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Abstract
Elevator failure may have fatal consequences for fighter aircraft that are unstable due to their high manoeuvrabil-
ity requirements. Many studies have been conducted in the literature using active and passive fault-tolerant control
structures. However, these studies mostly include sophisticated controllers with high computational load that cannot
work in real systems. Considering the multi-functionality and broad operational prospects of fighter aircraft, com-
putational load is very important in terms of applicability. In this study, an integrated fault-tolerant control strategy
with low computational load is proposed without sacrificing the ability to cope with failures. This control strategy
switches between predetermined controllers in the case of failure. One of these controllers is designed to operate in
a non-failure condition. This controller is a basic controller that requires very little computational effort. The other
controller operates when an asymmetric elevator failure occurs. This controller is a robust fault-tolerant controller
that can fly the aircraft safely in case of elevator failure. The switching is decided by a failure detection system.
The proposed integrated fault-tolerant control system is verified by non-linear F-16 flight simulations. These simu-
lations show that the proposed method can cope with failures but requires less computational load because it uses
a conventional controller in the case of no failure.

Nomenclature
atrim trim value of a vector (or variable) a
ȧ derivative of a vector (or variable) a with respect to time
AT transpose of a matrix A
h altitude (m)
L, M, N rolling, pitching and yawing moments, respectively (N.m)
Nd, Ed north and east geographic positions of the aircraft, respectively (m)
p, q, r roll, pitch and yaw rates, respectively (rad/s)
qr pitch-rate reference signal (rad/s)
r̂ residual vector (rad)
r̂f filtered residual vector (rad)
r̂decision decision signal that contains failure decision information
tf time of failure (s)
Td discretisation period (s)
V true velocity (m/s)
X, Y , Z total X-, Y - and Z-axis forces, respectively (N)
α, β angle-of-attack and sideslip angle, respectively (rad)
δe, δa, δr elevator, aileron and rudder deflections, respectively (rad)
δec, δac, δrc elevator, aileron and rudder deflection commands, respectively (rad)
δer, δel right and left elevator surface deflections, respectively (rad)
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δerf
failed right elevator deflection command (rad)

δT throttle setting [0–100]
τ time constant (s)
φ, θ , ψ Euler angles for roll, pitch and yaw, respectively (rad)
0m×n m × n-dimensional zero matrix
In n × n-dimensional identity matrix

1.0 Introduction
Control surface failure in aircraft can cause performance degradation, and even system instability
leading to serious accidents. In the aviation industry, developments that will increase the level of safety
and minimise the risk in case of critical failure have come to the fore in recent years. In this regard,
developments in civil and military aviation generally follow two different approaches. In the civil
aviation industry, hardware redundancy is the preferred approach [1, 2, 3]. In this approach, if the
primary control surface fails, a redundant control surface automatically takes the control authority hier-
archically. However, redundant control surfaces and actuators increase the weight of the aircraft, thus
this approach is not preferred in military aviation, which requires high manoeuvrability capabilities. In
military aircraft, methods that provide flight safety by using other existing control surfaces are generally
used. This approach is known as aerodynamic redundancy [4, 5]. In this approach, if any one of the
control surfaces fails, the flight control system uses other existing control surfaces to achieve stability
requirements and even complete the mission. Therefore, Fault-Tolerant Control (FTC) approaches that
use aerodynamic redundancy have achieved prominence in the literature recently [6, 7, 8].

The many FTC methods that have been developed can be categorised into two types: passive and
active FTC systems [9, 10, 11, 12]. In passive FTC, controllers are designed to be robust against a
class of presumed failures. A single robust controller works for all conditions in this control approach
[13, 14, 15, 16]. On the other hand, in active FTC systems, a structure is used that changes controller
parameters or switches between pre-designed multiple controllers, depending on the occurrence of
particular failures [17, 18, 19, 20]. In addition, some hybrid methods have also been proposed in the
literature [21, 22, 23]. For both civil and military aircraft, controlled dynamics are examined under
two headings: longitudinal and lateral/directional [24, 25, 26, 27]. Control of longitudinal dynamics
is more important for military combat planes, since these planes have unstable longitudinal dynamics
[28, 29, 30]. For longitudinal dynamics, control of the pitch rate is the most important aim, since it is
important in both target tracking and in the critical flight phases of approach and landing [31, 32, 33].
The classical approach to pitch-rate tracking is to use a simple proportional–integral (PI) controller,
which works satisfactorily in case of no failures [31, 34, 35, 36]. However, it was shown by Gümüşboğa
et al. [37] that this approach cannot cope with asymmetric elevator failures. Therefore, a robust
FTC approach has been proposed by Gümüşboğa et al. [37] to cope with such failures. Such robust
FTC systems can deal with failures very well but are more sophisticated than a classical controller
mathematically. In this paper, after briefly presenting these two control structures, we compare them in
terms of their computational requirements, revealing that the computational load is considerably higher
for the robust FTC than that for the classical controller.

The sophisticated FTC increases the computational load greatly in just one control loop. The use of
such controllers in all the control loops operating on a fighter plane would increase the computational
load enormously. This motivates a new control approach that is both capable of handling failures and
has a reasonable computational load that enables its use in real life. In the present paper, to solve this
problem, an integrated FTC approach is proposed. This control system is represented in Fig. 1 (where q
and qr are the pitch rate and its reference value, respectively). This control system approach is based on
the fundamental fact that, since control surface failure is a rare event, it does not make sense to use the
robust FTC unless a failure occurs. In this structure, the aircraft is controlled by classical control systems
when there is no malfunction (nominal operation). Thus, the aircraft can provide a high control loop
ratio with computationally effective controllers to fulfil all mission expectations (e.g. in high-manoeuvre
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Figure 1. Block diagram of the integrated FTC system.

dogfights). When a failure occurs, the fault detection system detects it and activates the robust FTC via a
switching mechanism. In this case, high mission expectations are abandoned and flight safety becomes
the priority. Thus, using a lower control loop rate, the fighter aircraft can return home safely. An EKF-
based failure detection system is proposed to detect the failure of the right elevator. The use of such
a failure detection system instead of directly evaluating the measurements increases the robustness of
the fault decision process. Therefore, if the failure occurs once, it is always considered faulty in the
ongoing process. Thus, after the failure decision, the fault-tolerant controller operates continuously.
This is a realistic assumption because, once a control surface on the aircraft is broken, the probability
of self-recovery is very low.

This integrated FTC structure proposed herein combines the advantages of active and passive FTC
systems. The proposed approach could be applied to all the control systems on an aircraft. In essence, this
structure offers a reasonable logic between complex but robust and effective but fragile control systems.
To demonstrate the performance of this control approach in a limited space, the robust controller in
Fig. 1 is chosen as a robust pitch-rate control augmentation system presented previously [37]. Since
there is no universal benchmark in this regard, the results of this proposed approach have been shown to
be almost identical to the use of robust FTC alone. Thus, a plausible control approach is proposed that
is equally resistant to failure and very effective in terms of computational load.

