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The effect of compaction of a porous material
confiner on detonation propagation
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The fluid mechanics of the interaction between a porous material confiner and a steady
propagating high explosive (HE) detonation in a two-dimensional slab geometry
is investigated through analytical oblique wave polar analysis and multi-material
numerical simulation. Two HE models are considered, broadly representing the
properties of either a high- or low-detonation-speed HE, which permits studies of
detonation propagating at speeds faster or slower than the confiner sound speed.
The HE detonation is responsible for driving the compaction front in the confiner,
while, in turn, the high material density generated in the confiner as a result of the
compaction process can provide a strong confinement effect on the HE detonation
structure. Polar solutions that describe the local flow interaction of the oblique HE
detonation shock and equilibrium state behind an oblique compaction wave with rapid
compaction relaxation rates are studied for varying initial solid volume fractions of
the porous confiner. Multi-material numerical simulations are conducted to study
the effect of detonation wave driven compaction in the porous confiner on both the
detonation propagation speed and detonation driving zone structure. We perform a
parametric study to establish how detonation confinement is influenced both by the
initial solid volume fraction of the porous confiner and by the time scale of the
dynamic compaction relaxation process relative to the detonation reaction time scale,
for both the high- and low-detonation-speed HE models. The compaction relaxation
time scale is found to have a significant influence on the confinement dynamics,
with slower compaction relaxation time scales resulting in more strongly confined
detonations and increased detonation speeds. The dynamics of detonation confinement
by porous materials when the detonation is propagating either faster or slower than
the confiner sound speed is found to be significantly different from that with solid
material confiners.

Key words: compressible flows, detonation waves, shock waves

1. Introduction

A detonation is a chemically driven compressible wave. A shock wave at the
detonation wave front compresses the explosive material, and the subsequent
interaction between energy release associated with chemical reaction and compressible
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FIGURE 1. A schematic of the multi-dimensional structure of a detonation wave in a
condensed-phase explosive. The figure is based on figure 10 from Bdzil et al. (2003) (with
permission of J. B. Bdzil).

flow evolution provide the dynamics that sustains the detonation wave. For a one-
dimensional (1-D) planar detonation wave, the speed of the detonation wave is
controlled by the initial explosive state, the reaction enthalpy change between
reactants and products and the equation of state properties of the product. The
detonation speed does not depend on the spatial details of the reaction zone structure
(Fickett & Davis 1979). The minimum speed of the 1-D detonation wave is known
as the Chapman–Jouguet (CJ) speed, where, in a frame travelling with the shock, the
flow is sonic at the end of the reaction zone.

In condensed-phase high explosives, the large pressures generated in the detonation
lead to lateral yielding of any surrounding material. The associated streamline
divergence in the reaction zone causes the lead shock wave to become curved
(Bdzil & Stewart 2007). In a majority of high explosive configurations the detonation
develops divergent (positive) curvature, such as in a two-dimensional planar or
axisymmetric cylindrical geometry (Jackson & Short 2015). In steady flow, the sonic
locus, which is also curved, moves from the end of the reaction zone and now lies
internal to the reaction zone (figure 1). This cuts off some of the chemical energy
that would otherwise drive the detonation shock. Along with the energy required to
sustain the lateral flow divergence, the detonation wave speed is lowered from its
equivalent 1-D CJ value. The region between the shock and sonic locus is known as
the detonation driving zone (DDZ). Its structure controls the detonation wave speed
in multi-dimensional steady flows (Bdzil & Stewart 2007).

In addition to the coupling between chemical reaction and compressible flow in
the reaction zone, the impedance properties of an inert confiner surrounding the HE
can play a significant role in determining the DDZ structure, and thus the detonation
speed. Detonation confinement by solid inert materials of different impedances has
been extensively studied (Aslam & Bdzil 2002, 2006; Sharpe & Bdzil 2006; Bdzil
& Stewart 2011; Short & Quirk 2018). A qualitative understanding of the multiple
types of high explosive (HE) detonation–confiner interaction that are possible can
be obtained by the use of oblique wave polar theory. This is conducted in a frame
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riding with the interaction point of the detonation shock and transmitted confiner
wave structure at the HE–confiner material boundary (Bdzil & Stewart 2011). From
the polar analysis, the effect of the confiner on the DDZ depends primarily on the
classification of the flow in the HE at the material boundary as subsonic, sonic
or supersonic. If the HE flow at the intersection point is sonic or supersonic, the
DDZ does not sense the presence of the confiner. On the other hand, if the flow is
subsonic the DDZ is influenced by the material properties of the confiner. Generally,
high-impedance materials like copper or steel will result in subsonic flow in the
HE at the HE–confiner edge, and thus will have a positive confinement effect
(higher detonation speed) for most explosives. Low density plastics like Poly(methyl
methacrylate) (PMMA) typically result in sonic flow in the HE at the HE–confiner
edge. Consequently, such materials do not influence the DDZ structure. Many other
interaction scenarios are possible. A particularly interesting case occurs when the
detonation speed in the HE is lower than the sound speed in the confiner material
(Sharpe & Bdzil 2006; Short et al. 2010). For such cases, there is no oblique wave
polar solution in the confiner. The flow in the confiner is subsonic and therefore
shockless. In such cases, it is found that a large amplitude pressure disturbance
travels in the confiner just ahead of the detonation shock, and significantly influences
the development of the DDZ in the HE. This scenario typically occurs with non-ideal
explosives like ammonium-nitrate fuel oil (ANFO) used in the mining industry that
have a low CJ detonation speed.

What has not received much attention in the literature is the effect on multi-
dimensional detonation wave propagation due to porous material confiners, despite
its relevance to a number of practical situations. For instance, porous foam materials
can be inserted between a high explosive and its confinement (Hill 2011) to protect
the HE from damage due to thermal and mechanical stimuli. Also, in a majority
of explosive mining applications, rock layers surrounding the explosive can possess
significant initial porosity (e.g. limestone, sandstone, basalt, coal). The nature of
fragmentation of the surrounding rock is known to be significantly influenced by
the degree of rock porosity (Ahrens & Gregson 1964; Hagan 1979; Braithwaite &
Sharpe 2013). Detonation of high explosives is also used to consolidate initially
porous metal, ceramic and composite powders (Prümmer 1983; Mamalis, Vottea &
Manolakos 2001).

The confinement of detonation by porous material confiners has several potentially
interesting fluid dynamical properties. Under high pressure loading, for example
from pressures generated by a detonating HE, porous materials can compact to a
density significantly above the initial density of the porous material. Compaction
is also a dynamic relaxation process, i.e. there is a finite length/time scale for
the compaction process to transition the initial porous state of the material to its
compacted equilibrium state. This sets up an interesting two-way feedback for
detonation–porous confiner interactions: the HE detonation is responsible for driving
the compaction front in the confiner; in turn, high confiner densities generated
during compaction can provide a significant confinement effect on the HE detonation
structure, with the compaction relaxation process determining the scale over which
this occurs relative to the HE detonation width. The purpose of this article is to
explore some of the mechanisms of this interaction. We use basic fluid models for
the HE and porous confiner in order to focus on the fluid dynamical aspects of
the problem. Both analytical studies and multi-material simulations are conducted
to explore the relevant physical phenomena underlying how the dynamics of the
compaction process in the porous confiner affects the detonation propagation speed
and the structure of the DDZ.
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2. Model
For the high pressures induced by detonation, the two materials, high explosive and

porous material confiner, will flow. For the purposes of this study, each material is
modelled by the Euler equations,

∂ρ

∂t
+∇ · (ρu)= 0,

∂

∂t
(ρu)+ u∇ · (ρu)+ ρ(u · ∇)u+∇p= 0, (2.1a,b)

∂

∂t
(ρE)+∇ · (u(ρE+ p))= 0, (2.2)

where ρ, u, E and p are the density, velocity vector, specific total energy and pressure
respectively. For the two-dimensional planar flow considered in the following, the
velocity vector u= (u, v)T.

2.1. High explosive
For the HE, flow equations (2.1) are supplemented by an evolution equation for the
reaction progress variable λ ∈ [0, 1],

∂

∂t
(ρλ)+∇ · (ρuλ)− ρΛ= 0, (2.3)

where Λ is a reaction rate. The specific total and internal energies are given by

E= e(ρ, p, λ)+
1
2
(u2
+ v2), e=

p+ A
(γ − 1)ρ

− qλ, (2.4a,b)

where we have assumed a Tait (stiffened-gas) equation-of-state (EOS) model for the
internal energy e. Also, γ is the adiabatic exponent, A the stiffened gas constant and
q the specific reaction enthalpy of the fuel species. The reaction rate model is

Λ= kp(1− λ)1/2, (2.5)

where k is a rate constant. In the strong shock limit employed here, which assumes
the pressure in the ambient HE state is zero,

q=
D2

CJ

2(γ 2 − 1)

(
1−

A
ρ0D2

CJ

)2

, (2.6)

where DCJ is the Chapman–Jouguet detonation speed and ρ0 is the initial density of
the HE. These moderately simple forms of EOS and reaction rate have been shown
to successfully capture the primary fluid dynamic mechanisms underlying detonation
propagation in problems ranging from confinement effects, stability and reaction-zone
structure changes due to detonation shock curvature (Aslam & Bdzil 2002; Sharpe &
Braithwaite 2005; Short et al. 2008; Li, Mi & Higgins 2015).

