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Abstract We study the global well-posedness of 3D Navier–Stokes equations for a class of large initial
data. This type of data slowly varies in the vertical direction (expressed as a function of εx3), and it is
ill-prepared in the sense that its norm in C−1 will blow up at the rate ε−α for 1

2 < α < 1 as ε tends to

zero.

1. Introduction

In this paper, we study Navier–Stokes equations with initial data which is slowly varying
in the vertical variable. More precisely, we consider the system

(NS)


∂tu+ u · ∇u−∆u=−∇p in R+ ×Ω
div u= 0

u|t=0 = u0,ε,

where Ω = R3 and u0,ε is a divergence-free vector field, whose dependence on the
vertical variable x3 will be chosen to be ‘slow’, meaning that it depends on εx3, where ε
is a small parameter. More precisely, our initial data is of the form

u0,ε = (ε
1−αvh

0(xh, εx3), ε
−αv3

0(xh, εx3)),

for α ∈ [0, 1]. This initial data may be arbitrarily large, with size ε−α, in the space
B−1
∞,∞ which is well-adapted space to measure the amplitude of the initial data for the

Navier–Stokes equations (see [10, 12]).
The well-prepared case (α = 0) was studied by Chemin and Gallagher [10]. The

ill-prepared case (α = 1) was studied by Chemin et al. [12]. For the later case, the data
was supposed to evolve in a special domain T2

× R. Recently, Paicu and Zhang [17]
considered the intermediate case (α = 1

2 ). The aim of this paper is to generalize the
result of [12] to the domain R3 in the more difficult case of 1

2 < α < 1.
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By making a change of the scale, one obtains a Navier–Stokes-type system with
anisotropic viscosity −∆ε

def
= ∆h + ε

2∂2
3 and anisotropic pressure gradient −(∇hp, ε2∂3p);

see the rescaled system (2.1). In the rescaled system, there is a loss of regularity
in the vertical variable in Sobolev estimates if we want to obtain estimates which
are independent of ε. To overcome this difficulty, one needs to work with analytical
initial data. The most important tool developed by Chemin [6] consists in making
analytical-type estimates, and at the same time controlling the size of the analyticity
band. This is performed by the control of nonlinear quantities which depend on
the solution itself. Even in this situation, it is important to take into account very
carefully the special structure of Navier–Stokes equations. In fact, a global in time
Cauchy–Kowalewskaya-type theorem was obtained in [12]. Some local in time results for
Euler and Prandtl equations with analytic initial data can be found in [18]. We mention
also some other works [1, 3, 4, 14, 15] where are obtained estimates in analytic spaces for
Euler and Navier–Stokes equations with control on the size of the analyticity band and
the analytic norm of the solution.

In [12], the fluid is supposed to evolve in a special domain Ω = T2
× Rv. This

choice of domain is justified by the pressure term. Indeed, the pressure verifies the
elliptic equation ∆εp= ∂i∂j(uiuj), and, consequently, ∇hp= (−∆ε)−1

∇h∂i∂j(uiuj). Because
we have that ∆−1

ε converges to ∆−1
h , it is important to control the low horizontal

frequencies, while, in the case of the periodic torus in the horizontal variable, we have
only zero horizontal frequency and high horizontal frequency.

In order to extend the result of [12] to the domain R3, one of the key points is to
control the low horizontal frequency very precisely. For this purpose, we choose to work
in a class of anisotropic Sobolev spaces in [17]. An important observation is that the
operator ∆−1

h ∇h(a∇hb) is a bounded operator in these anisotropic Sobolev spaces. In
[17], we proved the global well-posedness of (NS) in the intermediate case of α = 1

2 . In
such case, there is only one half derivative loss in the vertical variable. Thus, the energy
method can be used to gain the smoothing effect of the half-order derivative from the
analyticity. We mention that the Cauchy–Kowalewskaya theorem allows one to control
in the analytical framework a loss of one full derivative but only locally in time. Here we
are interested in a global in time Cauchy–Kowalewskaya-type result.

In this paper, we will consider the case when 1
2 < α < 1. In this case, there is an

order-α derivative loss in the vertical variable. Thus, the energy method in [17] does not
work. Roughly speaking, we need to deal with three subtle questions in order to obtain
a global Cauchy–Kowalewskaya-type theorem in R3: (1) the loss of regularity in the
nonlinear terms; (2) the control of the low horizontal frequency of the solution; (3) the
weak damping effect of the parabolic operator ∂t−∆ε. We will use the semigroup method
and the smoothing effect of analyticity to overcome the loss of the α-order derivative
in the vertical variable. To control the low horizontal frequency of the solution, we
introduce anisotropic Besov spaces. We construct the suitable functional space of the
solution to capture the weak damping mechanism of the parabolic operator. Even with
these, the special structure of the equation plays an important role in our estimates. We
remark that the equation on the vertical component is a linear equation with coefficients
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depending on the horizontal components and with no loss of regularity in the vertical
variable in the pressure term.

Our main result is stated as follows.

Theorem 1.1. Let a> 0, s> 1
2 . Assume that (α, γ ) satisfies

α ∈

(
1
2
, 1

)
,

2
1+ α

< γ 6
1
α
.

Then there exists a constant η such that, for any divergence-free field v0 satisfying

‖ea|D3|
γα

v0‖B0,s
2,γ
+ ‖ea|D3|

γα

v0‖B−α,s2,γ
6 η

for any ε ∈ (0, 1), the Navier–Stokes system (NS) with initial data

uε0 =
(
ε1−αvh

0(xh, εx3), ε
−αv3

0(xh, εx3)
)

has a global smooth solution on R3.