As a case study, we consider the F-16 aircraft, which is used in many air forces and has been con-
sidered widely in the literature [38, 39, 40]. In Section 2, we first briefly present a non-linear model for
the F-16 dynamics as previously obtained by Gümüşboğa et al. [41] and modified by Gümüşboğa et al.
[42] to accommodate the dynamics in the case of asymmetric elevator failure. This non-linear model is
used both for simulations and to derive a linear design model, obtained previously by Gümüşboğa et al.
[37] and also briefly presented in Section 2. Then, Section 3 briefly presents and compares the classical
controller and the robust FTC designed by Gümüşboğa et al. [37]. The failure detection system to be
used in the proposed integrated control strategy is presented in Section 4. The proposed integrated con-
trol structure is presented in Section 5, and its performance is verified by non-linear flight simulations.
Finally, some concluding remarks are given in Section 6.

2.0 Aircraft and Control Surface Dynamics
In the first subsection of this section, we first briefly present the non-linear model for the dynamics of
the F-16 obtained by Gümüşboğa et al. [41, 42]. The non-linear control surface actuation model and
the control surface failures considered in this work are presented in the second subsection. Finally, the
linear model used in the design of controllers is presented in the third subsection.

2.1 Non-linear aircraft model
The non-linear F-16 dynamics model obtained by Gümüşboğa et al. [41] consists of six sub-models:
control surface actuation model, aerodynamic model, propulsion model, gravity model, atmosphere

https://doi.org/10.1017/aer.2021.66 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.66


The Aeronautical Journal 1571

model and the Equations of Motion (EoM). The control surface actuation model is detailed in the next
subsection. The aerodynamic model produces the aerodynamic forces (X, Y , Z) and moments (L, M, N)
acting on the aircraft. The original model, which is partly data based and partly equation based, was pre-
sented by Gümüşboğa et al. [41] and modified by Gümüşboğa et al. [42] to accommodate the dynamics
in the case of asymmetric elevator failure. In the present study, we use this modified model (see also
Gümüşboğa et al. [37]) for all the simulations. However, the linear design model (Subsection 2.3) is
based on the original model presented by Gümüşboğa et al. [41]. The propulsion model is constructed
using experimental data and produces the engine thrust value (T ) based on the throttle setting (δT). The
gravity model produces the gravitational acceleration value based on the latitude of the geodetic location
on the Earth (which is assumed to be 30◦ throughout this work) and the altitude of the aircraft (h). The
atmosphere model is data based and calculates the speed of sound and the dynamic pressure (to be used
in the aerodynamic and propulsion models) based on the altitude and the velocity of the aircraft. Finally,
the EoM consist of the kinematic and dynamic equations related to the six-degrees-of-freedom motion
of the aircraft. This model consists of 12 non-linear, coupled, first-order differential equations [31, 43]
that produce the 12 variables of motion: the true velocity (V ), the angle-of-attack (AoA) (α), the sideslip
angle (β), the roll (p), pitch (q) and yaw (r) rates, the roll (φ), pitch (θ ) and yaw (ψ) angles, the north
(Nd) and east (Ed) geographic positions and the altitude (h) of the aircraft, based on the aerodynamic
forces (X, Y , Z) and moments (L, M, N) calculated by the aerodynamic model and the thrust value (T )
calculated by the propulsion model. More detailed information about the non-linear dynamic model of
the F-16 aircraft can be found in the works by Gümüşboğa et al. [41, 42], Huo [43], Stevens et al. [31]
and Nguyen et al. [44].

2.2 Non-linear control surface actuation models
The aircraft’s control surface actuators are modelled as linear first-order lag systems appended by some
rate and deflection limits [31, 43, 44, 45]. The control surface deflection commands (δec , δac , δrc ), spec-
ified by the flight control system, enter this model as inputs. The actual angular deflection of the flight
control surfaces (δe, δa, δr) are the outputs of this model. Here, the subscripts e, a and r respectively refer
to the elevator, ailerons and rudder. The transfer function for the linear lag dynamics is

Gactuator(s) = 1

τ s + 1
(1)

where the time constant is taken to be τ = 49.5 × 10−3s, for all three control surfaces [44]. However,
the deflection and rate limits are different for each control surface. The control surface deflections are
limited as follows: |δe| ≤ 0.4363, |δa| ≤ 0.3752 and |δr| ≤ 0.5236rad. Additionally, the control surface
deflection rates are limited as follows:

∣∣δ̇e

∣∣ ≤ 1.0472,
∣∣δ̇a

∣∣ ≤ 1.3963 and
∣∣δ̇r

∣∣ ≤ 2.0944rad/s [44, 43].
The above dynamics, however, are valid for a healthy control surface. When control surface failure

occurs, these models must be modified. The failures we consider in the present study are freezing (lock-
in-place) and floating [46]. In a freezing failure, the control surface becomes locked in its last position
before the failure occurs. In a floating failure, the control link that drives the control surface breaks. This
corresponds to the zero hinge moment state, and the control surface deflects in accordance with the air
flow passing over it, which is determined by the AoA of the tail [36], which can be assumed to be the
same as that of the aircraft [42].

Furthermore, we assume that such a failure occurs only in the right elevator (as explained in the
work by Gümüşboğa et al. [37], the right and left elevator surfaces can move independently on the F-16
aircraft, giving the possibility of such an asymmetric failure; furthermore, as explained in the work
by Gümüşboğa et al. [37], an asymmetric failure produces a more challenging scenario since, besides
a loss in the pitch moment, serious roll moment disturbance is also produced). To consider such an
asymmetric failure, the right and left elevator angles must first be differentiated (in the healthy aircraft,
these two angles are assumed to deflect equally). Thus, hereafter, we let δer and δel denote the right and
left elevator deflection, respectively. When a failure of the right elevator occurs, the left elevator angle,
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δel, continues to move according to the healthy model. For the right elevator, however, instead of the
actual elevator command, δec (t), a modified signal, δerf (t) at time t is assumed to enter to the control
surface actuation model described above, where

δerf (t)=
{
δec (tf ), ∀t ≥ tf :freezing failure

−0.5α(t), ∀t ≥ tf :floating failure
(2)

where tf is the time of failure and α(t) is the AoA at time t (see Gümüşboğa et al. [42, 37] for details).

2.3 Linear design model
In a healthy F-16 aircraft, the longitudinal motion and the lateral/directional motion are decoupled
[31, 34]. To utilise this decoupling, in the linear model, the states are ordered as first the longitudi-
nal states (V , α, θ , q) and then the lateral/directional states (β, φ, p, r). The other states (Nd, Ed, ψ , h)
are not used in the linear model, since they have either no or negligible effect on the dynamic behaviour
of the aircraft. The Nd, Ed andψ state derivatives are functions of other states, but these states themselves
are not coupled back into the state equations (and thus have no effect on the other states). Also, the alti-
tude state, h, has negligible coupling to other states [31]. The linearisation is done around an operating
point, that is, a flight condition. The calculated equilibrium values of the state and input variables at a
given flight condition are called trim values [41]. The state vector, x, and the input vector, u, used in the
linear model are defined as

x = [
	V 	α 	θ 	q 	β 	φ 	p 	r

]T

u = [
	δe 	δa 	δr

]T (3)

where 	 indicates the deviation of the actual value from the trim value. Details of the linearisation
procedure can be found in work by Gümüşboğa et al. [37], and details of the calculation of the trim
values can be found in work by Gümüşboğa et al. [41]. In the present study, as the flight condition, we
consider steady wings-level flight at V = 100m/s and h = 1, 000m. The trim values of the states and the
inputs for this flight condition are as follows (in SI units): xtrim = [100 0.123 0.123 0 0 0 0 0]T and
utrim = [ − 0.024 0 0]T .