In this article, we examine two HE models. The first, named HE1, is broadly
representative of the properties of a high-detonation-speed HE, such as PBX 9502,
for which we take

ρ0 = 2 g cc−1, A= 12.8 GPa, DCJ = 8 mm µs−1,

q= 3.24 mm2 µs−2, γ = 3.

}
(2.7)

The second model, HE2, is broadly representative of the properties of a low-
detonation-speed HE, such as ANFO commonly used in mining applications, for
which we take

ρ0 = 0.86 g cc−1, A= 2 GPa, DCJ = 4.8 mm µs−1,

q= 1.16397 mm2 µs−2, γ = 3.

}
(2.8)
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438 M. Short and J. J. Quirk

2.2. Porous inert
The compaction model we employ is a variant of the commonly used P-α class of
models (Davison 2008) and contains the essential dynamics that we wish to explore
in our study of confinement of detonation by a porous material confiner. These are the
dependence of the equilibrium compaction state on the initial solid volume fraction,
and a dynamic evolution equation for the solid volume fraction characterized by a
relaxation time scale to achieve the compacted equilibrium state. This time scale can
be varied relative to the time scale that describes the chemical reaction in the HE.
The model used here can be formally derived from the full two-phase continuum flow
model formulation of Bdzil et al. (1999) by treating the gas phase as void. We refer
to this as the two-phase void limit (2PVL) compaction model. The flow in the porous
material is again described by flow equations (2.1) for the porous material pressure
(p), density (ρ) and velocity (u). These are related to the solid-phase state by

p= φsps, ρ = φsρs, u= us, (2.9a−c)

where φs is the volume fraction of solid, and the subscript { }s is used to denote the
state in the solid phase. The total energy of the porous material is given by

E= es(ps, ρs)+ B(φs)+
1
2(u

2
+ v2). (2.10)

The internal energy consists of two additive contributions: the internal energy of the
solid as a function of the solid-phase state alone (here we assume an incomplete
equation-of-state form es = es(ps, ρs)) and a term denoted by B(φs). This latter term
is a compaction potential and accounts for the configuration dependent energy in the
solid (Bdzil et al. 1999).

The solid volume fraction is determined by an evolutionary compaction law given
by

∂

∂t
(ρφs)+∇ · (ρuφs)= ρr, r=

φs

µc(φs0)
(1− φs)(ps − β). (2.11a,b)

We enforce the assumption r > 0, i.e. the compaction model is not permitted to
recover porosity. In the compacted equilibrium state, the solid pressure is balanced
by a term β known as the configuration pressure. In the context of this 2PVL
compaction model, it can be interpreted as representing the resistance of a granular
bed to compaction caused by an applied pressure (Bdzil et al. 1999). The compaction
viscosity µc is a measure of the relaxation time required for the compaction process
to achieve equilibrium.

The compaction potential and configuration pressure are related through the equation

β = φsρs
dB
dφs

, (2.12)

where, for this study,

β =
ρs

ρs0

[
pc(φs0) ln

(
1− φs0

1− φs

)]
, (2.13)

a choice motivated by that used in Bdzil et al. (1999). The subscript { }0 notation
denotes quantities in the initial material state. The function β contains a logarithmic
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growth in the limit of full compaction φs→ 1, modified by a pressure amplitude term
pc. We assume that pc varies as a function of the initial porosity, i.e. pc = pc(φs0),
where pc increases as φs0 increases. This assumption can be related to the property
that the more tightly packed the solid matrix is initially, the more difficulty it has
rearranging itself to fill the void space. For the purposes of this study, we use a linear
form

pc(φs0)= a+ bφs0, (2.14)

where a and b are constants. These parameters are chosen below so that the
equilibrium states of the 2PVL compaction model can be fitted to experimental
data for our choice of porous material. The corresponding form for B is then given
by

B(φs)=
pc

ρs0

[
(ln φs) ln

(
1− φs0

1− φs

)
−

∫ φs

φs0

ln φs

1− φs
dφs

]
, (2.15)

where the integral on the right can be written in terms of the dilogarithm function.
Note that B(φs0) = 0 and B(φs) > 0, so that the compaction potential results in an
increase in the internal energy of the porous material.

For the EOS of the solid, we use a Mie–Gruneisen Us − up form (Davis 1997),
where

es =
c2t2

2(1− st)2
+

1
Γ0ρs0

(
ps −

ρs0c2t
(1− st)2

)
, t= 1−

ρs0

ρs
. (2.16a,b)

Here c, s and Γ0 (Gruneisen gamma) are the Us − up EOS parameters used to fit the
EOS for a given solid material to experimental data. The frozen sound speed of the
solid phase is

Cs =

[
Γ0ρs0ps

ρ2
s

+
ρ2

s0c2

ρ2
s (1− st)2

(1− Γ0t)+
2ρ2

s0c2st
ρ2

s (1− st)3

(
1−

Γ0

2
t
)]1/2

. (2.17)

In the 2PVL porous compaction model, the frozen sound speed of the porous material
is equal to the frozen sound speed of the pure solid.

2.2.1. Porous confiner material calibration
For this article, we model the porous confiner material based on cerium oxide

(CeO2) powder due to the large amount of experimental data measured on compaction
states under one-dimensional pressure loading at different initial densities (Fredenburg
& Chisolm 2014; Fredenburg et al. 2014, 2017). Importantly, the Hugoniot state
behaviour under shock loading (§ 3) is consistent with most other porous metal
powders, and is therefore suited to our primary aim of highlighting the main fluid
mechanical elements of HE confinement by porous materials. The Us − up model
EOS parameters for solid CeO2 (Fredenburg & Chisolm 2014) are

ρs0 = 7.215 g cc−1, c= 5.635 mm µs−1, s= 1.257, Γ0 = 1.5. (2.18a−d)
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2.3. Scaling
To set a reference length scale, we introduce non-dimensional length and time scalings,
along with a rescaling of the HE rate constant k and compaction viscosity µc, where

x̃=
x

l1/2
, t̃=

t
(l1/2/uref )

, k̄= kl1/2, µ̄c =
µc

l1/2
. (2.19a−d)

Here l1/2 is the physical length behind the shock in the steady planar Chapman–
Jouguet detonation wave at which half of the reactant has been consumed, while uref =

1 mm µs−1. The scaled rate constant for HE1 is then k̄≈0.05135906 mm µs−1 GPa−1,
while the rate constant for HE2 is k̄ ≈ 0.19942118 mm µs−1 GPa−1. The magnitude
of µ̄c then sets the relaxation length for the compaction process to reach equilibrium
relative to the half-reaction-zone length of the CJ detonation wave in the HE.

3. Steady-state compaction wave structure and equilibrium states
Equilibrium states for steady propagating 1-D compaction waves for the 2PVL

model defined in § 2.2 for CeO2 at different initial porous material densities are
calculated by using the constant wave speed (D0) conservation relations appropriate
to the 2PVL model,

u=D0

(
1−

ρ0

ρ

)
, p= ρ0D2

0

(
1−

ρ0

ρ

)
, e+

1
2

p
(

1
ρ
−

1
ρ0

)
= 0, (3.1a−c)

where e= es(ps, ρs)+ B(φs), and calculating the state for which

ps = β. (3.2)

As stated above, construction of the equilibrium states for the 2PVL model require
the specification of configuration pressure (pc) parameters a and b. Figure 2 shows
1-D compaction wave equilibrium states in the pressure–density plane for the 2PVL
model for CeO2 for the two initial densities ρ0 = 4.03 g cc−1 (φs0 = 0.5586) and
ρ0 = 2.33 g cc−1 (φs0 = 0.3229) at which experimental compaction equilibrium
states are available for one-dimensional pressure loaded CeO2 powders (Fredenburg
& Chisolm 2014; Fredenburg et al. 2014, 2017). Also shown for comparison is
the shock-state Hugoniot for solid CeO2, calculated using (2.16) and (2.18). The
parameters a and b are chosen so that the 2PVL model equilibrium states can
reasonably fit the experimental data across the two initial densities, whereupon

a= 0 GPa, b= 7 GPa. (3.3a,b)