Remark 1.2. Another important improvement of this paper is that the global
well-posedness is established for more wider class of the initial data with Gevrey
regularity instead of analytic regularity, since γα could be less than 1.

Let us conclude the introduction by reviewing some other relevant examples of large
initial data generating the global solution of 3D Navier–Stokes equations. Chemin and
Gallagher [8] construct the first example of periodic initial data which is big in C−1,
and strongly oscillating in one direction, which generates a global solution (see [9] for
the case of R3), where the special structure of Navier–Stokes equations was used in their
proof. We refer to [13, 2, 11] and references therein for further progress.

2. Structure of the proof

2.1. Reduction to a rescaled problem

We seek the solution of the form

uε(t, x)
def
=
(
ε1−αvh(t, xh, εx3), ε

−αv3(t, xh, εx3)
)
.

This leads to the following rescaled Navier–Stokes system:

(RNSε)


∂tv

h
−∆hvh

− ε2∂2
3vh
+ ε1−αv · ∇vh

=−∇
hq,

∂tv
3
−∆hv3

− ε2∂2
3v3
+ ε1−αv · ∇v3

=−ε2∂3q,

div v= 0,

v(0)= v0(x),

(2.1)

where ∆h
def
= ∂2

1 + ∂
2
2 and ∇h

def
= (∂1, ∂2). As there is no boundary, the rescaled pressure q

can be computed with the formula

−∆εq= ε
1−αdiv(v · ∇v), ∆ε =∆h + ε

2∂2
3 . (2.2)
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To state our result, we first introduce the Littlewood–Paley decomposition. Choose
two nonnegative even functions χ , ϕ ∈ S(R) supported respectively in B = {ξ ∈ R, |ξ | 6
4
3 } and C = {ξ ∈ R, 3

4 6 |ξ |6
8
3 } such that

χ(ξ)+
∑
j>0

ϕ(2−jξ)= 1 for any ξ ∈ R,

∑
j∈Z

ϕ(2−jξ)= 1 for any ξ ∈ R \ {0}.

We need to introduce two classes of the frequency localization operators. The
localization operators ∆v

j and Sv
j in the vertical direction are defined by

∆v
j f = F−1(ϕ(2−j

|ξ3|)̂f
)

for j> 0, Sv
j f = F−1(χ(2−j

|ξ3|)̂f
)
=

∑
j′6j−1

∆v
j′ f ,

∆v
−1f = Sv

0f , ∆v
j f = 0 for j6−2.

The localization operators ∆̇h
j and Sh

j in the horizontal direction are defined by

∆̇h
j f = F−1(ϕ(2−j

|ξh|)̂f
)
, Sh

j f =
∑

j′6j−1

∆̇h
j′ f for j ∈ Z.

Now let us introduce the anisotropic Besov spaces, which are important to control the
low horizontal frequency of the function. The role of anisotropic Sobolev or Besov spaces
in the study of a Navier–Stokes system with anisotropic vertical viscosity appears in
[7, 16].

Definition 2.1. Let s1, s2 ∈ R, q ∈ [1,∞]. The anisotropic Besov space Bs1,s2
2,q is defined

by

Bs1,s2
2,q

def
= {f ∈ S′(R3) : ‖f‖Bs1,s2

2,q
<∞},

where

‖f‖Bs1,s2
2,q

def
=

(∑
k∈Z

2qks1 sup
j∈Z

2qjs2‖∆v
j ∆̇

h
k f‖qL2

) 1
q

.

We also need to use Chemin–Lerner-type Besov space L̃p(0,T;Bs1,s2
2,q ), whose norm is

defined by

‖u‖L̃p(0,T;B
s1,s2
2,q )

def
=

(∑
k∈Z

2qks1
∥∥ sup

j∈Z
2js2‖∆v

j ∆̇
h
ku(t)‖L2

∥∥q
Lp(0,T)

) 1
q

.

For the sake of simplicity, we will denote L̃p(0,T;Bs1,s2
2,q ) by L̃p

TBs1,s2
2,q . It is easy to see that

L̃p
TBs1,s2

2,q = Lp
TBs1,s2

2,q if p= q.
For the rescaled system (2.1), we prove the following.
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Theorem 2.2. Let a> 0, s> 1
2 . Assume that (α, γ ) satisfies

α ∈

(
1
2
, 1
)
,

2
1+ α

< γ 6
1
α
. (2.3)

Then there exists a constant η such that, for any divergence-free field v0 satisfying

‖ea|D3|
γα

v0‖B0,s
2,γ
+ ‖ea|D3|

γα

v0‖B−α,s2,γ
6 η

for any ε ∈ (0, 1), (RNSε) has a unique global smooth solution.

2.2. Definition of the functional setting

As in [12], the proof relies on exponential decay estimates for the Fourier transform of
the solution. Thus, for any locally bounded function Φ on R+ × R3, and for any function
f , continuous in time and compactly supported in Fourier space, we define

fΦ(t)
def
= F−1(eΦ(t,·) f̂ (t, ·)).