The linearised model for the aircraft dynamics (apart from the control surface actuators) is repre-
sented as

ẋ(t) = Ax(t) + Bu(t), (4)

where A and B are the system dynamics and the input matrices, respectively. For the above-mentioned
flight condition, these matrices are obtained by Gümüşboğa et al. [37] as (in SI units)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.022 −1.395 −9.828 −0.672 0 0 0 0

−0.002 −0.582 0 0.908 0 0 0 0

0 0 0 1 0 0 0 0

3 × 10−7 0.324 0 −0.708 0 0 0 0

3 × 10−9 0 0 0 0.182 0.097 0.143 −0.996

0 0 0 0 0 0 1 0.145

5 × 10−7 −4 × 10−6 0 0 −19.291 0 −2.047 0.716

3 × 10−7 −8 × 10−6 0 0 5.364 0 −0.041 −0.337

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)
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and

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.139 0 0

−0.072 0 0

0 0 0

−4.301 0 0

0 −0.010 −0.028

0 0 0

0 −15.980 2.470

0 −0.667 −1.304

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

The decoupling mentioned above is evident from the above matrices, where the elevator deflection
affects the longitudinal states while the aileron and rudder deflections affect the lateral/directional
states.

The design models for each of the control surface actuators, on the other hand, are obtained as the
negative of the linear lag dynamics, given by equation (1) [31]. Thus, for each control surface, the transfer
function from its command to its (negative) deflection is assumed to be

P(s) = −20.2

s + 20.2
. (7)

The negative sign is due to the fact that positive control surface deflections cause negative related
aerodynamic moments.

3.0 Classical and Robust Fault-Tolerant Controllers
In this section, the classical controller and the robust FTC to be used in the proposed integrated FTC,
shown in Fig. 1, are briefly presented and then compared.

3.1 The classical controller
The classical controller consists of two components: a pitch-rate Control Augmentation System (CAS)
and a roll-axis Stability Augmentation System (SAS), both of which have been studied extensively in the
literature and are currently used in most aircraft [34, 35, 31]. The pitch-rate CAS is used for pitch-rate
tracking. The roll-axis SAS, on the other hand, is used to reject any roll-axis disturbances. This is nec-
essary in the present study to enable a fair comparison between the classical controller and the robust
FTC, since asymmetric elevator failure produces serious roll-axis disturbance. The overall classical
controller is implemented as shown in Fig. 2, where the pitch-rate CAS and the roll-axis SAS com-
ponents are clearly indicated. Since the design of the control system is based on the linear model, the
deviations of the measured signals around their trim values are also shown in this figure. Furthermore,
	qr = qr − qtrim, where qr denotes the pitch-rate reference signal. Next, we briefly present the design
procedures for each component of the classical controller, which were originally given in the work by
Gümüşboğa et al. [37] in more detail.

3.1.1 The pitch-rate CAS
The pitch-rate CAS uses the pitch-rate (q) and AoA (α) measurements and produces the elevator com-
mand (δec), as shown in Fig. 2. The design of the pitch-rate CAS is based on the linearised longitudinal
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Figure 2. The classical controller.

sub-model, which is obtained from the linearised model (4) by taking the first four states and the first
input. Furthermore, (7) is used as the elevator model. The modes of the open-loop linearised longitudinal
sub-model are

−0.1256 ± 0.1507j︸ ︷︷ ︸
short period modes

, −1.1950, 0.1351︸ ︷︷ ︸
phugoid modes

In addition, there is also an open-loop mode at −20.2 due to the actuator dynamics. This clearly shows
that the aircraft is unstable in the longitudinal direction, since one of the so-called phugoid modes lies
in the right half of the complex plane. To stabilise the system, 	α feedback is used in the inner loop as
shown in Fig. 2. The kα gain is determined by the root-locus method as kα = 0.08. When the inner loop
is closed by this feedback, the eigenvalues related to the phugoid mode (before the outer loop is closed)
are obtained as {−0.0069 ± 0.0290j}, with only negligible displacements in the other modes. Thus, this
feedback stabilises the longitudinal dynamics. After the inner loop is closed, the PI controller, with
transfer function

CPI(s) = kprop + ki

s
(8)

is designed, to achieve the desired tracking of the pitch-rate reference signal. The coefficients kprop and
ki are determined using the PID Tuner tool in Simulink software as follows: kprop = 1 and ki = 0.75.

3.1.2 The roll-axis SAS
The roll-axis SAS uses the roll-rate (p) measurement and produces the aileron command (δac), as shown
in Fig. 2. The design of the roll-axis SAS is based on the linearised lateral/directional sub-model, which
is obtained from the linearised model (4) by taking the last four states and the second input (the rudder
command is not used since the only aim is to stabilise the roll dynamics while no directional tracking
is performed). Furthermore, (7) is used as the aileron model. The modes of the open-loop linearised
lateral/directional sub-model are

−0.2013 ± 2.7585j︸ ︷︷ ︸
Dutch-roll modes

, −1.7926︸ ︷︷ ︸
roll mode

, −0.0067︸ ︷︷ ︸
spiral mode

The task of the roll-axis SAS is to increase the stability of the roll mode for a better roll motion response.
For this,	p feedback is used, as shown in Fig. 2. The kp gain is determined by the root-locus method as
kp = 0.1, which places the roll mode at s = −3.68, which is about twice as fast as the open-loop value.
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Figure 3. The robust FTC.

3.2 The robust FTC
In the work by Gümüşboğa et al. [37], it was shown that the classical controller achieves stability and
desired tracking of pitch-rate reference signals in the case of a healthy aircraft. However, it cannot cope
with asymmetric elevator failure. Therefore, a robust FTC was designed in the work by Gümüşboğa
et al. [37] to achieve stability and pitch-rate tracking despite such failures. This controller has a two-loop
structure, as shown in Fig. 3.