Given the large uncertainties in the experimental data especially at higher pressures
(Fredenburg & Chisolm 2014), and the emphasis of the current paper to highlight
the basic fluid mechanics of HE confinement by porous materials, the fit obtained
with (3.3) is sufficient for a 2PVL model of porous CeO2. The two Hugoniot curve
shapes obtained for ρ0 = 4.03 and 2.33 g cc−1 are typical of those obtained for
increasingly porous materials (Zel’dovich & Raizer 2002). Their respective P − ρ
Hugoniot behaviour, relative to that of the Hugoniot for the solid material, results
from the work done and subsequent change in internal energy in compacting the
porous material to its equilibrium state, and how this change in internal energy
is distributed into pressure and density changes. For sufficiently porous materials,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

73
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.736


Detonation confinement by porous materials 441

0

10

20

30

40

50

60

5.04.5 5.5 6.0 6.5 7.0 7.5 8.0 9.08.5

P
 (

G
Pa

)

FIGURE 2. Compaction wave equilibrium states in the pressure–density plane for 1-D
travelling wave solutions of the 2PVL model for CeO2 at different initial densities. The
green line represents the variation in Hugoniot shock state for solid CeO2. The circles
represent equilibrium compaction state experimental data from Fredenburg & Chisolm
(2014), Fredenburg et al. (2014, 2017).
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FIGURE 3. Variation of the compaction equilibrium pressure and density with initial solid
volume fraction for (a) subsonic wave speed D0 = 3 mm µs−1 and (b) supersonic wave
speed D0 = 7 mm µs−1.

increases in pressure above a threshold value are found to be accompanied by
decreases in density of the equilibrated material (Zel’dovich & Raizer 2002), as
shown for ρ0 = 2.33 g cc−1.

Figure 3 shows the variation of the 1-D equilibrium pressure and density with initial
solid volume fraction for the 2PVL model for two compaction wave speeds (D0 =

3 mm µs−1, below the initial sound speed Cs0, and D0= 7 mm µs−1, above Cs0). Of
particular interest is that the compaction equilibrium pressures and densities increase
significantly as φs0 increases, before decreasing as the initial solid volume fraction
approaches one. This is again a consequence of how the internal energy change due
to the work done in compacting the initial porous material to its equilibrium state is
distributed amongst pressure and density changes. For a given wave speed, the internal
energy change decreases as φs0 increases along each of the curves shown in figure 3.
The equilibrium pressure and density at first increase as the initial material porosity
decreases, but for sufficiently low initial porosities, the lower internal energy change
leads to lower pressure and density states at equilibrium. This behaviour highlights the
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possibility that even moderately porous materials may have a non-trivial confinement
effect on detonation propagation.

The structure of steady travelling compaction waves corresponding to models
similar to the 2PVL model in § 2.2 have been constructed and analysed previously
(Powers, Stewart & Krier 1989; Short et al. 2015). Compaction waves travelling at
speeds D0 <Cs0 are subsonic and fully dispersed spatially. Waves travelling at speeds
D0 > Cs0 are supersonic and led by a shock front, where the solid volume fraction
behind the shock is equal to the initial solid volume fraction (i.e. [φs] = 0). Spatially
dispersed compaction occurs behind the shock. One-dimensional steady travelling
compaction wave solutions for a given D0 are obtained from the conservation relations
(3.1) along with the steady travelling wave form of the solid volume fraction evolution
equation (2.11),

(u−D0)
dφs

dx̃
= r, r=

φs

µ̄c(φs0)
(1− φs)(ps − β). (3.4a,b)

For the subsonic dispersed solutions (D0 <Cs0), we construct asymptotic solutions for
the travelling wave solution for φs − φs0� 1, and integrate from this construction to
the equilibrium solution, where ps = β. For the supersonic shock-led solutions (D0 >
Cs0), we first construct the Hugoniot shock state from (3.1) assuming [φs] = 0, i.e.
φs = φs0, and then subsequently integrate from this state to the equilibrium state.

Figure 4 shows the steady wave pressure and solid volume fraction spatial variation
for the CeO2 2PVL model with various choices of wave speed, initial solid volume
fraction and compaction viscosity. We note that experimental data on characteristic
time scales to compact the initial porous material to the equilibrium state are limited
(Fredenburg & Chisolm 2014). The attempts that have been made on CeO2 powders
indicate that the relaxation times may be faster or comparable to those characteristic
of a detonation reaction zone thickness (Fredenburg & Chisolm 2014). However, since
the diagnostic methods have several limitations, and for the general consideration of
other porous materials with different compaction relaxation rates, in this article we
will explore the effects of variation in µ̄c on the HE detonation confinement effect.
Cases (a) and (b) in figure 4 are for subsonic wave speeds. For sufficiently low
speeds (D0 = 1 mm µs−1), the equilibrium state is not fully compacted. Increasing
the compaction viscosity slows the compaction rate and this spreads the compaction
wave out spatially. We note that the relaxation length for the compaction process
is relative to the scale that sets the half-reaction-zone length in the CJ detonation
wave to one (§ 2.3). In the supersonic case for D0 = 7 mm µs−1, figure 4(c), the
compaction process is led by a shock wave, where again increases in µ̄c slow the
compaction process behind shock.

4. Oblique compaction wave polar analysis
An analysis similar to oblique shock polar theory can be used to calculate the

equilibrium state of a compaction wave turned at an angle π/2−ω to the horizontal
and propagating in the horizontal direction with a velocity D0. A schematic of the
resulting flow turning is shown in figure 5. The streamline turning angle is denoted
by θ . Along with the equilibrium condition ps = β (3.2), the following conservation
equations, derived from (2.1), can be used to calculate the resulting equilibrium state,

un =D0 sin(w)
(

1−
ρ0

ρ

)
, p= ρ0D2

0 sin2(w)
(

1−
ρ0

ρ

)
, e+

1
2

p
(

1
ρ
−

1
ρ0

)
= 0,

(4.1a−c)
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FIGURE 4. Pressure (solid lines) and solid volume fraction (dotted lines) variation in
steady compaction wave profiles for the 2PVL model with various choices of compaction
viscosity. Shown are the fully dispersed compaction wave profiles for subsonic speeds
(a) D0 = 1 mm µs−1 (with φs0 = 0.3229) and (b) D0 = 3 mm µs−1 (also with φs0 =

0.3229), and the shock wave-led compaction wave profile for the supersonic speed (c)
D0 = 7 mm µs−1 (with φs0 = 0.5586). The units of the scaled compaction viscosity µ̄c
are mm−1 µs GPa.

Streamline

Compaction
wave

FIGURE 5. A schematic of the streamline turning due to a compaction wave travelling
horizontally with speed D0 and obliquely turned at an angle π/2−ω to the horizontal.

where un is the flow speed normal to the compaction wave, with

u= un sin(w), v = un cos(w), (4.2a,b)
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FIGURE 6. Equilibrium states for the 2PVL model behind the obliquely turned compaction
wave showing the pressure p as a function of streamline turning angle θ and solid volume
fraction φs for various initial solid volume fractions φs0 and for D0=7 mm µs−1 (a,b) and
D0 = 6 mm µs−1 (c,d). The circles indicate θ and φs corresponding to sonic flow. The
shock polars for the solid material are also shown in (a) and (c). The detonation shock
polars for the HE model HE1 are shown in (a) and (c), along with the HE Prandtl–Meyer
fan states (dashed lines).

and e= es(ps, ρs)+ B(φs). The streamline turning angle is then

θ = arctan
(

v

D0 − u

)
, (4.3)

while the Mach number of the equilibrium compaction state relative to the wave
motion is

M =
√
(D0 − u)2 + v2

Cs
. (4.4)

Figure 6 shows the equilibrium states for the 2PVL model behind the obliquely
turned compaction wave (pressure p as a function of streamline turning angle θ and
solid volume fraction φs) for various initial solid volume fractions (φs0) and for the
compaction wave speeds D0 = 7 and D0 = 6 mm µs−1. Also shown for each D0 is
the equilibrium state solid volume fraction φs. These cases have D0 greater than Cs0,
and consequently the shock polar solutions for the solid material (φs0= 1) can also be
calculated. The turning angle and solid volume fraction corresponding to equilibrium
flow that is sonic for each φs0 is also highlighted. Polar solutions for pressures above
the sonic solution are subsonic, while those below are supersonic. While the shock
polar solutions for the solid material in (a) and (c) have a small maximum streamline
turning angle, one of the most striking features of the equilibrium polar solutions
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for initially porous materials is the large increase in maximum streamline turning
angle that occurs as φs0 decreases. Also, the pressures in the oblique wave required
to drive the porous material to a fully compacted state (figure 6b,d) are moderately
large (≈20 GPa), except for the two lowest φs0 shown.