Now we introduce two key quantities, which capture the weak damping mechanism of
the parabolic operator ∂t −∆ε. We define the function θ(t) by

θ̇ (t)
def
= εγα‖vh

Φ(t)‖
γ

B
−α+ 2

γ ,s

2,γ

+ ‖v3
Φ(t)‖

γ

B
−α+ 2

γ ,s

2,γ

and θ(0)= 0, (2.4)

and we also define

Ψ (t)
def
= ‖vΦ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

, (2.5)

where γ ′ = γ
γ−1 and

Φ(t, ξ)
def
= (a− λθ(t))〈ξ3〉

γα, 〈ξ3〉 = (1+ ξ2
3 )

1
2 , (2.6)

for some λ that will be chosen later on.

Proposition 2.3. A constant C exists such that, for any positive λ, and for any t
satisfying θ(t)6 a/λ, we have

θ(t)
1
γ 6 C‖ea|D3|

γα

v0‖B−α,s2,γ
+ CΨ (t)θ(t)

1
γ .

Proposition 2.4. A constant C exists such that, for any positive λ, and for any t
satisfying θ(t)6 a/λ, we have

Ψ (t)6 C‖ea|D3|
γα

v0‖B0,s
2,γ
+ CΨ (t)

(
Ψ (t)+

1

λ
1
γ

)
.

The proof of Propositions 2.3 and 2.4 will be presented in ğğ 5 and 6 respectively. In
the following subsection, we will use Propositions 2.3 and 2.4 to complete the proof of
Theorem 2.2.
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2.3. Proof of Theorem 2.2

We use a continuation argument. For any η, let us define

Tλ
def
= {T : θ(T)

1
γ 6 4Cη, Ψ (T)6 4Cη}.

Similar to the argument in [12], Tλ is of the form [0,T∗) for some positive T∗. Hence,
it suffices to prove that T∗ = +∞. In order to use Propositions 2.3 and 2.4, we need to
assume that θ(T)6 a

λ
, which leads to the condition

4Cη 6
(a

λ

) 1
γ
.

From Propositions 2.3 and 2.4, it follows that, for all T ∈ Tλ,

θ(T)
1
γ 6 Cη + 16C2η2,

Ψ (T)6 Cη + Cη

(
Cη +

1

λ
1
γ

)
.

(2.7)

We first choose λ large enough that 1

λ
1
γ
6 1, and then choose η small enough such that

4Cη 6min
((

a

λ

) 1
γ

,
1
2

)
.

With this choice of η, we infer from (2.7) that

θ(T)
1
γ < 4Cη, Ψ (T) < 4Cη,

which ensures that T∗ =+∞, and thus we conclude the proof of Theorem 2.2. �

3. The action of subadditive phases on products

For any function f , we denote by f+ the inverse Fourier transform of |̂f |. Let us notice
that the map f 7→ f+ preserves the norm of all Bs1,s2

2,q spaces. Throughout this section,
Ψ will denote a locally bounded function on R+ × R3 which satisfies the following
inequality:

Ψ (t, ξ)6 Ψ (t, ξ − η)+ Ψ (t, η). (3.1)

In what follows, we will constantly use Bony’s decomposition from [5] that

fg= Tv
f g+ Rv

f g, (3.2)

with

Tv
f g=

∑
j

Sv
j−1f∆v

j g, Rgf =
∑

j

Sv
j+2f∆v

j g.

We also use Bony’s decomposition in the horizontal direction,

fg= Th
f g+ Th

f g+ Rh(f , g), (3.3)
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with

Th
f g=

∑
j

Sh
j−1f ∆̇h

j g, Rh(f , g)=
∑
|j′−j|61

∆̇h
j f ∆̇h

j′g.

Lemma 3.1 (Bernstein’s inequality). Let 16 p6 q6∞. Assume that f ∈ Lp(Rd). Then
there exists a constant C, independent of f , j, such that

supp f̂ ⊂ {|ξ |6 C2j
} ⇒ ‖∂αf‖Lq 6 C2j|α|+dj( 1p−

1
q )‖f‖Lp ,

supp f̂ ⊂

{
1
C

2j 6 |ξ |6 C2j
}
⇒‖f‖Lp 6 C2−j|α| sup

|β|=|α|

‖∂β f‖Lp .

Lemma 3.2. Let s > 1
2 , q ∈ [1,∞], p, p1, p2 ∈ [1,∞] with 1

p =
1
p1
+

1
p2

, σ1, σ2 < 1, and

σ1 + σ2 > 0. Assume that aΨ ∈ L̃p1
T Bσ1,s2,q and bΨ ∈ L̃p2

T Bσ2,s2,q . Then there holds∥∥ sup
j∈Z

2js
∥∥[∆v

j ∆̇
h
k(T

v
ab)
]
Ψ

∥∥
L2

∥∥
Lp

T
+
∥∥ sup

j∈Z
2js
∥∥[∆v

j ∆̇
h
k(R

v
ab)
]
Ψ

∥∥
L2

∥∥
Lp

T

6 Cck2(1−σ1−σ2)k‖aΨ ‖L̃p1
T B

σ1,s
2,q
‖bΨ ‖L̃p2

T B
σ2,s
2,q
,

with the sequence (ck)k∈Z satisfying
∑

k∈Z cq
k 6 1.

Proof. Let us first prove the case when the function Ψ is identically 0. Below, we only
present the proof for Rab; the proof for Tab is very similar. Using Bony’s decomposition
(3.3) in the horizontal direction, we write

∆j∆̇
h
k(R

v
ab) =

∑
j′
∆v

j ∆̇
h
k(S

v
j′+2a∆v

j′b)

=

∑
j′
∆v

j ∆̇
h
k

(
Th

Sv
j′+2

a∆
v
j′b+ Th

∆v
j′

bSv
j′+2a+ Rh(Sv

j′+2a,∆v
j′b)
)

def
= A+ B+ C.

