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Abstract  We study the global well-posedness of 3D Navier—Stokes equations for a class of large initial
data. This type of data slowly varies in the vertical direction (expressed as a function of ex3), and it is
ill-prepared in the sense that its norm in ¢~ 1 will blow up at the rate ¢7¢ for % <a <1 as ¢ tends to
Zero.

1. Introduction

In this paper, we study Navier—Stokes equations with initial data which is slowly varying
in the vertical variable. More precisely, we consider the system

osu+u-Vu— Au=—-Vp inR; x £
(NS) divu=0

uli=0 = ug,e,

where 2 =R3 and upe is a divergence-free vector field, whose dependence on the
vertical variable x3 will be chosen to be ‘slow’, meaning that it depends on ex3, where &
is a small parameter. More precisely, our initial data is of the form

) —a_ 3
uo,e = (87 *vo(xn, €x3), €%y (xn, €x3)),

o

for a € [0, 1]. This initial data may be arbitrarily large, with size €™, in the space

Bgol,oo which is well-adapted space to measure the amplitude of the initial data for the
Navier—Stokes equations (see [10,12]).

The well-prepared case (¢ = 0) was studied by Chemin and Gallagher [10]. The
ill-prepared case (¢ = 1) was studied by Chemin et al. [12]. For the later case, the data
was supposed to evolve in a special domain T2 x R. Recently, Paicu and Zhang [17]
considered the intermediate case (@ = %) The aim of this paper is to generalize the

result of [12] to the domain R3 in the more difficult case of % <a<l.
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By making a change of the scale, one obtains a Navier—Stokes-type system with
anisotropic viscosity —Ag def Ay + 82832 and anisotropic pressure gradient —(Vpp, 823317);
see the rescaled system (2.1). In the rescaled system, there is a loss of regularity
in the vertical variable in Sobolev estimates if we want to obtain estimates which
are independent of &. To overcome this difficulty, one needs to work with analytical
initial data. The most important tool developed by Chemin [6] consists in making
analytical-type estimates, and at the same time controlling the size of the analyticity
band. This is performed by the control of nonlinear quantities which depend on
the solution itself. Even in this situation, it is important to take into account very
carefully the special structure of Navier—Stokes equations. In fact, a global in time
Cauchy-Kowalewskaya-type theorem was obtained in [12]. Some local in time results for
Euler and Prandt] equations with analytic initial data can be found in [18]. We mention
also some other works [1, 3,4, 14, 15] where are obtained estimates in analytic spaces for
FEuler and Navier—Stokes equations with control on the size of the analyticity band and
the analytic norm of the solution.

In [12], the fluid is supposed to evolve in a special domain £ = T? x R,. This
choice of domain is justified by the pressure term. Indeed, the pressure verifies the
elliptic equation Agp = Biaj(uiui), and, consequently, V,p = (—AS)*lvha,-aj(uiui). Because
we have that Ag_l converges to A;l, it is important to control the low horizontal
frequencies, while, in the case of the periodic torus in the horizontal variable, we have
only zero horizontal frequency and high horizontal frequency.

In order to extend the result of [12] to the domain R®, one of the key points is to
control the low horizontal frequency very precisely. For this purpose, we choose to work
in a class of anisotropic Sobolev spaces in [17]. An important observation is that the
operator A;lvh(avhb) is a bounded operator in these anisotropic Sobolev spaces. In
[17], we proved the global well-posedness of (NS) in the intermediate case of o« = % In
such case, there is only one half derivative loss in the vertical variable. Thus, the energy
method can be used to gain the smoothing effect of the half-order derivative from the
analyticity. We mention that the Cauchy-Kowalewskaya theorem allows one to control
in the analytical framework a loss of one full derivative but only locally in time. Here we
are interested in a global in time Cauchy—Kowalewskaya-type result.