The detonation shock polar solution for HE model HE1 is additionally shown in
figure 6(a,c), and this permits a discussion of the types of detonation–porous confiner
flow interactions that we might expect to observe based solely on oblique wave theory.
For D0=7 mm µs−1, the polar curve for the solid confiner has one direct match point
with the detonation shock polar curve, which is known as a strong interaction solution
(Aslam & Bdzil 2006; Sharpe & Bdzil 2006). With decreasing D0, the solid confiner
polar moves inside the HE detonation shock polar (e.g. as seen for D0= 6 mm µs−1),
and no direct match point exists. However, the equilibrium compaction state polar
solutions for the porous material shown with φs0 > 0.5586 each have one direct match
point with the detonation shock polar solution (figure 6a). The existence of these
high pressure direct match points is a consequence of the compaction wave behaviour
seen in figure 3, where the pressures generated at the equilibrium compaction state
for a range of initial solid volume fractions at a fixed D0 are above those for the
initially solid material. The aforementioned polar intersection points occur on the
subsonic branches of both the detonation and compaction polars, and, as such, we
might expect that the detonation driving zone structure (§ 1) will be influenced both
by the properties and thickness of the confiner. At these strong match points, the
equilibrium state is essentially fully compacted (figure 6b). Additional possible match
points for this range of initial solid volume fractions are through a Prandtl–Meyer
(PM) fan that extends from the equilibrium state polar sonic point to the supersonic
branch of the detonation shock polar. For φs0 = 0.3229 and φs0 = 0.2079, the only
match point is through a PM fan originating from the sonic point of the detonation
shock polar to the compaction wave equilibrium polar. These are known as weakly
confined cases (Aslam & Bdzil 2006; Sharpe & Bdzil 2006). Consequently, for these
initial solid volume fractions, the porous material should not provide any confinement
on the detonation propagation. However, even moderately porous confiners with at
least φs0 > 0.5586 could be expected to provide strong confinement on the detonation
based on the polar analysis. A similar polar interaction description applies for
D0 = 6 mm µs−1. In this case, the shock polar for the solid confiner has a small
maximum pressure amplitude and small maximum streamline turning angle since
D0 is approaching Cs0. Also, sonic flow for D0 = 6 mm µs−1 for each of the φs0
shown now occurs in partially compacted equilibrium states. Direct match solutions
between the equilibrium compaction wave polars and detonation shock polar occur
for φs0 > 0.5586, at least up to φs0 = 0.9, where the flow is subsonic on both the
detonation shock and compaction equilibrium polars. For these strong interaction
points, the equilibrium state is again almost fully compacted.

Figure 7 shows the compaction equilibrium state polar solutions for D0 = 4
and D0 = 2 mm µs−1, relevant to the oblique compaction wave being driven by
a low-speed detonation. Here, the compaction wave speeds are slower than the
sound speed Cs0 and consequently no shock polar exists for the solid material
(φs0 = 1). For solid material confinement with D0 < Cs0, pressure waves in the solid
confiner are found to run ahead of the detonation wave and produce a complex
detonation–confiner wave interaction structure (Sharpe & Bdzil 2006; Short et al.
2010). For initially porous materials, however, compaction wave polar solutions can
be found for φs0 sufficiently below one, e.g. for D0 = 2 mm µs−1, a compaction
polar does not exist for φs0 = 0.9, but does for φs0 = 0.75 (figure 7c). Again, we
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FIGURE 7. As for figure 6 but with (a,b) D0 = 4 mm µs−1 and (c,d) D0 = 2 mm µs−1.
The detonation shock polars for the HE model, HE2, are shown in (a) and (c).

observe that the maximum streamline turning angle for the compaction wave polars
increases significantly as φs0 decreases. The compaction equilibrium polar solutions
are all subsonic. Also shown in figure 7(a,c) are the detonation shock polar solutions
corresponding to the low-speed HE detonation model, HE2. For D0 = 4 mm µs−1,
direct match points (strong interaction solutions) between the compaction wave and
detonation shock polars exist at least for 0.9 > φs0 > 0.3229 on the subsonic branch
of the HE2 model detonation shock polar and subsonic compaction wave polars. For
D0 = 2 mm µs−1 similar strong match points exist at least for 0.75 > φs0 > 0.5586.
Thus for low-speed detonations, the oblique polar analysis indicates the potential for
a significant difference in confinement effect for a material that is initially porous
over its limiting solid state.

The above descriptions of match points between the compaction equilibrium state
polars and the detonation shock polars for a range of D0 values give valuable insights
into the possible effects of porous material confinement on detonation propagation.
These insights are based on the assumption that the compaction relaxation time to
equilibrium is rapid on the characteristic time scale for reaction behind the detonation
shock. In reality, the compaction relaxation time (determined by the magnitude of
the compaction viscosity µ̄c) is likely to have a significant effect on detonation
confinement. The effect of varying µ̄c is explored in § 5 below.

For D0>Cs0, compaction waves in the 2PVL model are led by a shock discontinuity
across which φs = φs0 (§ 3). For such cases, one can also calculate the oblique polar
solutions corresponding to the lead compaction shock state. These are shown in
figure 8 for various φs0 and for D0 = 7 and D0 = 6 mm µs−1. Unlike the compaction
equilibrium polar solutions, the variation in maximum streamline turning angle
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FIGURE 8. Oblique states at the compaction shock front for the 2PVL model with varying
initial solid volume fraction for two cases of supersonic propagation having (a) D0 =

7 mm µs−1 and (b) D0=6 mm µs−1. The detonation shock polars are for the HE1 model.

FIGURE 9. The 2-D planar slab geometry under consideration. The HE (light grey region)
shown has width WHE/2 and the confiner (blue region) width is Wc = 50. The channel
length is L = 600. For this image, WHE/2 = 35. Symmetry conditions are applied along
the bottom HE domain boundary, while outflow conditions are applied along the top, left
and right domain boundaries. The outer extent of the initial detonator region is shown by
the red quarter circle.

is small as φs0 decreases. For D0 = 7 mm µs−1, a direct match point exists on
the subsonic branches of the compaction shock and detonation shock for φs0 = 0.9.
Otherwise, additional match points consist of a PM fan extending from the compaction
shock sonic point to the HE polar. For D0 = 6 mm µs−1, the only possible match
solutions are through a PM fan extending from the compaction shock sonic point to
the HE polar.

5. Multi-material simulations
5.1. Geometry and initial conditions

The 2-D planar slab geometry under consideration is shown in figure 9, where HE
(light grey region) is confined by porous material (blue region). Symmetry conditions
are applied along the bottom boundary, so that for an HE slab width WHE, the HE
region shown has height WHE/2. The confiner thickness (WC) is taken to be large
enough so that any waves reflected from the top (outflow) boundary do not influence
the detonation evolution. We have fixed WC = 50 for all the cases shown below.
The detonation wave in the HE is initiated by placing a quarter-circle region of
radius Rd (= WHE/4) of high pressure at the left bottom corner of the HE region.
In this detonator region, the pressure and density are set to the CJ pressure and
density appropriate either to HE1 (2.7) or HE2 (2.8) models, along with zero flow
velocity. The high pressure region initiates a detonation in the HE, which then evolves
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outward, interacts with the confiner region, and subsequently relaxes to a steady-state
propagation for a sufficiently long channel length (L). The detonation wave attains a
steady longitudinal velocity D0, called the detonation phase speed, propagating from
the left to the right of figure 9, which is independent of the location. Here we take
L= 600 in all cases.

5.2. Simulation strategy
The flow equations in the HE and confiner regions are integrated with a cell-
centred finite volume method on a Cartesian mesh within the AMRITA-MultiMat
computational framework (Quirk 1998a,b, 2007). Spatially, a second-order minmod
reconstruction with a Lax–Friedrichs flux is used, while temporally, a second-order
Runge–Kutta integration is used. Material interfaces are treated with a ghost
fluid method (Fedkiw et al. 1999) using a linearized Riemann solution closure
developed by Quirk (2007), and evolved using a level set strategy. The top
(y=WHE/2+Wc), left (x̃= 0) and right side (x̃= L) outer edges of the computational
box described in figure 9 have an extrapolation outflow condition applied. Symmetry
conditions are applied along the bottom HE region (ỹ = 0). A block structured
adaptive-mesh-refinement capability (Quirk 1996) is also employed. For the following
calculations, two levels of refinement are used with a refinement factor of 4 for each
level. The resolution of the finest grid is specified by the number of points (Npts)
in the half-reaction-zone length of the ZND wave, so that with the scaling (2.19),
the resolution of the finest mesh is given by 1/Npts. For the simulations described
below, a resolution of Npts= 20 was used, although several of the simulations were
spot checked at a higher resolution of Npts= 40. Note that D0 is calculated by first
calculating the trajectory of the detonation shock along the symmetry axis (ỹ = 0).
The shock location is taken to be the point at which the shock pressure first equals
1 GPa, sweeping from the unreacted region at zero pressure toward the detonation
shock. The speed D0 is then extracted via a linear fit through the shock location
versus time data for a period where the detonation wave has reached steady-state
propagation.