Considering the support of the Fourier transform of Th
Sv

j′+2
a∆

v
j′b, we find

A=
∑

j′>j−4

∑
|k′−k|64

∆v
j ∆̇

h
k

(
Sv

j′+2Sh
k′−1a∆v

j′∆̇
h
k′b
)
.

Then we get by Lemma 3.1 that

‖A‖L2 6 C
∑

j′>j−4

∑
|k′−k|64

‖Sv
j′+2Sh

k′−1a∆j′∆̇
h
k′b‖L2

6 C
∑

j′>j−4

∑
|k′−k|64

‖Sv
j′+2Sh

k′−1a‖L∞‖∆
v
j′∆̇

h
k′b‖L2 .
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We use Lemma 3.1 again to get

‖Sv
j′+2Sh

k′−1a‖L∞ 6
∑

j′′6j′+1

∑
k′′6k′−2

‖∆v
j′′∆̇

h
k′′a‖L∞

6 C
∑

j′′6j′+1

∑
k′′6k′−2

2k′′
‖∆v

j′′∆̇
h
k′′a‖L∞x3L2

xh

6 C
∑

j′′6j′+1

∑
k′′6k′−2

2
j′′

2 2k′′
‖∆v

j′′∆̇
h
k′′a‖L2 ,

from which and σ1 < 1 it follows that∥∥ sup
j∈Z

2js
‖A‖L2

∥∥
Lp

T
6 C2(1−σ1−σ2)k‖a‖L̃p1

T B
σ1,s
2,q
‖b‖L̃p2

T B
σ2,s
2,q

sup
j∈Z

∑
j′>j−4

∑
|k′−k|64

2−(j
′
−j)sck′

6 Cck2(1−σ1−σ2)k‖a‖L̃p1
T B

σ1,s
2,q
‖b‖L̃p2

T B
σ2,s
2,q
. (3.4)

Similarly, we have

B=
∑

j′>j−4

∑
|k′−k|64

∆v
j ∆̇

h
k(∆

v
j′S

h
k′−1bSv

j′+2∆̇
h
k′a).

Then we get by Lemma 3.1 and σ2 < 1 that∥∥ sup
j∈Z

2js
‖B‖L2

∥∥
Lp

T
6 C

∥∥∥∥ sup
j∈Z

2js
∑

j′>j−4

∑
|k′−k|64

‖∆v
j′S

h
k′−1b‖L2

x3
L∞xh
‖Sv

j′+2∆̇
h
k′a‖L2

xh
L∞x3

∥∥∥∥
Lp

T

6 Cck2(1−σ1−σ2)k‖a‖L̃p1
T B

σ1,s
2,q
‖b‖L̃p2

T B
σ2,s
2,q
. (3.5)

Now let us turn to C. We have

C =
∑

j′>j−4

∑
k′,k′′>k−2;|k′−k′′|61

∆v
j ∆̇

h
k(S

v
j′+2∆̇

h
k′a∆

v
j′∆̇

h
k′′b).

Hence, we have by Lemma 3.1 and σ1 + σ2 > 0 that∥∥ sup
j∈Z

2js
‖C‖L2

∥∥
Lp

T
6 C

∥∥∥∥ sup
j∈Z

2js
∑

j′>j−4

∑
k′,k′′>k−2;|k′−k′′|61

2k
‖Sv

j′+2∆̇
h
k′a∆

v
j′∆̇

h
k′′b‖L2

x3
L1

xh

∥∥∥∥
Lp

T

6 C

∥∥∥∥ sup
j∈Z

2js
∑

j′>j−4

∑
k′,k′′>k−2;|k′−k′′|61

2k
‖Sv

j′+2∆̇
h
k′a‖L∞x3L2

xh
‖∆v

j′∆̇
h
k′′b‖L2

∥∥∥∥
Lp

T

6 C2(1−σ1−σ2)k‖a‖L̃p1
T B

σ1,s
2,q
‖b‖L̃p2

T B
σ2,s
2,q

∑
k′>k−2

2−(σ1+σ2)(k
′
−k)ck′

6 Cck2(1−σ1−σ2)k‖a‖L̃p1
T B

σ1,s
2,q
‖b‖L̃p2

T B
σ2,s
2,q
. (3.6)

Summing up (3.4)–(3.6) yields that∥∥ sup
j∈Z

2js
‖∆v

j ∆̇
h
k(Rab)‖L2

∥∥
Lp

T
6 Cck2(1−σ1−σ2)k‖a‖L̃p1

T B
σ1,s
2,q
‖b‖L̃p2

T B
σ2,s
2,q
.
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The lemma is proved in the case when the function Ψ is identically 0. In order to deal
with the general case, we only need to notice the fact that∣∣F

[
∆j∆̇

h
k(Rab)

]
Ψ
(ξ)
∣∣6 F

[
∆j∆̇

h
k(Ra+Ψ

b+Ψ )
]
(ξ).

The proof of Lemma 3.2 is finished. �

Remark 3.3. From the proof of Lemma 3.2, it is easy to see that∥∥[∆v
j ∆̇

h
k(ab)

]
Ψ

∥∥
L2 6 C2k2−js

‖aΨ ‖Bσ1,s2,q

∑
k′>k−4

2−k′σ1 sup
j∈Z

2js
‖∆v

j ∆̇
h
k′bΨ ‖L2

+C2−kσ12−js
‖aΨ ‖Bσ1,s2,q

∑
k′6k+4

2k′ sup
j∈Z

2js
‖∆v

j ∆̇
h
k′bΨ ‖L2

for σ1 < 1 and s> 1
2 .