In this paper, we will consider the case when % < a < 1. In this case, there is an
order-« derivative loss in the vertical variable. Thus, the energy method in [17] does not
work. Roughly speaking, we need to deal with three subtle questions in order to obtain
a global Cauchy Kowalewskaya-type theorem in R3: (1) the loss of regularity in the
nonlinear terms; (2) the control of the low horizontal frequency of the solution; (3) the
weak damping effect of the parabolic operator 3, — A,. We will use the semigroup method
and the smoothing effect of analyticity to overcome the loss of the a-order derivative
in the vertical variable. To control the low horizontal frequency of the solution, we
introduce anisotropic Besov spaces. We construct the suitable functional space of the
solution to capture the weak damping mechanism of the parabolic operator. Even with
these, the special structure of the equation plays an important role in our estimates. We
remark that the equation on the vertical component is a linear equation with coefficients
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depending on the horizontal components and with no loss of regularity in the vertical
variable in the pressure term.
Our main result is stated as follows.

Theorem 1.1. Let a >0, s > % Assume that («, y) satisfies

1 2 1
ael|=,1], <y<-—.
2 1+« o

Then there exists a constant n such that, for any divergence-free field vo satisfying

alD3|"* alD3|"*

lle VollBg:xy + |le VoIIBiaV-s <n

for any € € (0, 1), the Navier—Stokes system (NS) with initial data
uy = (al_avg(xh, £x3), 8_“vg(xh, 8)63))
has a global smooth solution on R3.
Remark 1.2. Another important improvement of this paper is that the global

well-posedness is established for more wider class of the initial data with Gevrey
regularity instead of analytic regularity, since ya could be less than 1.

Let us conclude the introduction by reviewing some other relevant examples of large
initial data generating the global solution of 3D Navier—Stokes equations. Chemin and
Gallagher [8] construct the first example of periodic initial data which is big in c 1
and strongly oscillating in one direction, which generates a global solution (see [9] for
the case of R3), where the special structure of Navier—Stokes equations was used in their
proof. We refer to [13,2, 11] and references therein for further progress.

2. Structure of the proof

2.1. Reduction to a rescaled problem
We seek the solution of the form
e (1,0) % (617 1, 3, £x3), £7V3 (0, 1 £33)).
This leads to the following rescaled Navier—Stokes system:
ot — At — 828§vh +el7% . vy = —V'yq,
v — Apvd — 620203 + 174 . Wi = —6203g,
RNS) {0 ; * (2.1)
divv=0,
v(0) =vo (),
def

where Aj, = 812 + 822 and V), déf(al, 02). As there is no boundary, the rescaled pressure g
can be computed with the formula

—Aeqg = %div(v- V),  A.=Aj + 202 (2.2)
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To state our result, we first introduce the Littlewood—Paley decomposition. Choose
two nonnegative even functions yx, ¢ € S(R) supported respectively in B={£ € R, |&| <
3yand C={& € R, 3 <|&| < 8} such that

XE+D 9278 =1 foranyéeR,
20
Zgo(Zijé) =1 forany & eR\ {0}
JjEZ

We need to introduce two classes of the frequency localization operators. The
localization operators AJ‘? and S}’ in the vertical direction are defined by

Af=F Hp@7I&If) forj>0, Sif=F"'(x@7ENf)= Y A,
7<i-1
A f = Sof, A}f:O for j < —2.

The localization operators A'j’? and S]h in the horizontal direction are defined by

Al =F Y@ gy, Sif= Y Alf forje

J<i-1

Now let us introduce the anisotropic Besov spaces, which are important to control the
low horizontal frequency of the function. The role of anisotropic Sobolev or Besov spaces
in the study of a Navier—-Stokes system with anisotropic vertical viscosity appears in
[7,16].

Definition 2.1. Let s1, 52 € R, g € [1, oo]. The anisotropic Besov space By 1 52 ig defined
by

def
Bn 52 de e S/(RZ’) |UF||B§1;2 < o0},

where

1
q
1302 def <Z 90ks1 sup 2952|| A7 ALF |1 ) .

keZ JezZ

51,8 .
L 2), whose norm is

We also need to use Chemin—Lerner-type Besov space 70, T; By,
defined by
1
def o . q
iz 0,738 S (Z 2951 | sup 27°2 | AY Abu(r) | .2 Hf},(O’T))
keZ JjeL.
For the sake of simplicity, we will denote LP(0, T; By 52) by L?le %2 Tt is easy to see that
L BA1A2 =14B A“Q ifp=gq.
For the rescaled system (2.1), we prove the following.
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Theorem 2.2. Let a>0,s > % Assume that (a, y) satisfies

L 1 2 <1 (2.3)
el=,1], <y < —. .
* 2 1+ Y o

Then there exists a constant n such that, for any divergence-free field vo satisfying

a|D3|"* a|D3|"*

lle VoIIBg:sy + Il VoIIB;xy,s <n

for any € € (0, 1), (RNS;) has a unique global smooth solution.