The ability of the MultiMat computational framework to accurately propagate
detonations for various HE models including the Tait EOS based model described
in § 2.1 has been demonstrated previously (e.g. Chiquete, Short, Meyer & Quirk
(2017)). We have also conducted a number of verification studies for the MultiMat
implementation of the porous material compaction model described in § 2.2. Figure 10
shows a comparison of a MultiMat computation of a 1-D reverse impact problem for
Npts= 20 with the pressure p and solid volume fraction φs derived from the steady
travelling compaction wave solutions presented in § 3. Two cases are considered, one
for fully dispersed subsonic flow and the other for supersonic shock-led flow. The 1-D
MultiMat computations were initiated with spatially uniform uncompacted material
travelling at −ueq toward a rigid wall on the left-hand side of the computational
domain, where ueq is the flow speed of the compacted equilibrium state consistent
with a target compaction wave speed D0 (§ 3). A compaction wave develops, travelling
to the right, with the solid volume fraction evolution equation (2.11) modifying the
wave structure in time until a steady propagating wave is obtained. When shifted to a
frame travelling at −ueq, this steady profile and wave speed D0 can be compared with
the 1-D steady travelling wave solution (§ 3) as shown in figure 10. For Npts = 20,
the agreement between the MultiMat and steady travelling wave solutions is very
good. For the supersonic case and for Npts= 20, the lead shock is slightly diffused,
as expected for a shock capturing scheme. This improves for increased resolution.
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FIGURE 10. Comparison of the pressure p and solid volume fraction φs steady travelling
compaction wave solutions derived in § 3 with a MultiMat computation for Npts =
20. Case (a) corresponds to a subsonic dispersed travelling wave solution with D0 =

3 mm µs−1, φs0 = 0.3229 and µ̄c = 2 mm−1 µs GPa (where ueq = 2.0084 mm µs−1),
while case (b) corresponds to a supersonic travelling wave solution with D0= 7 mm µs−1,
φs0 = 0.3229 and µ̄c = 4 mm−1 µs GPa (where ueq = 4.3672 mm µs−1) that is led by a
shock at the compaction wave front. For case (a), the MultiMat computation gives a wave
speed D0 = 2.99989 mm µs−1, while for case (b) D0 = 6.99996 mm µs−1.

5.3. Results
5.3.1. High-speed HE1 detonation model

Figure 11 shows the dependence of the steady detonation phase speed, D0, for
HE model HE1 for a range of porous confiner initial solid volume fractions (φs0)
and compaction viscosity magnitudes (µ̄c), as well as HE slab widths (WHE). Also
shown is the detonation phase speed obtained for the selected HE slab widths when
the confiner consists of a solid, but low-impedance material. We have chosen a
low-impedance material representative of the elastomer Sylgard for this purpose,
modelled by a Us − up equation of state (2.16) with

ρs0 = 0.84 g cc−1, c= 1.127 mm µs−1, s= 1.2, Γ0 = 1.5. (5.1a−d)

This low-impedance material does not provide any confinement for a detonation
modelled by HE1, and thus the detonation phase speed calculated with this confiner
should represent the slowest possible for a given HE slab width. Figure 11a
shows the D0 variation for WHE = 70. For a fixed compaction viscosity µ̄, e.g.
µ̄ = 2 mm−1 µs GPa, we see that the phase speed increases significantly with
increases in the initial solid volume fraction. Moreover, for µ̄ = 2 mm−1 µs GPa,
above the small initial solid volume fraction φs0 = 0.2097 all values of φs0 have a
confining effect on detonation propagation. Only for the very low initial solid volume
fraction φs0= 0.2097 has the detonation phase speed reached the unconfined (Sylgard)
limit. This is consistent with the predictions of the oblique polar analysis (§ 4) that
indicate even highly porous materials (moderately small φs0) could provide a strong
confinement effect on detonation propagation.

Of particular interest though is the significant effect that the magnitude of the
compaction viscosity µ̄c has on D0. For fixed φs0, increases in µ̄c, which increase
the relaxation time for the compaction process and thus spread the compaction
process out spatially, result in increasingly faster detonation phase speeds. Likewise,
decreases in µ̄c, which spatially compress the compaction process, result in slower
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FIGURE 11. Variation of the detonation phase speed D0 with confiner initial solid volume
fraction (φs0) and compaction viscosity magnitude (µ̄c) for three HE slab widths: (a)
WHE = 70, (b) WHE = 40 and (c) WHE = 20. The HE model is HE1. The units of the
scaled compaction viscosity µ̄c are mm−1 µs GPa. For any given φs0, the circles show
the specific µ̄c cases that were calculated. Note all cases are distinct, and so fewer circles
at a given φs0 indicates fewer simulations were run, rather than overlapping results.

detonation phase speeds. The variation of D0 with changes in the magnitude of µ̄c

is significant. For instance, for WHE = 70 at φs0 = 0.5586, D0 is 0.255 mm µs−1 (or
255 m s−1) larger for µ̄c= 1000 mm−1 µs GPa than for µ̄c= 2 mm−1 µs GPa. Thus
by increasing the relaxation time for the compaction process, the porous material
confinement becomes effectively stronger, in the sense that the detonation phase
speed is increased. Having a very rapid compaction process relative to the detonation
reaction-zone time scale results in the weakest confinement effect (slowest D0). An
additional observation is that the rate of change of D0 with µ̄c first increases as
µ̄c increases from the smaller µ̄c values calculated, before slowing for the largest
values of µ̄c calculated. This indicates that the effect of increasing the detonation
phase speed by continually spreading the compaction process will eventually saturate.
Qualitatively similar behaviour to the above is seen in figure 11(b,c) for WHE= 40 and
WHE = 20. For these slab widths, even the smallest solid volume fraction φs0= 0.2097
calculated appears to be slightly confining. The dynamics underlying the variation in
D0 with φs0 and µ̄c is now explored.

The variations in detonation phase speed D0 are related to the way in which the
porous confiner compaction process is influenced by pressure loading from the HE
detonation and vice versa. Figure 12 shows pressure gradient images of the flow
variation in the HE and porous confiner in the vicinity of the detonation front for
µ̄c = 2 mm−1 µs GPa, WHE = 70 and φs0 = 0.2079, 0.5586 and 0.9. Also shown is
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(a) (b) (c) (d)

FIGURE 12. Pressure gradient images highlighting regions of strongest variation in the
pressure gradient for each material in the vicinity of the detonation front for different φs0
with µ̄c = 2 mm−1 µs GPa. The HE model is HE1. The HE slab width is WHE = 70. (a)
φs0 = 0.2079. The calculated detonation phase speed is D0 = 7.465 mm µs−1. (b) φs0 =

0.5586. Speed is D0 = 7.492 mm µs−1. (c) φs0 = 0.9. Speed is D0 = 7.671 mm µs−1. (d)
The wave structure when the confiner is solid, φs0 = 1. Speed is D0 = 7.793 mm µs−1.
Each image has a width of x̃= 23 and a height of ỹ= 55, where the bottom boundary is
the channel symmetry line (ỹ = 0). The white line is the sonic flow contour in the HE
and confiner regions in a frame travelling with the steady detonation front. The red, yellow
and green lines represent 50, 75 and 99 % HE reactant depletion contours respectively.

the corresponding structure for the solid material with φs0 = 1. The pressure gradient
images are designed to shade the regions of strongest variation in pressure gradient
for each of the two materials. The specific methodology for generating the pressure
gradient images from the computational flow solution is presented in appendix A.
These images do not contain quantitative data, but are insightful as they play a role
similar to the effect of Schlieren imaging of compressible flows, highlighting the
position of prominent wave structures. Also added to the pressure gradient images
are contours in the HE and confiner representing the sonic flow locus in a frame
travelling with the steady detonation shock, and in the HE various reactant depletion
contours showing the progress of reaction. Figure 13 shows a comparison of the
location of the detonation shock, confiner compaction wavehead and the detonation
sonic locus across the HE–confiner slab for the three porous confiner cases shown
in figure 12. The detonation shock location is given by the points where p= 1 GPa,
the compaction wavehead by p = 1 GPa and the sonic line by the locus in which
the flow Mach number is one. Figure 14 contains spatial profiles of the p and φs
variation in the porous confiner along the axial lines ỹ = 36, ỹ = 38 and ỹ = 40 for
the three porous cases shown in figure 12. We have also repeated the oblique wave
polar analysis in § 4 for the specific phase speeds D0 calculated in figure 12. The
combination of this information can be used to build up an understanding of the
influence of the porous confiner for variable φs0.