The following lemma is a direct consequence of Lemma 3.2.

Lemma 3.4. Let s > 1
2 , q ∈ [1,∞], p, p1, p2 ∈ [1,∞] with 1

p =
1
p1
+

1
p2

. Assume that

aΨ ∈ L̃p1
T Bσ1,s2,q and bΨ ∈ L̃p2

T Bσ2,s2,q with σ1, σ2 < 1 and σ1 + σ2 > 0. Then we have

‖(ab)Ψ ‖L̃p
T B

σ1+σ2−1,s
2,q

6 C‖aΨ ‖L̃p1
T B

σ1,s
2,q
‖bΨ ‖L̃p2

T B
σ2,s
2,q
.

4. The action of the phase Φ on the heat operator

Let Φ(t, ξ) be given by (2.6). In this section, we will study the action of the multiplier
eΦ(t,D) on the heat operator et∆ε .

Lemma 4.1. Let q1, q2, r ∈ [1,∞], s1, s2 ∈ R. Then there holds∥∥(et∆εv0
)
Φ

∥∥
L̃r

T B
s1,s2
2,q
6 C‖ea|D3|

γα

v0‖
B

s1−
2
r ,s2

2,q

.

Proof. Thanks to the definition of L̃r
TBs1,s2

2,q space, we have

∥∥(et∆εv0
)
Φ

∥∥
L̃r

T B
s1,s2
2,q
6

(∑
k∈Z

2qks1‖e−ct22k
‖

q
Lr

t
sup
j∈Z

2qjs2‖∆v
j ∆̇

h
kea|D3|

γα

v0‖
q
L2

) 1
q

6 C

(∑
k∈Z

2qk(s1− 2
r ) sup

j∈Z
2qjs2‖∆v

j ∆̇
h
kea|D3|

γα

v0‖
q
L2

) 1
q

= C‖ea|D3|
γα

v3
0‖

B
s1−

2
r ,s2

2,q

.

The proof of Lemma 4.1 is finished. �

We define Eε by

Eεf (t)
def
=

∫ t

0
e(t−τ)∆ε f (τ )dτ.
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Lemma 4.2. Let q, r1, r2 ∈ [1,∞], r2 6 r1, s1, s2 ∈ R. Then, for any f ∈
L̃r2(0,T;Bs1−σ,s2

2,q ) with σ = 2(1+ 1
r1
−

1
r2
), we have∥∥(Eεf )Φ∥∥L̃

r1
T B

s1,s2
2,q
6 C‖fΦ‖L̃r2

T B
s1−σ,s2
2,q

.

Let β ∈ [0, 1] with β < σ . Then, for any f ∈ L̃r2(0,T;Bs1−σ+1,s2
2,q ), we have∥∥(Eε((ε∂3)β f

))
Φ

∥∥
L̃

r1
T B

s1,s2
2,q
6 C‖fΦ‖L̃r2

T B
s1−σ+β,s2
2,q

.

Proof. Applying the Fourier multiplier eΦ(t,D)∆v
j ∆̇

h
k to Eεf gives

eΦ(t,D)∆v
j ∆̇

h
kEεf =

∫ t

0
e(t−τ)∆ε+Φ(t,D)−Φ(τ,D)∆v

j ∆̇
h
k fΦ(τ )dτ.

Due to the definition of Φ, we have

Φ(t, ξ)−Φ(τ, ξ)=−λ〈ξ3〉
γα

∫ t

τ

θ̇ (t′)dt′.

Then we take the Fourier transform to get

F
(

eΦ(t,D)∆v
j ∆̇

h
kEεf

)
=

∫ t

0
e−(t−τ)|ξ |

2
ε−〈ξ3〉

γα
∫ t
τ θ̇ (t

′)dt′F
[
∆v

j ∆̇
h
k f
]
Φ
(τ )dτ, (4.1)

where |ξ |2ε
def
= |ξh|

2
+ ε2|ξ3|

2. We take the L2 norm to obtain∥∥[∆v
j ∆̇

h
kEεf

]
Φ

∥∥
L2 6

∫ t

0
e−c22k(t−τ)

‖∆v
j ∆̇

h
k fΦ(τ )‖L2dτ,

from which and Young’s inequality we infer that∥∥ sup
j∈Z

2js2
∥∥[∆v

j ∆̇
h
kEεf

]
Φ

∥∥
L2

∥∥
L

r1
T
6 C2−kσ

∥∥ sup
j∈Z

2js2‖∆v
j ∆̇

h
k fΦ‖L2

∥∥
L

r2
T
.

This gives the first inequality of Lemma 4.2.
Noticing that

|εξ3|
βe−tε2|ξ3|2 6 Ct−

β
2 ,

we infer from (4.1) that∥∥[∆v
j ∆̇

h
kEε(ε∂3)f

]
Φ

∥∥
L2 6 C

∫ t

0
(t − τ)−

β
2 e−c22k(t−τ)

‖∆v
j ∆̇

h
k fΦ(τ )‖L2dτ.

Due to β < σ , we have ∫ t

0
t−

β
σ e−ct22k

dt 6 Ct2(−1+ β
σ
)k.