The inner loop aims for robust stabilisation of the aircraft despite asymmetric elevator failure. The
outer loop aims for tracking of pitch-rate reference signals. The inner loop is designed using the H∞
control approach [47]. This controller is designed based on an extended model described as

ẋext = Aextxext + B1w + B2uc

z = C1xext + D11w + D12uc

y = C2xext + D21w + D22uc

(9)

where xext = [	V 	α 	θ 	q	β 	φ 	p	r	δe 	δa 	δr]T and uc consists of control commands, uc =
[	δec 	δac 	δrc ]

T . In this control problem, the measurement output vector is y = [	p 	q 	α 	φ]T .
It is assumed that these variables can be measured directly. The H∞ control method minimises the
effect of the exogenous disturbance input, w, on the performance output, z. Thus, these vectors should
be selected in accordance with the asymmetric elevator failure case. The works by Gümüşboğa et al.
[42, 37] show that asymmetric elevator failure leads to disturbances in the pitch and roll moments.
The other forces and moments are indirectly induced with coupling effects as the symmetry of the
aircraft is impaired due to asymmetric elevator failure. Thus, the exogenous disturbance input w is cho-
sen as the moment and force disturbances, w = [δL δM δN δX δY δZ]T . Since the aim is to minimise
the effect of these disturbances on the roll and pitch rates, as well as on the roll angle, the devia-
tions of these variables from their trim values must be chosen as part of the z vector. Furthermore,
because the control surface deflections and their rates must satisfy certain limits, the deviations of
these variables from their trim values must also be chosen as part of the z vector. Thus, the per-
formance output vector is chosen as z = Q[	p	q	φ 	δe 	δa 	δr 	̇δe 	̇δa 	̇δr]T , where Q is a
constant diagonal weight matrix with positive diagonal elements, which are all taken as unity in
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the present application. The matrices for this extended F-16 model are then obtained as follows (in
SI units):

Aext =
[

A B
03×8 −20.2I3

]
, B1 =

[
B̃1

03×6

]
, B2 =

[
08×3

−20.2I3

]
, C1 = Q

⎡⎢⎣ C̃1 03×3

03×8 I3

03×8 −20.2I3

⎤⎥⎦

D11 = 09×6, D12 = Q

⎡⎢⎣ 03×3

I3

−20.2I3

⎤⎥⎦ , C2 = [
C̃2 04×3

]
, D21 = 04×6, D22 = 04×3

(10)

where

B̃1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 × 10−4 0 1 × 10−5

0 0 0 −1 × 10−6 0 8 × 10−6

0 0 0 0 0 0
0 1 × 10−5 0 0 0 0
0 0 0 0 −1 × 10−6 0
0 0 0 0 0 0

8 × 10−5 0 1 × 10−6 0 0 0
1 × 10−6 0 1 × 10−5 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C̃1 =
⎡⎣0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0

⎤⎦ , and C̃2 =

⎡⎢⎢⎣
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0

⎤⎥⎥⎦
Here, A and B are given in (5) and (6), respectively. Additionally, 0 and I denotes the zero and identity
matrix with the indicated dimension, respectively.

The H∞ controller is then designed in the MATLAB environment using the H∞ control design tool-
box. The design uses the extended F-16 model given above. The state-space realisation of the robust
controller designed is as follows (in SI units):

˙̂x = Âx̂ + B̂y

uc = Ĉx̂ + D̂y,
(11)

where

Â =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.022 52.987 −9.828 6.984 0 0.003 −0.005 0 −1.140 0 0
−0.002 −1.092 0 0.736 0 6 × 10−6 1 × 10−5 0 −0.072 0 0

0 −0.834 0 0.690 0 2 × 10−5 4 × 10−5 0 0 0 0
2 × 10−7 0.095 0 −0.939 0 1 × 10−6 2 × 10−6 0 −4.301 0 0
3 × 10−9 −3 × 10−6 0 −5 × 10−7 0.182 0.081 0.254 −0.996 0 −0.010 −0.028

0 9 × 10−6 0 1 × 10−6 0 −0.872 0.514 0.145 0 0 0
5 × 10−7 1 × 10−5 0 2 × 10−6 −19.291 −0.486 −5.292 0.716 0 −15.980 2.469
3 × 10−7 −3 × 10−6 0 9 × 10−7 5.364 0.085 −0.024 −0.337 0 −0.667 −1.304

−1 × 10−4 0.1462 4 × 10−4 0.710 4 × 10−5 −2 × 10−5 −8 × 10−6 −4 × 10−6 −2.481 3 × 10−5 −4 × 10−6

7 × 10−7 −8 × 10−6 −4 × 10−8 −1 × 10−5 −33.445 12.954 6.508 5.509 3 × 10−5 −26.499 4.394
−3 × 10−9 −2 × 10−6 −7 × 10−7 1 × 10−6 8.259 −2.265 −1.168 −0.887 −4 × 10−6 4.394 −1.3527

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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B̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.534 −2 × 103 −1 × 104 0.896
−0.004 57.778 129.159 −0.002
−0.013 104.164 211.074 −0.007

−8 × 10−4 77.677 57.778 −3 × 10−4

−37.403 1 × 10−4 7 × 10−4 5.387
162.994 −3 × 10−4 −0.002 292.588
1 × 103 −8 × 10−4 −0.004 162.994
−5.838 −3 × 10−4 −0.001 28.411

0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ĉ =⎡⎣3 × 10−8 −3 × 10−5 −8 × 10−8 −1 × 10−4 −8 × 10−9 3 × 10−9 2 × 10−9 0 −0.004 −6 × 10−9 0

0 2 × 10−9 0 3 × 10−9 0.007 −0.003 −0.002 −0.001 −6 × 10−9 0.001 −9 × 10−4

0 0 0 0 −0.002 4 × 10−4 2 × 10−4 2 × 10−4 0 −8 × 10−4 −0.004

⎤⎦

D̂ = 03×4

In this calculation, values smaller than 1 × 10−9 (in absolute value) are directly represented as zero
because they do not contribute to the accuracy of the calculation.

After the inner loop is closed by this controller, the PI controller in the outer loop, which has the
transfer function (8), is designed to achieve the desired tracking of the pitch-rate reference signal.
The coefficients kprop and ki are determined using the PID Tuner tool in Simulink software as follows:
kprop = 1.5 and ki = 1.1. More details on the design procedure can be found in the work by Gümüşboğa
et al. [37].

3.3 Comparison of the classical controller and the robust FTC
The performance of the classical controller and the robust FTC was examined in detail by Gümüşboğa
et al. [37], both for the healthy aircraft and in the case of asymmetrical elevator failure. Furthermore, in
Section 5 of the present paper, the performance of these controllers is also examined together with the
proposed integrated FTC.

The healthy condition simulations presented in Section 5.1 (Fig. 8) show that both controllers
work very well with very similar performance when there is no elevator failure. However, the failure
condition simulations in Sections 5.2 and 5.3 (Figs 11 and 14) show that the classical controller cannot
cope with asymmetric elevator failure, as the flight safety is impaired and the aircraft crashes into the
ground during the simulation period of 20s. On the other hand, the robust FTC continues to fly the
aircraft in a safe manner and the pitch-rate tracking is reasonably good despite the occurrence of either
of the two failures (Figs 11 and 14).

This analysis shows that, regarding the performance in the case of no failure, either of the two con-
trollers could be used. Therefore, since the robust FTC is the only choice in the case of asymmetric
elevator failure, one might be tempted to use it in both the no-failure and failure conditions. However,
one must also consider the computational complexity.