2.2. Definition of the functional setting

As in [12], the proof relies on exponential decay estimates for the Fourier transform of
the solution. Thus, for any locally bounded function @ on Rt x R3, and for any function
f, continuous in time and compactly supported in Fourier space, we define

fo & F1 (2, ).

Now we introduce two key quantities, which capture the weak damping mechanism of
the parabolic operator 9; — A.. We define the function 6(¢) by

. def
6= e IVpI” o +Ive0I7 . ., and 6(0)=0, (2.4)
2y ’ BQ,V 4
and we also define
def
v(n)= vell 2, (2.5)
Ly B;y
where y' = ﬁ and
def 1
D(1,6) = (a—1D)(E)NTY,  (E3) =1 +ED)2, (2.6)

for some A that will be chosen later on.

Proposition 2.3. A constant C exists such that, for any positive A, and for any t
satisfying 0(t) < a/X\, we have

l alDS‘yd l
6()7 <l voll s + CH D)7

Proposition 2.4. A constant C exists such that, for any positive A, and for any t
satisfying 0(t) < a/X\, we have

@ 1
q/(t) g C”e(l‘DSP/ VO“BO’S + CW(I) (q/(t) + 1) .
2,y =
AY
The proof of Propositions 2.3 and 2.4 will be presented in §§5 and 6 respectively. In
the following subsection, we will use Propositions 2.3 and 2.4 to complete the proof of
Theorem 2.2.
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2.3. Proof of Theorem 2.2
We use a continuation argument. For any 7, let us define

def 1
T, ={T:6(T)7 <4Cn, ¥(T) <4Cn).

Similar to the argument in [12], 7, is of the form [0, T*) for some positive T*. Hence,
it suffices to prove that T* = +o00. In order to use Propositions 2.3 and 2.4, we need to
assume that 6(T) < %, which leads to the condition

e (2)!

From Propositions 2.3 and 2.4, it follows that, for all T € 7,

1 2 2

8(T)7 < Cn+16C"n~,
1 (2.7)

YT <Cn+Cn|Cn+— ).

A
1
1
AV

. a % 1
4Cn <min( | =) .= ).
A 2

With this choice of , we infer from (2.7) that

We first choose A large enough that < 1, and then choose 1 small enough such that

1
0(T)r <4Cn, W(T) <4Cn,

which ensures that T* = 400, and thus we conclude the proof of Theorem 2.2. O

3. The action of subadditive phases on products

For any function f, we denote by fT the inverse Fourier transform of [ﬂ. Let us notice

that the map f + f1 preserves the norm of all B‘%f spaces. Throughout this section,

¥ will denote a locally bounded function on Rt x R® which satisfies the following
inequality:

V(&) SW(t§—n)+ ¥ n). (3.1)

In what follows, we will constantly use Bony’s decomposition from [5] that

fe=Tjg+Rjg. (3.2)

with
T SUBO N S
J J

We also use Bony’s decomposition in the horizontal direction,

fe=Tig+Tig+R'(f.9). (3.3)
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with
Tfe=2 SiufAle. R'.9= ) Ajfdje

J '=jl<1

Lemma 3.1 (Bernstein’s inequality). Let 1 < p < ¢ < 0o. Assume that f € LP(RY). Then
there exists a constant C, independent of f, j, such that

A . ; (1_1
suppf C {|€] < €2} = (109 |10 < C2*H G2 1,

1 , .
suppf C { < gl < C2f} = fly <277 sup [|8PF .

[Bl=lel

Lemma 3.2. Lets>% q €[1, 00], p, p1,p2 € [1, c0] with %:p%—i—p%, 01,02 <1, and
o1 + 09 > 0. Assume that ay € LplB(71 S and by € Lpr@ 5. Then there holds

[ sup 2| [47 ARTL0)] || 2| o + [ sup 2| [AF AR RED] [ 2
JezZ jeZ

< Ce 2(1—01—0‘2)/{ aw |+ sllbwll+ s,
< Cey llay 1 zzp g1 1bw lIz2 g2
with the sequence (cK)kez satisfying > yez cf < 1.