Then, applying Young’s inequality gives∥∥ sup
j∈Z

2js2
∥∥[∆v

j ∆̇
h
kEε(ε∂3)f

]
Φ

∥∥
L2

∥∥
L

r1
T
6 C2−k(σ−β)

∥∥ sup
j∈Z

2js2‖∆v
j ∆̇

h
k fΦ‖L2

∥∥
L

r2
T
.

This gives the second inequality of Lemma 4.2. �
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Lemma 4.3. Let a(D) be a Fourier multiplier such that |a(ξ)|6 C|ξ3|. We have

ε1−α
∥∥[Eε(a(D)(v3f ))

]
Φ

∥∥
L̃γ
′

t B
2
γ ′
,s

2,γ

6
C

λ
1
γ

‖fΦ‖
L̃γ
′

t B
2
γ ′
,s

2,γ

,

ε1−α
∥∥[Eε(a(D)(v3

∇hf ))
]
Φ

∥∥
L̃γ
′

t B
2
γ ′
−1,s

2,γ

6
C

λ
1
γ

‖fΦ‖
L̃γ
′

t B
2
γ ′
,s

2,γ

.

Here (s, α, γ ) satisfy the conditions in Theorem 2.2.

Proof. Noticing that

|εξ3|
1−αe−tε2|ξ3|2 6 Ct−

1−α
2 ,

we infer from (4.1) that

ε1−α
∥∥[∆v

j ∆̇
h
kEε(a(D)(v

3f ))
]
Φ

∥∥
L2

6 C2jα
∫ t

0
(t − τ)−

1−α
2 e−c22k(t−τ)−cλ2jγα

∫ t
τ θ̇ (t

′)dt′
‖∆v

j ∆̇
h
k(v

3f )Φ‖L2dτ.

Thanks to Remark 3.3, we have

‖∆v
j ∆̇

h
k(v

3f )Φ‖L2 6 C2k2−js
‖v3
Φ‖

B
−α+ 2

γ ,s

2,γ

∑
k′>k−4

2k′(α− 2
γ
) sup

j∈Z
2js
‖∆v

j ∆̇
h
k′ fΦ‖L2

+C2k(α− 2
γ
)2−js
‖v3
Φ‖

B
−α+ 2

γ ,s

2,γ

∑
k′6k+4

2k′ sup
j∈Z

2js
‖∆v

j ∆̇
h
k′ fΦ‖L2 .

Consequently, we obtain

ε1−α
∥∥[∆v

j ∆̇
h
kEε(a(D)(v

3f ))
]
Φ

∥∥
L2 6 C2−js2−

2
γ ′

k(
G1

j,k(t)+ G2
j,k(t)

)
, (4.2)

where Gi
j,k(i= 1, 2) is given by

G1
j,k(t) = 2jα2k(3− 2

γ
)

∫ t

0
(t − τ)−

1−α
2 e−c22k(t−τ)−cλ2jγα

∫ t
τ θ̇ (t

′)dt′
‖v3
Φ(τ )‖

B
−α+ 2

γ ,s

2,γ

×

∑
k′>k−4

2k′(α− 2
γ
) sup

j∈Z
2js
‖∆v

j ∆̇
h
k′ fΦ(τ )‖L2dτ,

G2
j,k(t) = 2jα2k(2+α− 4

γ
)

∫ t

0
(t − τ)−

1−α
2 e−c22k(t−τ)−cλ2jγα

∫ t
τ θ̇ (t

′)dt′
‖v3
Φ(τ )‖

B
−α+ 2

γ ,s

2,γ

×

∑
k′6k+4

2k′ sup
j∈Z

2js
‖∆v

j ∆̇
h
k′ fΦ(τ )‖L2dτ.

We get by the Hölder inequality that

G1
j,k(t) 6 2jα2k(3− 2

γ
)

(∫ t

0
e−cλ2jγα

∫ t
τ θ̇ (t

′)dt′ θ̇ (τ )dτ

) 1
γ

×

(∫ t

0
(t − τ)−

(1−α)γ ′

2 e−c22k(t−τ)
( ∑

k′>k−4

2k′(α− 2
γ
) sup

j∈Z
2js
‖∆v

j ∆̇
h
k′ fΦ(τ )‖L2

)γ ′
dτ

) 1
γ ′

,

405

https://doi.org/10.1017/S1474748013000212 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000212


M. Paicu and Z. Zhang

from which we infer that∑
k∈Z
‖ sup

j∈Z
G1

j,k‖
γ

Lγ
′

t

6
C

λ

∑
k∈Z

2(2−α)γ k
(∫ t

0

( ∑
k′>k−4

2k′(α− 2
γ
) sup

j∈Z
2js
‖∆v

j ∆̇
h
k′ fΦ(τ )‖L2

)γ ′
dτ

)γ−1

6
C

λ

∑
k∈Z

2(2−α)γ k
( ∑

k′>k−4

2k′(α− 2
γ
)
∥∥ sup

j∈Z
2js
‖∆v

j ∆̇
h
k′ fΦ‖L2

∥∥
Lγ
′

t

)γ
6

C

λ
‖fΦ‖

γ

L̃γ
′

t B
2
γ ′
,s

2,γ

. (4.3)

Here, we used the fact that, due to γ > 2
1+α ,

(1− α)γ ′

2
<

1− α
2

2
1− α

= 1.