The robust FTC represented in Fig. 3 includes an H∞ controller in the inner loop and one PI controller
in the outer loop. The H∞ controller is an 11-dimensional, 4-input, 3-output linear time-invariant system.
The discrete-time implementation of the overall robust FTC requires 200 floating-point multiplications
and 188 floating-point additions in each cycle. The classical controller, on the other hand, includes one
PI controller and two static feedback gains (kα and kp). Therefore, the discrete-time implementation
of this controller requires four floating-point multiplications and four floating-point additions in each
cycle. Therefore, the complexity of the robust FTC is about 50 times that of the classical controller.
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Table 1. Controllers’ calculation times

Controller Mean calculation time
Classical 0.2684µs
Robust FTC 3.1823µs

This means that, in a dedicated computer, the calculation times required for the robust FTC may be as
much as 50 times longer than those required for the classical controller. This ratio may, of course, be
smaller in a non-dedicated computer. To obtain an initial idea on what this ratio might be in a non-
dedicated computer, we timed the calculations done to compute the controller commands during the
non-linear simulations. These simulations were carried out using MATLAB R2018b software on a basic
laptop with an Intel i7 8550U 2GHz processor and 8GB RAM. The calculation times were measured
by using the ‘tic-toc’ method in MATLAB, and only the time it takes for the control system to generate
controller outputs within one iteration was measured. These calculation times are, of course, influenced
by factors such as instantaneous processor performance changes, operating system background processes
and so on. To minimise such effects, the simulations (done with an integration step size of 10ms) were
run for as long as 2,000s, that is, 200,000 cycles, and the averages of the calculation times over 200,000
cycles obtained for each control structure. The obtained mean calculation times are presented in Table 1.
These values indicate that the calculation time required for the robust FTC is as much as 12 times longer
than that required for the classical controller. Considering that the flight computer runs many different
tasks simultaneously, it may be important to economise on the calculation times of each task. Therefore,
unless there is a need, such as the occurrence of a failure, it would be better to use the classical control
structure. This motivates the use of the integrated control structure proposed herein. To use this structure,
however, one also needs a failure detection system. The design of this system is presented in the next
section.

4.0 Failure Detection System
In this section, the failure detection system to be used as part of the proposed integrated FTC, shown
in Fig. 1, is presented. In preliminary work, a model-based failure detection system was designed by
Gümüşboğa et al. [48]. Although that design works successfully for control surface failure detection, it
creates delays in the detection when aircraft pitch-rate manoeuvres are involved. In the present work, this
problem is solved by modifying this structure, and this modified failure detection system is then used to
detect right elevator failures. Before presenting the specific design, however, we provide an introduction
to the failure detection strategy employed here.

4.1 Failure detection: an overview
A failure detection system design includes a robust residual generation process followed by a decision-
making process [49, 50]. The failure detection system has the basic structure shown in Fig. 4 for a
particular set of hypothesised failures. The residual generation process uses the information obtained
from the sensors and the dynamic model of the system. While the information about the actual condition
of the system comes from the sensors, the dynamic model of the system contains information about how
the healthy system should behave. The process of obtaining the deviation between these information
robustly is called residual generation. Intuitively, the residuals refer to the deviation between the sensor
data and the expected behaviour of the healthy system. When there is no failure in the system, the
residuals should be unbiased, indicating agreement between the observed and the expected, normal
behaviour of the system. On the contrary, a failure signature often takes the form of residual biases that
are characteristic of the failure.

In the decision-making process, these residuals are examined for the presence of failure signatures.
Decision functions or statistics are first calculated using the residuals. This includes processes that
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Figure 4. General structure of a failure detection system.

Figure 5. Failure detection system.

increase the accuracy of information such as fusing residues, filtering and so on. After that, a decision
rule is applied to the decision functions to determine whether any failures have occurred in the system.
The decision process generally use a simple threshold test on the instantaneous values of the residuals,
but there are also more sophisticated algorithms based on statistical decision theory [51].

4.2 Failure detection system design for right elevator failure
In this subsection, a failure detection system, based on the general framework given above, is presented
for the right elevator failure. When a freezing or floating failure occurs on the right elevator surface, the
angle of deflection of the right elevator clearly deviates from the elevator command produced by the
controller. This deviation indicates a faulty condition. The failure detection system is shown in Fig. 5.
This system contains a residual generation process followed by a decision-making process.

4.2.1 Residual generation
The residual generation process is shown in Fig. 5. This process uses the deflection angle of the right
elevator, δer, which is measured by a rotary absolute encoder, and the elevator control input, δec , generated
by the control system. To generate a residual, the sensor data obtained from the actual right elevator is
compared with the expected deflection angle according to the healthy elevator dynamics model. For this,
an estimation filter is used for greater robustness against measurement noise and modelling uncertainties.
The Extended Kalman Filter (EKF) is used because the right elevator dynamics are non-linear.

Since the failure detection system is to be implemented in discrete time, here it is directly designed in
discrete time, where the sampling period is chosen as the cycle period of the non-linear F-16 simulation,
which is Td = 0.01s. The measurement at the discrete-time instant k of the deflection of the right elevator,
δer, which is measured by a rotary absolute encoder, is denoted by z̀(k). The residual signal is obtained as

r̂(k) = z̀(k) − μ(k) , (12)

where μ(k) is the expected value of the right elevator deflection, calculated by the EKF.
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The EKF assumes a process model of the form [52, 53, 54]

x̀(k + 1) = g(x̀(k), ù(k)) + ε(k)

z̀(k) = h(x̀(k)) + ν(k),
(13)

where x̀(k), ù(k) and z̀(k) are, respectively, the state, the control input and the measurement, at time k.
The functions g and h are the process and measurement model, respectively, and will be derived below.
The discrete random zero-mean process noise ε(k) is used to describe uncertainties in the process model,
while ν(k) is used for the representation of the measurement noise. Both stochastic processes, ε(k) and
ν(k), are assumed to be uncorrelated in time and to have a Gaussian distribution with zero mean at
each k. The variance of ε(k) is assumed to be Q(k), while the variance of ν(k) is assumed to be R(k).

The EKF considers the non-linear elevator model as the process model, g. The non-linear elevator
model consists of the actuator’s linear lag dynamics, given by (1), followed by the rate limit and the
deflection limit, which are given in Section 2.2. A state-space model in continuous time for the linear
lag dynamics can be obtained as

ẋL(t) = −20.2xL(t) + 20.2ŭ(t)

δL(t) = xL(t),
(14)

where xL(t) is the state variable, δL(t) is the output of the linear lag dynamics and ŭ(t) = δec (t) is the
elevator control input (all in radians) at time t (in seconds). Since the EKF is realised in discrete time,
this model is discretised, where the discretisation period is Td = 0.01s. The zero-order hold method is
used for discretisation. The discrete-time model is obtained as

xl(k + 1) = adxl(k) + bdù(k)

δl(k) = xl(k),
(15)

where
ad = e−20.2Td = 0.8171

bd =
∫ Td

0

e−20.2τ20.2dτ = −(e−20.2Td − 1) = 1 − e−20.2Td = 0.1829
(16)

Eventually, the overall model for the right elevator surface dynamics is obtained by incorporating the
rate and deflection limits of the right elevator, as follows:

x̀(k + 1) = g(x̀(k), ù(k))

δ(k) = x̀(k),
(17)

where

g(x̀, ù) = sat(sat(adx̀ + bdù, x̀ − ρ̄d, x̀ + ρ̄d), −δ̄, δ̄) (18)

Here, sat( · ) represents the saturation function and is defined as

sat(a, b, c) =

⎧⎪⎨⎪⎩
a, b< a< c

b, a ≤ b

c, a ≥ c

(19)

Furthermore, δ̄ = 0.4363rad is the deflection limit in absolute value, and

ρ̄d = ρ̄ Td = 0.0105rad, (20)

where ρ̄ = 1.0472rad/s is the rate limit in absolute value.
The right elevator deflection angle measurement is assumed to be obtained by a rotary absolute

encoder, which produces a discrete output with a certain resolution as it counts the incremental number
of steps for the elevator movement. The resolution of the encoder is assumed to be high enough that the
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discretisation effect can be represented as a noise, which is included in ν(k), on the output (in the simu-
lations presented in the next section, we assume that this resolution is 0.001rad). Thus, the measurement
model, h, is simply expressed as

h(x̀(k)) = x̀(k) (21)

The EKF equations consists of two consecutive sets as the measurement-update phase and the
time-update phase [53, 54]. The measurement-update phase corrects the state information with the mea-
surement data from the sensor. The time-update phase progresses the state with the information obtained
from the healthy aircraft and elevator model.