One prominent feature of figure 12 is the rapid increase in obliqueness of the
compaction wave in the confiner as the initial solid volume fraction is decreased. This
property is consistent with the polar analysis in § 4, which showed the rapid increase
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FIGURE 13. Comparison of the location of the detonation shock and confiner compaction
wavehead (solid lines) and the detonation sonic locus (dashed lines) across the
HE–confiner slab for the porous confiner cases shown in (a) figure 12 and (b) figure 15.
The symmetry axis is along ỹ= 0. For each case, the reference point has been set such
that the detonation shock location along the symmetry line ỹ= 0 has been shifted to x̃= 0.
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FIGURE 14. Spatial profiles of the p (solid lines) and φs (dashed lines) variation in the
porous confiner along the axial lines (a) ỹ= 36, (b) ỹ= 38 and (c) ỹ= 40 for the three
porous confiner cases shown in figure 12.

in maximum streamline turning angle as the initial material porosity was increased.
For the lowest initial solid volume fraction (figure 12a), φs0= 0.2079, the sonic line in
the HE intersects the confiner interface close to the detonation shock. This is a case
of weak confinement, where the detonation driving zone is isolated from the material
properties and flow in the confiner. A PM fan is observed in the HE that originates
from the intersection of the detonation shock with the confiner interface. The flow
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in the confiner is supersonic, consistent with the polar analysis. Reaction at the edge
of the charge slows significantly (figure 12a). Only moderate pressure is built up in
the confiner (figure 14) which decays rapidly with confiner depth. For φs0 = 0.5586
(figure 12b), the sonic locus now intersects the confiner interface behind the detonation
shock, and thus there is a region of subsonic flow in the HE at the confiner interface.
This corresponds to strong confinement, where the detonation driving zone structure
is directly influenced by the presence of the confiner. The detonation shock is flatter
than that observed for φs0 = 0.2079 (figure 13a). Interestingly, as is apparent from
figures 12 and 13(a), the compaction wavehead appears to lie slightly ahead of the
detonation shock at the confiner interface. This feature implies that the compaction
wavehead is driving the detonation shock at the material interface, which is the
structure of the local wave pattern predicted by the compaction shock–detonation
shock polar analysis described in figure 8. Such an interaction is possible when
the compaction relaxation time is finite. The presence and reproducibility of this
feature has been confirmed with equivalent simulations run at higher resolutions.
The pressures generated in the confiner by the detonation loading and compaction
process are higher than those for φs0 = 0.2079, while the compaction region near
the interface spatially extends across some distance of the detonation driving zone
(figures 13a and 14). For φs0 = 0.9, there is a significant subsonic region in the HE
at the confiner interface, while the flow in the confiner is again entirely supersonic.
In contrast, the polar analysis conducted for D0 = 7.671 mm µs−1 and φs0 = 0.9 has
the direct intersection point of the detonation shock and compaction wave polars
(assuming instantaneous compaction) on the subsonic branch of the compaction polar.
The compaction wavehead again runs slightly ahead of the detonation shock at the
confiner interface (figure 13a). High pressures are generated in the confiner, and
thus the compaction region is comparatively short. For the compaction region depths
considered in figure 14, only the low porosity initial state φs0 = 0.9 attains a state
of nearly fully compacted material behind the oblique compaction wave. For higher
initial porosities, the material confining the detonation in the region of the material
interface is not fully compacted.

The observations made above of the increases in D0 due to increasing φs0 are in
part due to the higher density of the starting material, in addition to the mechanisms
of the compaction process. For fixed φs0 and variable µ̄c this is not the case, and
the dynamics of how significant increases in D0 can occur for increasing µ̄c, as
seen in figure 12, is now explored. Figure 15 shows pressure gradient images of
the flow structures in the HE and porous confiner in the vicinity of the detonation
front for φs0 = 0.5586 and WHE = 70, and for µ̄c = 1 (where D0 = 7.483 mm µs−1)
µ̄c = 2 (where D0 = 7.492 mm µs−1) and µ̄c = 10 mm−1 µs GPa (where D0 =

7.539 mm µs−1). Figure 13(b) shows a comparison of the location of the detonation
shock, confiner compaction wavehead and the detonation sonic locus across the
HE–confiner slab for the three cases shown figure 15. Figure 16 contains spatial
profiles of the p and φs variation in the porous confiner along the axial lines ỹ= 36,
ỹ= 38 and ỹ= 40 for the three cases shown in figure 15. In all the simulations we
have conducted, increasing µ̄c at fixed φs0 causes D0 to increase. Thus slowing the
compaction rate for a given HE pressure loading leads to a stronger confinement
effect on detonation propagation.

Several issues are at work. From figures 15 and 16, it is apparent that as µ̄c
increases, the thickness of the dominant pressure gradient regions in the confiner
increase. Further, the dominant pressure gradient region becomes more focused in
the confiner region near the HE interface (figure 15c). As µ̄c increases, the extent
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(a) (b) (c)

FIGURE 15. As for figure 12, but with φs0 = 0.5586 and (a) µ̄c = 1 mm−1 µs GPa with
a calculated detonation phase speed of D0 = 7.483 mm µs−1, (b) µ̄c = 2 mm−1 µs GPa
with detonation speed D0 = 7.492 mm µs−1, (c) µ̄c = 10 mm−1 µs GPa with detonation
speed D0 = 7.539 mm µs−1. Each image has a width of x̃= 23 and a height of ỹ= 55,
where the bottom boundary is the channel symmetry line (ỹ= 0).
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FIGURE 16. Spatial profiles of the p (solid lines) and φs (dashed lines) variation in the
porous confiner along the axial lines (a) ỹ= 36, (b) ỹ= 38 and (c) ỹ= 40 for the three
cases shown in figure 15.
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of the subsonic region in the HE at the confiner interface increases as the sonic line
drops further back from the detonation shock, while the detonation shock becomes
flatter. These properties are characteristic of those traditionally seen for increasingly
stronger detonation confinement by increasingly denser solid material confiners. In
the three cases shown in figure 15, the flow in the confiner is everywhere supersonic,
except for µ̄c = 10 mm−1 µs GPa where a small subsonic region is present near the
material interface. The oblique polar theory, based on rapid compaction relaxation
times, predicts the flow in the confiner will be supersonic in all three cases at
the detonation shock–compaction wave polar direct match point. The compaction
wavehead lies ahead of the detonation shock in all three cases, becoming prominent
for µ̄c = 10 mm−1 µs GPa, and implying that the compaction wavehead is locally
driving the detonation shock (figure 8). The pressure and solid volume fraction
evolution in the compaction zone of the confiner are instructive (figure 16). The
peak pressure reached in the compaction zone at each depth is actually higher
for the smallest compaction viscosity µ̄c = 1 mm−1 µs GPa, and lowest for the
largest compaction viscosity µ̄c = 10 mm−1 µs GPa. Also, increasingly higher
degrees of compaction are attained as µ̄c is lowered. However, the width of the
compaction zone across which high pressures in the compaction zone are sustained
is significantly larger for the largest compaction viscosity µ̄c = 10 mm−1 µs GPa.
The width of the compaction region for µ̄c = 2 mm−1 µs GPa is slightly larger than
for µ̄c = 1 mm−1 µs GPa at comparable depths. The conclusion that one draws is
that slowing the rate of compaction results in an increasingly stronger confinement
effect on the detonation as the longer relaxation time for compaction sustains higher
pressures across the width of the detonation reaction zone at the confiner interface and
beyond. The pressure release that occurs in the porous confiner after the compaction
zone for the lower compaction viscosities, where thinner compaction zones are
generated relative to the detonation reaction zone, results in a weaker confinement of
the detonation even though higher pressures are generated in the thinner compaction
zone.

5.3.2. Low-speed HE2 detonation model
We now turn to the study of HE model HE2, representative of the properties of

a low-detonation-speed HE. For solid material confiners, having a detonation speed
lower than the confiner sound speed leads to a complex flow interaction between the
confiner and HE regions, where large amplitude pressure waves in the confiner can
penetrate ahead of the detonation front (Sharpe & Bdzil 2006; Short et al. 2010).
Significant variations in detonation wave speed with confiner thickness have also been
observed (Short et al. 2010). When the confiner is solid, steady propagating pressure
wave solutions in the confiner are not possible when the wave speed is lower than
the sound speed. With a porous material confiner, however, steady travelling, fully
dispersed subsonic compaction waves are possible with D0 < Cs0 as shown in § 3.
Here we explore issues of detonation confinement with HE model HE2 and the porous
material confiner when D0 <Cs0.