Similarly, we have∑
k∈Z
‖ sup

j∈Z
G2

j,k‖
γ

Lγ
′

t

6
C

λ

∑
k∈Z

2(γ−2)k
(∫ t

0

( ∑
k′6k+4

2k′ sup
j∈Z

2js
‖∆v

j ∆̇
h
k′ fΦ(τ )‖L2

)γ ′
dτ

)γ
6

C

λ

∑
k∈Z

2(γ−2)k
( ∑

k′6k+4

2k′ sup
j∈Z

2js
‖∆v

j ∆̇
h
k′ fΦ‖Lγ

′

t L2

)γ
6

C

λ
‖fΦ‖

γ

L̃γ
′

t B
2
γ ′
,s

2,γ

. (4.4)

Combining (4.3) and (4.4) with (4.2), we get

ε1−α
(∑

k∈Z
22(γ−1)k

∥∥ sup
j∈Z

2js
‖
[
∆v

j ∆̇
h
kEε(a(D)(v

3f ))
]
Φ
‖L2

∥∥γ
Lγ
′

t

) 1
γ

6 C

(∑
k∈Z
‖ sup

j∈Z
G1

j,k‖
γ

Lγ
′

t

+

∑
k∈Z
‖ sup

j∈Z
G1

j,k‖
γ

Lγ
′

t

) 1
γ

6
C

λ
1
γ

‖fΦ‖
L̃γ
′

t B
2
γ ′
,s

2,γ

.

This gives the first inequality of Lemma 4.3. Since the proof of the second inequality is
similar, we omit the details here. �

5. Classical analytical-type estimates

This section is devoted to the proof of Proposition 2.3. In this part, we do not need
to use any regularizing effect from the analyticity, but only the fact that eΦ(t,ξ3) is a
sublinear function.

First of all, we consider the estimate of the vertical part. Applying the Duhamel
formula to the second equation of (2.1) gives

v3(t)= et∆εv3
0 − ε

1−αEε(v · ∇v3)− ε2Eε(∂3q). (5.1)
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From Lemmas 4.1 and 4.2, it follows that

‖v3
Φ‖

Lγt B
−α+ 2

γ ,s

2,γ

6 C‖ea|D3|
γα

v3
0‖B−α,s2,γ

+ C‖ε1−α(v · ∇v3)Φ + ε
2∂3qΦ‖L̃1

t B−α,s2,γ
. (5.2)

Since div v= 0, we write

v · ∇v3
= vh
· ∇hv3

− v3divhvh
=∇h · (v

hv3)− 2v3divhvh.

Due to (2.3), we get by Lemma 3.4 that

‖∇h · (v
hv3)Φ‖L̃1

t B−α,s2,γ
+ ‖(v3divhvh)Φ‖L̃1

t B−α,s2,γ

6 C‖v3
Φ‖

Lγt B
−α+ 2

γ ,s

2,γ

‖vh
Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

.

We next turn to the pressure term in (5.2). By (2.2) and since div v= 0, the pressure q
can be written as

q = ε1−α
∑

`,m=1,2

(−∆ε)
−1∂`∂m(v

`vm)+ 2ε1−α
∑
`=1,2

(−∆ε)
−1∂`∂3(v

`v3)

− ε1−α(−∆ε)
−1∂3(v

3divhvh)
def
= q1

+ q2
+ q3.

Using the fact that the Fourier multiplier ∇2
ε (−∆ε)

−1 is bounded in Bs1,s2
2,q and

Lemma 3.4, we infer that

‖ε2∂3q1
Φ‖L̃1

t B−α,s2,γ
6 Cε2−α‖(vhvh)Φ‖L̃1

t B1−α,s
2,γ

6 Cε2−α‖vh
Φ‖

Lγt B
−α+ 2

γ ,s

2,γ

‖vh
Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

,

and

‖ε2∂3q2
Φ‖L̃1

t B−α,s2,γ
+ ‖ε2∂3q3

Φ‖L̃1
t B−α,s2,γ

6 Cε1−α‖(v3vh)Φ‖L̃1
t B1−α,s

2,γ
+ Cε1−α‖(v3divhvh)Φ‖L̃1

t B−α,s2,γ

6 Cε1−α‖v3
Φ‖

Lγt B
−α+ 2

γ ,s

2,γ

‖vh
Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

.

Plugging the above estimates into (5.2), and noting that α < 1, yields that

‖v3
‖

L
1
α
t B
−α+ 2

γ ,s

2,γ

6 C‖ea|D3|
γα

v3
0‖B−α,s2,γ

+ CΨ (t)θ(t)
1
γ . (5.3)

Next, we consider the estimate of the horizontal part. Applying the Duhamel formula
to the first equation of (2.1) gives

vh(t)= et∆εvh
0 − ε

1−αEε(v · ∇vh)− Eε(∇
hq). (5.4)

Since div v= 0, we write

v · ∇vh
=∇h · (v

h
⊗ vh)+ ∂3(v

3vh).
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From Lemmas 4.1 and 4.2, it follows that

εα‖vh
Φ‖

Lγt B
−α+ 2

γ ,s

2,γ

6 C‖ea|D3|
γα

vh
0‖B−α,s2,γ

+ Cε‖∇h
· (vh
⊗ vh)Φ‖L̃1

t B−α,s2,γ

+C‖(v3vh)Φ‖L̃1
t B1−α,s

2,γ
+ Cεα‖∇hqΦ‖L̃1

t B−α,s2,γ
.

We get by Lemma 3.4 that

ε‖∇h
· (vh
⊗ vh)Φ‖L̃1

t B−α,s2,γ
+ ‖(v3vh)Φ‖L̃1

t B1−α,s
2,γ

6 C
(
ε‖vh

Φ‖
Lγt B

−α+ 2
γ ,s

2,γ

+ ‖v3
Φ‖

Lγt B
−α+ 2

γ ,s

2,γ

)
‖vh
Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

.