(i) Measurement-update phase:

K(k) = �̄(k)H(k)T[H(k)�̄(k)H(k)T + R(k)]−1 (22)

μ(k) = μ̄(k) + K(k)[z̀(k) − h(μ̄(k))] (23)

�(k) = [I − K(k)H(k)]�̄(k) (24)
(ii) Time-update phase:

μ̄(k + 1) = g(μ(k), ù(k)) (25)

�̄(k + 1) = G(k)�(k)G(k)T + Q(k) (26)
where μ̄(k) and μ(k) denote, respectively, the uncorrected and corrected (by the measurement
z̀(k)) estimates of the state variable x̀(k). In a similar way, �̄(k) and �(k) denote the uncor-
rected and corrected error variances of the state variable x̀(k). The matrix K(k), computed in
(22), is the Kalman gain. It specifies the degree to which the measurement is incorporated into
the new state estimate. The corrected state estimate μ(k), computed in (23), is the sum of the
uncorrected state estimate, μ̄(k), plus the Kalman gain times a residual comprising the differ-
ence between the measurement vector z̀(k) and estimated measurement h(μ̄(k)). After that, the
state error variance is updated in (24), where the matrix H(k) represent the linear term in a Taylor
series expansion of the function h(x̀) around x̀ = μ̄(k). The matrix H(k) is calculated as

H(k) = ∂h(x̀)

∂ x̀

∣∣∣∣
x̀=μ̄(k)

(27)

In the present case, it is assumed that the deflection angle of the right elevator can be measured
directly, as shown in (21). Thus, in our case, H(k) = 1 is constant.

In the time update, the forward propagation of the state estimate, μ̄(k + 1), is calculated directly by a
non-linear process model, g, at each discrete-time instant k using (17). In (26), the state error variance
is propagated.

The G(k) matrix used here represents the linear term in a Taylor series expansion of the function
g(x̀, ù) around x̀ = μ(k) and ù = ù(k). The matrix G(k) is calculated as

G(k) = ∂g(x̀, ù)

∂ x̀

∣∣∣∣
x̀=μ(k), ù=ù(k)

(28)

Even if the H(k) matrix is considered constant, G(k) is obtained by linearising the process model, g,
around the corrected estimates of the state variable x̀. The partial derivative term given in (28) is cal-
culated numerically according to the corrected estimates of the state, μ(k), at each iteration, as follows:

∂g(x̀, ù)

∂ x̀

∣∣∣∣
x̀=μ(k), ù=ù(k)

≈ g(μ(k) + γ , ù(k)) − g(μ(k), ù(k))

γ
(29)

where γ represents a small change in the state. The value of γ is selected as 10−4 in the simulations
presented in the next section.
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Table 2. The EKF parameters

Parameter Symbol Value
Standard deviation of the process noise for elevator dynamics σq 0.002rad
Process noise covariance matrix Q σ 2

q

Standard deviation of the measurement noise of position sensor σr 0.005rad
Measurement noise covariance matrix R σ 2

r

Initial mean of state (trim value of the elevator is considered) μ̄(0) −0.024rad
Initial state variance �̄(0) 0.1rad2

Eventually, to generate the residual signal, r̂, the estimation of the state μ(k) (the output of the EKF)
is compared with the measurement read from the sensor, as shown in (12).

4.2.2 Decision-making
The residual signal is first filtered by a Moving-Average Filter (MAF), as shown in Fig. 5, to reduce the
disturbing effect of noise. The mathematical expression for the MAF is [55]

r̂f (k) =
{

1
k+1

∑k
l=0 r̂(l), k<Nw

1
Nw

∑k
l=k−Nw+1 r̂(l), k ≥ Nw

(30)

where Nw is the number of points used in the moving average. The value of Nw is selected as 10 in the
simulations presented in the next section. With this filtering process, a smoother signal, r̂f , is obtained.
Then, a decision signal, r̂decision, is obtained as

r̂decision(k) = | r̂f (k) | (31)

Finally, this decision signal is subjected to a simple decision logic to determine the presence of a failure.
The failure detection system uses a threshold-based logic for the final decision regarding failure. The
statistics of the noises considered in the fault detection system are assumed to be in accordance with
military-grade high-precision sensors. These values are presented in Table 2. By using these error levels,
the fixed threshold value is determined by simulation-based experiments as proposed by Zolghadri et al.
[56]. The experiments intend to represent a trade-off between keeping the false alarm rate small and
detecting small amplitudes. In this way, the threshold value to be used in the fault detection system is
determined empirically according to simulation outputs as 0.01rad. In flight simulations, if the signal
r̂decision exceeds this threshold value, the failure detection system indicates that there is a failure of the
right elevator.

5.0 Simulation Studies
In this section, the performance of the integrated fault-tolerant control structure shown in Fig. 1 is
analysed by non-linear flight simulations. The non-linear flight simulations run for this purpose are
coded in a discrete iterative structure in the MATLAB environment. The Euler integration method is
used to propagate the states of the aircraft with non-linear dynamics, and the cycle period is chosen as
Td = 0.01s. Since the failure detection system is already designed in discrete time, it can be integrated
directly into the F-16 non-linear flight simulation. However, the controllers given in Section 4 are
continuous-time systems. To integrate the control systems into the discrete non-linear simulation
running in the MATLAB environment, the controllers are discretised. The zero-order hold method is
used for discretisation, and 0.01s is selected as the sampling period. Finally, these discretised controllers
are integrated into the complete non-linear model. Thus, the structure shown in Fig. 1 is constituted.
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Figure 6. Pitch-rate reference signal.

In all the simulations presented below, the pitch-rate reference signal shown in Fig. 6 is used as the
reference signal. All the non-linear simulations are initiated at the trim values given in Section 2.3.
The parameters of the EKF, used in the residue generation process, are selected as shown in Table 2.
The standard deviations given in this table are assumed by considering the worst-case noise margin
considering the F-16 aircraft and military-grade sensor (i.e. high-precision absolute encoder) noise.
The measurement value, z̀, used as an input to the failure detection system, is obtained by adding an
artificial measurement noise, ν, to the right elevator deflection angle, δer. This measurement noise is
generated artificially in MATLAB as a Gaussian noise with zero mean and standard deviation σr, which
is given in Table 2. This measurement is used by the EKF to generate the expected value, μ, of the
deflection angle, as explained in the previous section. The residual signal, r̂, is then obtained as shown
in (12) and filtered as shown in (30), to obtain the filtered residual signal, r̂f . Finally, the decision signal,
r̂decision, is obtained as shown in (31), which is subjected to the threshold test to decide whether a fault
has occurred. The threshold value is set to 0.01rad as explained at the end of Section 4.2.2.