Proof. Let us first prove the case when the function ¥ is identically 0. Below, we only
present the proof for R,b; the proof for T,b is very similar. Using Bony’s decomposition
(3.3) in the horizontal direction, we write

ANRD) = ZA AL(S)0a A b)

= ZAVAk T’% A;b+Tgvbs,+2a+R (S 0a, AUD))

d—efAJrB+c

Considering the support of the Fourier transform of T%, aA] b, we find
7 +2

J Ak k<4

Then we get by Lemma 3.1 that

A2 <C D > 1S) oSk 1aAy ALbl 2
J 24 K —k|<4

A/
SC Y. Y IS eSkogalel Ay ALbl .
J2i—4 K —kl<4
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We use Lemma 3.1 again to get

h '
1S} 4280 qalle < D2 Y lApAfal

J'<JALK'<K =2

K’ v Ah
<C > > 2 A} Afvall sz,

j/’§j/+1 K<k —2

i .
<C > > 279N 4y Aballe,

j//gj/+1 K<k —2

from which and o1 < 1 it follows that

||Sup2’s||A||L2||Lp <2t~ “1—”2>"||a||Lp1351s||b||Lp2302ssup Z Z 2=U'=Ds¢y,
1L 54 k<4

A=o1—=02)k )| ||~ .
< Cei2 ”a”L';lB;};”b”L’;ng,zq’x' (3.4)
Similarly, we have

B= Y Y AAUALSL_\bS) oALa).
J=i—4 K —k|<4
Then we get by Lemma 3.1 and o2 < 1 that

s h AN
supzf So>0 At 1bliz 1 18] o AR alliz 1
J>i—4 kK —kl<4

| sup 2181 < €

(1-0o1—02)k _ ) ~ )
< Cp2t 701702 ”aHlf}lBg}; ||b||L1;23;?(;a . (3.5)
Now let us turn to C. We have

C= Z Z AVAL (S"+2A ,aA/V, Alb).
J =4k K =k—2; |k —k"|<1

Hence, we have by Lemma 3.1 and o1 + 02 > 0 that

. k \h \h
||supQJ ICllz2 [, < C||sup2® D > 2418y o Apady Alublz 11
JEE AR K k=2 K —k|<1
< C| sup2” Z Z 2|8, 5 A ,aIIL):(,gL%hMA]V,A'Q,,bIle ,
JEZ P-4k K k=2 K —k"|<1 Ly
l1—01—09)k — k' —k
< 2 allgg g Bl e Y 27 ey
K >k—2
< Cex23 7012k g1y pors [|B||702 oo ss. 3.6
X LGk I ”LI;IB;I{]S” ||L1;2B(2’?q5 ( )

Summing up (3.4)—(3.6) yields that

| up 201 4] A Rab) 2 gy < Cex2 == lalzmn s 1Bl 2 gz
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The lemma is proved in the case when the function ¥ is identically 0. In order to deal
with the general case, we only need to notice the fact that

|F[AjALRD)], )| < F[44L(R, +b )] ().
The proof of Lemma 3.2 is finished. (]

Remark 3.3. From the proof of Lemma 3.2, it is easy to see that

1[4} 4 ab)]

wlliz < €22 llagllgs Y 27K sup 2N A7 Ay 2

K >k—4 Jez

+C2—k012—13||a¢||331,s Z 2" sup 2°)| A7 Al by || 2
ks €L

foroy <1 and s > %

The following lemma is a direct consequence of Lemma 3.2.
Lemma 3.4. Let s > l ,q € [1,00], p,p1,p2 € [1,00] with % = p% + 1)—12. Assume that
ay € LplBa1 S and by € L‘"QBU2 5 with 01,09 <1 and o1 + o2 > 0. Then we have

| (ab)w ”'I:PTBg,qurQ*lJ < Cllag ||zl;13;}‘1-5 l|bw ||zf;23;3éX-

4. The action of the phase @ on the heat operator

Let @ (¢, &) be given by (2.6). In this section, we will study the action of the multiplier

e®®D) on the heat operator e!4¢.