Figure 17 shows the dependence of the detonation phase speed for HE model
HE2 with WHE = 20 for a range of confiner initial solid volume fractions (φs0) and
compaction viscosity magnitudes (µ̄c). Similar trends exist to that described above for
the HE1 model. All cases show strong confinement by the porous confiner, where the
calculated detonation phase speeds D0 are above the unconfined limit for WHE = 20.
For fixed µ̄c, increases in φs0 result in higher detonation phase speeds. Similarly, at
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FIGURE 17. Variation of the detonation phase speed D0 with confiner initial solid volume
fraction (φs0) and compaction viscosity magnitude (µ̄c). The HE model is HE2 and WHE=

20. The units of the scaled compaction viscosity µ̄c are mm−1 µs GPa. As with figure 11,
for a given φs0, the circles show the specific µ̄c cases that were run. All cases are distinct,
and so fewer circles at a given φs0 indicates fewer simulations were run, rather than
overlapping results.

(a) (b) (c) (d )

FIGURE 18. Pressure gradient images highlighting regions of strongest variation in the
pressure gradient for each material in the vicinity of the detonation front for different
φs0 and µ̄c. The HE model is HE2. The HE slab width is WHE = 20. (a) φs0 = 0.3229,
µ̄c = 2 mm−1 µs GPa. The calculated detonation phase speed is D0 = 3.654 mm µs−1.
(b) φs0 = 0.3229, µ̄c = 10 mm−1 µs GPa with D0 = 3.884 mm µs−1. (c) φs0 = 0.75, µ̄c =

2 mm−1 µs GPa with D0= 4.249 mm µs−1. (d) The wave structure when the confiner is
solid, φs0 = 1, with detonation speed D0 = 4.940 mm µs−1. Each image has a width of
x̃= 9.5 and a height of ỹ= 20, where the bottom boundary is the channel symmetry line
(ỹ= 0). Contour definitions as in figure 12.

fixed φs0, increases in µ̄c also lead to higher detonation phase speeds, where again
the effect on D0 of increasing the compaction viscosity amplitude is quite significant.

Figure 18 shows pressure gradient images of the flow in the HE and porous
confiner in the vicinity of the detonation front for WHE = 20, φs0 = 0.3229
and µ̄c = 2 mm−1 µs GPa (where D0 = 3.654 mm µs−1), φs0 = 0.3229 and
µ̄c = 10 mm−1 µs GPa (where D0 = 3.884 mm µs−1) and φs0 = 0.75 and µ̄c =

2 mm−1 µs GPa (where D0 = 4.249 mm µs−1). Also shown is the pressure gradient
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FIGURE 19. Comparison of the location of the detonation shock and confiner compaction
wavehead (solid lines) and the detonation sonic locus (dashed lines) across the HE/confiner
slab for the three porous confiner cases shown in figure 18. The symmetry axis is along
ỹ = 0. For each case, the reference point has been set such that the detonation shock
location along ỹ= 0 has been shifted to x̃= 0.
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FIGURE 20. Spatial profiles of the p (solid lines) and φs (dashed lines) variation in the
confiner for the three porous confiner cases shown in figure 18 along the axial lines (a)
ỹ= 11, (b) ỹ= 13 and (c) ỹ= 15.

image for solid confiner material (φs0 = 1). Figure 19 shows a comparison of the
location of the detonation shock, confiner compaction wavehead and the detonation
sonic locus across the HE–confiner slab for the three porous confiner cases shown
figure 18. Figure 20 contains spatial profiles of the p and φs variation in the porous
confiner along the axial lines ỹ= 11, ỹ= 13 and ỹ= 15 for the three porous material
cases shown in figure 18.
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For the solid confiner case (figure 18d), there is a region of high pressure in the
confiner focused near the interface. The material interface is initially deflected into the
HE, causing the detonation front to become concave, and driving the detonation phase
speed above the CJ detonation speed. These are typical characteristics of detonation
confinement by solid high-sound-speed confiners when D0 < Cs0 (Sharpe & Bdzil
2006; Short et al. 2010). When the confiner is porous, however, more traditional
strong confinement flow structures are observed in figure 18(a–c), even though
D0 < Cs0. In each case, the flow in the HE along the material interface between the
detonation shock and sonic locus is subsonic, while the flow in the confiner region is
everywhere subsonic. The basic confinement flow properties observed in figure 18(a–c)
are consistent with the detonation shock and compaction wave polar analysis (figure 7)
for rapid compaction rates, which shows the existence of direct polar match points
corresponding to strong interaction solutions for porous confiners when D0 < Cs0.
Also, in each case, even though the compaction waveheads lies significantly ahead
of the detonation shock (figures 18(a–c) and 19), the material interface is deflected
outward and not inward as for the solid confiner. The compaction regions for the
porous material confiner (figure 18a–c) are also significantly more oblique compared
with the main confiner pressure wave in the solid confiner case.

Even though the confiner wave speeds are slower and D0 <Cs0, a similar influence
on D0 of variations in µ̄c and φs0 are seen for HE model HE2 as for HE1. A
slower compaction rate (larger µ̄c) for a given HE slab width results in a stronger
confinement effect on detonation propagation (larger D0). For example, comparing
figure 18(a) and 18(b), as µ̄c increases with φs0 fixed, the region of dominant pressure
gradient in the confiner grows in width, with the strongest gradients occurring closer
to the HE surface. Also, the extent of the subsonic region in the HE along the material
interface increases as µ̄c increases, while the detonation shock is flatter (figure 19).
Interestingly, the pressure induced in the confiner for the higher compaction viscosity
µ̄c = 10 mm−1 µs GPa attains a higher magnitude than for µ̄c = 2 mm−1 µs GPa.
For each case in figure 18(a–c), the comparatively low HE pressure loading induced
in the porous confiner leads to only moderate compacting of the confiner material
(figure 20).

An additional property of detonation confinement by solid confiners with D0 < Cs0
is the continuous rise in detonation speed with increasing confiner thickness (Sharpe
& Bdzil 2006; Short et al. 2010; Short & Quirk 2018). For completeness, we have
also examined the effect of varying the thickness of the porous confiner on some
of the phase speed calculations shown in figure 17. Specifically, we have conducted
calculations in a geometry similar to figure 9, but with a finite thickness porous
confiner surrounded by air, so that the confiner is free to expand into the air layer.
Interestingly, thus far we have not seen any effect on the magnitude of D0 for
varying confiner thickness when the confiner material is porous, even though the
flow in the confiner is subsonic. This is in contrast to the observed variation in
D0 with confiner thickness for a solid confiner with D0 < C0s. For example, for
porous material confinement layers with Wc = 10, 15, 20 and 30, WHE = 20 and for
φs0 = 0.3229 and µ̄c = 10 mm−1 µs GPa, we calculate D0 = 3.900 mm µs−1 for all
confiner thicknesses. The equivalent calculations with a solid wall (φs0 = 1) have
D0 = 4.745 mm µs−1 for Wc = 10, D0 = 4.775 mm µs−1 for Wc = 15, D0 = 4.793 for
Wc= 20 and D0= 4.820 mm µs−1 for Wc= 30. The lack of variation in D0 for porous
confiner materials is plausibly related both to the existence of subsonic steady wave
solutions for porous materials that are not available for the solid material, and to the
degree of obliqueness of the porous compaction wave in the confiner. Further work
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remains to be conducted to explain this property. In summary, the flow dynamics for
confinement by porous materials with D0 < Cs0 is significantly different from those
of solid materials.

6. Summary

The fluid mechanics of the interaction between a porous material confiner and a
steady propagating HE detonation in a two-dimensional slab geometry have been
investigated through a combination of analytical oblique wave polar analysis and
multi-material numerical simulation. Our interest in this problem was motivated by a
number of practical situations, including: the use of porous foam materials inserted
between a high explosive and its confinement to protect the HE from damage
due to thermal and mechanical stimuli; the porous rock materials that surround
low-detonation-speed HE in mining applications; the explosively driven consolidation
of initially porous metal, ceramic and composite powders. The confinement of
detonation by porous materials has the potential for an interesting fluid mechanical
coupling. The HE detonation is responsible for driving the compaction front in the
confiner; in turn, high confiner densities generated during compaction can provide a
significant confinement effect on the HE detonation, increasing the detonation speed.
The resulting higher pressures in the detonation can then drive stronger compaction
waves in the porous confiner.

Two HE models were considered, broadly representing the properties of a high-
and low-detonation-speed HE, which permitted studies of detonation propagating at
speeds D0 either faster or slower than the confiner sound speed Cs0. A single-phase
porous compaction model for a metal-oxide powder was used for the confiner,
characterized by the dependence of the equilibrium compaction state on the initial
solid volume fraction, and by a dynamic evolution equation for the solid volume
fraction containing a compaction viscosity which controls the relaxation time scale to
obtain the compacted equilibrium state. The HE detonation and confiner compaction
models were of a moderately simple form but contained the essential elements for
capturing the main fluid mechanical elements of the detonation–confiner interaction
process. A parametric study was undertaken to establish how detonation confinement
for both the high- and low-detonation-speed HE models is influenced both by the
initial solid volume fraction of the porous confiner and by the time scale of the
dynamic compaction relaxation process relative to that of the detonation reaction time
scale.