Firstly, the condition of healthy flight (no failure on the aircraft) is examined. It is clear from the
structure in Fig. 1 that, if there is no failure, the classical controller should be active throughout the
flight. In the first subsection below, it is shown that this is indeed the case. Thus, the simulations for
the healthy condition allow us to analyse and compare the performance of both the classical controller
and the robust FTC. After that, the performance of the proposed integrated control strategy is compared
with other controllers, in the case of freezing failure and floating failure separately.

5.1 Healthy condition
In this subsection, the healthy aircraft simulation is performed using the integrated FTC and the robust
FTC. We show that no false alarm is produced by the failure detection system during the complete
simulations in the healthy condition. Thus, in the case of integrated FTC, the classical controller is
active during the whole flight. Therefore, the results obtained for the integrated FTC are also valid for
the classical controller.

The right elevator deflection measurement, z̀, used as an input to the failure detection system, and the
expected value of the right elevator deflection (output of the EKF) are shown in the first row of Fig. 7.
Additionally, the residual signal and the filtered residual signal are shown in the first plot in the second
row of Fig. 7. As a preliminary assessment, the fact that the residual signal is unbiased indicates that
there is no failure. The final decision, however, is made by a threshold test on the decision signal, r̂decision,
which is shown in the second plot in the second row of Fig. 7, together with the threshold level. The
decision signal remains below the threshold throughout the simulation, thus no failure decision is taken.

The states of the aircraft under integrated FTC (or equivalently the classical controller) and robust
FTC are obtained as shown in Fig. 8. Additionally, the elevator commands, deflections and deflection
rates produced within this simulation are shown in Fig. 9. Since there is no failure or disruptive effect on
the aircraft, the lateral/directional motion is not disturbed. Therefore, the aileron and rudder deflections
are practically zero.
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Table 3. Controllers’ tracking performance comparison (IAE index)

Controller Healthy condition Freezing failure Floating failure
Classical 0.0906 0.6054 0.6793
Robust FTC 0.0873 0.2545 0.2652
Integrated FTC 0.0906 0.2221 0.2600

Figure 7. The measurement and the outputs of the failure detection system in healthy condition.

After the simulation starts, the aircraft moves to the dive, and after the eighth second, starts to nose
upwards according to the reference pitch-rate command given in Fig. 6. The results show that both
controllers perform very well in case of no failure. Except for the ‘east’ state, all graphs are almost the
same for both controllers. The robust FTC disturbs the ‘east’ state less than the classical controller. The
disruption, however, is negligible (less than 2cm in the west direction as the aircraft travels more than
2km in the north direction). Additionally, the pitch-rate state indicates that both controllers work well
and perform the tracking function very quickly. The pitch-rate tracking performance of the controllers
is presented in Table 3 based on the Integral of the Absolute magnitude of the Error (IAE) performance
index, defined as

IAE =
∫ Ts

0

| qr(t) − q(t) | dt, (32)

where Ts denotes the simulation time length and the integral is calculated numerically within the flight
simulations. The IAE index shows that the tracking performance of the controllers is very close to each
other. In addition, the pitch angle, AoA and altitude states also change accordingly. The increase in the
velocity is also expected due to the dive motion of the aircraft. Furthermore, the lateral/directional states
(roll and yaw angles and their rates, and the side-slip angle) remain almost zero. Besides, the control
surface deflections and rates given in Fig. 9 show that the designed control system operates within the
deflection and rate limits given in Section 2.2. As a result, these simulations show that both controllers
(the integrated FTC (classical controller) and the robust FTC) work very well in the healthy condition
and their performance is very similar.

5.2 Freezing failure
In this subsection, the condition of freezing failure is examined. Immediately after the eighth second of
the 20s non-linear simulation, when the control system moves the elevator to apply the reverse pitch-rate
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Figure 8. The states of the healthy F-16 aircraft (solid line: integrated FTC (equivalently classical
controller); dashed line: robust FTC).

Figure 9. The elevator commands, deflections and deflection rates (solid line: integrated FTC
(equivalently classical controller); dashed line: robust FTC) in the case of a healthy aircraft.

command, as shown in Fig. 6, the right elevator becomes stuck in its extreme position. In this example,
the right elevator is stuck at −0.1981rad (≈ −11.35deg) after 8.17s.

When the non-linear flight simulation is run for the above conditions, the failure is detected by the
failure detection system at 8.25s of the simulation, and the system switches from the classical con-
troller to the robust FTC. The right elevator deflection measurement taken from the sensor by the failure
detection system and the expected value of the state (output of the EKF) are shown in the first row of
Fig. 10.
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Figure 10. The measurement and the outputs of the failure detection system in the case of freezing
failure.

Figure 11. The states of the F-16 aircraft in the case of freezing failure (solid line: integrated FTC;
dashed line: robust FTC; dotted line: classical controller).

Additionally, the residual signal and the filtered residual signal are shown in the bottom left plot of
Fig. 10. In the bottom right plot of Fig. 10, the decision signal is shown together with the threshold level.
The decision signal exceeds the threshold level at 8.25s, which is only 0.08s, i.e. eight sampling cycles,
after the occurrence of the fault. Thus, the failure detection system detects the failure in only 80ms.

The classical controller is active from the beginning of the simulation until the failure is detected.
The failure detection system detects the failure at 8.25s, and the control authority switches to the robust
FTC. The states of the F-16 aircraft are shown in Fig. 11, in the cases of the integrated FTC, robust FTC
and the classical controller. It is seen that the performance of the integrated FTC and the robust FTC are
almost the same. Both controllers can continue to fly the aircraft safely despite the failure. Furthermore,
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Figure 12. The control surface commands, deflections and deflection rates in the case of freezing failure
(solid line: integrated FTC; dashed line: robust FTC; dotted line: classical controller).

the pitch rate tracking is also good considering the adverse effect of the failure. The pitch-rate tracking
performance of the controllers is presented in Table 3. It is clear from this table that the performance
of the proposed controller is slightly better than that of the robust FTC in the case of freezing failure.
Although this difference is in favour of the proposed controller, it is not a significant difference in terms
of the pitch-rate tracking performance. The reason why the tracking performance index of the integrated
controller is slightly better is that the classical controller performs slightly better in the first 8s of the
simulation, even though it has lower performance than the robust FTC throughout the simulation. There
is such a small advantage as the integrated FTC uses the classical controller at the beginning of the
simulation and the robust FTC after the failure occurs. Therefore, since this is a case study-specific
factor, the performance of the proposed integrated FTC and the robust FTC is considered to be similar,
which is a desirable situation, because this study aims for a structure that reduces the computational
load without sacrificing performance. On the other hand, the performance of the classical controller is
relatively inadequate compared with the other two controllers. In the classical controller, beyond the
tracking performance, it cannot cope with the rolling moment disturbance caused by the asymmetrical
right elevator failure. The roll rate increases consistently and reaches a high magnitude. The aircraft
quickly turns around the body x-axis and crashes into the ground before the end of the simulation period.
Hence, the classical controller cannot cope with freezing failure.