Lemma 4.1. Let g1, g2, r € [1, o], 51, s2 € R. Then there holds

(0N o

voll g2

Tr ps1:52 C”e
LrTB2,q = 2 4

Proof. Thanks to the definition of Z’TB‘;%(}” space, we have

1

A ks ) ,—ct22* i shoa|D3|v® 1
1(€%v0) || o1 52 < (qu "Hlem 7, sup 2972 || A) Afe?P! vo||22)
o keZ ' jeL
1
q
< C(Z 20k01 =) sup 2052 AY Alle “W“voniz)
keZ Jez
Da |V
—C||€a| 3l Ve ” v1_732
2q
The proof of Lemma 4.1 is finished. O

We define E, by

t
Eof () /0 D8 f (1),
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Lemma 4.2. Let q,r1,r2 € [1,00],r2 < r1,51,52 € R, Then, for any
L2(0, T; Bgl’q—a,m) with o =2(1 + % - %), we have

1(Eef)

By < Cllifo ||sz2 By
Let B €[0,1] with B < o. Then, for any f € L'2(0, T; B§1;6+1’s2), we have

1 (Ee ((¢33)°f))

LrTlB';;? < C”fdi ||er2 B;{;Hﬂw .

Proof. Applying the Fourier multiplier ¢® 2 A]VA;(’ to E.f gives

t
edj(”D)A]VA'QE&f = /0 e(’_’)A€+¢(”D)_d’(”D)A]VA.qus (t)dr.
Due to the definition of @, we have

t
Q(t,8) —P(r,8) = —?»(:?3)”“/ 6t .

T

Then we take the Fourier transform to get
. ! (f— 2_ a (LA .
]:<€¢(”D)A;AZEJ) - /0 e~ DI [ 0O F[AY Al (1),
where |$|§ def |En]? + £2|£3]%. We take the L2 norm to obtain

: b ook, .
1[4} AREef] 6 ] 2 < /0 e AY Alfp (1)l 2 d,
from which and Young’s inequality we infer that

[sup 2 |[[ 47 ALES o 12
JEZ

i1 < C27% |[sup 2°2 | A A |l 2 || 2 -
T jez T

This gives the first inequality of Lemma 4.2.
Noticing that
jegalfe P <ot

we infer from (4.1) that

. 4 _ B 92k .
[ 88E- o]y le < € [ @ =78 Dy dlfy @l
Due to 8 < o, we have

t
/ Lo gy < o1+ Dk
0

Then, applying Young’s inequality gives
| sup 22| [A] A} E¢ (33)f ]
JEZ ’

ol JIEIRS ca P Sup 22| AY Affo 2
je

ro.
LT

This gives the second inequality of Lemma 4.2.
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Lemma 4.3. Let a(D) be a Fourier multiplier such that |a(f;‘)| < Cl&3]. We have
e [Ec@D) Pyl 2 < © ol P
L By y AY 24 BJ y

e [Ec @D 0PV, 20, < Sl 5.

'l y AV LBy,
Here (s, a, y) satisfy the conditions in Theorem 2.2.
Proof. Noticing that
jegs | e B < o 3

we infer from (4.1) that

' [AF ALE @D P)] g | 12

! —a . . jya 3+ / .
<c2” /0 (1 — 1) 2 B [OOA ) 4y R gl 2dr.

Thanks to Remark 3.3, we have

_ %
I14; VAR o2 < C2R27 v | E ey bup?”llA Al foll2
B2y k’>k 4

k(@—2)q—j
+C2 T e ST 2 sup 2P AV Alfe o

2,y k/<k+4 Jez

Consequently, we obtain

_ 2
e || [AY ARE: (a(D) ()] g || 2 < €272 y/k(Gjl,k(t) +Gu).

where G]’:’k(i =1, 2) is given by

t . .
G,-lk(t) _ 2,»a2k(37§)/ (t— I)J%aefcﬁk(;fz)fcww fge(z’)dﬂnvg(f)“ .