We first calculated 1-D steady wave structures and equilibrium states for compaction
wave speeds D0 < Cs0, where the wave is subsonic and fully dispersed spatially, and
for D0 > Cs0, when the wave is supersonic and shock led. For a given wave speed,
higher pressure and density states can be generated in materials with higher initial
porosity relative to those with lower initial porosity, a consequence of the work done
and change in internal energy in compacting a more porous material to its equilibrium
state. We also examined how the compaction wave structure spreads spatially relative
to the 1-D detonation reaction-zone length scale for increasing compaction viscosity.

Polar analysis was then employed to examine the interaction between oblique
detonation shock states and the equilibrium states behind an oblique compaction
wave, in the limit that the relaxation rates for compaction are rapid compared with
the detonation reaction-zone time scales. A parametric study of the effect of the initial
solid volume fraction φs0 was conducted for a range of speeds of the intersection
point between the detonation shock and compaction wave greater and lower than the
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porous confiner sound speed. For D0>Cs0, we observed that the maximum streamline
turning angle increased substantially with decreasing φs0. Combined with the high
pressures that can be generated compacting initially porous material to its equilibrium
state, we find strong confinement solutions, involving direct matches between the
high-detonation-speed HE model HE1 detonation shock and confiner wave polar
solutions, even for moderately low φs0. The polar analysis also gave details of the
supersonic or subsonic nature of the flow in the HE and confiner regions at the
strong confinement solution points. For sufficiently low φs0, the match points are
through an HE Prandtl–Meyer fan connecting the HE detonation shock polar to the
equilibrium compaction state. For D0>Cs0, we also examined the interaction between
the detonation shock and compaction shock, which is relevant when the relaxation
rate for compaction is finite. In this case, decreasing the initial solid volume fraction
does not led to any significant increase in maximum streamline turning angle for
the compaction shock. Instead, the compaction shock polar moves internal to the HE
polar. In most interaction cases, the compaction shock is observed to locally drive the
detonation shock. For D0 < Cs0, and with the low-detonation-speed HE model HE2,
there is no polar solution for the confiner wave when the confiner is solid. However,
it was found that polar solutions exist for the rapid relaxation rate equilibrium states
of the oblique compaction wave when the material is sufficiently porous, even though
D0 <Cs0. In such cases, it was also found that the maximum streamline turning angle
increased significantly with decreasing φs0. This gave a range of strong interaction
solutions involving direct match points between the detonation shock and compaction
wave polars, where the flow in the confiner is subsonic. Equivalent solutions do not
exist for solid confiners when D0 <Cs0.

Multi-material numerical simulations in a layered slab geometry were then
conducted to study the effect of detonation wave driven compaction in the porous
confiner on both the longitudinal detonation propagation speed D0, detonation driving
zone structure, and compaction wave structure in the vicinity of the material interface.
We performed a detailed parametric study to establish how detonation confinement
is influenced by the initial solid volume fraction of the porous confiner, by the time
scale of the dynamic compaction relaxation process relative to the detonation reaction
time scale, and by the HE slab width, for both the high- and low-detonation-speed
HE models. Again, the examination of the two HE models allowed us to consider
cases in which the detonation propagation speed is either higher or lower than the
confiner sound speed. Pressure gradient images were used to examine the main flow
structures in the confiner and HE regions. We also examined the subsonic, sonic or
supersonic nature of the flow in the confiner and HE regions and along the material
interface. Detonation speeds were compared with a low-impedance confiner in which
the HE detonation is unconfined.

For D0>Cs0, the detonation–confiner interaction for porous confiners is significantly
different than with solid confiners. We found that the obliqueness of the confiner
compaction wave increased significantly as the initial solid volume decreased, a
result indicated by the polar analysis. Strong confinement solutions, characterized
by subsonic flow regions along the material interface and DDZ regions with lower
shock curvature, are found for even moderately low φs0. The flow in the confiner
regions is found to be supersonic in most cases. Perhaps the most significant finding
of the current work is the substantial effect that the magnitude of the compaction
viscosity has on both the detonation propagation speed and DDZ structure. The
viscosity µ̄c controls the relaxation time to compact the porous material to its
equilibrium state relative to the time scale for reaction in the detonation. A larger
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µ̄c results in larger compaction times. A parametric study revealed that increasing µ̄c
resulted in an increasingly stronger detonation confinement effect, characterized by
significant increases in the detonation propagation speed D0, while the magnitude of
the deflection of the material interface was smaller, and the length of the subsonic
region in the HE on the material interface is larger. This effect was attributed to
higher pressures being sustained across a greater length of the detonation reaction
zone at the confiner interface due to the increase in µ̄c. On the other hand, lower µ̄c
results in thinner compaction zones relative to the HE detonation reaction-zone length,
and while high pressures are generated locally in the thinner compaction zones, the
release waves behind the compaction zone lead to a significantly weaker confinement
effect overall on the detonation. Also, we found that in most cases, the obliqueness of
the compaction wave does not lead to fully compacted states behind the compaction
wave. Finally, in most cases examined, we also found that the confiner wavehead lies
ahead of the detonation shock, implying the confiner shock is driving the detonation
shock locally near the material interface, again a result consistent with the polar
analysis for D0 >Cs0 assuming finite compaction relaxation times.

For solid material confiners, having a detonation speed lower than the confiner
sound speed (D0 < Cs0) leads to a complex flow interaction between the confiner
and HE regions, where large amplitude pressure waves in the confiner can penetrate
ahead of the detonation front (Sharpe & Bdzil 2006; Short et al. 2010; Short & Quirk
2018). Significant variations in detonation wave speed with confiner thickness have
also been observed (Short et al. 2010). For such interactions, the material interface
can be initially deflected into the HE, causing the detonation front to become concave,
and driving the detonation phase speed above the CJ detonation speed. For porous
material confinement with D0 < Cs0, we found strong confinement structures even
for moderately high porosity confiners that differed significantly from the mechanics
of confinement by solid materials. Again, we found significant obliqueness of the
compaction wave structures for decreasing initial solid volume fraction of the confiner,
while increases in the compaction viscosity significantly increased the propagation
speed of the detonation wave. Even though the compaction wavehead was found to
lie significantly ahead of the detonation shock as for solid material confinement with
D0 < Cs0, there was no compression of material interface into the HE. In the cases
examined, the flow in the confiner was entirely subsonic, while the DDZ structure
showed many of the characteristics of strong confinement solutions, with subsonic
flow along the material interface between the divergent detonation shock and sonic
locus. Using three layer geometries, where the porous confiner is free to expand into
air, we have shown that the detonation phase speed is not sensitive to the thickness
of the porous confiner layer, whereas similar calculations for a solid confiner show
significant variations. This has been attributed to the existence of subsonic steady
wave solutions for porous materials that are not available for the solid material,
and perhaps to the large degree of obliqueness of the porous compaction wave in
the confiner. In summary, the flow dynamics for detonation confinement by porous
materials with both D0 >Cs0 and D0 <Cs0 has a number of properties different from
those of solid material confiners.

Appendix A. Weighted pressure gradient imaging
In § 5.3, we used a pressure gradient imaging function to highlight the location of

the principle wave structures. For each material region (HE1/2, porous confiner), we
define a pressure gradient magnitude function at each grid location,

PGFi[ ] = |∇p|, (A 1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

73
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.736


462 M. Short and J. J. Quirk

where i is the material index, and [ ] represents the function evaluation at any grid
location. We then introduce a weighting function, defined at each mesh location,

wti[ ] =
PGFi[ ] −min(PGFi)

max(PGFi)−min(PGFi)
, (A 2)

where min(PGFi) and max(PGFi) are the global maximum and minimum values of the
pressure gradient magnitude function for each material i. Thus 0 6 wti 6 1. Finally, a
colour shading function

greyi[ ] = E×MatColori[ ] × exp(−M×wti[ ]) (A 3)

is defined, where E is an exposure parameter and M is an amplification parameter.
The role of M is to magnify the presence of regions of weak pressure gradients
if desired. Thus for moderate values of M and for wti[ ] → 0, i.e. in regions of
comparatively small pressure gradient, the pressure gradient imaging will return the
base colour (MatColori) of the material region (blue for the porous confiner and light
grey for HE1/HE2). On the other hand, in regions of high pressure gradient, the
base colour of the material region will be overwritten with a grey shading defined by
(A 3). The more intense the pressure gradient magnitude, the darker the shading. For
the images shown in § 5.3, we have used E= 0.8 and M = 20.
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