For the pressure term, we can proceed as above to get

εα‖∇hqΦ‖L̃1
t B−α,s2,γ

6 C
(
ε‖vh

Φ‖
Lγt B

−α+ 2
γ ,s

2,γ

+ ‖v3
Φ‖

Lγt B
−α+ 2

γ ,s

2,γ

)
‖vh
Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

.

Summing up the above estimates yields that

εα‖vh
‖

Lγt B
−α+ 2

γ ,s

2,γ

6 C‖ea|D3|
γα

vh
0‖B−α,s2,γ

+ CΨ (t)θ(t)
1
γ . (5.5)

Hence, Proposition 2.3 follows from (5.3) and (5.5). �

6. Regularizing effect due to analyticity

This section is devoted to the proof of Proposition 2.4. Here we need to use the
regularizing effect from the analyticity.

Let us first consider the estimates of the horizontal part. Due to (5.4), we write

vh(t)= et∆εvh
0 − ε

1−αEε∇
h
· (vh
⊗ vh)− ε1−αEε∂3(v

3vh)+ Eε(∇
hq).

First of all, we have by Lemma 4.1 that

‖eΦ(t,D)et∆εvh
0‖

L̃γ
′

t B
2
γ ′
,s

2,γ

6 C‖ea|D3|
γα

vh
0‖B0,s

2,γ
. (6.1)

We get by Lemmas 4.2 and 3.4 that

‖[Eε∇
h
· (vh
⊗ vh)]Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

6 C‖(vh
⊗ vh)Φ‖

L̃
γ ′

2
t B

4
γ ′
−1,s

2,γ

6 C‖vh
Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

‖vh
Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

. (6.2)

And we infer from Lemma 4.3 that

ε1−α‖[Eε∂3(v
3vh)]Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

6
C

λ
1
γ

‖vh
‖

L̃γ
′

t B
2
γ ′
,s

2,γ

. (6.3)

We next turn to the estimates of the pressure term. Recall that in ğ 5 we rewrote the
pressure q as

q= q1
+ q2

+ q3.
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Using the fact that the Fourier multiplier ∇2
ε (−∆ε)

−1 is bounded in Bs1,s2
2,q , we get by

(6.2) that

‖[Eε∇
hq1
]Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

6 C‖vh
Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

‖vh
Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

, (6.4)

and, similar to (6.3), we have

‖[Eε∇
hq2
]Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

6
C

λ
1
γ

‖vh
‖

L̃γ
′

t B
2
γ ′
,s

2,γ

. (6.5)

For q3, we use Lemma 4.3 to get

‖[Eε∇
hq3
]Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

6 Cε1−α‖[Eε∂3(v
3divhvh)]Φ‖L̃γ

′

t B1−2α,s
2,γ

(6.6)

6
C

λ
1
γ

‖vh
‖

L̃γ
′

t B
2
γ ′
,s

2,γ

. (6.7)

Summing up (6.1)–(6.6) yields that

‖vh
‖

L̃γ
′

t B
2
γ ′
,s

2,γ

6 C‖ea|D3|
αγ

vh
0‖

B
0, 12
2,γ

+ CΨ (t)

(
1

λ
1
γ

+ Ψ (t)

)
. (6.8)

We next consider the estimates of the vertical part. Thanks to (5.1) and Lemma 4.1,
we get

‖v3
Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

6 C‖ea|D3|
γα

v3
0‖B0,s

2,γ
+ Cε1−α‖[Eε(v · ∇v3)]Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

+Cε2‖[Eε(∂3q)]Φ‖
L̃γ
′

t B
2
γ ′
,s

2,γ

. (6.9)

Using Lemmas 4.2 and 3.4, we have

‖[Eε∇
h
· (vhv3)]Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

6 C‖(v3vh)Φ‖
L̃
γ ′

2
t B

4
γ ′
−1,s

2,γ

6 C‖vh
Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

‖v3
Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

. (6.10)

And by Lemma 4.3 we get

ε1−α‖[Eε∂3(v
3v3)]Φ‖

L̃γ
′

t B
2
γ ′
,s

2,γ

6
C

λ
1
γ

‖v3
‖

L̃γ
′

t B
2
γ ′
,s

2,γ

. (6.11)

We have by Lemmas 4.2, 4.3 and 3.4 that

ε2‖[Eε(∂3q)]Φ‖
L̃γ
′

t B
2
γ ′
,s

2,γ

6 C‖(vhvh)Φ‖
L̃
γ ′

2
t B

4
γ ′
−1,s

2,γ

+ C‖(vhv3)Φ‖
L̃
γ ′

2
t B

4
γ ′
−1,s

2,γ

+
C

λ
1
γ

‖v3
‖

L̃γ
′

t B
2
γ ′
,s

2,γ

6 C‖vΦ‖
2

L̃γ
′

t B
2
γ ′
,s

2,γ

+
C

λ
1
γ

‖v3
‖

L̃γ
′

t B
2
γ ′
,s

2,γ

,
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which along with (6.9)–(6.11) gives

‖v3
‖

L̃γ
′

t B
2
γ ′
,s

2,γ

6 C‖ea|D3|
γα

v3
0‖B0,s

2,γ
+ CΨ (t)

(
Ψ (t)+

1

λ
1
γ

)
. (6.12)

Then Proposition 2.4 can be deduced from (6.8) and (6.12). �
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