+2,.Y
By, v
x Y 2ves g sup2/“||AvAk/fq>(t)||L2dr
k' >k—4
. _4 11—« 2k jya (1A /
Gj%k(t)zzjazk(2+a V)/(t—t)_Te_cz (t—0)—ch 27 [ (¢ )dr ||V;J>(T)||Bfa+§,:
2y

x 3 2K sup 2°|| AY Al fo (7) | 2.
K<kss L

We get by the Holder inequality that

. 2 ! v [t ArdN a4 o v
Gl <2’“2k(3”)</ e ff“’”’@(r)fl’)y
0

!

o Y
(/ (t—‘[)iu )y L22k(l T)( Z 2k (a— y Sup2js||A Ak’flp(r)”[?) dt) ,

K >k—4 jez
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from which we infer that

!

C Y y—1
Gl 2—a)yk K (a—
E | sup j,kllLty/ <KE AN (/{)( E 2 v SUP2’“|IAVA f<p(f)||L2> dT)

kez €L keZ K >k—4
¥
%

22(2 a)yk( Z 2 (a— )|| Sup 2/A||A Ak/f@ ”L2 H >

Mz K>k—4

|lfq>||y 2, (4.3)

28 By,
Here, we used the fact that, due to y > %,
Q1-a)y 1l—a 2
< =1.
2 2 1—-«a
Similarly, we have
G217 ¢ (y—2)k % is ih 4 4
D IS GRllT, < 72 (3 2 sup21a7dlss ol ) de
kez €L ' keZ 0 \w<kta JET
C -~ , - . Y
<52 2”‘( > 2 sup2f‘||A;Ah,f¢||Lny2>
keZ K<kt I€L '
C
SyWel” s (4.4)

289:24

Y
Combining (4.3) and (4.4) with (4.2), we get

X[

gl <Z 22 =Lk || sup 2| [AY ARE: (a(D) ()] g lI2 H;/)
JE€ t

keZ

1
Y Gl 4
<§ | sup G k|| +§ ||Sup ’k”L}’/)

kez. €L kez J€

< Sl

% .
AV LVB

This gives the first inequality of Lemma 4.3. Since the proof of the second inequality is
similar, we omit the details here. O

5. Classical analytical-type estimates

This section is devoted to the proof of Proposition 2.3. In this part, we do not need
to use any regularizing effect from the analyticity, but only the fact that e?®%) is a
sublinear function.

First of all, we consider the estimate of the vertical part. Applying the Duhamel
formula to the second equation of (2.1) gives

V() = v — 1B (v - Vv3) — 62E, (83¢9). (5.1)
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From Lemmas 4.1 and 4.2, it follows that

3 Ds3|7* 3 1- 3 2
||V¢> ” y87q+%,5 < C”@al 3| VO”B;;“‘ + C”S ‘x(v - Vv )d) +¢ 836]4; ”Z}B;;Y (52)
t P2y ’ ’

Since divv = 0, we write
v Vi3 =" v? — 3divp = v, - () — 203divp .
Due to (2.3), we get by Lemma 3.4 that
h. 3 s 37 h s
(V- 'Y )q)”Lrle,y' + (v divpy )<1>||L[132’V»

3 h
SCIBI 2 VBl 2
L BQ,V 74 B2y,y

We next turn to the pressure term in (5.2). By (2.2) and since div v = 0, the pressure g
can be written as

g=¢c""" > (=A) T 90 (V) + 2617 Y (=AM apd3 (v
£,m=1,2 (=1,2

_ _ . def
— el A) L3 (3divi) = ¢t + 67 + &P

Using the fact that the Fourier multiplier V2(—A.)~! is bounded in B%{;Z and
Lemma 3.4, we infer that

20 1 2y
lle 33Q¢||23353~v < Ce™ || (v )¢|IZ}B$7,S
<C

2—a ., h h
S N A I

t By, L B;y
and
2 2 2 3. -« 3. h _ -« 371 h ~
lle 83q¢||L}B;ry,s +lle 33qq>|IL;B;vy,s < Ce 77y )(I’”L}Bi}“’s + Ce™ || (v divpy )q>||L}B;ny
1—a 3 h
<SC TR 2 el 2

Ly By, LY By,

Plugging the above estimates into (5.2), and noting that « < 1, yields that

o 1
V1 a2, < ClePel vgngic;,x +CE D)7 . (5.3)

t B2,y

Next, we consider the estimate of the horizontal part. Applying the Duhamel formula
to the first equation of (2.1) gives