The control surface commands, deflections and deflection rates produced by each control system are
shown in Fig. 12. It is clearly seen that the right elevator is jammed after 8.17s. The control surface
deflections and rates shown in Fig. 12 indicate that the deflection and rate limits given in Section 2.2 are
not violated when using any of the controllers.

The analysis for this section concerned the elevator freezing at its widest deflection during the pitch-
rate tracking manoeuvre shown in Fig. 6. In addition, the margin of extreme jamming failures at which
this proposed control approach is effective is also analysed as follows. As an extreme scenario, the
freezing of the right elevator at the deflection limit (i.e. hard-over failure) creates a rolling moment of
24,160Nm when other states and control surfaces are at their trim values. However, under the same con-
ditions, the ailerons can produce a rolling moment of 76,859Nm. Therefore, the ailerons can compensate
for the disruptive rolling moment, since the rolling moment production capability is much higher than
that caused by the asymmetrical hard-over elevator failure. On the other hand, the situation is slightly
different for the decreasing pitching moment authority. The F-16 is designed using a Relaxed Static
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Figure 13. The measurement and the outputs of the failure detection system in the case of floating
failure.

Stability (RSS) approach. Therefore, even in stable, level flight, the elevator surfaces must work contin-
uously. The hard-over failure of the right elevator leaves no margin of deviation for the left elevator for
continuous moment corrections due to RSS. Experiments on the non-linear F-16 simulation determined
that the proposed controller can cope with the maximum deviation of −0.37rad of the right elevator
for the flight scenario examined in this paper. Thus, the integrated FTC can recover all freezing fail-
ures greater than this value up to the limit of deviation of the right elevator in the positive direction. In
summary, due to the longitudinal dynamics of the aircraft with RSS, the proposed controller naturally
cannot operate in the most extreme failure condition (negative deflection limit for right elevator) but
operates across a very wide freezing failure margin.

5.3 Floating failure
In this subsection, the condition of floating failure is examined. In the eighth second of the 20s non-
linear simulation, when the control system moves the elevator to apply the reverse pitch-rate command,
the right elevator starts to float. In this example, the right elevator floats according to the assumption
δer f = −0.5α after 8s. When the non-linear flight simulation is run for the above conditions, the measure-
ment and the outputs of the failure detection system are shown in Fig. 13. The decision signal exceeds
the threshold level at 8.07s, which is only 0.07s, i.e. seven sampling cycles, after the occurrence of the
failure. Thus, the failure detection system detects the failure in only 70ms, and the system switches from
the classical controller to the robust FTC. The integrated fault-tolerant controller switches only once,
as stated above. The floating failure is detected at 8.07s into the flight simulation. After the failure is
detected, the robust FTC runs until the simulation is finished. Therefore, the drop of the decision signal
to below the threshold value at around 9s, as seen in Fig. 13, does not result in switching.

The states of the F-16 aircraft are shown in Fig. 14, in the cases of the integrated FTC, robust FTC
and classical controller. As in the case of freezing failure, the performance of the integrated FTC and
the robust FTC is almost the same. Both controllers can continue to fly the aircraft safely despite the
failure. Furthermore, the pitch-rate tracking is also good considering the adverse effect of the failure.
The pitch-rate tracking performance of the controllers is presented in Table 3. It is clear from this table
that the performance of the proposed controller is very similar to that with the robust FTC in the case
of floating failure. On the other hand, the pitch-rate tracking performance of the classical controller is
quite inadequate compared with the other two controllers. The rolling moment disturbance caused by the
asymmetrical elevator failure disrupts the other states of the classical controlled aircraft further. The roll
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Figure 14. The states of the F-16 aircraft in the case of floating failure (solid line: integrated FTC;
dashed line: robust FTC; dotted line: classical controller).

rate is completely out of control, changes direction and reaches high magnitudes. The aircraft crashes
into the ground by the end of the simulation. Therefore, the classical controller also cannot cope with
floating failure.

In the floating failure, the right elevator deflects depending on the aircraft’s AoA as shown in (2).
The aerodynamic model used in this study considers a low angle-of-attack flight regime [57] (i.e.
−0.1745rad ≤ α ≤ 0.7854rad). Furthermore, since the CAS controls the pitch rate of the aircraft, the
AoA always remains limited because the control system implicitly controls the AoA by providing
the pitch-rate manoeuvre, thus reducing the effects of the floating failure. Therefore, in this study,
simulations can only be carried out within these limits, and it is shown that this failure can be recovered.

The control surface commands, deflections and deflection rates produced by each control system are
shown in Fig. 15. It is clearly seen that the right elevator starts to float after 8s. The control surface
deflections and rates shown in Fig. 15 indicate that the deflection and rate limits given in Section 2.2 are
not violated when using any of the controllers.

6.0 Conclusions
Asymmetric elevator failures are fatal malfunctions that disrupt flight safety. The primary purpose of
this work is to develop an FTC strategy such that the aircraft can continue to fly safely and complete
its mission in the case of such failures. In addition to these objectives, the designed controller was
expected to be applicable to real systems. Applicability to real systems also requires consideration of
the computational burden. Given the actual systems, a flight control computer running numerous control
systems has limited computing capacity. Since such failures are unlikely to occur, it is unnecessary to use
controllers that require long computation times. Thus, in this work, an integrated FTC system approach
that can be used for combat aircraft by enabling switching between the classical and robust FTC systems
according to the occurrence of a failure is proposed. The proposed structure is also verified by non-linear
F-16 flight simulations. These simulations show that the proposed controller produces a good response

https://doi.org/10.1017/aer.2021.66 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.66


1590 Gümüşboğa and İftar

Figure 15. The control surface commands, deflections and deflection rates in the case of floating failure
(solid line: integrated FTC; dashed line: robust FTC; dotted line: classical controller).

in both non-faulty and faulty conditions. The proposed method also reduces the load on the flight control
computer by using the fast classical controller under normal conditions. However, in case of failure, it
quickly switches to the robust FTC, which continues to fly the aircraft safely and completes the required
manoeuvre.

In the proposed control approach, once a failure is detected, the robust FTC runs continuously.
Hence, the integrated control system switches only once. Therefore, the problem of instability caused by
multiple switchings between different controllers [58] does not arise when using the proposed approach.

The simulations performed within the scope of this study show that the integrated FTC performs
quite similarly to the robust FTC structure proposed previously in the work of Gümüşboğa et al. [37].
Moreover, with this proposed integrated FTC approach, a structure with much less computational burden
is presented without compromising control performance.

Within the scope of this paper, the aerodynamic redundancy approach is used effectively. The aero-
dynamic redundancy approach uses the remaining (healthy) control surfaces when one fails. In this
approach, the main logic is to generate the moments of the failed control surface by using other control
surfaces. For this reason, fault tolerance in aerodynamic redundancy is limited by the moment-generating
capacities of the healthy control surfaces. These natural limits determine the operating limits of the
designed integrated fault-tolerant control system. As a result, the proposed controller can deal with
different and multiple failures within these natural limits. However, when these limits are exceeded,
auxiliary control surfaces or hardware redundancy structures may be considered.
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