).

(v) The relative vorticity field is the Laplacian of (A2):

ω′
q(s, θ

′) =
{
ωI1(s, θ ′)− 2Ω s � sl

−2Ω s � sl,
(A8)

where the interior vorticity is ((2.13) in GZS21)

ωI1(s, θ ′) = c2
0
[−ψV1(s, θ ′)− φ(s)+Π(s)

]
. (A9)

(vi) In a reference frame fixed to the f -plane, the non-stationary solution is

ωq(s, θ, t) =
{
ωI1(s, θ +Ωt) s � sl

0 s � sl.
(A10)

A formula for Ω is obtained by considering that the total circulation of the interior
region is zero ((2.35) in GZS21):

Ω = 1
s2

l

∫ sl

0
ωa(s)s ds − π

2sl
Y1(sl)

∫ sl

0
[ωa0 − ωa(s)]J0(s)s ds, (A11)

where Y1 is the Bessel function of the second kind of order 1. The formula is further
discussed and applied in § 4.3.
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