Vi) = e vl — e E (v VW) — E. (V). (5.4)
Since divv = 0, we write

V-V =V, 0 @) + 953V,
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From Lemmas 4.1 and 4.2, it follows that

h
el | _op2

< Cle PGl as + Cell V! - 07 @ Vo 71550
LY By, v

+ IOV 71 gy + C 1 Vido I e
We get by Lemma 3.4 that

elV! - 0" @ oz e + 1070z gioss

SCEMDI, oozt 11, s )||Va>|| o 2
LtBQ;/ B

l‘2y L32

Y
For the pressure term, we can proceed as above to get

h
E“IIVh%IIz}B;ay,s < Clelvgll

3
y 7a+%.s + ”Vq)” 7(¥+73)”v¢” / %,s'
L Bz,y Lt BQ Y L, BQV,y
Summing up the above estimates yields that
va 1
V| a2 < C||e?Psl v0||B ws + CU DO (D)7 .
Lt BQ 14

Hence, Proposition 2.3 follows from (5.3) and (5.5)
6. Regularizing effect due to analyticity

This section is devoted to the proof of Proposition 2.4. Here we need to use the
regularizing effect from the analyticity.

Let us first consider the estimates of the horizontal part. Due to (5.4), we write

Vi) = emgvg — el E V. @) — el

I=e g a3(v3V") + E.(V'g).
First of all, we have by Lemma 4.1 that

yo
”e(P(lD) IAgvh” y %s <C||€a|D3| V ” OA

. (6.1)
Ly By,
We get by Lemmas 4.2 and 3.4 that
HENV" - (¢ @Ml 2,
L{ B},
< @Mall_y 40, SCIGI 2,51 3. (6.2)
L? B2y,v L 32 Y L B2V.y
And we infer from Lemma 4.3 that
e T NEBA el 2, < IV 2

. 2, (6.3)
LY By, AY 74 By,

We next turn to the estimates of the pressure term. Recall that in §5 we rewrote the
pressure ¢ as
1 2
a=49"+4*+4".
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Using the fact that the Fourier multiplier V2( Ag)~ 1 is bounded in B“’SQ, we get by
(6.2) that

h 1
IEV g Noll_, 2, <CIVGI_, 2.Voll_, 2., (6.4)
74 Bzy LBy, L/ By,

and, similar to (6.3), we have

C
NEN" a0l 2 <=V, 2. (6.5)
L By, AY Ly By,
For ¢3, we use Lemma 4.3 to get
IEV'G loll_, 2, < Ce'™* 05 divin) ] Iy e (6.6)
L],
C
<, z, - (6.7)
M L' BY
Summing up (6.1)—(6.6) yields that
1
W2 < ClletPe™ hn R C¥ (1) ( + wm). (6.8)
'y, AY

We next consider the estimates of the vertical part. Thanks to (5.1) and Lemma 4.1,
we get

3 D3|V* 1- 3
ol _, 2., < < C|lelPs! v0||BoY + Cel T [E.(v - VD)o |l s

LB 2924

Y Y

+CPIE sl _, 2, (6.9)
24 B?y

Using Lemmas 4.2 and 3.4, we have

IEY" - 06" oll_ 2 SCIGWVal oy,
L' BY L2 Bgy

SCWI_, 2, V50, 2. (6.10)
j74 BQV L' BY

v

2,y

And by Lemma 4.3 we get

C

1- 3.3

e NE el 5, < IPI_
LBy, AV L'BJ

We have by Lemmas 4.2, 4.3 and 3.4 that

2. (6.11)

2,y

2 hoh h3
EME@slell | 2 S CIOVIel 40, + CHOVDoll 4y, + ||v L, 2.,
L BQV L? B2V L? BQV AY Ly By,
<Clvel® | +71 [
[
L,VBQV AV LVBV
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which along with (6.9)—(6.11) gives

a 1
W31 2 < CllePs Wl gos + C (1) (lll(t) + 1). (6.12)
I/'sJ, 2y AY
Then Proposition 2.4 can be deduced from (6.8) and (6.12). O
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